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Local events and stretched-exponential relaxation in glasses
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We discuss the relaxation in glasses in terms of local relaxation e{eRE) which glass uses to adjust to
external perturbations. The dynamics of LRE is governed by a differential equation with a solution that fits well
to the stretched-exponential relaxation. We discuss how this picture gives rise to the observed correlations of
nonexponentiality with temperature, relaxation time, and structure of glass or fragility of a glass-forming
system.
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Relaxation phenomena in many structural and electronid 3), resulting in the irreversibility of structural changes in-
glasses follow the remarkably universal stretched-4troduced by LRE. LRE are spatially heterogeneous events, in

exponential law: 3 Relaxing quantityg(t), decays as that relaxation times are different for events in different lo-
(/)P cations of glass structufé.0On the basis of LRE dynamics,
a(t) = expl(= (U'7)"), @) we have predictéd that temperature-induced densification
where 0< 8<1. takes place in the pressure window, centered around the ri-

Several derivations of the form of stretched-exponentiagidity percolation point. This nontrivial effect has been re-
relaxation(SER) have been proposed. For example, depencently confirmed experimentally, with a high degree of
dence(1) can be derived by averaging the usual exponentiaccuracy® The agreement suggests that LRE, identified in
with a certain distribution of relaxation timés. Another the MD simulations, indeed serve as elementary relaxation
phenomenological way of deriving SER is to assume thatquanta,” by which glass adjusts to a given setjfT), and
microscopic relaxation processes terminate in randomly diswe can use modeling results to discuss how the activation
tributed static traps, resulting in the reduction of the spacéarriers change with the number of LRE.
dimensionality for relaxation relative to the geometric Each LRE carries a microscopic change of relaxing quan-
dimensionality? Similar ideas were discussed by othertity. For example, in SiQ glass under pressures above
workers® and used to construct simulation modétdthough 5 GPa, each LRE is accompanied by the average relative
in the simulations SER has been often assigned to differentolume change\V/V:*
mechanismg:°. SER has also been related to the distribution
of relaxation rates that depend on sizes of relaxing dfits. AVIVo=wn, (2

A ubiquitous character of SER!suggests that the un- _ _
derlying physical process should be quite general in differenfvherev is the volume change per one LRE<O for posi-
glassy systems. The challenge has been formulated recentfy® Pressurg andn is the number of LRE, quantified by the
that in order to understand the relaxation process, one nee@§mber of new and broken bonds per atom.
to relate, 7, and the structure of gladsThis calls for the The probability to induce a LRE,=exp(-U/kT), where
microscopic description of relaxation. Such a description ha$’ iS the activation barrier. Because under a given set of
been elusive since the discovery of SER by Kohlradgch, €xternal conditions, a relaxing quantity approaches constant
prompting the suggestion that the origin of SER remaing/alue**’itis natural to assume that the number of LRE,
“one of nature’s best kept secrefsli our view, microscopic ~ that glass uses to adjust to a given se(mfT), is finite. Then
description of relaxation in glasses should begin with recogthe rate equation fon is
nizing atomistic processes involved, and discuss the dynam-
ics of these processes as relaxation proceeds. dn_1 exp(- U(n)/KT) - Cn, 3)

70

In this paper, we propose that SER can be derived from dt
the differential equation that describes the dynamics of local
relaxation events, and discuss the relationshipg @ind -  where the second term on the right-hand side of the equation
with temperature and structure of glass or type of glasslescribes saturation, such that/dt=0 ast— c. U(n) is the
former. effective value of activation barrier that changes as relax-

We begin by identifying local relaxation everftsRE), by  ation proceeds by LRE. In this picture, the relaxation is com-
which glass adjusts to a given set of temperafuend pres- plete after a certain number of LRE is induced, bringing
sure p. A LRE was identified in the molecular dynamics glass into the equilibrium with external conditions. It should
(MD) simulation as a rebonding event that involves a suddeibe noted that glass is a nonequilibrium system by prepara-
jump of an atom across the ring of connected tetrah&dra. tion; we use term “equilibrium” in a sense that relaxation
This involves breaking old bors), forming new onés), and  time under the change of external perturbations is much
subsequent relaxation of the local struct(tfee animation of ~ shorter than that arising from the nonequilibrium nature of
a typical LRE can be found in the electronic form of Ref. originally prepared glas%® so that at equilibirum no change
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of relaxing quantity can be detected at the experimental time 1.1 w

scale. 4
Equation(3) can be solved if dependentkn) is known. 09 | .

Some time ago, Goldstein considered how local stresses re-

distribute in glass under external stress. He argued that atoms 0.7

in the region of a local relaxation event support less stress

after the relaxation than before, and therefore atoms else- . _ 05 - |

where support more stress after a local relaxation than & ™

before!® One can speculate that loading more stress on the <

region of next LRE increases its activation barrier. A reaction 0.3 - 1

path of a thermally induced LRE is set by the minimal en-

ergy barrier defined by the local and medium-range structure. 01 r .

