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Dielectric function of a colloidal solution near an interface with pure solvent
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The effective dielectric function of colloidal solution in the vicinity of a solution—pure solvent interface is
discussed. A simple expression is derived for the transverse and longitudinal components of the dielectric
permittivity tensore as a function of the distance from the interface. In the approximation made, the sole effect
responsible for thes anisotropy and space dependence is the asymmetry in the pair correlation function.
Consequently, the final result is valid for dilute solutions only. The effect of polydispersity of the solute
particles is considered in an approximate manner as well.
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Being one of the most promising types of materials, com-+the given distance (z>0) from the interface. Therefore the
posites have continued to attract a lot of attention duringdielectric permittivity tensor becomes spatially dependent
several decades. This interest is caused, first of all, by and can be represented as a functioz of the case of a flat
unique opportunity to combine sometimes nearly oppositgnterface:(z). In theoretical works the interaction between
properties in one material, thus allowing a very wide rang§ncjysions and their images has been claimed to be respon-

of applications. In addition to their commercial and industrial gjpje for the spatial dependence®fin the simplest approxi-

importance, composites pose many theoretically Cha”eng'nﬂwation, spherical particles interacting with their own inter-

questions. The problem of the effective dielectric function Offace images were considere® leading to the expression
an inhomogeneous medium is one such. Its history starts '

from classical works® and continues nowadays with new 3(e,— €) 3C,, , €m~ € (65— €2 A
methods being proposéd® The aim of these studies is gen- &= €p| 1 +—L—f | - ?ffm +e (e+2 )2;

erally the same: to obtain the effective permittivity as a func- €m™ €m€p ™ “€m

tion of the concentration, size, and shape of the inclusions. N (1)
The researchers are strongly motivated by a possible experi- -

mental application, because the analysis of the compositir the components of written ase=e¢nn+e¢, (I-nn). Here
dielectric spectra allows one to derive information on thex=|, L(¢,=2,c, =1) denotes the longitudinal and transverse
mleOStrUth_l(J)fﬁ _I_Of 0?) thed DrVIODE{ftlels I\C;If the” g'Spr%SQQ:omponents of, fi is a unit vector perpendicular to the in-
component. 0 go beyond the simple Maxwell-GGarmett terface, as shown in Fig. 1, aihds a unit 3xX 3 tensor. It is

approximation, which contains no information about polydis- | d that th t ists of randomly di d
persity, etc., one has to take into account the interparticlé‘ SO assumed that the system consists ot randomly diSperse

interactions as well. This makes the analytical solution of thesPherical particlese,) of mean radius with the filling fac-

problem quite complicatéd? and stimulates the employ- tor f, surrounded by a matrix materiéd,). The dispersion
ment of numerical techniqués. adjoins a homogeneous mediugf,) in the right-hand side

Although the main effort has been made toward the invesin Fig. 1.
tigation of three-dimensional systems, the properties of inho- One of the shortcomings of the approximatici) is its
mogeneous media in two-dimensionéD) confinement restricted region of validity. In particular, the COI’]diti@lf.]1
conditions also received some attentiéi® In the bulk sys- # €, must be satisfied. Otherwise the effect of electrostatic
tem the interaction of an inclusion particle with the external
field and the other inclusions describes the situation com- 4\X
pletely. The presence of a surface or an interface makes in- solution
teractions with the electrostatic images caused by this inter- € Ep\
face equally important. The polarizability of a single particle O )
on a substrate has been addressed in a number of %#orks
covering not only spherical particles but also truncated Zi Z
spheres and spheroids. This allowed one to calculate the sur- .
face dielectric susceptibilities of polarizable entities arranged O 4 R
in a 2D square lattice. For disordered 2D systems it has been J ¢
shown that the spatial arrangement in the neighborhood of O
the test particle is very importaht. a
Related problems appear in the physics of colloids and Oy '
suspensions if one considers the effective dielectric function o !
near a liquid-liquid phase boundaryThe susceptibility of FIG. 1. Colloidal solution in the vicinity of an interface with

the inhomogeneous phase can be averaged over a small velire solvent. If the opposite is not stateg,= ¢, is assumed all
ume (but large enough to include many partigleguated at  throughout the paper.
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images will be negligible and Eq1) will not contain any x
spatial dependence. On the other hand, the liquid-liquid
phase boundary between a colloidal solution and a pure sol-
vent represents a typical example of the situation wggen =

pure solvent

= ¢, Apparently, thez dependence of the many-particle cor- 4; L-\‘ x

relation function is responsible for the difference between \ Y

in the interface layer and in the bulk. This also implies that K \0 7

the first nonvanishing-dependent term in an Eql)-like 5 > 5
series will be caused by a particle-particle interaction and, a;

thus, is proportional td?.

