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We present here a formulation for the calculation of the configuration-averaged optical conductivity in
random alloys. Our formulation is based on the augmented-space theorem introduced by one of us[A. Mook-
erjee, J. Phys. C6, 1340 (1973)]. We show that disorder scattering renormalizes the electron and hole
propagators as well as the transition amplitude. The corrections to the transition amplitude have been shown to
be related to the self-energy of the propagators and vertex corrections.
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I. INTRODUCTION

The object of our present study is to present a formulation
for obtaining the configuration-averaged optical conductivity
for random alloys. Because of randomness, there is a need to
go beyond the usual reciprocal-space-based formulations for
crystalline compounds. Instead of labeling the electronic
states by the Bloch wave vector and band indexsk , jd, which
is suitable for crystalline compounds, we have to label them
by energy and the composite angular momentumL
=s, ,m,msd. In cases where the disorder is substitutional and
homogeneous, in the sense that the occupation probabilities
of lattice sites by atom species are independent of the site
label, we can still label the configuration-averaged quantities
by the reciprocal wave vectors. However, the band picture
breaks down, and we cannot use the band index labeling of
quantum states as in crystalline materials. Substitutional dis-
order dictates that we begin with a purely real-space repre-
sentation, and we have chosen the minimal basis set of the
tight-binding linear muffin-tin orbitals (TB-LMTO)
method.1,2 Configuration averaging over various random
atomic arrangements has been carried out using the
augmented-space formalism(ASF) introduced by us earlier
for the study of electronic properties of disordered
systems.3,7 The ASF goes beyond the usual mean-field ap-
proaches and takes into account configuration fluctuations.
This formalism has been described in detail in the referenced
articles and the interested reader can go into the details in
them. The contribution of the paper will be to show that the
disorder-induced corrections to the averaged current terms in
the optical conductivity are directly related either to the
disorder-induced self-energy in the propagators or to vertex
corrections. Since the self-energy and the vertex corrections
can be calculated for realistic binary alloy systems, either
within an augmented-space recursion5–7 or within one of the
mean-field approaches,4 this formulation will form the basis
of subsequent calculations in real alloys.

II. THE OPTICAL CONDUCTIVITY

The Hamiltonian describing the effect of an external ra-
diation field on the electronic states of a solid is given by

H = o
i=1

N H1

2
fpi + Asr i,tdg2 + Vsr id + fsr i,tdJ .

HereAsr i ,td andfsr i ,td are the vector and scalar potentials
seen by theith electron because of the radiation field. We
have used atomic units in which the electronic charge, mass,
the Planck constant, and the velocity of light are set to unity
(e=1, m=1, "=1, c=1). There areN electrons whose posi-
tions are labeled byr i. The effective potentialVsr id experi-
enced by individual electrons is expressed in the local-
density approximation(LDA ) of the density-functional
theory (DFT). To first order in the vector potential, the
Hamiltonian becomes

H = o
i=1

N H1

2
pi

2 + Vsr id + Asr i,td · j iJ . s1d

The current operatorj i is related to the momentum operator
as se/mdpi. In atomic units,j i =pi =vi =dr i /dt. We work in
the Coulomb gauge where= ·Asr i ,td=0 andfsr i ,td=0, so
that the electric field

Esr i,td = −
] Asr i,td

] t
.

The Kubo formula relates the linear current response to the
radiation field,

k jmstdl = o
v
E

−`

`

dt8xmnst − t8dAnst8d,

xmnstd = ıQstdkF0uf jmstd, jns0dguF0l,

wheret= t− t8 andQstd is the Heaviside step function,

Qstd = H1 if t . 0

0 if t ø 0.

uF0l is the ground state of the unperturbed system, that is,
the electrons in the solid in the absence of the radiation field.
In the absence of the radiation field, there is no photocurrent,
i.e., kF0u jmuF0l=0. The fluctuation-dissipation theorem re-
lates the imaginary part of the generalized susceptibility to
the correlation function as follows:
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xmn9 svd =
1

2
s1 − e−bvdSmnsvd, s2d

whereb=1/kBT; kB is the Boltzmann constant,T is the tem-
perature, and

xmn9 svd = ImE
−`

`

dt eıztxmnstd, z= v + ı0+

and

Smnsvd = ImE
−`

`

dt eiztkF0u jmstd jns0duF0l, z= v + ı0+.

