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We explain how the phenomena of ferroelectric phase transition temperatureTc enhancement beyond the end
members in perovskite solid solution such as BiMO3-PbTiO3 (M =Sc, In, etc.) is related to nonlinear and
spatial correlation effects. The explanation is based on the calculation ofTc in the framework of our random
field theory with additional account for nonlinear effects in the above substances. We show that the maximum
of Tc for certain PbTiO3 content takes place when coefficient of nonlinearity is positive, the value of this
coefficient is found from best fit between theory and experiment. This nonlinearity coefficient is the only
adjustable parameter of the theory. We show that enhancement of positive nonlinearity coefficients enhances
greatly theTc maximum over its value for end members.The theory lays the foundation to calculate not only
Tc for above solid solutions but virtually any equilibrium and/or nonequilibrium thermodynamic characteristics
such as static and dynamic dielectric susceptibility, specific heat, etc., as a function of PbTiO3 content,
temperature, electric field, and other external parameters.
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I. INTRODUCTION

Over the last few years considerable effort has
been spared to synthesize the dielectric materials with
controllable properties for many technical applications.
The most promising substances are believed to be compound
materials consisting of solid solutions of different combina-
tions of ferroelectrics with different dielectric properties.
One of the examples is a perovskite solid solutions such
as BiMO3-PbTiO3 (M =Sc, In, etc.), which have high ferro-
electric phase transition temperaturesTc at the morphotropic
phase boundaries with enhancement beyond the end mem-
bers. Such materials can be used as the materials with excel-
lent high-temperature piezoelectric properties.1–6

A common feature of the above solid solutions is the
existence of numerous random fields sources due to
substitutional disorder, unavoidable impurities, vacancies in
anion and cation sublattices, etc. These random fields play a
crucial role in the properties of disordered ferroelectric
and magnetic materials(see, e.g., Refs. 7–9) and the above
substances in particular. This means that observable physical
properties of the above systems depend strongly on the
form of the random field distribution function. Namely, the
relation between the width of the distribution function
(the dispersion of random fields) and its first moment(mean
value of random field) generates all observable features of
the phase diagram of a disordered dielectric and/or magnetic
materials, i.e., realization of the ferroelectric(ferromagnetic
in the case of magnetic materials) dipole (spin) glass,
and mixed ferroglass phases. Also, a so-called paraglass
(Griffiths) phase may occur in disordered dielectrics(see,
e.g., Ref. 10).

On the other hand, both ordered and disordered dielectrics
have intrinsic nonlinearities, consisting of, e.g., dielectric
hysteresis. The “interaction” between these nonlinearities

and random fields lead to their renormalization so that
the distribution function of random fields will also include
a nonlinear contribution of random fields. Such calculation
had been carried out in a different context in Ref. 11.

The calculations in Ref. 11 incorporate a self-consistent
dependence of distribution function of random fields
on the third order nonlinearity coefficienta3. It has
been shown that when the nonlinear coefficient is sufficiently
large and positive, the results are strongly different
than those in the linear case.7 In particular, for a3.0,
the phase transition temperature exceeds its mean
field asymptotic value, while fora3,0 the results are
qualitatively the same as in the linear case. As we found
out earlier, this phenomenon is due to the “generation
of order by disorder”(or more precisely, a specific positive
feedback generated by positive nonlinearity) taking place
at a3.0.

II. GENERAL FORMALISM

A. The distribution function of random fields

Here we briefly review the main facts about the shape of
distribution function of random fields with respect to nonlin-
ear effects, a more detailed discussion can be found, e.g., in
Refs. 7 and 11 for disordered dielectrics and in Refs. 12 and
13 for disordered magnetic semiconductors.

