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Optical properties of random alloys: A formulation
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We present here a formulation for the calculation of the configuration-averaged optical conductivity in
random alloys. Our formulation is based on the augmented-space theorem introduced by opfe. & aisk-
erjee, J. Phys. C6, 1340 (1973]. We show that disorder scattering renormalizes the electron and hole
propagators as well as the transition amplitude. The corrections to the transition amplitude have been shown to
be related to the self-energy of the propagators and vertex corrections.
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I. INTRODUCTION N 1
H=2> {E[pi +A(r D+ V(r) + ¢(ri,t)}-
The object of our present study is to present a formulation i=1
for obtaining the configuration-averaged optical conductivityyere A(r;,t) and ¢(r;,t) are the vector and scalar potentials
for random alloys. Because of randomness, there is a need & py theth electron because of the radiation field. We
go beyond the usual reciprocal-space-based formulations fofave used atomic units in which the electronic charge, mass,
crystalline compounds. Instead of labeling the electronighe Planck constant, and the velocity of light are set to unity
states by the Bloch wave vector and band infe)), which  (e=1, m=1, #=1, c=1). There areN electrons whose posi-
is suitable for crystalline compounds, we have to label themions are labeled by;. The effective potential/(r;) experi-
by energy and the composite angular momentum enced by individual electrons is expressed in the local-
=(¢,m,my). In cases where the disorder is substitutional anddensity approximation(LDA) of the density-functional
homogeneoysn the sense that the occupation probabilitiestheory (DFT). To first order in the vector potential, the
of lattice sites by atom species are independent of the sitdamiltonian becomes
label, we can still label the configuration-averaged quantities N 1
by the reciprocal wave vectors. However, t_he band plpture H=S {‘pi2+V(ri) + A1) 'ji}- (1)
breaks down, and we cannot use the band index labeling of 12
quantum states as in crystalline materials. Substitutional dis- o
order dictates that we begin with a purely real-space reprel € current operatdgjy is related to the momentum operator
sentation, and we have chosen the minimal basis set of @S (8/mM)p;. In atomic units,j;=p;=v;=dr;/dt. We work in
tight-binding linear muffin-tin  orbitals (TB-LMTO)  the Coulomb gauge wher€-A(r;,t)=0 and (r;,t)=0, so
method™2 Configuration averaging over various random that the electric field
atomic arrangements has been carried out using the IA® )
augmented-space formalis(ASF) introduced by us earlier E(ri,t)=———.
for the study of electronic properties of disordered at
systems.” The ASF goes beyond the gsual .mean-ﬂeld 8P-The Kubo formula relates the linear current response to the
proaches and takes into account configuration fluctuat|on§ diation field
This formalism has been described in detail in the referenceda '
articles and the interested reader can go into the details in ) *
them. The contribution of the paper will be to show that the (Ju(0)) =2 J dt' X, (t= )AL,
disorder-induced corrections to the averaged current terms in v
the optical conductivity are directly related either to the
disorder-induced self-energy in the propagators or to vertex Xu(7) =10(7)Do|[] .(7),],(0)]| Do),
corrections. Since the self-energy and the vertex correction\%lhere —t—t/
can be calculated for realistic binary alloy systems, either =
within an augmented-space recursidror within one of the {1 if >0
O(n) =

and®(7) is the Heaviside step function,

mean-field approachéshis formulation will form the basis .
of subsequent calculations in real alloys. 0 if 7<0.
|®y) is the ground state of the unperturbed system, that is,
the electrons in the solid in the absence of the radiation field.
[l. THE OPTICAL CONDUCTIVITY In the absence of the radiation field, there is no photocurrent,
i.e., (@g|j ,/Pp)=0. The fluctuation-dissipation theorem re-
The Hamiltonian describing the effect of an external ra-lates the imaginary part of the generalized susceptibility to
diation field on the electronic states of a solid is given by the correlation function as follows:
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1
X)) = 5(1 -er9)S,(w), 2

whereB=1/kgT; kg is the Boltzmann constant, is the tem-
perature, and

Xp(®@) = Imf dt €7x,.(7), z=w+10"

—00

oo

and

s,w<w)=|mf dt &(@qj,(9],(0) @), 2= w+10".