An expression for the correlation function, atT=0 K, can be
obtained via the Kubo-Greenwood expression,

Ssvd =
1

3p
o

g
E dE Trfj g ImhGvsEdjj g

†Imh GcsE + vdjg.

s3d

We have assumed isotropy of the response so that the tensor
Smn is diagonal and we have definedSsvd as the direction
averaged quantity13om Smmsvd. j g is êg ·j , and êg is the di-
rection of polarization of the incoming photon. The operators
GvsEd andGcsEd are the resolvents of the Hamiltonian pro-
jected onto the subspaces spanned by the occupied and the
unoccupied one-electron states.

The trace is invariant in different representations. For
crystalline systems, usually the Bloch basishuk , jlj is used.
For disordered systems, prior to configuration averaging, it is
more convenient to use the real-space-based screened(or
tight-binding) muffin-tin orbitals as a basishuRLlj.

If we define

Sgsz1,z2d = Trfj gGvsz1dj g
†Gcsz2dg, s4d

then the above equation becomes

Ssvd =
1

12p
o

g
E dEfSgsE−,E+ + vd+ SgsE+,E− + vd

− SgsE+,E+ + vd − SgsE−,E− + vdg, s5d

where

fsE±d = lim
d→0

fsE ± idd.

We have used the Herglotz property of the Green operator,

GsE + idd = GrsEd − i sgnsddGisEd.

For disordered materials, we shall be interested in obtaining
the configuration-averaged response functions. This will re-
quire the configuration averaging of quantities such as
Sgsz1,z2d.

III. CONFIGURATION AVERAGING

Any description of a disordered system must be from a
statistical point of view, since the properties of these systems
are random variables and any particularconfigurationis of

little interest.31 Consequently, the study of configuration-
averaged properties of disordered systems has received much
attention.

Configuration averaging for response functions in disor-
dered materials has had some history. The Ziman-Faber
theory,8–10 much in use for liquids, is valid for electrons,
weakly scattered from a dilute distribution of impurities. The
extended version of this theory was proposed by Evanset
al.,11 but this too overlooks multiple scattering effects, as
pointed out by Roth and Singh.12 An effective-medium ap-
proach(EMA) was proposed by Roth13 and developed fur-
ther by Roth and Singh12–14and Asano and Yonezawa.15 This
approach does take into account multiple scattering effec-
tively and, as we shall see, will have close similarities with
the approach we propose in this paper. Velický16 has devel-
oped an expression for configuration-averaged response
functions in random alloys for simple tight-binding models
with one orbital per site and diagonal disordered within the
coherent-potential approximation(CPA). Brouers and
Vedyayev17 have extended the formalism to transition–noble
metal alloys. The CPA-like mean-field approach has been
applied to response functions by Niizeki and
co-workers,18–20 who extended the pioneering work of
Velický16 to longer-ranged random potentials. Mookerjee3

has introduced the ASF to tackle configuration averaging.
Within this formalism, he studied the role of macroscopic
conservation laws on the response functions, leading to a
Ward identity between the vertex corrections and the
self-energy.21 Within the CPA, vertex corrections were ob-
tained by ingenious diagram summations by Leath.22 There
have been CPA calculations by Harris and Plischke23 and
Nauciel-Bloch and Riedinger.24 In a series of papers, Mook-
erjee and co-workers25–27 have applied the ASF to conduc-
tivity and optical conductivity in random alloys. This will
form the background of our present development.

The ASF has been described thoroughly in a series of
articles.3–7 Here we shall introduce the salient features which
will be required by us subsequently in this paper. We shall
start from a first-principles tight-binding linear muffin-tin or-
bitals (TB-LMTO) method.1,2

The quenched local randomness in the alloy is described
by a set of randomoccupationvariablesnR, which takes the
value 1 if the muffin-tin labeled byhRj is occupied by an
A-type atom and 0 if it is occupied by aB. The atom sitting
at hRj can either be of the typeA snR=1d with probabilityxA

or B snR=0d with probability xB.
The ASF now introduces the configuration spaceF of the

set ofN random variableshnRj of rank 2N spanned by con-
figurations of the kindu↑↑ ↓¯ ↓ ↑¯l, where

u↑Rl = ÎxAuARl + ÎxBuBRl,

u↓Rl = ÎxBuARl − ÎxAuBRl.

If we define the configurationu↑↑¯ ↑¯l as theaverageor
referenceconfiguration, then any other configuration may be
uniquely labeled by thecardinality sequence, hRkj, which is
the sequence of positions where we have a↓ configuration.
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Thecardinality sequenceof thereferenceconfiguration is the
null sequencehxj.

