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It has recently been shown by NMR techniques that in the high-temperature cubic phase of BaTiO3 the Ti
ions are not confined to the high-symmetry cubic sites, but rather occupy one of the eight off-center positions
along thef111g directions. The off-center Ti picture is in apparent contrast with most soft-mode-type theoret-
ical descriptions of this classical perovskite ferroelectric. Here we apply the Girshberg-Yacoby off-center
cation model of perovskite ferroelectrics assuming that the symmetrized occupation operators or “pseudospins”
for the Ti off-center sites are linearly coupled to the normal coordinates for TO lattice vibrations. In the
adiabatic limit, the coupling is eliminated by transforming to displaced phonon coordinates, and after excluding
the self-interaction terms an effective Ti-Ti interaction is obtained. Using the Langevin equations of motion
and the soft-spin formalism for the Ti pseudospin degrees of freedom withT1u symmetry, the dynamic
response of the coupled system is derived. The results are shown to be in qualitative agreement with the
experimental data of Vogtet al. [Phys. Rev. B,26, 5904 (1982)] obtained by hyper-Raman scattering. The
nature of the phase transition, which is of a mixed displacive and order-disorder type, is discussed.
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I. INTRODUCTION

Barium titanate is a typical representative of perovskite
ferroelectrics, which undergoes a cubic-to-tetragonal struc-
tural phase transition at the Curie temperatureTC.408 K.
The soft-mode nature of this transition has been determined
by neutron scattering1 as well as by hyper-Raman scattering,2

however, some pertinent questions regarding the role played
by the Ti ions have so far remained unanswered. Chaveset
al.3 proposed a thermodynamic model following the assump-
tion of Comeset al.4 that the Ti ion occupies one of the eight
equivalent off-center sites along thef111g cubic directions,
which predicts a nonzero microscopic dipole moment of
each unit cell and hence a transition of an order-disorder
type.

The off-center displacements of Ti ions in the high-
temperature cubic phase of BaTiO3 have recently been dem-
onstrated by NMR experiments,5 which reveal that the order-
disorder dynamics of Ti ions coexists with the observable
displacive features of the TO soft mode. This off-center Ti
picture of BaTiO3 is also supported by the extended x-ray-
absorption fine-structure(EXAFS) and x-ray-absorption
near-edge structure(XANES) data.6 While the NMR data
imply an effective Ti displacement along the cubic unit cell
edges, e.g., along[100], [010], and [001] directions, the
EXAFS data show a Ti displacement along the cubic body
diagonals, i.e., along the[111] directions. This apparent dis-
agreement is due to different observation times in the two
techniques. The NMR time scale is,10−8–10−5 s, whereas
the EXAFS time scale is,10−15 s. Therefore NMR sees the
time-averaged structure, whereas EXAFS probes the instan-
taneous local structure. The important point is that both of
these techniques show that the Ti ions have off-center equi-
librium positions already in the cubic phase.

This immediately raises the question about the appropri-
ate theoretical model for BaTiO3 and related systems, as the
widely accepted soft-mode description implies a central po-

sition of the Ti ion in the high-temperature cubic phase, lead-
ing to a phase transition of a purely displacive type. First-
principles calculations of the electronic structure also predict
the off-center equilibrium position of the Ti ion, however,
they do not support the idea that the ferroelectric distortion is
due to the Ti ion “rattling” in the oxygen cage.7,8 Some gen-
eral features of the two types of phase transition have been
discussed by Aubry9 on the basis of a linearly coupled
double-well model. The crossover between the order-
disorder and displacive transition was investigated by means
of molecular-dynamics calculations by Stachiottiet al.10 who
used a two-dimensional shell model of oxide perovskites.

