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We discuss the relaxation in glasses in terms of local relaxation events(LRE) which glass uses to adjust to
external perturbations. The dynamics of LRE is governed by a differential equation with a solution that fits well
to the stretched-exponential relaxation. We discuss how this picture gives rise to the observed correlations of
nonexponentiality with temperature, relaxation time, and structure of glass or fragility of a glass-forming
system.
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Relaxation phenomena in many structural and electronic
glasses follow the remarkably universal stretched-
exponential law.1–3 Relaxing quantity,qstd, decays as

qstd ~ exps− st/tdbd, s1d

where 0,b,1.
Several derivations of the form of stretched-exponential

relaxation(SER) have been proposed. For example, depen-
dence(1) can be derived by averaging the usual exponential
with a certain distribution of relaxation times.4,5 Another
phenomenological way of deriving SER is to assume that
microscopic relaxation processes terminate in randomly dis-
tributed static traps, resulting in the reduction of the space
dimensionality for relaxation relative to the geometric
dimensionality.3 Similar ideas were discussed by other
workers,6 and used to construct simulation models,7 although
in the simulations SER has been often assigned to different
mechanisms.7–9. SER has also been related to the distribution
of relaxation rates that depend on sizes of relaxing units.10

A ubiquitous character of SER1–3,11 suggests that the un-
derlying physical process should be quite general in different
glassy systems. The challenge has been formulated recently
that in order to understand the relaxation process, one needs
to relateb, t, and the structure of glass.2 This calls for the
microscopic description of relaxation. Such a description has
been elusive since the discovery of SER by Kohlrausch,12

prompting the suggestion that the origin of SER remains
“one of nature’s best kept secrets.”3 In our view, microscopic
description of relaxation in glasses should begin with recog-
nizing atomistic processes involved, and discuss the dynam-
ics of these processes as relaxation proceeds.

In this paper, we propose that SER can be derived from
the differential equation that describes the dynamics of local
relaxation events, and discuss the relationships ofb and t
with temperature and structure of glass or type of glass
former.

We begin by identifying local relaxation events(LRE), by
which glass adjusts to a given set of temperatureT and pres-
sure p. A LRE was identified in the molecular dynamics
(MD) simulation as a rebonding event that involves a sudden
jump of an atom across the ring of connected tetrahedra.13

This involves breaking old bond(s), forming new one(s), and
subsequent relaxation of the local structure(the animation of
a typical LRE can be found in the electronic form of Ref.

13), resulting in the irreversibility of structural changes in-
troduced by LRE. LRE are spatially heterogeneous events, in
that relaxation times are different for events in different lo-
cations of glass structure.14 On the basis of LRE dynamics,
we have predicted15 that temperature-induced densification
takes place in the pressure window, centered around the ri-
gidity percolation point. This nontrivial effect has been re-
cently confirmed experimentally, with a high degree of
accuracy.16 The agreement suggests that LRE, identified in
the MD simulations, indeed serve as elementary relaxation
“quanta,” by which glass adjusts to a given set ofsp,Td, and
we can use modeling results to discuss how the activation
barriers change with the number of LRE.

Each LRE carries a microscopic change of relaxing quan-
tity. For example, in SiO2 glass under pressures above
5 GPa, each LRE is accompanied by the average relative
volume changeDV/V0:

14

DV/V0 = y n, s2d

wherey is the volume change per one LRE(y,0 for posi-
tive pressure), andn is the number of LRE, quantified by the
number of new and broken bonds per atom.

The probability to induce a LRE,f =exps−U /kTd, where
U is the activation barrier. Because under a given set of
external conditions, a relaxing quantity approaches constant
value,2,3,17 it is natural to assume that the number of LRE,n,
that glass uses to adjust to a given set ofsp,Td, is finite. Then
the rate equation forn is

dn

dt
=

1

t0
exps− Usnd/kTd − Cn, s3d

where the second term on the right-hand side of the equation
describes saturation, such that dn/dt=0 ast→`. Usnd is the
effective value of activation barrier that changes as relax-
ation proceeds by LRE. In this picture, the relaxation is com-
plete after a certain number of LRE is induced, bringing
glass into the equilibrium with external conditions. It should
be noted that glass is a nonequilibrium system by prepara-
tion; we use term “equilibrium” in a sense that relaxation
time under the change of external perturbations is much
shorter than that arising from the nonequilibrium nature of
originally prepared glass,2,3 so that at equilibirum no change
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of relaxing quantity can be detected at the experimental time
scale.