An expression for the correlation function, B0 K, can be
obtained via the Kubo-Greenwood expression,

Sw)= LS f dE Tifj,, Im{G¥(E)}j Im{ G(E+ w)}].
3m~,

()

We have assumed isotropy of the response so that the tendgEt
S,, is diagonal and we have defin&w) as the direction

averaged quantitgzu S,.(w). ], is &, ], ande, is the di-

rection of polarization of the incoming photon. The operator
GY(E) andG°®(E) are the resolvents of the Hamiltonian pro-
jected onto the subspaces spanned by the occupied and t

unoccupied one-electron states.

The trace is invariant in different representations. Fo

crystalline systems, usually the Bloch bafis, j)} is used.

r
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little interest®! Consequently, the study of configuration-
averaged properties of disordered systems has received much
attention.

Configuration averaging for response functions in disor-
dered materials has had some history. The Ziman-Faber
theory®19 much in use for liquids, is valid for electrons,
weakly scattered from a dilute distribution of impurities. The
extended version of this theory was proposed by Ewns
al.,*! but this too overlooks multiple scattering effects, as
pointed out by Roth and SindgR.An effective-medium ap-
proach(EMA) was proposed by Rothand developed fur-
ther by Roth and Sindf'*and Asano and Yonezaw&This
approach does take into account multiple scattering effec-
tively and, as we shall see, will have close similarities with
the approach we propose in this paper. Veliékyas devel-
oped an expression for configuration-averaged response
functions in random alloys for simple tight-binding models
with one orbital per site and diagonal disordered within the
coherent-potential approximation(CPA). Brouers and
Vedyayew’ have extended the formalism to transition—noble
al alloys. The CPA-like mean-field approach has been
applied to response functions by Niizeki and
co-workers'®2% who extended the pioneering work of
Velicky'® to longer-ranged random potentials. Mooketjee

%has introduced the ASF to tackle configuration averaging.

ithin this formalism, he studied the role of macroscopic
Gnservation laws on the response functions, leading to a
Ward identity between the vertex corrections and the
self-energy?! Within the CPA, vertex corrections were ob-
tained by ingenious diagram summations by Lé&atfhere

For disordered systems, prior to configuration averaging, it iave been CPA calculations by Harris and Plis@Rkand
more convenient to use the real-space-based scre@med Ngyciel-Bloch and Riedingéf.In a series of papers, Mook-

tight-binding muffin-tin orbitals as a basi§RL)}.
If we define

S)21,2) = T},G"(2)i G ()], 4)

then the above equation becomes
1
Sw)=—, f dE[S(E",E" + w)+ S(E* E™ + w)
127 Y v v

- SV(E*,E* +w)-S,(EE+ )], (5)
where

f(E*) = imf(E+i5).
6—0

We have used the Herglotz property of the Green operator,

G(E+i8)=G'(E)-i sgr6)G'(E).

erjee and co-workef®?’ have applied the ASF to conduc-
tivity and optical conductivity in random alloys. This will
form the background of our present development.

The ASF has been described thoroughly in a series of
articles®~" Here we shall introduce the salient features which
will be required by us subsequently in this paper. We shall
start from a first-principles tight-binding linear muffin-tin or-
bitals (TB-LMTO) method??

The quenched local randomness in the alloy is described
by a set of randonoccupationvariablesng, which takes the
value 1 if the muffin-tin labeled byR} is occupied by an
A-type atom and O if it is occupied byB The atom sitting
at{R} can either be of the typ& (ng=1) with probability x5
or B (ng=0) with probability xg.

The ASF now introduces the configuration spdeef the
set of N random variablegng} of rank 2¥ spanned by con-
figurations of the kind11 || T---), where

For disordered materials, we shall be interested in obtaining

the configuration-averaged response functions. This will re-

[TR) = VX4l AR) + VXg|BR),

quire the configuration averaging of quantities such as

37(21 2.

IIl. CONFIGURATION AVERAGING

|1R) = VXl AR) = Vx4 BR).
If we define the configuratiofi 1---1---) as theaverageor

Any description of a disordered system must be from aeferenceconfiguration, then any other configuration may be
statistical point of view, since the properties of these systemaniquely labeled by theardinality sequence{R,}, which is

are random variables and any particutanfigurationis of

the sequence of positions where we havg enfiguration.
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The cardinality sequencef thereferenceconfiguration is the
null sequencdd}.
The augmented-space theorestates that

(AU = (DY A2, (6)

where

A(Mgh) = f f AR TTdPOg) € @.