A microscopic model of perovskite ferroelectrics has been
developed by Girshberg and Yacoby,11 who describe the de-
grees of freedom associated with the off-center displace-
ments in terms of Ising pseudospins and introduce a linear
coupling between the pseudospins and the TO soft mode.
They derive an effective coupling between the off-center
ions, which then leads to a pseudospin ordering transition.
The corresponding transition temperature is shifted from the
instability temperature for the unperturbed TO soft mode to-
wards higher temperatures. For the dynamics, Girshberg and
Yacoby introduce a phenomenological phonon damping pa-
rameter due to lattice anharmonicites as well as a Landau-
Khalatnikov-type relaxation of the pseudospin degrees of
freedom. The Girshberg-Yacoby(GY) model has been
successfully applied to a number of perovskite
ferroelectrics,11–14 but to our knowledge not yet to BaTiO3.

In this paper, we discuss in detail the applicability of the
GY model to BaTiO3. To describe the Ti off-center degrees
of freedom we introduce a set of symmetrized occupation
number operators and focus on theT1u component, which is
linearly coupled to the normal coordinates for the TO soft-
mode displacements. On the time scale of Ti intersite jumps
the phonon modes are considered to be fast. Thus in the
adiabatic limit, the linear coupling can be eliminated by
transforming to displaced phonon coordinates. This results in
an effective static Ti-Ti interaction, which can be either
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ferro- or antiferrodistortive. The last feature follows only af-
ter exclusion of the Ti self-interaction terms.15

To deal with the dynamics, we adopt the soft-spin formal-
ism, which leads to the correct expression for the static Ti
-Ti coupling in the zero-frequency limit. As shown by Gir-
shberg and Yacoby for other perovskite systems, it is neces-
sary to incorporate a phenomenological damping term into
the dynamic response of the unperturbed soft mode. This
damping is mainly responsible for the high-frequency part of
the dynamic response, however, its shape is expected to be
modified by the relaxational dynamics of the Ti subsystem.
Thus the order-disorder and displacive components will
merge into a single complex spectrum in the entire frequency
range. Similarly, the phase transition will be characterized by
a combined effect of displacive and order-disorder features
such as the soft-mode behavior of the renormalized vibra-
tional mode and the accompanying ordering of the Ti sub-
system.

II. COUPLED TITANIUM-PHONON SYSTEM: STATICS

The unit cell of BaTiO3 with eight possible off-center
sites for the Ti ion along the[111] directions is displayed
schematically in Fig. 1. Following Chaveset al.3 we define
the occupation probabilitiesnil =h1,0j for the off-center Ti
sites in theith unit cell,wherel =1,2, . . . ,8. (see Fig. 1).
Obviously,ol nil =1. Next, we introduce a set of symmetry
adapted linear combinations of thenil variables, which trans-
form according to the irreducible representationsA1g, A1u,
T1u, andT2g of the cubic group

YA1g = n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8, s1d

YA1u = n1 + n3 + n5 + n7 − n2 − n4 − n6 − n8, s2d

YT1u,1 = n1 + n2 + n3 + n4 − n5 − n6 − n7 − n8, s3ad

YT1u,2 = n1 + n2 + n5 + n6 − n3 − n4 − n7 − n8, s3bd

YT1u,3 = n1 + n4 + n6 + n7 − n2 − n3 − n5 − n8, s3cd

YT2g,1 = n1 + n2 + n7 + n8 − n3 − n4 − n5 − n6, s4ad

YT2g,2 = n1 + n4 + n5 + n6 − n2 − n3 − n7 − n8, s4bd

YT2g,3 = n1 + n3 + n6 + n8 − n2 − n4 − n5 − n7. s4cd

Here we have omitted the cell indexi. The variables
YiG,whereG=1,2, . . . ,8labels the symmetries in the above
order, satisfy the relation

YiG
2 = 1. s5d

This implies, for example, that theT1u polar modes(3) can
be effectively represented by three independent Ising-type
variables.11

We will assume that there exists a direct coupling between
the symmetrized occupation probabilities or “pseudospins”
YiG due to long-range dipolar interactions, which has the
form

Hdir = −
1

2o
iÞ j

o
GG8

I ij
GG8YiGYjG8. s6d

In addition, we consider the interaction between the pseu-
dospins and the phonon normal coordinatesQqWp,