The augmented-space theorem3 states that

kkAshnRjdll = khxjuÃ uhxjl, s6d

where

ÃshM Rjd =E ¯E AshlRjd p dPslRd e F.

PslRd is the spectral density of the self-adjoint operatorM R,
which is such that the probability density ofnR is given by

psnRd = −
1

p
lim
d→0

Imk↑ ufsnR + iddI − M Rg−1u↑l.

M R is an operator in the space of configurationscR of the
variablenR. This is of rank 2 and is spanned by thestates
hu↑Rl , u↓Rlj,

M R = xAPR
↑ + xBPR

↓ + ÎxAxBsTR
↑↓ + TR

↓↑d, s7d

wherePR
↑ = u↑Rlk↑Ru, PR

↓ = u↓Rlk↓Ru, andTR
↑↓= u↑Rlk↓Ru, are pro-

jection and transfer operators in configuration space.
Within the ASF, the configuration-averaged Green func-

tion is given by29

kkGszdll = k1uszĨ − H̃effd−1u1l. s8d

H̃eff = o
R
HÃPR ^ Ĩ + B̃PR ^ PR

↓ + F̃PR ^ sTR
↑↓ + TR

↓↑d

+ o
R8

ṼRR8TRR8 ^ ĨJ , s9d

where

Ã ; ÃLdLL8 = AsCL/DLd/As1/DLddLL8,

B̃ ; B̃LdLL8 = BfsCL − zd/DLg/As1/DLddLL8,

F̃ ; F̃LdLL8 = FfsCL − zd/DLg/As1/DLddLL8,

Ṽ ; ṼLL8sR− R8d = As1/DLd−1/2SLL8sR− R8dAs1/DL8d
−1/2.

s10d

PR= uRlkRu andTRR8= uRlkR8u are projection and transfer op-
erators in real space, andL is a composite angular momen-
tum index h, ,m,msj. C,D are the TB-LMTO potential pa-
rameters andS is the structure matrix, in the most tight-
binding sad representation.1,2 The following functions are

Asyd = xAyA + xByB, i.e., the average ofy,

Bsyd = sxB − xAdsyA − yBd,

Fsyd = ÎxBxAsyA − yBd,

and

u1j = AsDL
–1/2duhxjl + FsDL

–1/2duhRjl, u1l =
u1j

iu1ji
.

We can reformulate the above in a second quantized formal-
ism. This follows the ideas put forward by Schultz and
Shapero,28 which were extended in the ASF by Mookerjee.25

For the real-space part, this is straightforward, with avacuum
state described as that one which contains no electron-like
excitations, and the fermion creation and annihilation opera-
tors areaRL

† andaRL for electrons at the siteR with angular
momentum indicesL. For the configuration-space part, we
shall follow the ideas of Ref. 28 and consider thereference
state to be the vacuum. Eachspin flip32 at any site from up to
down is then a creation of a configuration fluctuation. Since
each site can have only two configurations, two up to down
spin flipscannot take place at a site. These excitations are
then local and fermion-like. Each spin flip from down to up
is a destruction of such alocal pseudo-fermion. The Fock
space is then spanned by all configuration states labeled by
the cardinality sequences. The corresponding fermion-like
creation and annihilation operators arebR

† andbR. These cre-
ate and annihilate configuration fluctuations over the refer-
ence state. We should note that the configuration fluctuations
are local and quenched. In second-quantized form, the
Hamiltonian becomes

H̃ = H̃0 + H̃1,

H̃0 = o
RL

ÃLaRL
† aRL + o

RL
o
R8L8

ṼRL,R8L8aRL
† aR8L8,

H̃1 = o
RL

hB̃LaRL
† aRLbR

†bR+ F̃LaRL
† aRLsbR + bR

†dj, s11d

where

hbR,bR8
† j = dRR8,

hbR,bR8j = 0 = hbR
†,bR8

† j,

and the contraction

bsx8d.bsxd†. = iust8 − tddRR8,

where

bsxd = bRstd = expsitH̃0dbR exps− itH̃0d

so that

gsx,x8d = − ikhxjuhTbsx8db†sxdjuhxjl

= − iust8 − tddRR8dst − t8d. s12d

This pseudo-fermionformalism has been described earlier by
Mookerjee.25 The readers are referred to that article for fur-
ther details.

