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on the intergrain boundary structure and is independent of the grain size and porosity.
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I. INTRODUCTION

The problem of heat transfer in ceramic nanostructures is
important due to possible application of such materials as the
thermal barrier coatings. The operation temperatures of ce-
ramic coatings are about or exceed 1000 °C. There are two
mechanisms that are important for the heat transport in non-
metallic solids at such temperatures: the phonon and radia-
tive mechanisms. Nanostructuring is assumed to decrease the
phonon or photon mean free path, and so decrease the ther-
mal conductivity. Indeed, thermal conductivity of nanostruc-
tures can be reduced in comparison with its bulk value.1

Propagation of phonons is an important mechanism of
heat transfer at high temperatures. Note that the temperature
of 1000 °C exceeds the Debye temperature for most dielec-
trics. This means that the phonons whose wavelength is simi-
lar to the lattice constant are most important for the heat
transport. The commonly used continuum approximation is
not appropriate to consider the intergrain transport of these
short-wavelength phonons. Indeed, to investigate this prob-
lem, the well-known boundary conditions are usually applied
on the corresponding components of the elastic field(an elas-
tic displacement and strength). These boundary conditions
arise as a result of averaging of the elastic fields over some
region at the interface. The size of this region in the normal-
to-boundary direction should significantly exceed the lattice
constant. This procedure is appropriate for long-wavelength
phonons, but it is not appropriate for short-wavelength
phonons whose wavelength is similar to the lattice constant
and for which such averaging can not be done.

The structure of a grain boundary is very important with
respect to its interaction with short-wavelength phonons. Ide-
ally the position of each atom at the interface should be
known. However, there is no reliable experimental data on
the atomic arrangement of the interface. One may expect a
disordered(amorphous) structure of the grain boundaries(or
necks between the grains, observed during the first and sec-
ond stage of the sintering procedure). This makes it difficult
to propose a microscopic model of the grain boundaries.
Moreover, this complicates investigation of thermal conduc-
tivity in terms of the lattice wave theory.1 The model we

have proposed2 is free of these shortcomings. It considered
the short-wavelength phonon transport in granular media as a
phonon hopping between neighboring grains. A grain bound-
ary is considered phenomenologically. The only parameter
describing the interface structure is considered as an adjust-
able parameter. It could be calculated only if an atomistic
model of the interface structure can be proposed.

The radiative component of the thermal conductivity was
found to be significant at high temperaturessT*1000 °Cd.1
The thickness of the ceramic layer of interest is in the range
of some hundred micrometers to around a millimeter. For
this reason it was assumed that the mean free path of photons
is equal to the film thickness. This is a rough estimate of the
radiative component in thin films; in particular, the influence
of the structure disorder on the photon mean free path in
thick films can also be important.

In this paper we report results of our studies on porous
a−Al2O3 nanostructures. The Debye temperature of this ma-
terial is TD=1042 K. We prepared two sets of threea
−Al2O3 nanostructures each distinguished by the grain size,
porosity, and grain boundary structure. The thermal conduc-
tivity (TC) of the structures is much lower than that of an
Al2O3 single crystal. In addition, it does not show any sig-
nificant temperature dependence. Such behavior of TC is
characteristic for the bounded structures due to phonon con-
finement. It has been exhibited in numerical simulations for
nanowires,3 layered structures and superlattices with4 and
without5 quantum dots, and has been observed in
experiments.6

The model we have adopted takes into account both the
phonon and radiative mechanisms of thermal conductivity.
To consider the phonon transport in porous nanostructures
we used the theory previously developed by the authors.2

The pores in some of our samples are of the size comparable
to the grain size. For this reason we use the percolation
model7 to improve our theoretical model2 and render it ap-
plicable to nanostructured materials of high porosity.

The length of the electromagnetic waves radiated atT
,1000 °C significantly exceeds the lattice constant; this al-
lows us to apply the continuum approximation to investigate
the radiative component of the thermal conductivity. To de-
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termine this component, we consider the electromagnetic
wave propagation in a granular material.