The distribution function of random fieldEW can be repre-
sented in the form

fsEW d = kdsEW − EW srWiddl. s1d

Here the overbar denotes averaging over spatial configura-
tions of random fields sources(e.g., electric dipoles, “respon-
sible” for emergence of ferroelectricity in the above com-
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pounds), k¯l means the averaging over dipoles orientations,

EW srWid is the internal electric field induced by electric
dipoles, and other sources in the observation pointrWi. In a
disordered ferroelectric this field already contains the intrin-
sic nonlinearity and can be written in the form(see Ref. 11
for details)

EgsrWid = EgsrWid + o
m=2

`

amp
j=1

m

Eg j
srWid, s2d

whereg=x,y,z so thatEg simply denotes theg component

of vector EW . HereEW is an internal electric field induced by
electric dipoles andam is a coefficient of nonlinearity ofmth
order. Note that the first term in Eq.(2) can be generalized to
account for other possible sources of random fields such as
point charges, elastic dipoles etc.5,7,11

The calculation of the distribution function(1) with re-
spect to Eq.(2) in the framework of statistical theory(see
Refs. 14 and 15 for details of this theory) for the so-called
disordered Ising model(when the dipole has only two admis-
sible orientations) yields the following rigorous result for
any electric field componentEa;E:16

fsEd =E
−`

`

f1sE8ddSE − E8 − o
m=2

`

amE8mDdE8, s3d

where f1sEd is the distribution function that takes into ac-
count only the first linear term in Eq.(2) (distribution func-
tion of the first order).

A more detailed version of Eq.(3) reads

fsEd =E
−`

`

f1sE8ddSE − E8 − o
m=2

`

amE8mDdE8, s4d

f1sEd =
1

2p
E

−`

`

eiEt−nFstddt, s5d

Fstd =E d3rks1 − e−itEsrWddl. s6d

Here n and EsrWd are the concentration and electric field
of the dipoles. Equation(5) determines the functionf1sEd,
calculated earlier in Ref. 7 for the case of two-orientable
electric dipoles. We note here that in general case(e.g.,
arbitrary interaction between the above dipoles, their
arbitrary concentration, etc., see Ref. 7 and references
therein for discussion) function f1sEd has non-Gaussian
form. It can be shown that for our case of compound
ferroelectrics it is sufficient to use its Gaussian asymptotics,
which reads

f1sEd =
1

2ÎpnB
expF−

sE − E0Ld2

4nB
G . s7d

Here L=kd* l̄ /d* and E0=4psnd*2d /«0 are the order param-
eter(number of coherently oriented impurity electric dipoles
or dimensionless spontaneous polarization) and the mean
value of random field of electric dipoles(in the energy units),

d* =s1/3ddgs«0−1d is the effective electric dipole moment,g
and «0 are, respectively, Lorentz factor and static dielectric
permittivity of the host lattice, andn is the concentration of
electric dipoles. CoefficientB determines the width of the
distribution function(dispersion of random fields) and de-
pends on host lattice parameters such as its correlation radius
rc, see Ref. 7 for details.

B. The equation for long-range order parameter

In our approach, an average valueĀ of any physical quan-
tity can be represented in the form

Ā =E
−`

`

fsEdAsEddE, s8d

where fsEd is determined by Eq.(4) and AsEd is the above
quantity for the single random field constituent, averaged
over its internal degrees of freedom. In our case this is the
average value over the orientations of the single electric di-
pole.

To calculateTc for the disordered ferroelectric compound
we need to calculate the long-range order parameterL first.
In the spirit of Eq.(8) we obtain the following self-consistent
equation for this parameter:

L =E
−`

`

f1sEdtanhFsE + o
m=2

`

amEmd/kTGdE. s9d

Here we use the fact that for two-orientable dipoles
(lz= ±1, lx= ly=0) AsEd=kll=tanhsE/kTd, E;Ez.

The self-consistency of Eq.(9) is revealed by substitution
of Eq. (7) into it, which yields

L =
1

2ÎpnB
E

−`

`

expF−
sE − E0Ld2

4nB
G

3tanhFsE + o
m=2

`

amEmd/kTGdE. s10d

In the linear casesam=0d, Eq. (10) transforms into that de-
rived in Ref. 7. It is seen that the order parameter is self-
consistently expressed through itself and is a function of
temperature, dipole concentration, and nonlinearity coeffi-
cients.