IV. AVERAGED GREEN FUNCTION IN THE
PSEUDO-FERMION FORMALISM

In this section, we shall develop a multiple scattering for-
malism for the configuration-averaged Green function for a
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random binary alloy. The scattering is by configuration fluc-
tuations and within the second-quantized formalism just de-
scribed, the scattering diagrams are Feynman diagrams. The
formalism is very close to the Yonezawa-Matsubara scatter-
ing diagrams15 and one can establish a one-to-one correspon-
dence between them in the special case of diagonal disorder.

The augmented-space theorem then states that

kkGsx,x8dll = − io
n=0

`
s− idn

n!
E ¯E dt1dt2 . . .dtn

3
k0uhTH̃1st1d ¯ H̃nstndasxda†sx8dju0l

k0uS̃u0l
,

where it is understood that the boldface operators are ex-
pressed by the matrix representation inhLj space and

asxd = aRLstd = expsitH̃0daRLexps− itH̃0d,

S̃= Ũs`,− `d and u0l = u0 ^ hxjl,

and

Ũst,t8d = Ĩ −E
−`

t

dt9H̃1st9dŨst9,t8d.

We may now apply Wick’s theorem and Feynman’s rules and
generate a diagrammatic expansion for the averaged Green
function kkGsx,x8dll in terms of the VCA Green function,

gsx,x8d = − ik0uhTasxda†sx8dju0l.

Let us examine a few terms in the series.
(i) For n=1, the term in the expansion is

− iE dt1k0uhTH̃1st1dasxda†sx8dju0lconn.

The contribution of this term is zero, since all three terms

arising out of H̃1 fsee Eq. s11dg vanish because
khxjub†sxdbsxduhxjl, khxjub†sxduhxjl, andkhxjubsxduhxjl are
all zero.

(ii ) For n=2, the only nonvanishing terms come from

i2E dt1E dt2k0uhTH̃1st1dH̃1st2dasxda†sx8dju0lconn

= F2E dx1E dx2k0uhTa†sx1dasx1da†sx2dasx2dasxda†sx8dj

3u0lconnkhxjuTfb†sx1d + bsx1dgfb†sx2d + bsx2dguhxjlconn

= F2fgsx,x1dgsx1,x2dgsx2,x8dgsx1,x2d

+ gsx,x2dgsx2,x1dgsx1,x8dgsx2,x1dg.

Figure 1sad shows a pictorial representation of the two terms,
which are topologically identical and therefore have identical
contributions. This cancels thes1/2!d term in the expansion
for kkGsx,x8dll. The F vertex fsee Eq.s11dg has a contribu-
tion FLL8 which is diagonal inL spaceFLL8=FLdLL8, where

FL = ÎxBxAK 1

DL
L−1FCL

A

DL
A −

CL
B

DL
B − zS 1

DL
A −

1

DL
BDG .

siii d Figure 1sbd shows one of the topologically identical
diagramssthere are 3! =6 such diagramsd for n=3. Note that
it involves the scattering vertexB. This arises from the first

term in the expression forH̃1 in Eq. s11d. Its contribution is
also diagonal inL spaceBLL8=BLdLL8 where

BL =
sxB − xAd
ÎxBxA

FL.

This scattering vertex cannot sit either in the leftmost or in
the rightmost positions, because one of the associated
pseudo-fermion propagators vanishes.

sivd For n=4, there are two topologically distinct non-
separable diagrams:33 the double tent and the crossed tent
diagrams shown as the two top diagrams in Fig. 2. The inner
tent in the top diagram goes on to renormalize the interior
Green function fromgsx,x8d to kkGsx,x8dll. As such, the
middle diagram is the onlyskeletondiagram at this order.
There is one separable diagramsthe bottom diagram in Fig.
2d. This can be broken into two, as shown, by the dotted line.
The rightmost diagram renormalizes the rightmost electron
line.

FIG. 1. The scattering diagrams for(a) the two topologically
identical diagrams forn=2 and(b) one of the 3! topologically iden-
tical diagrams forn=3.

FIG. 2. The topologically distinct scattering diagrams forn=4.
Top and middle are nonseparable, the bottom is separable. The
middle diagram is a skeleton one.
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svd The nonseparable topologically distinct diagrams for
n=5 are shown in Fig. 3. We note that all odd-order dia-
grams must have an odd number ofB vertices.

The skeleton diagrams provide the expression for the self-
energy for the Dyson equation which follows:

kkGsx,x8dll = gsx,x8d

+E dyE dy8gsx,ydSsy,y8dkkGsy8,x8dll.