II. EXPERIMENT

A. Sample preparation

Commercial high purity transition alumina powder
(Baikowski CR125; samples FD1/1–FD1/3) as well as MgO
doped s0.5 wt%d g-alumina powder(Baikowski CR11325;
samples FD2/1–FD2/3) were used. The powders were attri-
tion milled for 3 h with dispersant addition, freeze-dried and
cold isostatically pressed. The samples were consolidated by
spark plasma sintering using a heating rate of 200°C/min up
to the sintering temperatures of 1400 °C and holding times
ranging from 0 to 5 min. The pressure was applied from the
beginning of the sintering cycle and released during cooling.
These different sintering conditions were chosen to produce
different microstructures(grain size, porosity) (Table I).

B. Characterization of the samples

The porosity, grain size as well as the contact area be-
tween the grains were determined using image analysis
methods applied to SEM pictures of polished and thermally
etched samples. Additionally TEM studies of the samples
FD1/1, FD1/2, and FD1/3 sintered at different conditions
(Fig. 1) were performed with TEM Philips CM300, operating
at 300 kV. The samples were coated with carbon layer to
avoid charging.

C. Thermal conductivity measurements

The laser flash method was used for measurements of heat
diffusivity in a “TC-3000H/L SINKU-RIKO” device as de-
scribed in Refs. 8 and 9.

III. THEORY

The two mechanisms important for the heat transport in
nonmetallic solids at high(of the order of Debye or higher)
temperatures are: the phonon and radiative mechanisms. The
first one relates to the movement of atoms in the crystalline
lattice; the second one is due to the electron transitions be-
tween the energy levels in these atoms. If we neglect the

relation between the energy levels and spacing between the
atoms, then both mechanisms can be considered indepen-
dently. This assumption seems to be reasonable, if the am-
plitude of the atomic oscillation is considerably lower than
the lattice constant. We can then write

k = kph + kr,

wherek is the thermal conductivity,kph andkr are its pho-
non and radiative components, and consider each of them
separately.

A. Phonon contribution to thermal conductivity

To investigate the high temperature phonon transport in
nanostructures we assume that two mechanisms are domi-
nant: scattering at the grain boundaries and the phonon-
phonon interaction. At the same time, for the materials
whose thermal conductivity is considerably reduced due to
nanostructuring the phonon scattering at the grain boundaries
is of most importance. This scattering determines the phonon
mean free path that becomes now comparable with the grain
size and is independent of the phonon wavelength. This
means that the phonons whose wavelength is of about the
lattice constant determine the thermal conductivity at high
temperatures. This distinguishes nanostructured materials
from single crystals or amorphous ones where the phonons

TABLE I. Experimental data used in calculation.

Sample

Sintering
temperature

s°Cd

Holding
time
(min)

Grain
size
(nm)

Deviation of
the grain size

(%)
Porosity

(%)

Pore
size
(nm)

Coordination
number Cohesion

Contact diameter(nm)
measured calculateda

Thickness
(mm) t

FD1/1 1050 0 174 36 43 300 6.45 0.65 93 103 1.205 0.069

FD1/2 1020 3 161 16 27 310 9.27 0.76 100 142 1.07 0.073

FD1/3 1040 0 360 16 3 570 12.1 .0.9 270 355 1.34 0.066

FD2/1 1050 1 270 20*b 37 280 7 0.53 250 155 1.57 0.028

FD2/2 1020 3 315 15* 25 200 8.92 0.53 280 245 1.69 0.038

FD2/3 1040 0 450 15* 7 350 12.1 .0.9 432 432 1.69 0.030

aCalculated after Skorohod Ref. 14.
bSymbol * marks the estimated values.