P(\r) is the spectral density of the self-adjoint operditg,
which is such that the probability density of is given by

plng) == —lim Im({ [(ne-+1)1 ~M&] 1.

Mg is an operator in the space of configuratiafts of the
variableng. This is of rank 2 and is spanned by thtates
{I1R2 [ 1R},

Mg=XaPk + XgPk + VXaXa(Th + T, (7)

wherePL=[1R)}(1rl, Pk=|rRX|rl, and T =[1R)X R, are pro-
jection and transfer operators in configuration space.
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We can reformulate the above in a second quantized formal-
ism. This follows the ideas put forward by Schultz and
Shapera? which were extended in the ASF by Mookerfe.
For the real-space part, this is straightforward, witreauum
state described as that one which contains no electron-like
excitations, and the fermion creation and annihilation opera-
tors areal, andag, for electrons at the sit® with angular
momentum indiced.. For the configuration-space part, we
shall follow the ideas of Ref. 28 and consider tieéerene
state to be the vacuum. Easpin flip*? at any site from up to
down is then a creation of a configuration fluctuation. Since
each site can have only two configurations, two up to down
spin flipscannot take place at a site. These excitations are
thenlocal andfermion-like Each spin flip from down to up
is a destruction of such kcal pseudo-fermionThe Fock
space is then spanned by all configuration states labeled by
the cardinality sequences. The corresponding fermion-like
creation and annihilation operators ehf@and bg. These cre-
ate and annihilate configuration fluctuations over the refer-
ence state. We should note that the configuration fluctuations

11} = AATAHB Y + FAAHRY,

Within the ASF, the configuration-averaged Green func-are local and quenched. In second-quantized form, the

tion is given by®

(G@) = (1)@ - HM 1), (8)

Hef=3 {Z\PR® T+BPr® Pr+FPr@® (T + 1Y)
R

9

+ E VRR’TRR’ ® ’i},
R/

where

A=A =ACUA)IALIA)GS,
B=BLa =Bl(CL-2/AVALA) &L,
F= E|_5|_L' =F[(CL-2/A VAIA) S +»

V=V /(R-R)=AL/A) Y25 (R-R)HAL/AL )2
(10

Pr=|RXR| and 7zr =|RXR’| are projection and transfer op-
erators in real space, andis a composite angular momen-

tum index{¢,m,mg. C,A are the TB-LMTO potential pa-

rameters ands is the structure matrix, in the most tight-

binding (@) representatio®? The following functions are

A(y) =XaYa+ XgYg, I.€., the average of,
B(y) = (Xg = Xa)(Ya~ YB),

F(y) = VXgXa(Ya~ ¥a),
and

Hamiltonian becomes

oo— A A Y T
Ho=2 Alahap + > > VRLRL'@RLERL 5
RL RLR/L’

Hy= 3 (B ok ambrbr* Fiaman (br+ DR}, (1)
where
{br.bR.} = S
{br,br} = 0 ={bf bi. },
and the contraction
b(x')'b(X) T =i6(t' - t) dap,
where
b(x) = bg(t) = explitH)bg exp(— itH )
so that
Y(xX') = = i{@}T(X )b ()IHB}H
= —i0(t' 1) Srp dt—1'). (12)

This pseudo-fermiofiormalism has been described earlier by
Mookerjee?® The readers are referred to that article for fur-
ther details.

IV. AVERAGED GREEN FUNCTION IN THE
PSEUDO-FERMION FORMALISM

In this section, we shall develop a multiple scattering for-
malism for the configuration-averaged Green function for a
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random binary alloy. The scattering is by configuration fluc- SN