For homogeneous disorder, we have shown earlier that we
have translational symmetry in the full augmented space.29

We can then take the Fourier transform of the above equation
to get

Gsk,Ed = gsk,Ed + gsk,EdSsk,EdGsk,Ed. s13d

The diagrams for the self-energy are shown in Fig. 4. In the
above equation, each term is a matrix inhLj space.

V. AVERAGED OPTICAL CONDUCTIVITY IN THE
PSEUDO-FERMION FORMALISM

We now go back to Eq.(4) and discuss the configuration
averaging of the two-particle Green functions of the kind
Sgsz1,z2d. The augmented-space theorem immediately im-
plies that

kkSgsz1,z2dll = Trkhxjufj̃ gG̃vsz1dj̃ g
†G̃csz2dguhxjl. s14d

The first thing to note about Eq.(14) is that the right-hand
side is an average of four random functions whose fluctua-
tions are correlated. The average of the product then involves
the product of the averages and other contributions which
come from averages taken in pairs, triplets, and all four ran-
dom functions.

A. Disorder-induced renormalization of the current terms

At this stage, in order to simplify notation, we shall omit
the L index. However, we have to remember that all terms
labeled by indicesR or k are matrices inhLj space, so the
order of multiplication of various terms in the expression has
to be preserved. We shall also omit theg index of the current
term indicating the required projection onto a direction. If
required, we can put them back in the final expression.

The real-space representation of the random current op-
erator, can take the valuesj RR8

AA , j RR8
AB , j RR8

BA , or j RR8
BB with prob-

abilitiesxA
2, xAxB, xBxA, andxB

2, respectively. We may rewrite
j RR8 as

j RR8 = j RR8
AA nRnR8 + j RR8

AB nRs1 − nR8d + j RR8
BA s1 − nRdnR8

+ j RR8
BB s1 − nRds1 − nR8d.

Following the same augmented-space procedure as for the
single-particle Green functions, we get

j = o
R

o
R8

fkkj llRR8aR
†aR + sxB − xAdj RR8

s1d aR
†aR8sbR

†bR + bR8
† bR8d + ÎxAxB j RR8

s1d aR
†aR8sbR + bR

† + bR8
† + bR8d

+ sxB − xAdÎxAxB j RR8
s2d aR

†aR8hbR
†bRsbR8

† + bR8d + bR8
† bR8sbR

† + bRdj + sxB − xAd2j RR8
s2d aR

†aR8bR8
† bR8bR

†bR

+ xAxB j RR8
s2d aR

†aR8hsbR
† + bRdsbR8

† + bR8dj, s15d

where

j RR8
s1d = xAsj RR8

AA − j RR8
AB d − xBsj RR8

BB − j RR8
BA d,

j RR8
s2d = j RR8

AA + j RR8
BB − j RR8

AB − j RR8
BA .

The first term in Fig. 5 is the averaged current. The figure
shows the 15 different scattering vertices arising from terms
in Eq. (15). The rule for obtaining the diagrams for the cor-

FIG. 3. Skeleton diagrams for ordern=5.
FIG. 4. The skeleton diagrams for the self-energySszd.
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relation functionSgsz1,z2d is as follows: Take any two cur-
rent diagrams from Fig. 5 and two propagators and join them
end to end. Now join the configuration fluctuation lines
(shown as dashed arrows) in all possible ways.

The dominant contribution comes from the diagram
shown in Fig. 6. Here the two current terms are the averaged
current, and all configuration-fluctuation decorations renor-
malize only the two electron propagators. In this diagram the
bold propagators are the fully renormalized electron propa-
gators and the contribution of this term is

E
BZ

d3k

8p3kkj skdllkkGvsk,z1dllkkj skdll†kkGcsk,z2dll. s16d

We now focus on the main correction terms to the expression
in Eq. (16). These are the correction terms to the averaged
current which are closely related to the self-energies. They
arise from a set of diagrams in which no disorder propagator
(shown as dashed lines) joins either two electron propagators
or two of the current lines directly. These diagrams are made
out of a leftrenormalizedcurrent diagram chosen out of the
diagrams(1)–(4) in Fig. 7 and one rightrenormalizedcurrent
diagram from(5)–(8) connected by tworenormalizedpropa-
gators, the bottom one being a valence and the top a conduc-
tion electron propagator.