FIG. 1. TEM images.(a) Smaller grain size, lower density
sample FD1/2, scale bar 200 nm.(b) Larger grain size, higher den-
sity sample FD1/3, scale bar 200 nm.(c) Two sintered grains in
powder FD1/2. The interface(indicated with an arrow) has a thick-
ness,1 nm. Both grains are crystalline, but oriented differently
and the crystalline fringes can be easily seen only on one of them.
Scale bar 2 nm.
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of different wavelength are of the same importance for TC.1

We adopt the following model. We start with the phonon
states that initially were localized at the individual grains of
the nanostructure and then consider their transport as the
phonon hopping between the grains. This allows us to reduce
the problem of the phonon transport to the problem of elec-
trical conductivity of a net of arbitrary resistorsRij , which
correspond to relevant grain boundaries(between thei-th
and j-th grains). This yields the following expression for
TC:2

kph =
kB

2TZtS̄Fssd
3p"a2d

E
0

1/u

Bsxddx, s1d

where

Bsxd =
9

2
u4 x4ex

sex − 1d2Sx −
1

u
D2

, u =
T

TD
,

T is the temperature,TD is the Debye temperature," andkB
are the Planck and Boltzmann constants,a is the lattice con-

stant,d is the grain size,S̄ is the main area of the intergrain
boundary(the “neck” size), andZ is the coordination num-
ber. Deviation of this parameters from its mean value is de-
termined with the parameter of disorderF. It has been esti-
mated in Ref. 2 as

F = S1 +
2s2

Z
D−1

.

s is the mean relative deviation ofS̄. Equation(1) results in
the temperature dependence of TC that increases atT,TD,
and becomes constant atT.TD. Thus, for T.TD Eq. (1)
yields

kph =
kB

2ZtS̄FssdTD

20p"a2d
. s2d

The main difference between Eq.(1) from the one derived
in Ref. 2 arises from the factorZ/3p. Indeed, in the absence

of porosity the value ofZS̄ is the total surface area of the
grain and therefore it is a constant. In our experiments(Table
I), however, it is not so because of complexity of the grain
shape and porosity. The factorZ/3p is valid if Z@1. In
particular, forZ,12.10

To consider the phonon-phonon scattering we suppose
that some additional resistors(the value of which isr i =kid,
whereki is the bulk part of TC) are series connected to the
boundary onessRijd. This leads to the following expression
for TC:

kph = kBTE
0

1/u kiBsxdZtS̄F

3p"kB
−1kia

2d + kBTDBsxdZtS̄F
dx. s3d

Hereki =kisTd is the thermal conductivity of the single crys-
tal; an influence of impurities and other bulk mechanisms of
phonon scattering can also be included in this value. It is
important that all parameters of Eq.(3) exceptt can be mea-
sured experimentally. Thet value describes interface trans-
parency for the phonon hopping. To estimate it, the equations

of movement for each atom at the interface have to be
solved. We will not carry out this procedure, but we will
consider thet value as an adjustable parameter. It depends
only on the interface structure and is independent of the
grain size and porosity. So, it should be similar for nano-
structures prepared using the same technology. This fact will
be tested experimentally in this paper.

B. Radiative part of thermal conductivity

A radiative contribution to the thermal conductivity arises
from photon emission caused by electron transport. These
photons can then be absorbed by the electrons. If the photon
mean free path is considerably less than the size of the speci-
men, then the photon gas achieves a local thermodynamic
equilibrium with the phonons. This allows us to consider the
energy transport that is accompanied by the photons as a
radiative component of thermal conductivity and estimate it
as

kr =
c

3Î«
E

0

`

CVsvdlsvddv, s4d

wherec, v, and lsvd are the photon speed, frequency, and
mean free path,« is the dielectric permittivity,

CVsvddv =
"

p2c3

]

] T
S v3

e"v/kBT − 1
Ddv

is the heat capacity of the photons of the frequencyv.
Let us estimate the mean free path of the thermal photon

"v,kBT in a perfecta−Al2O3 single crystal.

lsvd =
c

Î2pvs
,

c
Î2pNee

2/m*
, s5d

wheres=Nee
2t /m* is the electric conductivity,11 e and m*

are the charge and effective mass of the electron,t is the
electron relaxation time; at high temperatures it can be esti-
mated ast=" / skBTd, so that

s =
Nee

2"

m*kBT
.