11,12

Hint = − o
qWpG

fqWp
G QqWp Y−qWG, s7d

whereqW is the wave vector andp the branch index of lattice
normal modes, fqWp

G the coupling constant, andYqWG

=s1/ÎNdoi YiG exps−iqW ·RW id. Introducing the phonon mo-
mentaPqWp and frequenciesvqWp, we can write down the pho-
non Hamiltonian16

Hph =
1

2o
qWp

svqWp
2 QqWpQ−qWp + PqWpP−qWpd. s8d

It is well known that in BaTiO3 and other perovskite
ferroelectrics17 a soft TO phonon mode exists. In general, the
soft mode may have a nonzero wave vectorqW0. Here we will
limit ourselves to the case of a soft mode at the zone center,
i.e., qW0=0 as in BaTiO3, having the symmetryG=T1u,l,
wherel is the corresponding polarization index. In the sim-
plest approximation, the frequency of this soft mode is as-
sumed to go to zero at the stability limitTs in accordance
with the Cochran relationv0l

2 .asT−Tsd. In some cases a
more general relation is required,13,16 namely,

FIG. 1. Schematic diagram of the cubic unit cell of BaTiO3,
showing eight possible off-center displacements of the Ti ion along
the f111g directions.[After Chaveset al. (Ref. 4).]
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v0l
2 = aFT1

2
cothS T1

2T
D − T0G . s9d

Here T1;"v1/k and T0 are two adjustable parameters,
which determineTs, with v1 representing a local vibrational
frequency.18 As discussed in Sec. IV, in BaTiO3 the fre-
quency v0l

2 shows a moderate temperature nonlinearity,
which can be described by Eq.(9). Of course, forT*T1 one
recovers the linear Cochran relation withTs.T0.

The pseudospin and phonon degrees of freedom can now
be decoupled by introducing displaced phonon
coordinates11,12,15

Q̃qWp = QqWp − o
G8

f−qWp
G8

vqWp
2 YqWG8. s10d

In this so-called adiabatic approach it is implied that the time
scale for the Ti ion motion is much longer than the period of
oscillation for phonon modes, so that phonon coordinates
QqWp adapt adiabatically to any change of the pseudospin co-
ordinatesYiG. Thus we obtain the adiabatic Hamiltonian

Had = Hdir +
1

2o
qWp

svqWp
2 Q̃qWpQ̃−qWp + PqWpP−qWpd

−
1

2o
i j

o
GG8

Kij
GG8 YiGYjG8. s11d

In the last term, the Ti-Ti coupling is given by

Kij
GG8 =

1

No
qWp

fqWp
G f−qWp

G8

vqWp
2 expfiqW · sRW i − RW jdg. s12d

On a mesoscopic scale, we are not interested in the mi-
croscopic mechanisms leading to the pseudospin-phonon
coupling fqWp

G and we merely adopt its established functional
form.11,12 In general,fqWp

G contains the contributions of both
short- and long-range interactions between the Ti and all the
other ions. Short-range interactions are expected to be prima-
rily responsible for the local potential of the Ti ion. Indeed,
first-principles calculations indicate that ferroelectricity in
BaTiO3 appears as the result of hybridization of the Ti-O
bond.8,19 Therefore the contribution of short-range forces to

fqWp
G , and hence toKij

GG8 is expected to be dominant, although
long-range electrostatic dipole-dipole interactions contained

in I ij
GG8 are also needed to establish ferroelectric order.8

The i Þ j part of the last term in Eq.(11) has the same

structure as the direct interaction(6). ThereforeKij
GG8 for i

Þ j represents an additional interaction between the Ti ions
at two different sites, which together with the direct coupling

I ij
GG8 can lead to an order-disorder transition into aT1u polar-

ized state of the Ti subsystem. In general, this interaction
involves two different symmetriesG andG8, and is real after
being symmetrized with respect to the exchangeG↔G8.