It is the purpose of this paper to obtain the effective di-
electric function of a colloidal system in the vicinity of an y
interface with pure solvent. A technique developed edflier FIG. 2. A pair of particles in the vicinity of the phase
for accounting for two-patrticle interaction effects will be em- bounde'lry..
ployed to obtain an explicit expression fé{z). Polydisper-
sity corrections will be considered as well.

As has been shown in Ref. 18, the componen&ain be

determined via} the_polaring!lity tens&z) (A is Qefineao Hence, to take into account the spatial dependence of the
as.the. proportionality coefficient beMe§n Eheeq|elect.r|c PO<dielectric function€ in the case of a solution-solvent system,
larization vectorP and the external fiel@&,:P=AE,) using  one has to consider the higher order terms in(8jy.the first

™

Maxwell-Garnett relation, and includes no spatial depen-
dence[the identityfz(4w/3)<ai3>N/V has been uséd

the equations of which is expressed bya?). The physical origin of the
e A (a?) spatial dependence is quite clear: the pair correlation
(—l - 1)(1 - ?fl) =47A function g, depends on the distancég; from the interface.
€m

In other words, a particle in the vicinity of the boundary, Fig.
1, has many more neighbors on the left-hand side than to the
€ 4 : right, whereas a particle in the bulk finds itself in an “almost
€ 1\t _?(fl*' f2) | = dmh, ) isotropic” environment. In general, the correlation function

g, can be borrowed from the theory of fluidsHowever,
wheref, andf, are functions oA, | and their explicit form  even the simplest approximation, reflecting the asymmetry in
is given by Eq. 6 from Ref. 18. In turn, the polarizability the two-particle distribution function, e.g.,
tensor A of the colloidal system is relatétito the set of
irreducible polarizabilitiesi®¥ of groups ofk particles (F.F) = 0, Rj<a+aorz>0o0rz>0, ©)

L 92hinfy 1N?  otherwise,

A= V(I\K&ﬂ)) (@) + ) @ s enough for our purpose. Herg=(X;,Y;,Z) describes the

_ position of the particle and R”=|Fj—ﬁ (Fig. 1. In the ap-
HereN andV are the number of particles and the volume of proximation(6) the particles are assumed to be hard spheres
the system, respectively, arfd-) denotes the average over (of radii & anda;) uniformly distributed in the matrix. More
the shape, size, and positions of the inclusions. Indfe conveniently, the pair distribution function can be written in
# €, case,a is the first nontrivialz-dependent term and is the local system of coordinates with the origin at the center
caused by the interaction between the particle and its ele@f the particlei, as shown in Fig. 2:
trostatic image® However, for the situation addressed here,
where a solution is in equilibrium with a pure solvesat, -
=e¢/,, and therefore no electrostatic images are present. Let 9(Ry) = 1IN
us consider spherical particles with continuously distributed
r_adu (i,j=1,... N are used fl_thher on to numb_er _the Par- yare z>0 and the functiong(
ticles). The polarizability of a single sphere of radiaigs the

L N(N-1)
2

Rj<a+a or(ﬁijﬁ) >z
otherwise. '

)

FE,-) vanishes if vectorlfi,-j

same as in the absence of the interface and reads points outside the solution volume, i.e., (iR;) >z The
. function g(R) gives the probability density to find a particle
= _ 43 . > . . .
a(i)=- &kl (4) at the distanc® from the given one if the latter is located at

d distancez from the interface. This function should be used to
average overR; in the expressions for polarizabilitisee
below).

In turn, the two-particle polarizability can be determined

from the relationd?=«®E,, whered®? is the dipole mo-
ment gained by the pair due to the mutual polarization of the
Thus, as expected, the set of equati@)sn the linear-upon-  particlesi andj. Due to the symmetry, it has only two inde-

f approximation leads te, = ¢ =¢,(1—3«f), the linearized pendent components and can be represented as

with k=(em—€,)/ (2en+€p). The coefficientd, ,, calculate
taking into account only one-particle effects, are also trivial:

3
fi=——=«f and f,=0. (5)
¥y
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TD(i 1) = an(R )G + (R (N = B 8 Using the distribution functioi7) and the representation
ad(i,]) = a(Ry)Erer + ar(Ryj) (I — €x€R), ®) (8), the averaging over positions of the particles can be

2 B o . _ performed in Eq(3). The orientation of a pair is described
whereéz=R;/R; (see Fig. 2, and ¢y and «; are scalar po by the unit vector &x(6,¢)=Cos0fi+sinfcose &,

larizabilities of the pair in longitudinglE, |l R) and transverse +sin 6 sin ¢ &, (Fig. 2) and the averaging over the angles
(Eo L R) fields, which are to be calculated independetitht  and ¢ is conducted explicitly:

a

- z
A= Aouik— %TCZ< fz R%de(aI(Rij) +2a4(Ry) = 3a’t(Rij)Rii_j +[en(Ry) - aI(Rij)]$>> .