Ne is the electron density. In a perfect crystal it can be esti-
mated as

Ne = 2S2pm*kBT

s2p"d2 D3/2

e−Eg/2kBT, s6d

where for the band gap and effective mass values we have
Eg<8.7 eV,m* <0.35me (e andme are the charge and mass
of the free electron).12 Then

kr =
kB

4T3

3p2c"3Î2pNee
2/m*E

0

` x4dx
Îxsex − 1d2

. s7d

Using Eqs.(5)–(7) for T=2000 K yieldskr <11 W/sm Kd,
andl <14 cm. This means that a perfect Al2O3 crystal shows
no resistance to the photon transport. The resistance could
arise from the impurities or intrinsic defects(the energy level
of the defect closest to the top of the valence band isEi
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=0.3 eV).13 The latter can be responsible for heat resistance
if their density is rather large, so thatl becomes smaller than
thickness of the specimenL. The effect can be estimated by
Eq. (7), whereNe,Nie

−Ei/kBT andm* is effective mass of the
hole,Ni is the defect density. However, this yieldskr that is
usually small, ifl !L.

It is easy to understand the reason. The electron density is
low at low temperature. This means long mean free paths
both of electrons and photons[Eq. (5)]. Increase of the tem-
perature leads to increase of the photon part of the heat ca-
pacity (which is proportional toT3), but also to rapid de-
crease of the photon mean free path(which exponentially
depends on temperature).

Appreciable contribution to the radiative component
could originate from the electron levels localized less than
0.1 eV from a band edge. They can be the electrons from
impurity or surface levels segregated from the conductive or
valence bands(electrons from dangling bonds). In the latter
case, the density of the levels can be roughly estimated as
Ni &24p/ spa2Dd, whereD is the pore size. Such levels be-
come ionized atT*1000 °K. ThenNe→Ni becomes inde-
pendent of temperature, so thatkr increases asT3.

Crystal disorder decreases the phonon mean free path and
so decreases the radiative component. To estimate this effect
we take into account that wavelength of the heat photons at
T=1000 K is of about 5000 nm, so that it significantly ex-
ceeds the grain size. This allows us to use a continuum ap-
proximation: We consider the electromagnetic wave propa-
gation in the media with the position dependant dielectric
permittivity. In the first approximation(with respect to ratio
of the grain size to the photon wavelength) this effectively
change the permittivity, however, in the second approxima-
tion this leads to decay of the electromagnetic waves due to
the structural disorder. The decay length considerably ex-
ceeds not only the grain size, but also the wavelength.

To consider the propagation of electromagnetic waves in a
granular material we find the solution of the Maxwell equa-
tions in the media with the dielectric permittivity«srd=«
+jsr d, where« is the average permittivity, which is indepen-
dent ofr , and the random functionjsr d is its deviation. This
allows us to express the electric and magnetic fields of the
waves via the correlation functionWsr −r 8d=kjsr 8djsr dl,
which we assume to be equal toWsr −r 8d=q2

3exps−ur −r 8u /Rd, whereq is the mean square deviation of
the permittivity andR.d is the correlation length. Unlike
the commonly used Gauss correlation function, this one is
more appropriate for the steplike random values(esr d=e1

=e in the grains oresr d=e2=1 in the pores).
We found that disorder leads to the effective correction to

the permittivity «̃=«−q2/3« and attenuation of the electro-
magnetic wavesg~v4R3 (see the Appendix for details of
computations). The effective mean free path is

1

lef f
=

1

lsvd
+

1

lscsvd
, where lscsvd = g−1

= 3q−2R−3sv/cd−4. s8d

Hereq2=ps1−pdse−1d2, andp is the porosity.