Equation(3) can be solved if dependenceUsnd is known.
Some time ago, Goldstein considered how local stresses re-
distribute in glass under external stress. He argued that atoms
in the region of a local relaxation event support less stress
after the relaxation than before, and therefore atoms else-
where support more stress after a local relaxation than
before.18 One can speculate that loading more stress on the
region of next LRE increases its activation barrier. A reaction
path of a thermally induced LRE is set by the minimal en-
ergy barrier defined by the local and medium-range structure.
In SiO2 glass, for example, reaction paths are defined by the
constraints needed to maintain connected tetrahedral(or
higher-coordinated) structure, with the energy barrier mini-
mized along rotations and displacements of tetrahedra
(polyhedra).19,20 The additional stress, that acts on the local
region due to the redistribution of local stresses,18 also de-
pends on the direction of externally applied force, and is
generally applied at random relative to the discrete set of the
minimal energy reaction paths. This blocks minimal energy
paths and increasesUsnd. For example, in SiO2 glass, we
have observed that the local environments of late LRE are
changed substantially by structural changes introduced by
preceding LRE,13 resulting in the increase of the waiting
times needed to induce late LRE.14,21 To the first order,

Usnd = U0 + asUm − U0dn, s4d

where a is the coupling constant andU0 and Um are the
lower and the largest values of activation barrier,Um@U0.

14

In network glasses,U0 is associated with atomic motion in-
volving only rotation and displacement of rigid constituent
units,19,20 andUm is on the order of energy required to break
a bond. Generally,Um is associated with the maximal barrier
needed to be overcome to force a particle out of its local
environment.

By combining Eq.(4) with Eq. (3) (without the saturation
term on the right part which is small for parameters at which
the logarithmic part of SER becomes approximately con-
stant, see Ref. 24), one gets

nstd =
kT

aUm
lnS1 +

agUm

kT

t

t0
D . s5d

Experimentally, the volume of silica glass indeed depends
logarithmically on time,22 and it turns out that the slope of
logarithmic relaxation of volume, given by combining Eqs.
(2) and (5), yields a good quantitative agreement with the
experimental value.14 This supports the validity of expansion
(4).

We now relate the dynamics of LRE to SER. LRE are
induced during both the fast “preparation” phase when the
external conditions are changed, and during the relaxation
phase. The total number of LRE,nt, is

nt = n0 + nrstd, s6d

wheren0 andnrstd is the number of LRE induced during the
preparatory and relaxational phases, respectively. The SER
under consideration is due to the “tail” of LRE that are in-

duced during the slow relaxational phase, while most of the
events are usually induced during the fast preparation phase.
In this picture, slow relaxation is due to the fact that glass
has not relaxed to a new set of external conditions during the
fast preparation phase. If, for example, this phase is suffi-
ciently long in time, and the external conditions are applied
at such small increments as to induce one LRE at a time,
nr =0. We introduce parameternr

s which is the saturated num-
ber of LRE in the relaxation phase, such thatnrstd→nr

s as
t→`. Then from Eqs.(3), (4), and(6) follows

dnr

dt
= exps− Anrd −

nr

nr
sexps− Anr

sd, s7d

whereA=aUm/kT, t is redefined ast /t0, and the coefficient
in the saturation term is chosen such that dnr /dt=0 when
nr →nr

s.
Equation (7) has two parameters,nr

s and A. When Anr
s

!1 (and henceAnr !1 sincenr ,nr
s), the right part of Eq.

(7) becomesf1−snr /nr
sdg, giving the Debye-type exponential

solution. This takes place when the number of LRE in the
relaxation phase is too small, or(and) when the temperature
is too large and results in the fast activation of events. Hence
this model sets the scale for the temperature,Tn, at which the
nonexponentiality of solution of Eq.(7) sets in, correspond-
ing to glassy relaxation. FromAsTndnr

s<1, kTn<aUmnr
s. Be-

low we show that forT<Tn, the solution of Eq.(7) describes
SER.

In Fig. 1 we show the results of numerical integration of
Eq. (7) for nr, normalized bynr

s, for various values ofnr
s. The

range ofnr
s is defined by the condition of interestAnr

s<1,
and for definitiveness we usedUm=6 eV, givingA<330. To
compare the solutions with SER, we recall thatnr

s was de-

FIG. 1. Normalized number of LRE,nr /nr
s, as a function of

time. Solid lines are the solutions of Eq.(7), and dashed lines are
fits to the SER form ofnr /nr

s=1−exp−st /tdb. Curves labeled 1, 2,
3 and 4 correspond to the solution of Eq.(7) for nr

s

=0.001,0.005,0.01, and 0.015, respectively, andA<330. Fits of
curves 1–4 to the SER give the following parameters forsb ,td:
(0.99, 0.001), (0.86, 0.007), (0.68, 0.02), and (0.55, 0.07),
respectively.
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fined such thatnr /nr
s→1 ast→`, corresponding to a relax-

ing quantity [defined, for example, by Eq.(2)] reaching a
constant value atnr =nr

s. Therefore we fit the solution of Eq.
(7) to the SER of the formnr /nr

s=1−exp−st /tdb. The fit is
done using the least-squares method. Note that Eq.(7) and
the form of SER have only two parameters each. This makes
an existence of a good fit nonaccidental, but characteristic of
the physical process under consideration. If the fit exists, the
family of parameterssA,nr

sd should unambiguously map onto
sb ,td, without any extra tuning parameters.