In SiO, glass, for example, reaction paths are defined by the

constraints needed to maintain connected tetrahe@nal 01 5 - - L L

higher-coordinatedstructure, with the energy barrier mini- 10 10 10 10 10

mized along rotations and displacements of tetrahedra t

(polyhedra.1%2° The additional stress, that acts on the local

region due to the redistribution of local stres&&sjso de- FIG. 1. Normalized number of LREQ,/n;, as a function of

pends on the direction of externally applied force, and iglime. Solid lines are the solutions of E(Y), and dashed lines are
generally applied at random relative to the discrete set of théits to the SER form ofy,/n?=1-exp(t/ 7). Curves labeled 1, 2,
minimal energy reaction paths. This blocks minimal energy3 and 4 correspond to the solution of Eq7) for 7
paths and increasad(n). For example, in SiQglass, we -0-001,0.005,0.01, and 0.015, respectively, #d330. Fits (?f
have observed that the local environments of late LRE ar§“/VeS 14 fo the SER give the following parameters (jy7):
changed substantially by structural changes introduced bif->% 0:00% (0.86, 0.007. (0.68, 0.03, and (0.55, 0.07,
preceding LRE} resulting in the increase of the waiting espectively.

times needed to induce late LRE2! To the first order, . . _
duced during the slow relaxational phase, while most of the

U(n) =Ug+ a(Uy,— Ug)n, (4)  events are usually induced during the fast preparation phase.
In this picture, slow relaxation is due to the fact that glass
has not relaxed to a new set of external conditions during the
fast preparation phase. If, for example, this phase is suffi-

volving only rotation and displacement of rigid constituentCiently long in time, and the external conditions are applied
9 y P 9 at such small increments as to induce one LRE at a time,

it 19,20 i ;

units; =" andUp, is on the ord_er of energy requw_ed to bre_ak n,=0. We introduce parametaf which is the saturated num-

a bond. GenerallyJ,, is associated with the maximal barrier f LRE in th | . h h S

needed to be overcome to force a particle out of its Iocat’er 0 in the relaxation phase, such tiatt) —n; as
—o0, Then from Eqs(3), (4), and(6) follows

environment.
By combining Eq(4) with Eq. (3) (without the saturation dn n

term on the right part which is small for parameters at which — = exp(—- An,) — —exp(— Arp), (7)

the logarithmic part of SER becomes approximately con- dt ny

stant, see Ref. 34one gets

where « is the coupling constant and, and U, are the
lower and the largest values of activation barrigg,> U,.*
In network glassed,), is associated with atomic motion in-

whereA=aU,,/KT, t is redefined a$/ 7, and the coefficient
ayUp t in the saturation term is chosen such that/dt=0 when
kT : ’ (5) nr—>nf.
0 Equation(7) has two parameters); and A. When Ary
Experimentally, the volume of silica glass indeed depends<1 (and henceAn <1 sincen, <ny), the right part of Eq.
logarithmically on timé? and it turns out that the slope of (7) becomeg1-(n,/nd)], giving the Debye-type exponential
logarithmic relaxation of volume, given by combining EQs. sojution. This takes place when the number of LRE in the
(2) and (5), yields a good quantitative agreement with therg|axation phase is too small, @nd when the temperature
experimental valué? This supports the validity of expansion js (oo large and results in the fast activation of events. Hence
(4. _ this model sets the scale for the temperatiifeat which the
~ We now relate the dynamics of LRE to SER. LRE arengnexponentiality of solution of Eq7) sets in, correspond-
induced during both the fast “preparation” phase when thepng to glassy relaxation. From(T,)n®~1, kT,~ aU,n°. Be-
external conditions are changed, and during the relaxatiopy,, we show that foff ~T,,, the solution of Eq(7) describes
phase. The total number of LRE,, is SER.
(6) In Fig. 1 we show the results of numerical integration of
Eq. (7) for n,, normalized byn}, for various values ofi’. The
whereng andn(t) is the number of LRE induced during the range ofn? is defined by the condition of interestn’~ 1,
preparatory and relaxational phases, respectively. The SE&d for definitiveness we us&d},=6 eV, givingA~330. To
under consideration is due to the “tail” of LRE that are in- compare the solutions with SER, we recall tindtwas de-

n(t) = ;J In(l +

m

Ne=no+ni(t),
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1.0 ‘ ‘ ‘ ( Recall thatn; is defined by the degree of retardation of the

//( system after the fast preparation phase. According to Fig. 1,
09 r / 1 the more the system is lagged behind the equilibrium in
1 terms of the required number of local events in the relaxation

08 / . phasen;, the more nonexponential the relaxation is. One
o

would expect that the retardation is reduced in glasses with
. higher average coordination numKey. Given all other con-

ditions equal, glass with increased cross-linking responds to
stress more efficiently, since more local stress-transferring

4 interactions are available. Hence a larger number of LRE
0.5 : : :