tuations and within the second-quantized formalism just de- = ? - Key
scribed, the scattering diagrams are Feynman diagrams. The ' : @
formalism is very close to the Yonezawa-Matsubara scatter- - — 9xx)
ing diagram® and one can establish a one-to-one correspon- & & ---= y (xX)
dence between them in the special case of diagonal disorder. x X ox X o F
The augmented-space theorem then states that o B
/>\\ ¢>~
—jn a Y & (b)
UG, X))y = =i, ( nl) f f dt,dt, ... dt, x X X, X3 X
n=0 :
~ ~ oy FIG. 1. The scattering diagrams fea) the two topologically
» (O{TH4(ty) - - Hu(tpa(x)a'(x)}|0) identical diagrams fon=2 and(b) one of the 3! topologically iden-
<0|S|O> tical diagrams fon=3.
where it is understood that the boldface operators are ex- 1\ A B 1 1
pressed by the matrix representation{li} space and FL = VXgXa\ — —k - —E - z(—A - —B) .
AL A AL Al AL
a(x) = ary(t) = explitHp)ag exp(— itHo), (iii) Figure Xb) shows one of the topologically identical
diagramg(there are 3! =6 such diagrajfer n=3. Note that
S=U(e,-%) and 0y=|0® {D}), it involves the scattering~verte|3. This arises from the first
term in the expression fdd, in Eq. (11). Its contribution is
and also diagonal i spaceB, =B, 8 where
t
ut,t’) =1 -f dt"H, (1) U(t",t). (Xg = Xa)
- BL=—"TFT—F..
VXBXA

We may now apply Wick's theorem and Feynman'’s rules and
generate a diagrammatic expansion for the averaged Gre

function ((G(x,x'))) in terms of the VCA Green function, This scattering vertex cannot sit either in the leftmost or in

the rightmost positions, because one of the associated

g(x,x") = - i(0[{Ta(x)a’(x')}|0). pseudo-fermion propagators vanishes.
(iv) For n=4, there are two topologically distinct non-
Let us examine a few terms in the series. separable diagrant$:the double tent and the crossed tent
(i) Forn=1, the term in the expansion is diagrams shown as the two top diagrams in Fig. 2. The inner
tent in the top diagram goes on to renormalize the interior
_iJ dt1<0|{'|ﬂ1(t1)a(X)aT(X’)}|0>conn- Green fqnction fromg(x,x’) to (<G(x_,x’))). As sqch, the
middle diagram is the onlgkeletondiagram at this order.

I . . . There is one separable diagrdthe bottom diagram in Fig.
The contribution gf this term is zero, since all three termsz)_ This can be broken into two, as shown, by the dotted line.
arising out of H; [see Eg. (11)] vanish because The rightmost diagram renormalizes the rightmost electron
{B}Ib" 0B}, (D} (N2}, and{BHb(X)|{2}) are  line.
all zero.

(i) Forn=2, the only nonvanishing terms come from

- - > T~ -~ -~
i2 f dyy f dt(O{ TH 1 (ty) H1 () a)a" (x')}{O)conn S e,
b ‘6 )Y :
=F? f dx; f dx(0[{Ta'(xp)a(xpa’ (x)a(x)ax)a’(x')} N
X |0conrd {ZHTLT () + b(x0) 1167 (Xo) + b(X) I{D}conn & 6 o ;
= FLg(%, X)X, %) 9 (X2, X') (X1, %) S S
+ (X, X2)G(X2, X)) g(Xq, X' ) Y(Xo,X1) ] b b b ¢
Figure Xa) shows a pictorial representation of the two terms, '

which are topologically identical and therefore have identical
contributions. This cancels thé&/2!) term in the expansion FIG. 2. The topologically distinct scattering diagrams fir4.

for ((G(x,x))). TheF vertex[see Eq(11)] has a contribu- Top and middle are nonseparable, the bottom is separable. The
tion F_» which is diagonal irL spaceF, =F 8, ., where  middle diagram is a skeleton one.
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FIG. 3. Skeleton diagrams for ordar5. FIG. 4. The skeleton diagrams for the self-eneky).

(v) The nonseparable topologically distinct diagrams for (S (21,20 = TR .G ()] TG (z) 1By, (14)
n=5 are shown in Fig. 3. We note that all odd-order dia- r (OHL,6" @)1, G @)
grams must have an odd numberBfertices. The first thing to note about E@14) is that the right-hand

