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The effective dielectric function of colloidal solution in the vicinity of a solution–pure solvent interface is
discussed. A simple expression is derived for the transverse and longitudinal components of the dielectric
permittivity tensoreJ as a function of the distance from the interface. In the approximation made, the sole effect
responsible for theeJ anisotropy and space dependence is the asymmetry in the pair correlation function.
Consequently, the final result is valid for dilute solutions only. The effect of polydispersity of the solute
particles is considered in an approximate manner as well.
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Being one of the most promising types of materials, com-
posites have continued to attract a lot of attention during
several decades. This interest is caused, first of all, by a
unique opportunity to combine sometimes nearly opposite
properties in one material, thus allowing a very wide range
of applications. In addition to their commercial and industrial
importance, composites pose many theoretically challenging
questions. The problem of the effective dielectric function of
an inhomogeneous medium is one such. Its history starts
from classical works1–3 and continues nowadays with new
methods being proposed.4–9 The aim of these studies is gen-
erally the same: to obtain the effective permittivity as a func-
tion of the concentration, size, and shape of the inclusions.
The researchers are strongly motivated by a possible experi-
mental application, because the analysis of the composite
dielectric spectra allows one to derive information on the
microstructure or on the properties of the dispersed
component.10,11 To go beyond the simple Maxwell-Garnett2

approximation, which contains no information about polydis-
persity, etc., one has to take into account the interparticle
interactions as well. This makes the analytical solution of the
problem quite complicated7,12 and stimulates the employ-
ment of numerical techniques.13

Although the main effort has been made toward the inves-
tigation of three-dimensional systems, the properties of inho-
mogeneous media in two-dimensional(2D) confinement
conditions also received some attention.14,15 In the bulk sys-
tem the interaction of an inclusion particle with the external
field and the other inclusions describes the situation com-
pletely. The presence of a surface or an interface makes in-
teractions with the electrostatic images caused by this inter-
face equally important. The polarizability of a single particle
on a substrate has been addressed in a number of works16

covering not only spherical particles but also truncated
spheres and spheroids. This allowed one to calculate the sur-
face dielectric susceptibilities of polarizable entities arranged
in a 2D square lattice. For disordered 2D systems it has been
shown that the spatial arrangement in the neighborhood of
the test particle is very important.15

Related problems appear in the physics of colloids and
suspensions if one considers the effective dielectric function
near a liquid-liquid phase boundary.17 The susceptibility of
the inhomogeneous phase can be averaged over a small vol-
ume(but large enough to include many particles) situated at

the given distancez sz.0d from the interface. Therefore the
dielectric permittivity tensor becomes spatially dependent
and can be represented as a function ofz in the case of a flat
interface:eJszd. In theoretical works the interaction between
inclusions and their images has been claimed to be respon-
sible for the spatial dependence ofeJ. In the simplest approxi-
mation, spherical particles interacting with their own inter-
face images were considered,6,18 leading to the expression
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for the components ofeJ written aseJ=einWnW +e'sIJ−nWnWd. Here
x=i, 'sci=2,c'=1d denotes the longitudinal and transverse
components ofeJ, nW is a unit vector perpendicular to the in-

terface, as shown in Fig. 1, andIW is a unit 333 tensor. It is
also assumed that the system consists of randomly dispersed
spherical particlessepd of mean radiusā with the filling fac-
tor f, surrounded by a matrix materialsemd. The dispersion
adjoins a homogeneous mediumsem8 d in the right-hand side
in Fig. 1.

One of the shortcomings of the approximation(1) is its
restricted region of validity. In particular, the conditionem8
Þem must be satisfied. Otherwise the effect of electrostatic

FIG. 1. Colloidal solution in the vicinity of an interface with
pure solvent. If the opposite is not stated,em8 ;em is assumed all
throughout the paper.
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images will be negligible and Eq.(1) will not contain any
spatial dependence. On the other hand, the liquid-liquid
phase boundary between a colloidal solution and a pure sol-
vent represents a typical example of the situation whenem8
;em. Apparently, thez dependence of the many-particle cor-
relation function is responsible for the difference betweene
in the interface layer and in the bulk. This also implies that
the first nonvanishingz-dependent term in an Eq.(1)–like
series will be caused by a particle-particle interaction and,
thus, is proportional tof2.

It is the purpose of this paper to obtain the effective di-
electric function of a colloidal system in the vicinity of an
interface with pure solvent. A technique developed earlier19

for accounting for two-particle interaction effects will be em-
ployed to obtain an explicit expression foreJszd. Polydisper-
sity corrections will be considered as well.