Thus we can combine the two coupling constantsI ij
GG8 and

Kij
GG8into a single coupling parameterJij

GG8; I ij
GG8+Kij

GG8.
The i = j terms in Eq.(12) represent a constant shift of the

local energy and do not contribute to the ordering of Ti

ions.15 It can be shown by symmetry arguments thatKii
GG8 is

zero unlessG8=G.
In the following we will focus on the symmetric part of

the interactionKij ,G;Kij
GG. Its Fourier transform is given by

KqWG = o
p

ufqWp
G u2

vqWp
2 −

1

No
q8W p

uf
q8W p

G
u2

v
q8W p

2 . s13d

The second term is often neglected, however, as shown in
Ref. 15, its presence is crucial in order to ensure a zero value
of the qW average ofKqWG. In theqW →0 limit, we haveK0G.0
if op ufqWp

G u2/vqWp
2 has a maximum at the zone center. For the

symmetryG=T1u this then favors a ferroelectric ordering of
the Ti subsystem provided thatJ0G; I0G+K0G.0, implying
that kY0T1u,llÞ0, (l=1,2, or 3). If, however, the maximum
occurs at the zone boundary, we can haveK0G,0. For
J0G,0, the ordering is antiferroelectric.It should be stressed
that in view of relation(9) the interactionKqWG is, in general,
temperature dependent.

The off-diagonal couplingJqW
GG8 with G8ÞG leads to an-

isotropic interactions, which are assumed to be weaker than
the isotropic part and can thus be treated by perturbation
theory. In Sec. V, we will discuss the possibility that aniso-
tropic interactions give rise to time-dependent random fields
acting on the pseudospin variables.

In a ferroelectric system like BaTiO3, the main contribu-
tion to the couplingKqWG will come from the soft TO mode

with phonon coordinateQ̃0l and frequencyv0l as given by
Eq. (9). The Ti subsystem will undergo a phase transition
into an ordered state with nonzero value of the pseudospin
thermal averagekY0llÞ0. The transition temperature is de-
termined by the mean-field relationkTc=J0l, i.e.,

kTc = I0l +
f0l
2

v0l
2 sTcd

−
1

No
q8W

ufq8
W lu2

v
q8W l

2 , s14d

wherev0l
2 sTd is given by Eq.(9). To evaluate the sum over

q8W , one should know the details of the phonon spectrum as
well as theqW dependence of the coupling. Using Eq.(9) for
v0l

2 and adding aq2 term, we can show that the leading

contribution to the sum overq8W is roughly independent of
temperature, and thus the sum can be approximated by a
constant.

For a system with a linear temperature dependence ofv0l
2

we find the critical temperature

Tc .
1

2
fT0 + L0/k + ÎsT0 − L0/kd2 + 4f0

2/ka g, s15d

whereL0l; I0l−s1/Ndoq8
W ufq8

W lu2/v
q8W l

2
and we have dropped

the indicesl. This result differs from the corresponding ex-
pression of Girshberg and Yacoby(Ref. 11) by the presence
of the L0 term, which is generally different from zero. We
will consider the case 0,L0,T0, implying thatTc.Ts, i.e.,
the ordering will take place above the stability limit of the
unperturbed soft mode. It is easily seen that in this case, the
impact ofL0 is a shift ofTc towards higher temperatures.
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III. SOFT-MODE DYNAMICS

We now consider the response of the soft TO phonon
modeQqWl to a time-dependent electric fieldE−qWl associated
with an optic wave in a light-scattering experiment. Close to
the transition, the time scales for the soft mode and for the
relaxational motion of the Ti ions become comparable, and
the dynamics based on the adiabatic Hamiltonian(11) is not
applicable. The soft-mode dynamics is governed by the cor-
responding part of the original Hamiltonian, namely,

Hsm= −
1

2o
q8W

Iq8
W lYq8

W lY−q8
W l +

1

2o
q8W

sv
q8W l

2
Qq8

W lQ−q8
W l

+ Pq8
W lP−q8

W ld − o
q8W

fq8
W lQq8

W lY−q8
W l − mE−qWlQqWlexpsivtd.

s16d

Here m=e* /Îm* is a field-coupling parameter for the TO
mode involving the effective chargee* and reduced massm* .
For simplicity, we do not include the direct coupling between
the light vectorE−qWl and the dipole moment associated with
the Ti-O bonds. As found in Ref. 6, the off-center Ti dis-
placements in BaTiO3 are rather small and can be ignored
here. Moreover, Girshberg and Yacoby(Ref. 14) have shown
that in other perovskite ferroelectrics the contribution of Ti
ions to the Curie constant is practically negligible.