Let us now obtain expressions for the renormalized cur-
rents. A careful look at the self-energy diagrams(see the
bottom of Fig. 7 and the example diagram shown there)
shows that all self-energy diagrams have the structure

Ssk,zd = FszdFsk,zdFszd,

whereFsk ,zd is the Fourier transform of

FRR8szd = o
R1R2

GRR1
szdPR1R2

RR8 szdGR2R8szd.

While the contribution of the diagram labeled(1) in Fig. 7 is

j s1dskdF̃sz1dFsk,z1dFsz1d, s17d

where

FLL8szd = ÎxAxB
1

fLszd
dLL8,

F̃LL8 = ÎxAxBdLL8,

the expression for(17) becomes

j s1dskdF̃sz1dF−1sz1dSsk,z1d = j s1dskdfsz1dSsk,z1d.

The contributions of the other diagrams in the left column of
Fig. 7 are:

Ssk,z2dF−1sz2dF̃sz2dj s1dskd = Ssk,z2dfsz2dj s1dskd,

F̃sz1dj s1dskdF−1sz1dSsk,z1d = j s1dskdfsz1dSsk,z1d,

Ssk,z2dF−1sz2dj s1dskdF̃sz2d = Ssk,z2dfsz2dj s1dskd.

From the forms ofFszd and F̃szd, we note that

FIG. 5. The scattering vertices associated with the random cur-
rent terms.

FIG. 6. The diagram forfkkj llkkGvllkkj llkkGcllg.

FIG. 7. Relation between the renormalized currents and the
self-energy.

K. K. SAHA AND A. MOOKERJEE PHYSICAL REVIEW B70, 134205(2004)

134205-6



j s1dskdF̃szdFszd = F̃szdj s1dskdFszd = j LL8
s1d skdfL8szd.

Similarly, the contributions of the diagrams in the right col-
umn in Fig. 7 are

Ssk,z1dfsz1dj s1dskd, j s1dskdfsz2dSsk,z2d,

Ssk,z1dfsz1dj s1dskd, j s1dskdfsz2dSsk,z2d.

Closely related to the above diagrams is a group of dia-
grams which describe joint fluctuations of one current and
two propagators. Two such diagrams labeled(9) and (10) in
Fig. 8 can also be expressed in terms of the self-energy:

Ssk,z2dfsz2dj s2dskdfsz1dSsk,z1d,

Ssk,z1dfsz1dj s2dskdfsz2dSsk,z2d.

If we now gather all the contributions from these dia-
grams, we may define a renormalized current term as
follows:

Jeffsk,z1,z2d = kkj skdll + 2fSsk,z2dfsz2dj s1d†skd + j s1d†skdfsz1dSsk,z1dg + Ssk,z2dfsz2dj s2dskdfsz1dSsk,z1d. s18d

The contribution of these disorder-renormalized currents and propagators to the correlation function is

kkSs1dsz1,z2dll =E
BZ

d3k

8p3TrfJeffsk,z1,z2dkkGvsk,z1dllJeffsk,z1,z2d†kkGcsk,z2dllg. s19d

We now turn to terms which involve joint fluctuations between the two current terms and one propagator. We shall show
that the corrections due to these terms are also related to the self-energy. Such diagrams are shown in Fig. 9. Contribution of
these diagrams is given by

kkSs2dsz1,z2dll = 4E
BZ

d3k

8p3Trfj s1dskdfsz1dSsk,z1dfsz1dj s1d†skdkkGsk,z2dll+ j s1d†skdfsz2dSsk,z2dfsz2dj s1dskdkkGsk,z1dllg. s20d

These terms have a slightly different structure than those
shown in Fig. 7. However, they still depend only on the
self-energy.

Intuitively, we expect these to be the dominant disorder
scattering correction to the averaged current. It is important
to note that this correction can be obtained from the self-
energy and is therefore eminently computationally feasible in
the case of realistic alloys, once we have a feasible method
for obtaining the self-energy.

There are other scattering diagrams which are not related
to the self-energy, but rather to the vertex corrections. In
these diagrams, a disorder line connects both the electron
propagators directly. We expect these corrections to be less
dominant. For the sake of completeness, we shall indicate
how to obtain them in the Appendix. We should note that
since these corrections are related to the vertex corrections

and we shall indicate how to obtain them within a ladder
approximation, we need not sacrifice these terms in a calcu-
lation for a realistic alloy if we do not wish to do so. How-
ever, in most cases we expect their contribution to be rela-
tively small.

