
Hysteresis loop area of the Ising model

Han Zhu,1,* Shuai Dong,1 and J.-M. Liu1,2,†

1Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
2International Center for Materials Physics, Chinese Academy of Sciences, Shenyang, China

(Received 26 May 2004; revised manuscript received 14 July 2004; published 12 October 2004)

The hysteresis of the Ising model in a spatially homogeneous ac field is studied using both mean-field
calculations and two-dimensional Monte Carlo simulations. The frequency dispersion and the temperature
dependence of the hysteresis loop area are studied in relation to the dynamic symmetry loss. The dynamic
mechanisms may be different when the hysteresis loops are symmetric or asymmetric, and they can lead to a
double-peak frequency dispersion and qualitatively different temperature dependence.
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When a cooperative many-body system, such as a magnet,
is placed in an oscillating external perturbation(such as a
magnetic field), it may also show oscillating dynamic re-
sponse. This response usually lags in time, creating a hyster-
esis loop with a nonzero area. This phenomenon exists
widely in, e.g., magnetic systems and ferroelectric systems,1

and has been arousing great interest for its important techni-
cal application and intriguing physics.2–4

The recent theoretical5–13 and experimental14 studies on
the hysteresis(also, see Ref. 4 and references therein) focus
on two topics: the dynamic symmetry breaking and the area
of the hysteresis loop. The first phenomenon is due to the
competing time scales in such nonequilibrium systems:4 The
hysteresis loop loses its symmetry when the time period of
the oscillating external perturbation becomes much smaller
than the typical relaxation time of the system. On the other
hand, the interesting variance of the hysteresis loop area with
such parameters as temperature and oscillation frequency can
also be attributed to the time scale competition. For example,
in the frequency dispersion of the loop area of the Ising
model, the frequencyv0/2p giving the maximal area corre-
sponds roughly to the point where a resonance occurs. When
an Ising system is placed in an ac field, the dynamics may
consist of domain nucleation and/or domain growth.3 The
nucleation rate of new domains can be predicted by a char-
acteristic timetn, and the domain growth rate is also linked
with a characteristic timetg. The resonance occurs when the
time period of the external perturbation is comparable to
either one of these time scales or a combination of them. As
is shown below, the details of this dynamic time scale com-
petition necessarily rely on the dynamic phase of the system.

In the present work, we hope to help clarify the relation-
ship of the two above-mentioned topics in the framework of
the Ising model, with mean-field(MF) calculations and two-
dimensional Monte Carlo(MC) simulations.(The frequency
range that receives the most attention here is within the dis-
cussion of the previous works using the same methods.4)
When the loops are symmetric, the system dynamics is con-
trolled by a domain nucleation-and-growth mechanism.
When the loops are asymmetric(especially when the magne-
tization is well above or below zero), throughout the system
evolution we can observe most spins being in the same di-
rection. The dynamics of the remaining spins in the opposite
direction may be described mainly by the domain nucleation

mechanism. In the following, we shall see that the variance
of the loop area with frequency, field amplitude, and tem-
perature strongly depends on the dynamic mechanism, which
is determined by the loop symmetry.

The model. Before the results are presented, we first de-
scribe the model.(1) The evolution of the magnetizationM
in the mean-field Ising model is determined by the following
equation:4

dM

dt
= − M + tanhSM + Hstd

T
D . s1d

(2) In the MC simulation, the Hamiltonian of the two-
dimensional Ising model in a spatially homogeneous field
Hstd can be written as

Hshsij;td = − Jo
ki,jl

sis j − Hstdo
i

si . s2d

The magnetization is obtained asM =oiksil. The MC simu-
lation goes as follows: The coupling constantJ and the
Boltzmann constantkB are both taken as 1. On a two-
dimensionalNÃN (in the present work, 100Ã100) lattice
with periodic boundary condition, at each time step a spinsi
is randomly chosen and the probability that it is flipped is15

Wssi → ŝid =
1

Q
expF−

1

T
Hshŝi,s jÞij;tdG , s3d

whereŝi = ±si andQ is the normalization factor. Then, in the
next time step the field is updated and another spin is picked
at random. A MC step consists ofNÃN such unit proce-
dures. The unit time is chosen to be one MC step, with the
time resolution being 1/N2. The initial state is always 80%
randomly chosen spins up(MC simulation) or M =1 (MF
calculations). In both studies, the system evolves into equi-
librium after a zero-field relaxation. Then, an ac field,Hstd
=H0 sinvt, is applied. The measurement of the hysteresis
loop always begins after a number of introductory cycles,
and the symmetry of the loop can be characterized by the
order parameterQ=e0

2p/vMdt.
The phase diagram of the Ising model in an oscillating

field has been extensively studied.4,12,16,17With regards to the
area scaling of the hysteresis loops of the Ising model, there
are already MC and MF results, and a detailed review can be
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found in Ref. 4. Generally, the area can be written asA
=Asta+Akin, whereAsta is the possible nonzero static contri-
bution existing even in the quasistatic limit, andAkin is the
kinetic contribution assuming the form of

Akin , H0
aT−bgfṽsv,H0,Tdg. s4d

Here, gsṽd has been believed to be a single-peak function
and ṽsv ,H0,Td has been supposed to have the form of
v / sH0

gTdd.20 There have been extensive theoretical efforts to
determine the exact form ofgsṽd, and the values and the
physical meaning of the exponents. As we shall see below,
the dynamic phase transition may lead to a double-peak fre-
quency dispersion and a piecewise analytic function of tem-
perature dependence.