The time evolution of the soft-mode operatorsQqWl and
PqWl is governed by the Heisenberg equations of motion. On
the other hand, the time-dependent thermodynamic fluctua-
tions of the variablesYilstd will be assumed to exhibit a pure
relaxational motion with a single characteristic relaxation
time t, i.e., we will ignore the possibility of coherent dipole
moment flips. The corresponding equation of motion can be
obtained from the classical Langevin model,20 which is
based on the continuous or “soft” spin variables
−`,Yilstd, +` with effective Hamiltonian

bHef f = bHsm+ o
i
S1

2
rYil

2 +
1

4
uYil

4 D . s17d

For u=−r →` one recovers the discrete limitYil
2 =1 [cf. Eq.

(5)]. The Langevin equation of motion is

t
] Yil

] t
= −

] bsHef fd
] Yil

+ jqWlstd, s18d

where the Langevin noisejilstd is a Gaussian random vari-
able with zero mean and variance,

kjilstdj jlst8dl = 2tdi jdst − t8d. s19d

Introducing the Fourier componentsYqWlsvd, etc., we obtain
the linearized equations of motion

ivQqWl = PqWl; s20ad

ivPqWl = − vqWl
2 QqWl − 2ivGqWlQqWl + f−qWlYqWl + mEqW;

s20bd

ivtYqWl = − sr − bIqWl − SqWldYqWl + bfqWlQqWl + jqWlsvd.

s20cd

Here we have included, following Girshberg and Yacoby, a
phenomenological parameterGqWl describing phonon damp-
ing due to the third- and fourth-order lattice anharmonicites.
In the last equation,SqWl is the soft-spin self-energy which
can, in principle, be calculated by a diagrammatic expansion
involving the parameteru and the pseudospin-phonon cou-
pling fqWl. In the following we will ignore the frequency de-
pendence ofGqWl andSqWl in the soft-mode regime.

We can now introduce the static response of the Ti sub-
systemxqWl=kdYqWl /djqWll, i.e.,

xqWl =
1

kTsr − SqWld − IqWl

, s21d

and redefine the relaxation time by writingtqWl;txqWl /b. The
solutions of the above equations can then be expressed in the
form

QqWlsvd =
mEqW

vqWl
2 − v2 + 2ivGqWl − ufqWlu2xqWl/s1 + ivtqWld

,

s22d

and

YqWlsvd =
fqWlxqWl

1 + ivtql

Qqlsvd, s23d

where the random force term has been averaged out. Equa-
tion (22) is equivalent to the expression given by Girshberg
and Yacoby(Ref. 11), but it has been derived here in a more
general context in view of the exclusion of the self-
interaction term in Eq.(13), which cannot be accomplished
within the usual random-phase approximation.

We now consider theqW =0 case corresponding to a TO
soft mode at the zone center. Dropping the subscriptsl and
introducing the far-infrared dielectric responsexQsvd
=Q0svd / smE0d we get

xQsvd =
1 + ivt0

sv0
2 − v2 + 2ivG0ds1 + ivt0d − f0

2x0
. s24d

The contribution to the corresponding dielectric function can
be written

eQsvd =
m2

e0v0
xQsvd, s25d

wherev0 is the unit-cell volume. It should be noted that the
static dielectric constantes0d, and hence the Curie constant,
cannot be derived from Eq.(25) by simply taking the limit
v→0. The correct value ofes0d is related to the static TO
response via the generalized Lyddane-Sachs-Teller relation16

es0d = e`p
j

vLO,j
2

vTO,j
2 , s26d

where the product is over all optical branchesj .
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In the absence of the pseudospin-phonon coupling,f0
→0, the static responsexQs0d diverges at a temperatureTs,
which is the solution ofv0

2sTd=0 with v0
2sTd given by Eq.