The skeleton diagrams provide the expression for the selfside is an average of four random functions whose fluctua-
energy for the Dyson equation which follows: tions are correlated. The average of the product then involves

the product of the averages and other contributions which
{G(x,x")) =g(x,x") come from averages taken in pairs, triplets, and all four ran-
dom functions.
+ f dy f dy'g(xy)2(y,y )(G(y" . X))
A. Disorder-induced renormalization of the current terms
For homogeneous disorder, we have shown earlier that we . : L . .
have translational symmetry in the full augmented spéce At this stage, in order to simplify notation, we shall omit
We can then take the Fourier transform of the above equati.othe L |ndex.. However, we have to remember that all terms
fbeled by indicek or k are matrices ifL} space, so the
to get order of multiplication of various terms in the expression has
G(k,E) = g(k,E) + g(k,E)S(k,E)G(K,E). (13)  tobe preserved. We shall also omit théndex of the current
term indicating the required projection onto a direction. If
The diagrams for the self-energy are shown in Fig. 4. In theequired, we can put them back in the final expression.
above equation, each term is a matrix{ii} space. The real-space representation of the random current op-
erator, can take the valuqzég, Jég, JEQ, orJFE;BW with prob-
abilities xf\, XaXg, XgXa, andxé, respectively. We may rewrite

V. AVERAGED OPTICAL CONDUCTIVITY IN THE jrr @S
- . _AA - AB :BA
PSEUDO-FERMION FORMALISM Jrr =iAAMRIR +JABNR(1 ~NR) +jEA (1 - RN
We now k to Eq4) and di h nfiguration BB
‘e now go back to Eq4) and discuss the configuratio +28 (1-np)(1 —ng.).

averaging of the two-particle Green functions of the kind
S,(z1,2,). The augmented-space theorem immediately im+ollowing the same augmented-space procedure as for the
plies that single-particle Green functions, we get

i =2 > [ )rrakag+ (Xe = Xa)j ohafar (Db + bl brr) + VXaXg | akar (bg + by + bl + br,)

R g’
+ (X = Xp) VXaXg ] oy Ak {DRDR(0], + br) + b, b (b + bR)} + (x5~ Xa)?i o @k b, brybEbR
+XaXg I ape Ak (DL + bR) (bf, + br1)}, (15)
[
where ik =i i ~irg ~inr-
The first term in Fig. 5 is the averaged current. The figure
(1) AA . AB BB .BA shows the 15 different scattering vertices arising from terms
Jrr =Xl rr ~Irr) ~X8lrr ~IrR) in Eq. (15). The rule for obtaining the diagrams for the cor-
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A Renormalized Currents

O
P < _
o o (2) @
KEY o T >ﬂ i
l | _ . A
~ ,’o ‘\
7 87 o F=/xmp (4)} i O(_i i
©) (10) 11) I ,o ] s
@ ;
F G P G E
13 (14) (15:)\ o/»’/ N & <\
( «IRR>’> .

FIG. 7. Relation between the renormalized currents and the
FIG. 5. The scattering vertices associated with the random curself-energy.
rent terms.

Let us now obtain expressions for the renormalized cur-
relation functionS(z;,2,) is as follows: Take any two cur- rents. A careful look at the self-energy diagragsee the
rent diagrams from Fig. 5 and two propagators and join thenpottom of Fig. 7 and the example diagram shown there
end to end. Now join the configuration fluctuation lines shows that all self-energy diagrams have the structure
shown as dashed arrowis all possible ways.

( The dominant cont)r?nkf]utionp comes frgm the diagram 2(k,2) =F@)@(k,2F(2),
shown in Fig. 6. Here the two current terms are the averageghere®(k ,2) is the Fourier transform of
current, and all configuration-fluctuation decorations renor-

malize only the two electron propagators. In this diagram the Dpp(2) =D GRRl(Z)P Z)GRZR'(Z)
bold propagators are the fully renormalized electron propa- RiRy

gators and the contribution of this term is ) o , o .
While the contribution of the diagram label€d) in Fig. 7 is

d®k
f F«j (NG K,z (KNGO, 2,))). (16)
Bz ©T

P RF(2) @K, 2)F(z1), (17)
We now focus on the main correction terms to the expressio#here
in Eq. (16). These are the correction terms to the averaged 1
current which are closely related to the self-energies. They FL(2) = VXaXg—— L7
arise from a set of diagrams in which no disorder propagator fL(2)

(shown as dashed ling@ins either two electron propagators
or two of the current lines directly. These diagrams are made
out of a leftrenormalizedcurrent diagram chosen out of the
diagramg1)—(4) in Fig. 7 and one rightenormalizeccurrent  the expression fof17) becomes

diagram from(5)—<(8) connected by twoenormalizedpropa- 5

gators, the bottom one being a valence and the top a conduc-  j(k)F(z)F(zy)2(k,zy) =] P (k)f(z) 2 (k,z).
tion electron propagator.