The frequency dispersion of the hysteresis loop area. Fig-
ure 1(a) shows a typical result of the two-dimensional MC
simulations, at temperatureT=1.0,Tc. (WhenT,Tc, a dy-
namic symmetry loss can be observed asH0 decreases from
4 to 0.4) As is clearly shown in the curve withH0,2, two
distinct peaks can be observed. We name the left-hand side
one as peak I and the right-hand side one as peak II. It is
found that peak I occurs in the range where the hysteresis
loops are symmetric and peak II is in the range of asymmet-

ric loops. As the frequency is increased from peak I to peak
II, a dynamic symmetry loss occurs.

Figure 1(b) shows a typical result of the MF calculations,
at temperatureT=0.5,Tc. Similarly, a double-peak function
can be observed. However, there is a very important differ-
ence. Given relatively small values ofH0, it is possible that
there is only peak II in the MF calculation. This is because
the equilibrium magnetization can be obtained by solving the
following equation:

− M + tanhSM + H

T
D = 0. s5d

With H small enough andT,Tc=1, there can be two stable
solutions to Eq.(5), corresponding to two values of stable
equilibrium magnetization(a positive and negative one).
This means that the hysteresis loops can be asymmetric even
in the quasistatic limit. By contrast, according to Ref. 4, in
MC simulations the hysteresis loop is always symmetric in
the quasistatic limit, as a result of fluctuation.

In the above discussions we provide evidence of two
peaks I and II, which corresponds to the resonance of sym-
metric and asymmetric hysteresis loops, respectively. In the
following, we give a general explanation of the physics ori-
gin of this observation. The existence of two peaks clearly
indicates two time scales, corresponding to two different dy-
namic mechanisms. When the loops are symmetric, both the
initial domain nucleation and the late stage domain growth
are at work. As suggested by Liuet al.,8,9 the observation of
peak I means that a third time scaletI can be defined as a
combination of tn and tg, and the resonance occurs as
2p /vI ,tI. Since for the asymmetric loops the magnetiza-
tion can be always well above or below zero, at any time
during the system evolution we can observe most spins hav-
ing the same direction. The late stage domain growth is rela-
tively inhibited, and thus, the time scaletII corresponding to
peak II shall be mainly determined bytn.

Compared with peak II, the resonance at peak I has been
relatively well studied in the previous works. Some illustra-
tions of the resonance at peak I can be found in, e.g., Refs. 9
and 11. In the following we focus on peak II, as illustrated in
Figs. 2(a) and 2(b). Actually, the existence of peak II can be
easily understood in the MF Ising model. As is mentioned
above, whenH is small enough, there can be two stable
solutions of Eq.(5). Thus, with v→0, the hysteresis loop

FIG. 1. (Color online) The frequency dispersion of the loop area
Asvd. (a) The MC results with ac field at temperatureT=1.0; (b)
The MF results with ac field atT=0.5. The dashed line, correspond-
ing to v−1, serves as a guide to eye.

FIG. 2. (Color online) The illustrations of peak II with(a) MC
simulations atT=1.0 and(b) MF calculations atT=0.5.
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reduces to a curve[the stable solution of Eq.(5), as shown in
Fig. 2(b)]. In the other limit, withv→`, the system cannot
respond to the external field and the hysteresis loop becomes
a horizontal line. Thus, it is straightforward to predict the
existence of a peak in the intermediate region, where the
phase lag between the external field and the system response
creates a hysteresis loop with a nonzero area. Note that the
observation of peak II requires temperatures lower than the
static critical point and small enough values ofH0. When
H0!T!1, we can give a quantitative description of the sys-
tem behavior by solving the MF equation(1) analytically.
We suppose 1−M→0, and obtain

dM

dt
= 1 −M − 2 expS−

2

T
DS1 −

2

T
H0 sinsvtdD .