Further simplifications of Eq.(10) are possible on sym-
metry grounds. Namely, for the lattice with the center of
inversion in paraelectric phase, the order parameter has to be
an odd function of electric field, i.e.,m’s in Eq. (10) are odd
numbers. Conserving only the first nonlinear term in the tanh
argument, we obtain

L =
1

2ÎpnB
E

−`

`

expF−
sE − E0Ld2

4nB
GtanhfsE + a3E

3d/kTgdE.

s11d

It is now instructive to consider the mean field limit of Eq.
(11). This limit corresponds to the case of an ordered ferro-
electric, where the distribution function of random fields de-
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generates into ad function dsE−E0Ld. Formally, in our
method this limit corresponds tonrc

3→`. Substitution of this
d function into Eq.(11) gives the desired mean field equation
for order parameter

LMF = tanhFTCMF

T
sLMF + a0LMF

3 dG , s12d

where E0=kTCMF, TCMF is the transition temperature in a
mean field approximation(see below), a0;a3E0

2 so thata0
is dimensionless. We now use Eq.(11) to derive the equation
for the ferroelectric phase transition temperature beyond the
mean field approximation.

C. Ferroelectric phase transition temperature

The phase transition temperature is defined as a tempera-
ture when a nonzero order parameterL appears. In
other words, to get an equation forTc from Eq. (11), we
should put in itL→0. This is accomplished by noting that at
small L

expF−
sE − E0Ld2

4nB
G < e−E2/4nBS1 +

EE0L

2nB
D . s13d

Subsequent substitution of Eq.(13) into Eq. (11) yields after
some algebra

l

tc
E
0

`

s1 + 3a0x
2de−sp/4dx2l2

cosh2
x + a0x

3

tc

dx= 1. s14d

Here we introduced the following dimensionless variables:

l =
E0

pnB
; Î15nrc

3,

x =
E

E0
, tc =

kTc

E0
;

Tc

TCMF
. s15d

Equation (14) is the main theoretical result of this work.
It predicts the existence of the critical concentration of
dipoles

ncrrc
3 =

lcr
2

15
,

such that forn,ncr, the long-range order in the system
would never be realized. Thus, the critical concentration is
determined from the condition thatl=lcr at tc=0. Taking
the limit tc→0 (Ref. 17) in Eq. (14), we obtainlcr=1, which
justifies the choice of dimensionless parameterl. It is seen
that the critical concentration does not depend on the coeffi-
cient of nonlinearity and it is completely the same as in
linear case(see Refs. 7 and 11).

Now we demonstrate that in a mean field approximation
tCMF=1, i.e., thatE0=kTCMF. For that we notice that this
approximation corresponds tol→` in Eq. (14), which after
some transformations17 gives tCMF=1. This value also does
not depend on the coefficient of nonlinearity.

The plot of dependencetcsl−1d at differenta0 is shown
in Fig. 1. It is seen that ata0.0 the dependencetcsl−1d

has a maximum, while ata0,0 it does not. Moreover, for
negative nonlinearity there is a sharp lowering(but not to
zero) of tc at certainl−1. This demonstrates that negative
feedback almost destroys long-range order especially at
small dipoles concentrations. This behavior shows that at
a0.0 nonlinear effects produce positive feedback thus en-
hancing the long-range order in the system, while ata0,0
the feedback is negative so that long-range order is inhibited
but not completely destroyed even for large negativea0, see
curve fora0=−20 in Fig. 1. Also, at sufficiently large posi-
tive a0 we can achieve very large enhancement ofTc as
compared to its mean field value(see curve fora0=3 in Fig.
1). Since in our model we suppose that the value ofTCMF is
equivalent toTc for pure PbTiO3 (the end member of com-
pound), we conclude that large positivea0 give substantial
increase ofTc as compared to the end members of ferroelec-
tric compound.