0.7

06 r

(b) partition intong [see Eq.(6)], reducingn; in the relaxation

0.05 - 4 i phase. According to our model, this increage&see Figs. 1
and 2, and is in agreement with experimental results that
0.04 - . show consistent increase ¢ with average coordination
number(r).1”
o 0037 i This effect can also be discussed in terms of system “fra-
002 3 _ gility” and “strength,?® often used to describe relaxation in
¥ glasses. Experimental data show that larger valués)afor-
¥

0.01 2 | respond to stronger glasses and larger valueg.bf The
00 L ‘ ‘ ‘ strong glass-forming system is characterized by the in-built
0.001 0003  0.005 0007  0.009 resistance to structural change caused by temperature, while

fragile system easily rearranges to alternative structures by

particle reorientation® Consequently, one expects a smaller
FIG. 2. 8 (8 and 7 (b) as a function of 1A=kT/aU,, for (1) number of local eventsy;, to be induced in a stronger sys-

n?=0.003,(2) 0.005,(3) 0.007, and4) 0.01. tem at a given set of external conditions, which correspond-

ing to largerB in our picture[see Figs. 1 and(8)], consis-

fined such thah,/n}— 1 ast— o, corresponding to a relax- tent with experimental results.

ing quantity [defined, for example, by Eq2)] reaching a It is interesting that experimentally, the sensitivity ®to

constant value at,=n;. Therefore we fit the solution of Eq. temperature is reduced in strong glass-forming systérirs

(7) to the SER of the fornn,/n’=1-exp~t/7)?. The fitis  network glasses, this is accompanied by the increage &f

done using the least-squares method. Note that(Bgand  As discussed above, stronger glass corresponds to a smaller

the form of SER have only two parameters each. This makegalue ofn}. Plotted in Fig. 2a) is 8 as a function ofT for

an existence of a good fit nonaccidental, but characteristic dfifferent values ofn’. It is indeed seen that as decreases

the physical process under consideration. If the fit exists, theglass becomes strongevariations of8 over the same tem-

family of parameter$A, n?) should unambiguously map onto perature range decrea®e?® Hence the sensitivity of3 to

1/A

(B, 1), without any extra tuning parameters. temperature for various glass types is correctly predicted in
Figure 1 shows very good fits to SER over about eightthis model.
decades, especially in the intermediate logaritRfniand The proposed model also allows one to discuss the relax-

long-tail time range. As; increases, the fit in the short wait- ation of glass-forming systems near glass transition tempera-
ing time range becomes less perfect, but we note that this i@ire. It has been shown that the macroscopic relaxation of
also the case experimentafiy? It has been a very good fitin supercooled liquids is due to a superposition of the contribu-
the range of intermediate and long waiting times that maddions from dynamically distinguishable subensemBfes.
SER such a ubiquitous function for many glassyHence, similarly to network glasses, the proposed model can
systemg 311 relate parameters of SER of glass-forming systems with their
We can now discuss the physical meaning of model pafragility. Experimentally, the broad correlation has been
rameters and their relation to the nonexponentiality of relaxfound between the fragility of more than 70 glass-forming
ation. The first important point to note is tha&tdecreases systems angB, with B increasing from about 0.2 to unity as
with n? (see the legend in Figi1This will be discussed in the system becomes strongeiThe same trend is seen in
more detail below. network glasse¥’ As discussed above, one expects a smaller
In Fig. 2 we plot the solutions of Eq7) for g and~at  number of local eventsy;, to be induced in a stronger sys-
different values of temperature anfl First, it follows from  tem at a given set of external conditions. This corresponds to
Fig. 2 that for a givem?, B increases witiT« 1/A [see Fig. larger values of3 in our picture[see Figs. 1 and(8)], con-
2(a)]. This is consistent with a wide set of experimental ob-sistent with experimental results.
servations that show that the degree of nonexponentiality Finally, one could speculate whether Ed) can describe
decreases witA.231” Second, we find that increases ag  glass transition. When a glass former is cooled down, it can
decreasegsee the legend in Fig. 1 and Figgapand 2b)],  be viewed as retarded relative to the new temperature and
consistent with experimental and modeling restiits. volume, with each LRE relaxing the system towards chang-
How is the nonexponentiality related to the structure ofing external conditions. The only assumption behind &g.
glass or type of supercooled liquid at different temperaturesf the increase of barriers as relaxation proceeds by LRE, Eq.
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(4), and it has been shown that activation barriers in a glasduring the fast change of conditions. This model allows one
forming system indeed increase fslecrease$.This gives  to discuss variations of nonexponentiality with temperature
Eq. (7). A more detailed consideration of this process can beand glass structure or fragility of a glass-forming system.
the subject of future studies.

In summary, we have proposed that SER naturally follows One of the author¢K.T.) appreciates very useful discus-
from the dynamics of local events by which glass adjusts tgions with Professor V. V. Brazhkin, R. Béhmer, R. V. Cham-
the change of external conditions. The nonexponentiality oberlin, and D. L. Stein. The authors are grateful to EPSRC,
relaxation depends on the degree of the system retardatid®MI, and Darwin College, Cambridge, for support.
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