This equation can be exactly solved, and the loop area is
obtained as

A = −E
0

2p/v

MdsH0 sinvtd,

=4pF1

T
expS−

2

T
DGH0

2 v

v2 + 1
. s6d

In the following, we report some important differences
and similarities of peak I and II, as summarized from Eq.(6)
and the numerical results in Fig. 1. Differences:(1) The tem-
perature dependence of the height of peak II in the MF Ising
model is obtained in Eq.(6), and is different from the previ-
ousT−1/2 prediction of peak I.17 (2) In the MF Ising model,
the maximal areaAmax

II at peak II grows withH0 asH0
2, while

the maximal areaAmax
I at peak I has been predicted to grow

with H0 linearly in the previous studies.17 This difference is
explained by observing the variance of the loop shape with
H0, as illustrated in Figs. 3(a) and 3(b): At peak I, only the
width of the loop increases withH0 (that is whyAmax

I grows
linearly with H0), while at peak II, the loop is expanding in
two directions withAmax

II growing asH0
2.

Similarities:(1) In both MF calculations and MC simula-
tions, it is found that, asv→`, the area decays asv−1. [With
respect to peak I, this is in accordance with the previous MF
result and the work of Raoet al.18,19 on thesF2d2 andsF2d3

model, but not the previous MC result of the Ising model,4,17

which indicates an exponentially decaying function of
gfṽsv ,H0,Tdg in Eq. (4).] (2) Independent ofH0 andT, peak
II is always observed to be at(or very close to) vII =1. With
regards to peak I, in both MC simulations and MF calcula-
tions we find that asH0→` , vI also approaches 1, which is
different from the previous predictions. According to Refs.
4,17 thevI will also tend to infinity asH0→`. But it is not
what we observe in Fig. 1, which shows that, as the field
already far exceeds the spin-spin interaction, the time scale
of the system is no longer sensitive to the value ofH0.

In the following, we turn to studythe temperature depen-
dence of the loop areawith fixed field amplitude and
frequency.13,17Here, our motivation is quite similar to that of
the above discussions of the frequency dispersion. When
H0,4 (MC) or H0,1 (MF), a dynamic symmetry loss can
be observed asT decreases(as can be predicted from the
phase diagram previously obtained).4,12,16,17Thus, a simple
scaling function is not likely to exist for the loop area, since
there are different dynamic mechanisms of the symmetric
and asymmetric loops, and different time scale competition.
This is supported by the MF and MC results.

A typical MF result is shown in Fig. 4(a). The order pa-
rameteruQu.0 for lower temperature anduQu=0 for higher
temperature, and at the dynamic critical point, a dynamic
symmetry loss occurs. In Ref. 13, using the same methods as
the present work, Acharyya found that the area becomes
maximum above the dynamic transition point. Here, it is
clear that the temperature dependence of the loop area as-
sumes different functions for theuQu.0 states anduQu=0
states. These different functions are separated by the dy-
namic critical point and the first-order derivative,]A/]T, is

FIG. 3. (a) Some typical hysteresis loops at peak I, withH0

=3,6,… ,30 from the innermost to the outermost loop.(b) Some
typical hysteresis loops at peak II, withH0=0.05,0.15,… ,0.25. All
the results are obtained from MF calculations atT=0.5.

FIG. 4. (Color online) The temperature dependence of the loop
areaA and the order parameterQ obtained from(a) MF and(b) MC
calculations, with the ac field.

BRIEF REPORTS PHYSICAL REVIEW B70, 132403(2004)

132403-3



not continuous at the dynamic critical point. Thus, the tem-
perature dependence is a piecewise analytic function. A typi-
cal MC result is shown in Fig. 4(b), and it is roughly similar
to the MF result. Although we do not observe a notable dis-
continuity of the first-order derivative,]A/]T, it is very ob-
vious that the second-order derivative,]2A/]T2, changes sign
at the dynamic critical point. WhenH0.4 (MC) or H0.1
(MF), the field amplitude exceeds the spin-spin interaction
and the hysteresis loops are always symmetric.4,12,16,17In this
case, we observe that the loop area decreases monotonically
as the temperature grows.

To summarize, the hysteresis of the Ising model in an ac
field, Hstd=H0 sinsvtd is studied using both mean-field cal-
culations and two-dimensional Monte Carlo simulations. The
frequency dispersion and the temperature dependence of the
loop area are studied in relation to the dynamic symmetry
loss. The dynamic mechanisms are different when the hys-
teresis loops are symmetric or asymmetric. For symmetric
loops, the dynamics is a combined domain nucleation-and-
growth process. By contrast, for asymmetric loops well
above or below theM =0 line, the dynamics may be mainly

domain nucleation. This framework is part of basic current
knowledge of hysteresis phenomena, and the observed fre-
quency and temperature dependence of the loop area is con-
sistent with it. Double peaks can be observed in the fre-
quency dispersion, and the temperature dependence is
possibly a piecewise analytic function. Interestingly, the shift
of the dynamic mechanism with the symmetry loss is also
found in the mean-field calculation, and some striking simi-
larities are observed(for example, the same position of peak
II ). Although the present work deals with a model spin sys-
tem, the topics discussed have general meaning. Surely some
quantitative details, like the position of the peaks, rely on the
model setting, but we believe that the physics of the conclu-
sions is not limited to the specific system studied here, and
can be predicted for more general systems.
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