(9). For f0Þ0, the critical temperature is determined from
the denominator of Eq.(24) at v=0 as the temperature at
which the renormalized soft-mode frequency,

Vr
2sTd = v0

2 − f0
2x0, s27d

tends to zero. Using Eq.(21) we thus obtain the equation for
Tc,

v0
2sTd =

f0
2

kTsr − S0d − I0
. s28d

Returning to the discrete limitYil
2 =1, we require that the

last result should be consistent with Eq.(14). This condition
will be fulfilled if we choose

r − S0 = 1 +
b

No
q8W

ufq8
W u2

v
q8W
2 . s29d

Thus in the discrete limit the critical temperatureTc derived
from the soft-mode dynamics will be precisely equal to the
static value(15). This means that the renormalized soft mode
becomes unstable at the static ordering temperatureTc of the
coupled system. The response of the Ti subsystem(21) now
becomes simplyx0=1/skT−L0d.

IV. COMPARISON WITH EXPERIMENTS

The dielectric response of BaTiO3 in the optical regime
was measured by Vogtet al.2 using the hyper-Raman scatter-
ing technique. The frequency dependence of the dielectric
constant was analyzed in terms of the response of a damped
harmonic oscillator,

e9svd =
4pr V0

2gv

sV0
2 − v2d2 + g2v2 . s30d

Here V0, g, and 4pr are the frequency, damping constant,
and oscillator strength of the soft mode, wherer~V0

−2. The
results forV0

2 andV0
2/g are displayed in Fig. 2. One of the

conclusions of Ref. 2 is that the resonance frequency tends to
zero close to the transition temperature and no saturation of
the frequency at a finite value reported earlier occurs.21

The present result(24) for xQsvd differs from Eq.(30) by
the presence of the relaxation timet0. A detailed numerical
analysis of Eq.(24) shows, however, that forG0*60 cm−1,
t0 does not affect the high-frequency(i.e., v*2 cm−1) part
of xQ9 svd, but is mainly responsible for the low-frequency
relaxation. Therefore in the high-frequency range we can ap-
proximate the renormalized frequencyVr by V0 and G0 by
g /2. Combining Eqs.(27) and (9) we can write

Vr
2 = aFT1

2
cothS T1

2T
D − T0G −

f0
2

T − TL
, s31d

where we have setTL=L0/k sk=1d. This expression contains
too many parameters to permit a best-fit analysis of the data.
A possible alternative is to fix some of the parameters, say,

Tc=403 K2, T0=400 K, andTL=300 K, and adjusta and
Ts—the temperature at which the unperturbed soft-mode fre-
quencyv0 vanishes—to fit the data. The parameterT1 is then
determined by solving the equationv0

2=0, and the coupling
strength is given byf0

2=asTc−TLdfsT1/2dcothsT1/2Tcd−T0g.
Thus we obtain the following values:a=70 cm−2 K−1, Ts
=385 K, andT1=1939.4 K, implyingf0=64 cm−1 K1/2. The
resulting temperature dependence ofVr

2 is shown in Fig.
2(a). The fit turns out to be rather stable with respect to a
variation ofT0, TL, and evenTc.

The temperature dependence of the ratioV0
2/g is dis-

played in Fig. 2(b) and can be well described by a straight
line V0

2/g=asT−Tcd, wherea=0.113 cm−1 K−1.