As has been shown in Ref. 18, the components ofeJ can be

determined via the polarizability tensorAJszd (AJ is defined20

as the proportionality coefficient between the dielectric po-

larization vectorPW and the external fieldEW 0:PW =AJEW 0) using
the equations
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where f1 and f2 are functions ofA',i and their explicit form
is given by Eq. 6 from Ref. 18. In turn, the polarizability

tensorAJ of the colloidal system is related21 to the set of
irreducible polarizabilitiesaW skd of groups ofk particles

AJ =
1

V
SNkaJs1dl +
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2

kaJs2dl + ¯D . s3d

HereN andV are the number of particles and the volume of
the system, respectively, andk¯l denotes the average over
the shape, size, and positions of the inclusions. In theem
Þem8 case,aJs1d is the first nontrivialz-dependent term and is
caused by the interaction between the particle and its elec-
trostatic image.18 However, for the situation addressed here,
where a solution is in equilibrium with a pure solvent,em
;em8 , and therefore no electrostatic images are present. Let
us consider spherical particles with continuously distributed
radii (i , j =1, . . . ,N are used further on to number the par-
ticles). The polarizability of a single sphere of radiusai is the
same as in the absence of the interface and reads

aJs1dsid = − ai
3kIJ s4d

with k=sem−epd / s2em+epd. The coefficientsf1,2, calculated
taking into account only one-particle effects, are also trivial:

f1 = −
3

4p
kf and f2 = 0. s5d

Thus, as expected, the set of equations(2) in the linear-upon-
f approximation leads toe'=ei=ems1–3kfd, the linearized

Maxwell-Garnett2 relation, and includes no spatial depen-
dence[the identity f ;s4p /3dkai

3lN/V has been used].
Hence, to take into account the spatial dependence of the

dielectric functioneJ in the case of a solution-solvent system,
one has to consider the higher order terms in Eq.(3), the first
of which is expressed bykaJs2dl. The physical origin of the
kaJs2dl spatial dependence is quite clear: the pair correlation
function g2 depends on the distancesZi,j from the interface.
In other words, a particle in the vicinity of the boundary, Fig.
1, has many more neighbors on the left-hand side than to the
right, whereas a particle in the bulk finds itself in an “almost
isotropic” environment. In general, the correlation function
g2 can be borrowed from the theory of fluids.22 However,
even the simplest approximation, reflecting the asymmetry in
the two-particle distribution function, e.g.,

g2srWi,rW jd = H0, Rij , ai + aj or Zi . 0 or Zj . 0,

1/V2 otherwise,
s6d

is enough for our purpose. HererWi =sXi ,Yi ,Zid describes the
position of the particlei andRij = urW j −rWiu (Fig. 1). In the ap-
proximation(6) the particles are assumed to be hard spheres
(of radii ai andaj) uniformly distributed in the matrix. More
conveniently, the pair distribution function can be written in
the local system of coordinates with the origin at the center
of the particlei, as shown in Fig. 2:

gsRW i jd =H0 Rij , ai + aj or sRW i jnWd . z

1/V otherwise.
, s7d

Here z.0 and the functiongsRJi jd vanishes if vectorRW i j

points outside the solution volume, i.e., ifsRW i jnWd.z. The

function gsRW d gives the probability density to find a particle

at the distanceRW from the given one if the latter is located at
distancez from the interface. This function should be used to
average overRij in the expressions for polarizability(see
below).

In turn, the two-particle polarizability can be determined

from the relationdW s2d=as2dEW 0, wheredW s2d is the dipole mo-
ment gained by the pair due to the mutual polarization of the
particlesi and j . Due to the symmetry, it has only two inde-
pendent components and can be represented as

FIG. 2. A pair of particles in the vicinity of the phase
boundary.
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aJs2dsi, jd = alsRijdeWReWR + atsRijdsIJ− eWReWRd, s8d

whereeWR=RW i j /Rij (see Fig. 2), andal and at are scalar po-

larizabilities of the pair in longitudinalsEW 0iRW d and transverse

sEW 0'RW d fields, which are to be calculated independently.19,21

Using the distribution function(7) and the representation
(8), the averaging over positions of the particles can be
performed in Eq.(3). The orientation of a pair is described
by the unit vector eWRsu ,wd=cosu nW +sin u cosw eWx

+sin u sin w eWy (Fig. 2) and the averaging over the anglesu
andw is conducted explicitly:
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wherec=N/V is the density of inclusions,k¯la denotes the
average over the inclusion sizesai,j, and

Abulk = −
3fk

4p
+
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3
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`
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is the polarizability in the bulk of the colloidal solution.
Note, the expression(9) is an expansion in powers ofc trun-
cated at the two-particlec2 term.