FLL’ = \““XAXBéLL’:

The contributions of the other diagrams in the left column of
Fig. 7 are:

KEY
3 (k,2)F Y2)F(2,)] Y (k) = 2(k, 2)f(20)] V(K),
I << ] >> 3

F(z)] P(OF z)2(k,20) = ] P(K)f(2)2(K, 2y),
— <<G>>

3(k,2)F 4(2)] D(K)F(25) = 2(K, 2)f(2)] V(K).

FIG. 6. The diagram fof{(j ){(G"){{ (G ]. From the forms of~(2) and|~:(z), we note that
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@ T ,[H 4‘ l ®

" S0

Y e S ™
FIG. 8. Few more renormalized currents. ‘ J H ; >ﬂ
- - ,,i-__——‘/ b \ (®)
P0OF@F @ =F@iM(F@ =] (0t @) @ L [

Similarly, the contributions of the diagrams in the right col-
umn in Fig. 7 are

3(k,2)f(z)iP(k), JPRf(Z)E(K,2),

FIG. 9. The scattering diagrams associated with joint fluctua-
tions of the random current terms and one propagator.

3 (k, 2)f(22)] P (K F(z) 2 (K, 20),
3k, 2)f(2)]P(k), JPRf(Z)2(K,2). "
Closely related to the above diagrams is a group of dia- 2k 2)f2)i 7 (0f(Z)2 (k. 2).
grams which describe joint fluctuations of one current and If we now gather all the contributions from these dia-

two propagators. Two such diagrams labgl@dand(10) in  grams, we may define a renormalized current term as
Fig. 8 can also be expressed in terms of the self-energy: follows:

3¢k, 21,2,) = ((j (K)) + 2AZ (K, 2)f (2] P (k) +] VT (K)F(2) 2k, 2)] + 2 (K, ) (2] P (K (zD)2 (K, 20) (18)

The contribution of these disorder-renormalized currents and propagators to the correlation function is
3
k

_Tr[‘JEﬁ(kv21122)<<Gv(k7Zl)>>‘Jeﬁ(k121122)T<<Gc(k122)>>]' (19)

(Sa@zn=| o

We now turn to terms which involve joint fluctuations between the two current terms and one propagator. We shall show
that the corrections due to these terms are also related to the self-energy. Such diagrams are shown in Fig. 9. Contribution of
these diagrams is given by

d*
(S (z,2))) =4 f QTFD(1)(k)f(21)2(k,21)f(21)j<1”(k)<<G(k,Zz)>>+j(l)T(k)f(Zz)E(k.Zz)f(Zz)j(1)(k)<<G(k,21)>>]- (20)

Bz

These terms have a slightly different structure than thoseand we shall indicate how to obtain them within a ladder
shown in Fig. 7. However, they still depend only on the approximation, we need not sacrifice these terms in a calcu-
self-energy. lation for a realistic alloy if we do not wish to do so. How-

Intuitively, we expect these to be the dominant disordefever, in most cases we expect their contribution to be rela-
scattering correction to the averaged current. It is importanfvely small.
to note that this correction can be obtained from the self-
energy and is therefore eminently computationally feasible in
the case of realistic alloys, once we have a feasible method
for obtaining the self-energy. We shall now examine the scattering diagrams we have

There are other scattering diagrams which are not relateéft out, namely those in which disorder lines connect both
to the self-energy, but rather to the vertex corrections. Irthe propagators directly. These lead to vertex corrections due
these diagrams, a disorder line connects both the electrdo electron-electron and electron-hole correlated propagation.
propagators directly. We expect these corrections to be ledsigure 10 shows a few of these diagrams. In general, we
dominant. For the sake of completeness, we shall indicatebtain a Bethe-Salpeter equation for the averaged two-
how to obtain them in the Appendix. We should note thatparticle propagator. We shall consider only one special class
since these corrections are related to the vertex correctiorsf vertex diagrams in this paper, namely the scattering dia-