B. The vertex correction

We shall now examine the scattering diagrams we have
left out, namely those in which disorder lines connect both
the propagators directly. These lead to vertex corrections due
to electron-electron and electron-hole correlated propagation.
Figure 10 shows a few of these diagrams. In general, we
obtain a Bethe-Salpeter equation for the averaged two-
particle propagator. We shall consider only one special class
of vertex diagrams in this paper, namely the scattering dia-

FIG. 8. Few more renormalized currents.

FIG. 9. The scattering diagrams associated with joint fluctua-
tions of the random current terms and one propagator.
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grams which are built out of repeated vertices shown on the
first line of Fig. 10. These are called the ladder diagrams and
can be summed up to all orders. This is the disorder scatter-
ing version of the random-phase approximation(RPA) for
electron-electron scattering. There is another form of dia-
grams shown on the second line of Fig. 10 with ladder in-

sertions between the crossed vertices. These are known as
maximally crossed diagrams. These diagrams lead to the lo-
calization effect.

Here we shall sum the ladder diagrams to all orders. The
contribution of the ladder diagram shown as the second dia-
gram on the top line in Fig. 11 is

o
R1R2

o
R3R4

o
R5

o
L1L2

o
L3L4

o
L5L6

JR5L6,R1L1

eff GR1L1,R2L2
sz1dWL2

L5GR2L2,R3L3
sz1dJR3L3,R4L4

eff† GR4L4,R2L5
sz2dGR2L5,R5L6

sz2d,

whereGRLR8L8szd=kkGRLR8L8
v/c szdll and

WL8
L = FLsz2dFdLL8 + 2o

L9

fBL9sz1dGRL9,RL8sz1d + BL9sz2dGRL9,RL8sz2dgGFL8sz1d.

Homogeneity in augmented-space means that this is independent ofR and it allows us to take the Fourier transforms leading
to

FE
BZ

d3k

8p3Gsk,z2dJeffsk,z1,z2dGsk,z1dGWFE
BZ

d3k8

8p3 Gsk8,z1dJeff†sk8,z1,z2dGsk8,z2dG = Gsz1,z2dWĜsz1,z2d. s21d

We define

E
BZ

d3k

8p3Gsk,z2dJeffsk,z1,z2dGsk,z1d = Gsz1,z2d,

E
BZ

d3k8

8p3 Gsk8,z1dJeffsk8,z1,z2d†Gsk8,z2d = Ĝsz1,z2d.

Let us now look at the contribution of the set of ladder dia-
grams. Each one of them has the same structure as Eq.(21).
We may then sum up the series as follows.

Let us define

lL3L4

L1L2sz1,z2d =E
BZ

d3k

8p3GL3L4
sk,z1dGL2L1

sk,z2d,

vL3L4

L1L2 = WL3

L1dL1L2
dL3L4

.

These supermatrices inhLj space are written aslII andvII. The
full ladder vertex may now be written as

FIG. 10. The scattering diagrams leading to
vertex corrections.
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LIIsz1,z2d = vII + vIIlIIsz1,z2dvII + vIIlIIsz1,z2dvIIlIIsz1,z2dvII + ¯

= vIIfIII − lIIsz1,z2dvIIg−1. s22d

The ladder diagram vertex correction now can be
written as

kkSladdersz1,z2dll = Tro
L1L2

o
L3L4

GL2

L1sz1,z2dLL2L4

L1L3ĜL4

L3sz1,z2d

= TrGsz1,z2d ^ Ĝsz1,z2dLsz1,z2d. s23d

VI. COMMENTS AND CONCLUSION

Starting from the pseudo-fermion picture in the
augmented-space method, we have obtained an expression
for the configuration-averaged optical conductivity. The
disorder scattering renormalizes both the electron propaga-
tors as well as the current terms. We have shown that
the dominant corrections to the averaged current can be re-
lated to the self-energy. For the sake of completeness, we
have also shown that the remaining correction terms are re-
lated to the vertex corrections. We have also indicated how to
obtain the vertex corrections within the ladder approxima-
tion. Once we set up a computationally feasible technique
for the computation of the self-energy and the ladder ap-
proximation to the vertex correction, all the correction terms
can be easily obtained. In an earlier communication,30 we
have suggested the augmented-space recursion as a feasible
technique for obtainingSskd and have applied it for obtain-
ing the complex band structure and density of states of a
series of realistic metallic alloys, namely AgPd and AuFe
and most recently NiPt among others. We propose to use that
technique and the results derived here to obtain the
configuration-averaged optical conductivity in disordered
metallic alloys. We intend to study, through numerical calcu-
lations, the relative importance of the contribution of the
different correction terms.