The effective mean free pathleffsvd substituteslsvd in Eq.
(4). It is apparent this is approximately the smallest value
betweenlsvd~v−1/2 and lscsvd~v−4. In the perfect crystal
lsvd! lscsvd, and the value ofv=kBT/" is effectively the
upper limit for the integral(4). In the real crystal the solution
v0 of the equationlsv0d= lscsv0d can be either larger or
smaller thankBT/". In the first case the disorder has no
appreciable influence onkr, in the second one the value of
v0,kBT/" becomes the effective upper limit of Eq.(4); this
decreases the radiative componentkr.

IV. RESULTS AND DISCUSSION

The results of the TEM study of our samples are pre-
sented in Fig. 1, where the structure of the interfaces between
the a−Al2O3 grains is shown. This is important, because it
influences the phonon propagation in nanopowder. The TEM
study shows, that

1. The interfaces between thea−Al2O3 grains are very
thin (,1 nm, Fig. 1)

2. No epitaxial relation between the neighboring crystal-
line a−Al2O3 grains was observed.

Table I presents results of the structure measurements of
our specimens together with the values of the parametert for
each of them. These values oft ensure the best fit of Eq.(3)
with measured temperature dependence of TC(Fig. 3). The
value of t does not vary significantly for the specimens of
each set, but change approximately two times for the speci-
mens of different sets. This means that the parametert de-
pends on the intergrain interface structure, but it is indepen-
dent of the grain size and porosity.

To understand this, we recall that,0.5 wt % of MgO was
added during the preparation of FD2/1–FD2/3. This amount
is much larger than solubility of MgO in alumina, therefore
most of the added MgO should be located at the grain bound-
aries affecting thet value.

Figure 2 presents results of our TC measurements for the
FD1/2 specimen along with temperature dependence of
Al2O3 thermal conductivity in the bulk that was measured in
Ref. 15. It is apparent that our experimental dots do not show
significant temperature dependence. In addition, TC of our
structures is much less than that of the bulk single crystal;

FIG. 2. (Color online) Temperature dependence of TC of the
sample FD1/2: measured(dots) and calculated(solid line). Different
types of the dots label the different series of the measurements.
Dashed line indicates TC of the bulk Al2O3 single crystal(Ref. 15).
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this confirms the approximations of our model. Indeed, as a
result of nanostructuring the mean free path of phonons is
determined by the grain boundaries, and it is independent of
the phonon frequency and the temperature. This is the main
reason why the short wavelength phonons, which prevail at
high temperatures, are mostly responsible for the heat trans-
port. In the single crystals, on the contrary, the phonon mean
free path, which is determined by the phonon-phonon inter-
action, decreases with the frequency asl ~v−2, so that the
phonons of any frequency are of equal importance for TC.
This enables one to estimate roughly thet value from Eq.(2).
The results are close to that of Table I.

Measured values of thermal conductivity as a function of
temperature are presented in Fig. 3. We see that theoretical
curves as a rule demonstrate more rapid decrease with tem-
perature than observed. This means that the expression Eq.
(3) overestimates the influence of the phonon-phonon inter-
action. Indeed, when obtaining Eq.(3) we had assumed this
interaction as independent of scattering at the grain bound-
aries; we suppose 1/l =1/lB+1/lph, where l is the phonon
mean free path,lB and lph are the phonon mean free paths
relative to scattering at the grain boundaries and the phonon-
phonon interaction, respectively. Actually, we have to take

into account only the interactions that affect the phonon hop-
ping from one grain into another. Since the in-grain phonon-
phonon scattering affects only the density of the phonon
states inside the grain, but it does not change the thermal
conductivity.

The radiative component alone causes an increase of TC
at high temperatures. This follows from Eq.(7), if Ne is
independent of temperature. This is of particular importance
for specimens of low porosity due to an increase of the ef-
fective photon mean free path[Eq. (8)]. We have observed
some increase of TC for the specimen FD1/3; however, its
value is comparable with the experimental errors.