To proceed, the scalar two-particle polarizabilities have to
be calculated. In particular, for spherical particles this can be
done by the method presented in Ref. 19. Here we only
briefly outline the approach. Its essence is in the iterative

procedure where the repolarization operatorP̂s j , id can be
introduced in such a way that at each iteration steps the
multipole momentsGk

ssds jd of the particle j induced by the
particle i are written as

Gk
ssds jd = Gk

ss−1ds jd + o
n

Pkns j ,idGn
ss−1dsid, s11d

wherehGnsidj is the set of multipole moments of the particle

i. For example, in the case of the longitudinal fieldEW 0, cor-

responding toal, the operatorP̂ has the form19

Pkns j ,id =
s− 1dnsn + kd!

n ! k!
Î2n + 1

2k + 1

aj
2k+1

Rij
n+k+1kskd s12d

with kskd=sem−epdk/ femsk+1d+epkg. Together with the re-
lation

Gk
ssdsid = Gk

ss−1dsid + o
n

Pknsi, jdGn
ss−1ds jd

we obtain a closed set of equations. To apply the iterative
scheme, one also needs the initial multipole moments, i.e.,
the multipole moments induced by the polarization of non-

interacting particles in the fieldEW 0: G1
s0dsid=−2Îp /3ai

3E0k

and Gk
s0dsid=0,k.1, i =1, . . . ,N. The polarizabilitiesal and

at, written with an arbitrary precision as a series uponai /Rij
andaj /Rij parameters, are the outcome of the approach.19

To avoid bulky formulas, we shall use them in a simpli-
fied form, retaining only the first two terms:
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3aj
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Expressions(13) are to be substituted into(9). The aver-
ages over the size of inclusions can be computed approxi-
mately assuming that the mean radius isā, and the standard
deviation D=Îksai − ād2l is small compared to the mean
radius.23 To reach accuracy up tof2 (two-particle effects) it is
enough to use Eq.(5) for f1,2 to calculatee' and ei in Eq.
(2). Hence, the final result reads

e' − ebulk

em
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S em − ep

2em + ep
D3S1 + 12
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em
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ā2D f2ā3
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whereebulk is the dielectric function of the solution far from
the interface.ebulk has been calculated in Ref. 19 as a power
series of k; i.e., its leading terms can be written in the
form24

ebulk − em

em
= − 3fkF1 − kf + k2fS0.421 + 0.237

D2

ā2DG ,

s15d

which agrees with results found in the literature.9

We retained the terms up to 1/Rij
6 in the polarizabilities

(13). Consequently, only the first nonvanishing term, propor-
tional to 1/z3, is present in Eq.(14). This, in particular, im-
plies the restrictionā,z, which is assumed to be fulfilled. A
more serious limitation of Eq.(14) is the fact that only pair
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interactions were taken into account. It makes the result ap-
plicable for the case off !1 only, where three- and more-
particle effects can be neglected.

It is interesting that the influence of polydispersity is well
pronounced and cannot be neglected. Indeed, the prefactor
12 in Eq. (14) suggests the importance of the size distribu-
tion effect. This also supports the point observed in bulk
systems:5,13 the effective permittivity depends in a strong
way on the polydispersity of the inclusions.

While deriving Eq.(14) we completely neglected the fact
that f is a function ofz near the interface. Indeed, one ex-
pects the filling fractionwszd to be a smoothed steplike func-
tion described by some characteristic “interface width”
j sj. ād, such thatwsz@jd= f andwsz,0d=0. An accurate
incorporation of such a space-dependent filling factor consid-
erably complicates the theory. However, ifj. ā, a rough
approximation can be made substitutingwszd instead off in
Eqs.(14) and(15). Let us briefly discuss some possible con-
sequences of such an ansatz for the analysis of reflectance
spectra. Generally the refractive index profile in the vicinity
of an interface is modeled by a weighted sum of the refrac-
tive indices of the phasesn1 and n2. In our casen1 corre-
sponds to the solution refractive index in the bulk andn2 to
the one of the solvent. Both are constant for a fixedf, i.e.,
they do not depend onz. This yields17 nszd=n1wszd / f +n2f1
−wszd / fg. However, in the casej.l, wherel is the wave-
length of the incident and reflected light, thez dependence of
the refractive index of the disordered mediumn1 might be-
come important. Indeed, ifl is chosen in such a way that
l,j and l. ā (the latter inequality ensures the dielectric

function can be properly defined), the expansion(14) with
wszd instead off can be used. Analysis of this case would
allow one to determine the density profile on the scale ofj if
ā is known, or vice versa. It has to be admitted, however, that
at the moment we cannot give an example, available in the
literature, where the picture presented above can be worked
out. Still, we believe that this analysis could be potentially
interesting.