B. The vertex correction
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|Scattering diagrams | Vertex Corrections

Q
1
Ladder
; !
: o
a—p
\\// .
7 X
//\\ d;b
Q@ FIG. 10. The scattering diagrams leading to
¢ 1 .
i L vertex corrections.
LT~ ’ | N
O F
® s

o-----0

) =
: ' L ’ I e ' l
& ® &= 1

grams which are built out of repeated vertices shown on theertions between the crossed vertices. These are known as
first line of Fig. 10. These are called the ladder diagrams andhaximally crossed diagrams. These diagrams lead to the lo-
can be summed up to all orders. This is the disorder scattecalization effect.

ing version of the random-phase approximati®PA) for Here we shall sum the ladder diagrams to all orders. The
electron-electron scattering. There is another form of diacontribution of the ladder diagram shown as the second dia-
grams shown on the second line of Fig. 10 with ladder in-gram on the top line in Fig. 11 is

EEEEEEJRL R,L.CR,L RL(Zl)\NII:SGRL RL(Zl)‘JEﬁE R.LCRLRL(Z)Cr 1, RL(Z),
R1R2R3R4 R5L1L2L3L4L5L6 556" -1 1-1"2-2 2 2-2"3-3 3-3'"4~4 44125 2-5'"5-6

whereGrir1/(2)=((G(r,/(2)) and
W, = FL(Zz)[ Suir+ 22 [Bui(z) Grurpu () + BL”(ZZ)GRL",RL’(ZZ)]] Fu(zy).
L”

Homogeneity in augmented-space means that this is independBraraf it allows us to take the Fourier transforms leading
to

287T

3 3, 7
[ f ak G(k,2)3%"(k,2;,2) G (K, zl)} { f 2_k3G(k',Zl)JeﬁT(k’,zl,zz)G(k’,zz)} =T(2,)WI(z,2). (21
B BZ n

We define Let us define

dk
f ——5G(K,2)3%(k,2,2)G(k,z) =I'(21,2,), d®k
B

Z 8 3 )\L L4(Zl’22) 8 3GL |_4(k Zl)GL oLy (k 22)
Bz

dk’
f - ——5G(K',2)3M(k’",2,2))'G (K", 2) = [(2,2,). LL
5z w3 2= V\/[§5L1L25L3L4-

Let us now look at the contribution of the set of ladder dia- _ _
grams. Each one of them has the same structure a@fy. ~ These supermatrices {h} space are written asandw. The
We may then sum up the series as follows. full ladder vertex may now be written as

134205-8
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L,

FIG. 11. The ladder scattering diagrams for
the vertex correction in real-space and reciprocal-

space representations.

4~ 4 373 2 7
RqL4 Roly 1 Fl 2 Rd.a |:‘1|_1 R2L2 R |_
Real Space Representation
L, kL, '-6"1'-5"2 Ly Lgk1lrka g g 15
k k k1| ! |k2 k1| ' ' k
—00
L1 k L2 L,|k1L2k2 L3 Lk Lk L kL

11 2 2 3 3 4

Recinrocal Space Representation

A(21,2) = @+ 0\ (2, Z) @ + 0N (2, Z) 0\ (2, )0 + -+

(22)

=l - )__\(21122)620]_1

The ladder diagram vertex correction now can be" i _
written as diagrams: ones that involve vertices[labeled(11)—«13)],
ones that involveB [labeled(14)—(16)] -type vertices, and
(Saddelz1, ) =TrY, 2 TLl(Zl,Zz)AL1L3FL (21,25) those that involve botflabeled(17)—(18)].
Lilolaly The first category of diagram@1)—(13) contributes the
=TT(z2) @ T@zA@z). 29 OO
ez Q
VI. COMMENTS AND CONCLUSION \ 2
o - PR I
Starting from the pseudo-fermion picture in the "’—:h'—;\o d—>"—§a
augmented-space method, we have obtained an expression ﬁ_'<_,o %\(—'
for the configuration-averaged optical conductivity. The
disorder scattering renormalizes both the electron propaga- s ({,
tors as well as the current terms. We have shown that