Figure 1 shows very good fits to SER over about eight
decades, especially in the intermediate logarithmic24 and
long-tail time range. Asnr

s increases, the fit in the short wait-
ing time range becomes less perfect, but we note that this is
also the case experimentally.3,23 It has been a very good fit in
the range of intermediate and long waiting times that made
SER such a ubiquitous function for many glassy
systems.1–3,11

We can now discuss the physical meaning of model pa-
rameters and their relation to the nonexponentiality of relax-
ation. The first important point to note is thatb decreases
with nr

s (see the legend in Fig.1). This will be discussed in
more detail below.

In Fig. 2 we plot the solutions of Eq.(7) for b and t at
different values of temperature andnr

s. First, it follows from
Fig. 2 that for a givennr

s, b increases withT~1/A [see Fig.
2(a)]. This is consistent with a wide set of experimental ob-
servations that show that the degree of nonexponentiality
decreases withT.2,3,17 Second, we find thatt increases asb
decreases[see the legend in Fig. 1 and Figs. 2(a) and 2(b)],
consistent with experimental and modeling results.25

How is the nonexponentiality related to the structure of
glass or type of supercooled liquid at different temperatures?

Recall thatnr
s is defined by the degree of retardation of the

system after the fast preparation phase. According to Fig. 1,
the more the system is lagged behind the equilibrium in
terms of the required number of local events in the relaxation
phasenr

s, the more nonexponential the relaxation is. One
would expect that the retardation is reduced in glasses with
higher average coordination numberkrl. Given all other con-
ditions equal, glass with increased cross-linking responds to
stress more efficiently, since more local stress-transferring
interactions are available. Hence a larger number of LRE
partition into n0 [see Eq.(6)], reducingnr

s in the relaxation
phase. According to our model, this increasesb (see Figs. 1
and 2), and is in agreement with experimental results that
show consistent increase ofb with average coordination
numberkrl.17

This effect can also be discussed in terms of system “fra-
gility” and “strength,”26 often used to describe relaxation in
glasses. Experimental data show that larger values ofkrl cor-
respond to stronger glasses and larger values ofb.17 The
strong glass-forming system is characterized by the in-built
resistance to structural change caused by temperature, while
fragile system easily rearranges to alternative structures by
particle reorientations.26 Consequently, one expects a smaller
number of local events,nr

s, to be induced in a stronger sys-
tem at a given set of external conditions, which correspond-
ing to largerb in our picture[see Figs. 1 and 2(a)], consis-
tent with experimental results.

It is interesting that experimentally, the sensitivity ofb to
temperature is reduced in strong glass-forming systems17. In
network glasses, this is accompanied by the increase ofkrl.17

As discussed above, stronger glass corresponds to a smaller
value of nr

s. Plotted in Fig. 2(a) is b as a function ofT for
different values ofnr

s. It is indeed seen that asnr
s decreases

(glass becomes stronger), variations ofb over the same tem-
perature range decrease.27,28 Hence the sensitivity ofb to
temperature for various glass types is correctly predicted in
this model.

The proposed model also allows one to discuss the relax-
ation of glass-forming systems near glass transition tempera-
ture. It has been shown that the macroscopic relaxation of
supercooled liquids is due to a superposition of the contribu-
tions from dynamically distinguishable subensembles.29

Hence, similarly to network glasses, the proposed model can
relate parameters of SER of glass-forming systems with their
fragility. Experimentally, the broad correlation has been
found between the fragility of more than 70 glass-forming
systems andb, with b increasing from about 0.2 to unity as
the system becomes stronger.11 The same trend is seen in
network glasses.17 As discussed above, one expects a smaller
number of local events,nr

s, to be induced in a stronger sys-
tem at a given set of external conditions. This corresponds to
larger values ofb in our picture[see Figs. 1 and 2(a)], con-
sistent with experimental results.

Finally, one could speculate whether Eq.(7) can describe
glass transition. When a glass former is cooled down, it can
be viewed as retarded relative to the new temperature and
volume, with each LRE relaxing the system towards chang-
ing external conditions. The only assumption behind Eq.(7)
is the increase of barriers as relaxation proceeds by LRE, Eq.

FIG. 2. b (a) and t (b) as a function of 1/A=kT/aUm for (1)
nr

s=0.003,(2) 0.005,(3) 0.007, and(4) 0.01.
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(4), and it has been shown that activation barriers in a glass-
forming system indeed increase asT decreases.8 This gives
Eq. (7). A more detailed consideration of this process can be
the subject of future studies.

In summary, we have proposed that SER naturally follows
from the dynamics of local events by which glass adjusts to
the change of external conditions. The nonexponentiality of
relaxation depends on the degree of the system retardation

during the fast change of conditions. This model allows one
to discuss variations of nonexponentiality with temperature
and glass structure or fragility of a glass-forming system.
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