FIG. 2. (a) Renormalized frequency of the TO soft mode calcu-
lated from Eq.(31) with parameter values explained in the text.
Dots and crosses: Experimental data of Vogtet al. (Ref. 2). (b)
Ratio between renormalized frequency and soft-mode damping pa-
rameter, determined experimentally in Ref. 2(dots). Solid line: lin-
ear fit (see the text).
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The temperature and frequency dependence of the imagi-
nary part of the dynamic responsexQsvd=xQ8 svd− ixQ9 svdcan
now be evaluated from Eq.(24) and compared with the data
for e9svd from Ref. 2. We can calculate the values ofv0 and
Vr from Eqs. (9) and (31), respectively, and determineG0
=g /2 from the above linear relation using the parameter val-
ues specified above. We adopt an Arrhenius-type relaxation
time t (Refs. 11 and 12) and write t0=taexpsu/TdT/ sT
−TLd, whereta=0.05 cm andu=3T0. As already stated, the
high-frequency behavior is not sensitive to these values. A
more precise determination of the relaxation timet would
require additional data at frequencies lower than,2 cm−1.
An overall proportionality factorA=4.6243103 cm−2 has
been included to matche9svd at T=408 K with the corre-
sponding data. The calculated spectrum is plotted in Fig. 3 at
four different temperatures using a logarithmic horizontal
scale, and is in qualitative agreement with the data. Some
deviations occur in the high-frequency tail of the spectrum.
A better agreement could be achieved by using a
temperature-dependent prefactor and by readjusting the val-
ues ofG0sTd, but there is obviously no justification for doing
that. A similar problem is encountered in fitting the data with
the damped harmonic oscillator formula(30).

V. DISCUSSION

Traditionally, ferroelectric phase transitions have been di-
vided into two classes, namely,(i) displacive and(ii ) order-
disorder transitions. It may, however, be argued that this clas-
sification is too rigid. A coexistence of displacive and order-
disorder phenomena has been demonstrated by NMR
experiments in hydrogen bonded materials such as squaric
acid22,23 and KDP,24 where the expected order-disorder tran-
sition was found to contain a displacive component as well.
This is analogous to the present case of BaTiO3, where a
ferroelectric phase transition, long believed to be of a displa-

cive type, has been shown to contain order-disorder compo-
nents.

To specify the type of the phase trasition occurring in
BaTiO3, we introduce the order parameter as the thermal
averageP=kQ0l, which is related tokY0l through Eq.(23) at
v=0, i.e., kY0l= f0x0P. We can then write down a Landau-
type free energy

FsPd =
1

2
xQs0d−1P2 +

1

4
b P4 +

1

6
c P6 + . . . , s32d

where the coefficientxQs0d−1 is determined by the static soft-
mode response(24),

xQs0d−1 = v0
2 − f0

2x0 = Vr
2, s33d

and vanishes atTc according to Eqs.(27) and (28). At high
temperatures,xQs0d−1,sT−Tcd, where Tc is given by Eq.
(15). The coefficientsb and c can be determined within a
molecular field approximation, however, it turns out that this
would predict a second-order phase transition, in disagree-
ment with observations in BaTiO3. To derive the correct
value of the coefficientb in the free energy we would have to
include, for example, a coupling between the soft mode and
elastic strains.25 The appearance of a nonzero value of the
order parameter would thus be accompanied by a macro-
scopic deformation of the lattice of tetragonal symmetry. In
practice,b and c are often considered as phenomenological
parameters. Hatta and Ikushima26 applied an expression of
the above form to analyze the measured heat capacity of
BaTiO3 at constant electric field. They used the valueTc
=383 K (in our notation) and found thatb,0 and c.0,
implying a first-order phase transition which takes place at
TC.398 K (or at .408 K, depending on the sample prepa-
ration method). They also determined the jump in the heat
capacity atTC of the orderDC.0.19k, from which it was
concluded that the Ti ion lies in a single minimum potential,
in apparent disagreement with the off-center Ti picture. Ac-
cording to the present model the number of equilibrium po-
sitions of Ti is greater than 1, but their actual number is only
relevant for the proper definition of the Ti pseudospin vari-
ables. If we restrict the discussion to the adiabatic Hamil-
tonian (11), the phase transition appears to be of order-
disorder type. However, the present approach involving the
soft-mode dynamics—which leads to the same critical tem-
perature as the static approach—clearly has the characteris-
tics of a displacive transition, but with a simultaneous order-
ing of the Ti subsystem as an additional order-disorder
feature.