the dominant corrections to the averaged current can be re-
lated to the self-energy. For the sake of completeness, we
have also shown that the remaining correction terms are re-
lated to the vertex corrections. We have also indicated how to
obtain the vertex corrections within the ladder approxima-
tion. Once we set up a computationally feasible technique
for the computation of the self-energy and the ladder ap-
proximation to the vertex correction, all the correction terms
can be easily obtained. In an earlier communicatfone
have suggested the augmented-space recursion as a feasible
technique for obtaining.(k) and have applied it for obtain-
ing the complex band structure and density of states of a
series of realistic metallic alloys, namely AgPd and AuFe
and most recently NiPt among others. We propose to use that
techniqgue and the results derived here to obtain the
configuration-averaged optical conductivity in disordered
metallic alloys. We intend to study, through numerical calcu-
lations, the relative importance of the contribution of the
different correction terms.

APPENDIX: CORRECTIONS TO THE CURRENT TERM
RELATED TO THE VERTEX CORRECTIONS

For the sake of completeness, we shall also indicate the
contribution of those scattering diagrams to the current

which cannot be directly related to the self-energy but rather FIG. 12. Renormalized curren¢ft column) derived from ver-

to vertex corrections. tex

134205-9
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correctiongright column).

These remaining diagrams are shown in the left column of
Fig. 12. These diagrams cannot be related to the self-
energies, but rather to specific vertex correction diagrams
between the two propagators. There are three categories of

(11)

(12)

(13)

(14)

(15)

(16)

a7

(18)
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F(2)F 2] 2(F(2)F {2)AP(0.k;22,2) ol [\i o
0 diagram(11), = M i W
F(z)F (2] ®(K)F()F Y 2)A P (k,0;2,2,) kz ®

N\
O diagram(12),
= “1(5\i D (1) E -1 (F) @ \":f'i‘--”' ‘i ®
F(z)F (2] Y (K)F(z)F () A" (K k21, 2) _44‘-1—3!'"“\ >;‘

O diagram(13).
FIG. 13. Some of the scattering diagrams associated with joint

Inserting the expressions f6i(z) and|~:, we get a total con- fluctuations of the random current terms and two propagators.
tribution,

J.=1(z)j (2)(k)f(22){A(F)(O,k,zl,zz) + A(F)(k,O,zl,zz)
+ APk K, 25,29)}. (A1)

Collecting together terms
Here, the vertex correction tertv® involves only F-like
vertices in all four legs. Similarly, for the other two sets of AJ=J;+Jp+ 3.
diagrams we get The contribution of these disorder renormalized currents and

~ _ . _ ropagators to the correlation function is
B(z)B X (2)] V(K)F H(z) A®(K k;21,2,) propag

J3=2f(z))] (2)(k)f(22)A(FB)(k,k;21-22)- (A3)

; d®k
0 diagrant14), (S92 = f g TAIK.2,2)
BZ
F(20)] @ (k)B(22)B™H2) A® (K k;21,2) X(G¥(k,2))AJ(K,21,29) (GE(k, )))].
0 diagram(15), (A4)
- - Finally, Fig. 13 shows the diagrams with joint fluctuations of
B(z1)BX(z)j ?(k)B(z2)B H(z) APk k;2,2,) two current terms and two propagators. These are also built

out of vertex corrections. Note that each of the six diagrams

0 diagram(16). can be broken up into a left and right part. For the diagrams

The total contribution will be shown in Fig. 13 all the right parts are the same. Thirty other
5 similar diagrams can be produced by replacing the right part
Jo= f(z)j V(K)f(2o) + F(20)] P (K)F (20) with the five different left parts mirror-imaged. The contri-
VXaXg bution of these diagrams is then, if
XA® (K k;21,2)). (A2) K (k,21,2) = ()] P(K)f(z)) + b(2,)] @ (K)f(zy)
A® involves onlyB-like vertices in its left-hand side legs. +1(2,)j 2(k)b(zy) + b(2,)j P (k)b(zy),
Finally, for the last two diagrams,
where
B(20)B™@)j P (F(2)F (2)A Pk k21,2, Yo = Xa
: b(z) = ——=H(2),
O diagram(17), VXaXg
Fz)F 2)j ?()B(z)B™(2) ok
FB) . (Sw(z1,20))) = 3 11K(k,z,2)
XA (k,k;z,2) O diagram(18). Bz 87
Their contribution is ® K'(k,z,2)A(k,K,21,2).  (A5)
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