APPENDIX: CORRECTIONS TO THE CURRENT TERM
RELATED TO THE VERTEX CORRECTIONS

For the sake of completeness, we shall also indicate the
contribution of those scattering diagrams to the current
which cannot be directly related to the self-energy but rather
to vertex corrections.

These remaining diagrams are shown in the left column of
Fig. 12. These diagrams cannot be related to the self-
energies, but rather to specific vertex correction diagrams
between the two propagators. There are three categories of

diagrams: ones that involveF̃ vertices[labeled(11)–(13)],
ones that involveB̃ [labeled(14)–(16)] -type vertices, and
those that involve both[labeled(17)–(18)].

The first category of diagrams(11)–(13) contributes the
following:

FIG. 11. The ladder scattering diagrams for
the vertex correction in real-space and reciprocal-
space representations.

FIG. 12. Renormalized currents(left column) derived from ver-
tex corrections(right column).
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F̃sz1dF−1sz1dj s2dskdF̃sz2dF−1sz2dLsFds0,k ;z1,z2d

⇒ diagrams11d,

F̃sz1dF−1sz1dj s2dskdF̃sz2dF−1sz2dLsFdsk,0;z1,z2d

⇒ diagrams12d,

F̃sz1dF−1sz1dj s2dskdF̃sz2dF−1sz2dLsFdsk,k ;z1,z2d

⇒ diagrams13d.

Inserting the expressions forFszd and F̃, we get a total con-
tribution,

J1 = fsz1dj s2dskdfsz2dhLsFds0,k,z1,z2d + LsFdsk,0,z1,z2d

+ LsFdsk,k,z2,z1dj. sA1d

Here, the vertex correction termLsFd involves only F-like
vertices in all four legs. Similarly, for the other two sets of
diagrams we get

B̃sz1dB−1sz1dj s1dskdF−1sz2dLsBdsk,k ;z1,z2d

⇒ diagrams14d,

F−1sz1dj s2dskdB̃sz2dB−1sz2dLsBdsk,k ;z1,z2d

⇒ diagrams15d,

B̃sz1dB−1sz1dj s2dskdB̃sz2dB−1sz2dLsBdsk,k ;z1,z2d

⇒ diagrams16d.

The total contribution will be

J2 = H 2
ÎxAxB

fsz1dj s1dskdfsz2d + fsz1dj s2dskdfsz2dJ
3LsBdsk,k ;z1,z2d. sA2d

LsBd involves onlyB-like vertices in its left-hand side legs.
Finally, for the last two diagrams,

B̃sz1dB−1sz1dj s2dskdF̃sz2dF−1sz2dLsFBdsk,k ;z1,z2d

⇒ diagrams17d,

F̃sz1dF−1sz1dj s2dskdB̃sz2dB−1sz2d

3LsFBdsk,k ;z1,z2d ⇒ diagrams18d.

Their contribution is

J3 = 2fsz1dj s2dskdfsz2dLsFBdsk,k ;z1,z2d. sA3d

Collecting together terms

DJ = J1 + J2 + J3.

The contribution of these disorder renormalized currents and
propagators to the correlation function is

kkSs3dsz1,z2dll =E
BZ

d3k

8p3TrfDJsk,z1,z2d

3kkGvsk,z1dllDJsk,z1,z2d†kkGcsk,z2dllg.

sA4d

Finally, Fig. 13 shows the diagrams with joint fluctuations of
two current terms and two propagators. These are also built
out of vertex corrections. Note that each of the six diagrams
can be broken up into a left and right part. For the diagrams
shown in Fig. 13 all the right parts are the same. Thirty other
similar diagrams can be produced by replacing the right part
with the five different left parts mirror-imaged. The contri-
bution of these diagrams is then, if

K sk,z1,z2d = fsz2dj s2dskdfsz1d + bsz2dj s2dskdfsz1d

+ fsz2dj s2dskdbsz1d + bsz2dj s2dskdbsz1d,

where

bszd =
xB − xA

ÎxAxB

fszd,

kkSs4dsz1,z2dll =E
BZ

d3k

8p3TrK sk,z1,z2d

^ K †sk,z1,z2dLsk,k,z1,z2d. sA5d
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