The grain size dependence of TC following from Eq.(3)
is close to that estimated with the Kapitza model16,17

kph =
ki

1 +
ki

Gkd

, s9d

whereGk is the Kapitza conductance. Indeed, Eq.(9) results
from Eq. (3), if we substitutex by its average valuex̄. Thus,

FIG. 3. (Color online) Tem-
perature dependence of TC of the
smaples: measured(dots) and cal-
culated (solid line). Different
types of the dots indicate the dif-
ferent series of the measurements.
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Gk =
kB

2ZtS̄FssdTDBsx̄d
3p"a2d2 .

In particular, at low temperatures whenki @kph this expres-
sion accepts the form

Gk =
kB

2ZtS̄FssdTD

3p"a2d2 E
0

1/u

Bsxddx.

Apparently Gk is independent of the grain size, ifS̄~d2;
however, it depends on temperature in agreement with Ref.
17. More precisely, temperature dependence of the factor
e0

1/uBsxddx (see Fig. 6 of Ref. 2) has the form of Fig. 6 of
Ref. 17, where the temperature dependence of the Kapitza
conductanceGk is presented. This allows us to interpret our
phenomenological parametert~Gk as the transparency of a
grain boundary for the short wavelength phonons.

Strictly speaking, the average value ofx̄ resulting from
the integrand(3) depends ond. Therefore,Bsx̄d and so the
Kapitza conductanceGk also depend ond. This dependence
could be significant, ifki &kph at low temperaturesT&TD,
when the simple expression(9) could be impracticable.

The parameterS̄determines the influence of the small size
pores. Indeed, this value should be equal tod2 in the absence
of pores. If we assume a cubic shape of grains and suppose
the pores lie along the cube edges then for the porosity we
obtain

p =
3p

4
Sd − x

d
D2F1 −

4

9
Sd − x

d
DG ,

wherex is the “neck” sizesS̄=x2d. For the model of spherical
grains such an estimation has been carried out in Ref. 14.
The main deviation of both estimations is due to the large
size pores, i.e., the pores of about or greater than the grain
size. To estimate their influence, we have to remove some
resistors from our net, so that their resistivity becomes equal
to infinity; this means the absence of the neighbors for some
grains due to the large scale porosity. This factor can be
related to the cohesionC of each sample, which can be mea-
sured experimentally. Cohesion is an average ratio of the
number of boundaries grain/pore to the number boundaries
grain/grain along some straight line in the TEM pattern. As-
suming a homogeneous distribution of the pores, we can es-
timate the density of the nonremoved resistors in the net as

h =
C

2 − C
.

Then the expression for TC should be multiplied byh, if
h<1. In the case of large porosity we have to take into
account the problem of “dead ends.” In the more general
case the problem has to be considered with the percolation
technique.7 The resistivity of the net has an increase(and so
the TC of our structure has a decrease) at h.3/s2Zd, then
the expression for TC should be multiplied byfh
−3/s2Zdg1.6. At smaller values ofh the short-wavelength
phonons becomes localized, and heat transport would occur
due to long-wavelength phonons only. Such a situation can-

not be realized in porous nanostructures, but it seems to be
the case in composite structures where the nanostructure is
embedded into some amorphous media.

Our model Eq.(3) considers only the short-wavelength
phonon transport. Nevertheless, the long-wavelength
phonons, i.e., phonons that wavelength is about or exceeds
the grain sizel.d, also participate in the heat transfer. For
a rough estimation of their effectskld we suppose that the
phonons in each frequency interval withinv,vDsa/dd
make the same contribution to the TC. This is the case of
phonon-phonon interaction when the larger number of the
phonons with larger frequencies compensates the smaller
value of their mean free path.1 For T.TD this leads tokl

,kisa/dd. For the smaller temperatures we have to take into
account only the phonons with"v,kBT, so that kl

,kisa/ddsTD/Td. There are two possibilities when this value
might be important: at low temperatures and in the case of
the above-mentioned localization of the short-wavelength
phonons.
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APPENDIX: PROPAGATION OF ELECTROMAGNETIC
WAVES IN A GRANULAR MATERIAL

Consider propagation of the waves in the media with a
position dependant dielectric permittivity:esr d=«+jsr d,
where«=pe1+s1−pde2 is the average permittivity, which is
independent ofr , and the random functionjsr d is its devia-
tion, kjl=0; e1 ande2 are permittivities of the grains and the
surrounded material, andp is concentration of the grains.
Angle brackets denote the averaging over the random value
j. Let E and H be the electrical and magnetic fields of the
electromagnetic wave. We can writeE=E+e and H =H
+h, whereE, H, e, and h are the average and fluctuate
components of the fieldsskel=khl=0d.