It has been shown by NMR methods5 that in the high-
temperature phase of BaTiO3 the unit cells are tetragonally
distorted, although the overall macroscopic symmetry is cu-
bic. This agrees with Wadaet al.27 who determined the sym-
metry by Raman scattering and found that themicroscopic
symmetry wasP4mm both above and belowTc. Since the
orientation of the tetragonal axis varies across the crystal, the

macroscopicsymmetry isPm3̄m above the transition and
P4mm below TC. This can be accounted for in the present
model if we return to the Ti-Ti coupling terms(6) and (12)
and allow for off-diagonal interactions withG8ÞG. This then

FIG. 3. Calculated frequency dependence of the imaginary part
of the dielectric susceptibility at four different temperatures, as in-
dicated. Symbols: experimental data from Ref. 2.
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gives rise to extra terms in the equations of motion(20c) for
YqWl, e.g.,

ivtYqWG = − sr − bIqWG − SqWGdYqWG + bfqWGQqWG

+ b o
G8ÞG

JqW
GG8YqWG8 + jqWGsvd. s34d

On the time scale of the TO soft mode and of the Ti relax-
ation modeYqWG=YqWT1u,l, the variablesYqWG8 are much slower
and appear to be “frozen” in a given configuration. Thus the
sum overG8 will play the role of a random variablehqWG

=oG8ÞG JqW
GG8YqWG8std, analogous to the random electric field in

dipolar glasses. Instead of spatial randomness, however, we
are dealing here with a temporal disorder, which appears to
be “quenched” on the time scale ofYqWGstd. This field will
give rise to a slowly varying deformation ofT1u symmetry,
which is experimentally observable in both NMR and Raman
experiments. Since the orientation of the deformation axisl
varies both in space and time, the average symmetry of the
system remains cubic.

VI. CONCLUSIONS

Recent NMR(Ref. 5) and EXAFS(Ref. 6) experiments
provide evidence that the Ti ion in the cubic phase of
BaTiO3 occupies one of the eight off-center positions in the
unit cell along thef111g directions. An analogous situation
occurs in other oxide ferroelectrics.28,29Following the model
of Girshberg and Yacoby11 for other perovskite ferroelectrics
we have presented a derivation of the model suitable for
BaTiO3, based on the assumption that the symmetrized oc-
cupational probabilities for the Ti sites or pseudospins are
linearly coupled with the normal coordinates of lattice vibra-
tions. On the time scale of Ti intersite jumps, lattice modes
act as fast variables, which can adapt instantaneously to any
change of pseudospin configuration. In this adiabatic ap-
proximation, the pseudospin-phonon coupling gives rise to a
static phonon-mediated effective Ti-Ti interaction after a
proper exclusion of the self-interaction terms. The Ti sub-

system thus undergoes an order-disorder transition into a po-
larized state ofT1u symmetry, and the critical temperatureTc
is determined by a sum of the contributions from the direct
Ti-Ti coupling and the pseudospin-lattice part. The leading
contribution is due to the TO soft mode, the frequency of
which tends to zero at the instability temperatureTs. In gen-
eral,TcùTs, where the shift ofTc depends both on the direct
interaction as well as the pseudospin-phonon coupling.

Close to the stability limit for he TO soft mode, the time
scales for the Ti and lattice motion become comparable and
a dynamic treatment becomes necessary. In the present ap-
proach, the oscillator frequency corresponds to the frequency
of the renormalized soft mode, which depends on the
Ti-phonon coupling. The oscillator damping parameter has
been included in a phenomenological manner, as suggested
by Girshberg and Yacoby.11 Similarly, an Arrhenius-type
expression11 for the relaxation timet describing the Ti reori-
entation has been assumed. The calculated frequency and
temperature dependence of the dielectric function is in quali-
tative agreement with the hyper-Raman scattering data of
Vogt et al.2 New data at frequencies lower than,2 cm−1

would be needed to determine more precisely the value oft.
To calculate the complete free energy of the system one

would have to include a coupling between the soft mode and
lattice strains into the model. This may be possible in a phe-
nomenological approach25 describing the first-order phase
transition from the high-temperature phase with macroscopic
cubic symmetry to a tetragonal low temperature phase. The
corresponding Curie temperatureTC will generally be higher
than the instability temperatureTc associated with the con-
densation of the renormalized soft mode.
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