III. COMPARISON WITH THE EXPERIMENT:
DISCUSSION

In our model, the ferroelectric compounds are considered
as an ensemble of electric dipoles embedded in some virtual
paraelectric host, its nature we will discuss later. It can be
supposed that in the considered system
sBiScO3d1−xsPbTiO3dx electric dipoles are originated from
PbTiO3, i.e., their number increase withx increasing. The
nondipolar random field sources such as point charges, elas-
tic dipoles, etc., are also present in such compositions due to
the mixed valency of Bi and the difference in charges and
ionic radii of Bi3+ and Pb2+ and Ti4+ and Sc3+. These defects
could easily be incorporated in the consideration(see Ref. 11
for details), but we do not consider their contribution here to
have the minimal number of adjustable parameters when fit-
ting the theory with experiment.

For quantitative description of experiment in above
ferroelectric compounds in the framework of our random
field theory (in linear or nonlinear approximation) we
should have precise information about the concentrations

FIG. 1. Theoretical dependencetcsl−1d. Numbers near curves
denote magnitudes of nonlinear coefficienta0.
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of electric dipoles and other random fields sources as well
as the parameters«0, rc, etc. Unfortunately the available
data are strongly restricted for above compounds. That is
why we recalculated our dimensionless parameters(15)
from the best fit to the experiment.2 Namely, from the
position and “amplitude” of maximum of experimental
curve Tcsxd we determine our nonlinearity coefficienta0
=0.81 and coefficient of recalculation of parameterl into x.
Latter coefficient gives us the value and a critical content of
PbTiO3 xcr=32%. The result of such a fitting is shown in the
Fig. 2.

It is seen in Fig. 2 that there is a pretty good coincidence
between theory and experiment. This coincidence shows that
the physical mechanism of enhancement of ferroelectric
phase transition temperature beyond the end members in the
ferroelectric compounds is the enhancement of initial(i.e.,
that of end members) long-range ferroelectric order in them
caused by positive feedback generated by the nonlinear ef-
fects with positive coefficient. The obtained value is very
close to transition temperature of PbTiO3. This speaks in
favor of the statement that PbTiO3 paraelectric phase can be
considered as a host lattice.

As we mentioned above, the origin of nonlinear effects in
compound ferroelectrics is quite naturally related to its in-
trinsic nonlinearities, reflected, for instance, in their hyster-
esis loop. The physical origin of these nonlinearities may be
the nonlinear coupling of the ions in the unit cell as well as
the clusterization of dipoles in diluted ferroelectric com-
pounds. Each cluster has its own mesoscopic dipole moment
(polarization of cluster) and such clusters can interact be-
tween each other. If interaction between such clusters is of
positive sign, which may be manifested in the almost rectan-
gular shape of hysteresis loop, we have the positive feedback
with enhancement of initial(i.e., that of end member) long-
range order with positive nonlinear coefficient. If the inter-
action is of negative sign, we have negative feedback and
inhibition of ferroelectric order. But such negative feedback
cannot destroy ferroelectricity completely, probably except
for the case of extremely small dipole concentration. So, to
achieve high positive values of nonlinear coefficients(which
are necessary to strongly enhanceTc), we should have(or
prepare) the end members of ferroelectric compound with
“as much as possible rectangular” hysteresis loop. The con-
tribution of nonlinearities to dielectric response and hyster-
esis loop in mixed perovskites PZT with impurities was dis-
cussed in Ref. 18. The essential role of nonlinearity effect in
explanation of phase diagram peculiarities in mixed ferro-
electrics PbZr1−xTixO3, BaZrxTi1−xO3, and mixed systems of
ferroelectric relaxors was shown recently in Refs. 19 and 20,
respectively.

To make more precise prediction of which components
in ferroelectric compound to use to increaseTc beyond
end members value, the measurements of correlation radius,
Lorentz factor, and ions shifts in both end members and
entire above ferroelectric compounds are highly desirable.
It should finally be noted that the theory outlined here
permits one to calculate not onlyTc for above substances
but virtually any equilibrium and/or nonequilibrium thermo-
dynamic characteristics such as static and dynamic dielectric
susceptibility, specific heat, etc., as a function of PbTiO3
content, temperature, electric field, and other external
parameters.
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