Suppose different components of the fields fluctuate inde-
pendently keiej

*l~di j , then ke3h*l~ ke3 s¹3e*dl=0.
Therefore, for the averaged Poynting vector we obtain

kSl =
1

8p
kEsrd 3H*srdl + c . c.

This means that only the average fieldsE andH determine
the energy transfer. To find the effective dielectric permittiv-
ity of the material«̃ and attenuation of the average fields of
the electromagnetic waveg, we have to write the Maxwell
equations for the fields and average them over the random
values. This leads to the following equation for the average
and fluctuating components:
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= Ã E = ik0 = ÃH,

= 3 s= 3 Ed = k0
2«E + k0

2kjsr desr dl,

De+ k0
2«e= 1

«grad divsjEd + k0
2jE. sA1d

Herek0=v /c, v, andc are the wave vector, frequency, and
the speed of light in vacuum. Solution of the last equation is

esr d =E Gsr − r 8dh«−1grad divfjsr 8dEsr 8dg

+ k0
2jsr 8dEsr 8djdr 8,

where the Green’s functionGsr −r 8d obeys the equation

DG + k0
2«G = 4pdsr − r 8d.

Thus, for the average component of the electric field we can
write

DE + k0
2«E + k0

2P = −
1

«
grad divP, sA2d

where

Psr d = kjsr ddesr d =E Gsr − r 8dkjsr d

3h«−1grad divfjsr 8dEsr 8dg + k0
2jsr 8dEsr 8djldr 8

or

Psr d =E Gsr − r 8dh«−1grad divfWsr − r 8dEsr 8dg + k0
2Wsr

− r 8dEsr 8djdr 8, sA3d

if we assume a homogeneous distribution of the grains and
introduce the correlation functionWsr −r 8d=kjsr djsr 8dl. The
equality grad divE=−grad divP /« has been used when Eq.
(A2) was obtained.

Thus, Eq.(A2) is the integral equation with respect toE.
To solve it, let us assumeE=hEx,00jeipzz. Then Eq.(A3)
accepts the form

Psr d = Pxsr d =Exe
ipzzE Fk0

2 −
skz − pzd2

«
GGskdW̃sp

− kd
d3k

s2pd3 , sA4d

whereW̃skd=eWsrde−iprd3r is the Fourier transform of the
correlation function andGskd=sk2−«k0

2− idd−1 is the Fourier
transform of the Green’s function.

It is apparent from Eq.(A2) that the real part ofP is the
effective correction to the permittivity whereas its imaginary
part leads to attenuation of the plane waveE expsipr d. If we
assumeWsrd=q2exps−r /Rd, where q2=kjl2=ps1−pdse1

−e2d2 andR is the correlation length(approximately this is
the mean distance between the pores),18 then

Wskd =E Wsrdeikrd3r =
8pq2R3

s1 + k2R2d2 .

Estimation of(A4) for k0R!1 leads to the effective permit-
tivity

«̃ = « −
q2

3«
+

2

3
iq2Î«sk0Rd3, sA5d

so that

g =
q2

3
k0

4R3. sA6d

Thus,gR,sk0Rd4!1. Therefore, only the irregularities
which are larger or comparable with the wavelength of the
light can affect essentially the radiative part of thermal con-
ductivity. It follows from Eq.(A5) that the effective dielec-
tric permittivity «̃ is less than its average value«. Note,
however, that large corrections to« are beyond the scope of
our approximation.
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