Throughout the paper we considered a system consisting
of a colloidal solution in equilibrium with a pure solvent
(em;em8 , Fig. 1). However, the same kind of calculation can
be used to account for the interface effects in the vicinity of
a boundary between a microinhomogeneous medium and a
homogeneous dielectric. If the material of the dielectric is
not the same as the matrix of the composite,emÞem8 , the
influence of electrostatic images should be also taken into
account.18 Apparently, the smaller the differenceuem−em8 u, the
more important the anisotropic two-particle effects are if
compared to the contribution from electrostatic one-particle
images. A simple estimate follows from Eqs.(1) and (14),
indicating the region where Eq.(14) holds:

U em − em8

em + em8
U , S em − ep

2em + ep
D2

f . s16d

Outside this region both effects are to be incorporated into
the model. Although possible, this would lead to much
bulkier formulas.

The author thanks Professor N. P. Malomuzh for introduc-
ing him to this field, and for many fruitful discussions.

*Electronic address: r.stepanyan@tn.utwente.nl
1J. C. Maxwell,A Treatise on Electricity and Magnetism, 2nd ed.

(Dover, New York, 1954), reprinted from the 3rd ed., Clarendon,
Oxford, 1891.

2J. C. M. Garnett, Philos. Trans. R. Soc. London, Ser. A203, 385
(1904).

3K. W. Wagner, Arch. Electrochem.2, 371 (1914).
4B. U. Felderhof and R. B. Jones, Phys. Rev. B39, 5669(1989).
5R. G. Barrera, P. Villaseñor-González, W. L. Mochán, and G.

Monsivais, Phys. Rev. B41, 7370(1990).
6S. V. Kuzmin and N. P. Malomuzh, J. Mol. Liq.58, 81 (1993).
7L. Fu, P. B. Macedo, and L. Resca, Phys. Rev. B47, 13 818

(1993).
8S. E. Skipetrov, Phys. Rev. B60, 12 705(1999).
9K. Hinsen and B. U. Felderhof, Phys. Rev. B46, 12 955(1992).

10R. Pelster, Phys. Rev. B59, 9214(1999).
11R. Pelster and U. Simon, Colloid Polym. Sci.277, 2 (1999).
12K. Günter and D. Heinrich, Z. Phys.185, 345 (1965).
13A. Spanoudaki and R. Pelster, Phys. Rev. B64, 064205(2001).
14R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Vil-

laseñor, and W. L. Mochán, Phys. Rev. B43, 13 819(1991).
15J. Vlieger and D. Bedeaux, Thin Solid Films69, 107 (1980); D.

Bedeaux and J. Vlieger,ibid. 102, 265 (1983).
16M. M. Wind, J. Vlieger, and D. Bedeaux, Physica A141, 33

(1987); P. A. Bobbert and J. Vlieger,ibid. 147, 115 (1987); M.

M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux,ibid. 143,
164 (1987).

17J. Schulz, A. Hirtz, and G. H. Findenegg, Physica A244, 334
(1997); G. H. Findenegg, A. Hirtz, and R. Subman, inAbstracts
of 4th European Colloid & Interface Society Conference, Catan-
zaro, Italy, 1990; E. H. Hoog, H. N. Lekkerkerker, J. Schulz, and
G. H. Findenegg, J. Phys. Chem. B103, 10657(1999); A. Hirtz,
W. Lawnik, and G. H. Findenegg, Colloids Surf.51, 405(1990).

18R. Stepanyan, Phys. Rev. B67, 073403(2003).
19R. Stepanyan, Russian Colloid Journal61, 781 (1999).
20J. D. Jackson,Classical Electrodynamics(Wiley, New York,

1975).
21T. Lokotosh and N. Malomuzh, Russian J. of Physical Chemistry

68, 885 (1994).
22I. Z. Fisher,The Statistical Theory of Liquids(University of Chi-

cago Press, Chicago, 1964).
23This corresponds to a continuous size distribution described by
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ā/z contribution, the truncated expansions(13) are sufficient.

BRIEF REPORTS PHYSICAL REVIEW B70, 132201(2004)

132201-4