T * 3 1 z
AL =Apuk— 502< L RﬁdRJ (a'l(Rij) +2e4(Ry) - E[a't(Rij) + aI(Rij)]Rii_j - E[at(Rij) - aI(Rij)]E%>> , 9

a

wherec=N/V is the density of inclusions; - -), denotes the  ay, written with an arbitrary precision as a series upaiR;

average over the inclusion sizag, and anda;/R; parameters, are the outcome of the apprdéch.
To avoid bulky formulas, we shall use them in a simpli-
3fk 2w - fied form, retaining only the first two terms:
Abulk:_E+?CZ<f Rl%dRij[a'l(Rij)"'zat(Rij)]> g ony
0 g (Roaa) = 2CAa_ Ac@a) +ala)) |
10 a(Rj&,8) = — 35—~ 5
(10 Ri Ri
is the polarizability in the bulk of the colloidal solution.
Note, the expressiof9) is an expansion in powers oftrun- R __2daa  P(aa) +aa) 13
cated at the two-particle? term. a(Rj.8,8) = R RE o (13

To proceed, the scalar two-particle polarizabilities have to
be calculated. In particular, for spherical particles this can be EXxpressiong13) are to be substituted int®). The aver-
done by the method presented in Ref. 19. Here we onl@ges over the size of inclusions can be computed approxi-
briefly outline the approach. Its essence is in the iterativénately assuming that the mean radiugjsnd the standard
procedure where the repolarization opera®j,i) can be deviation A=\((a-a)*) is small compared to the mean
introduced in such a way that at each iteration stepe  radius?®To reach accuracy up 3 (two-particle effectsit is

multipole momentsG®(j) of the particlej induced by the ~©€nough to use Eqs) for f, ; to calculatee, ande; in Eq.
particlei are written lé\s (2). Hence, the final result reads

G(S)(')_G(S-l)(')_,_Ep (j ')G(S-l)(') (1) M_E(M)3<l+12¥>f25_3
k J - k J - kn],| n | ] em _16 2€m+6p a 23!
where{G,(i)} is the set of multipole moments of the particle _ _ 3 2\ 33
. . L= €~ €uk_ 9 [ €m~ & 1+1 A & (14
i. For example, in the case of the longitudinal fi&lgl cor- € 32\ 2+ €, Zg Y

responding tay, the operatoﬁA? has the forn¥’ . ) . ) )
where e,k is the dielectric function of the solution far from

Peiii) D" n+k)! /2n+1 aj2k+l ® (12 the interface g, has been calculated in Ref. 19 as a power
knlJ,1) = K
2

nikl k+ 1R series ofk; i.e., its leading terms can be written in the
! form24
with x(K) = (em—€,)k/[ em(k+1) + €,k]. Together with the re- B
lation Eoulk ™ €m _ _ _ 2 A
' =-3fx| 1 -«f+«f| 0.421+0.23% | |,
€m a
GY() =G (i) + E Pinli.))GE()) (15)

. ) ) _ which agrees with results found in the literatdre.
we obtain a closed set of equations. To apply the iterative \ye retained the terms up to B in the polarizabilities

scheme, one also needs the initial multipole moments, i.€13) consequently, only the first nonvanishing term, propor-
the multipole moments induced by the polarization of non-yn4 to 1/, is present in Eq(14). This, in particular, im-

interacting particles in the fieIEO: G&O)(i):—ZV%a?EOK plies the restrictiora< z, which is assumed to be fulfilled. A
andG(1)=0,k>1,i=1,... N. The polarizabilitiese) and  more serious limitation of Eq14) is the fact that only pair
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interactions were taken into account. It makes the result agfunction can be properly defingdthe expansior{14) with
plicable for the case of<1 only, where three- and more- ¢(z) instead off can be used. Analysis of this case would
particle effects can be neglected. allow one to determine the density profile on the scalé ibf

It is interesting that the influence of polydispersity is well a’is known, or vice versa. It has to be admitted, however, that
pronounced and cannot be neglected. Indeed, the prefactat the moment we cannot give an example, available in the
12 in Eq.(14) suggests the importance of the size distribu-literature, where the picture presented above can be worked
tion effect. This also supports the point observed in bulkout. Still, we believe that this analysis could be potentially
systems:!3 the effective permittivity depends in a strong interesting.
way on the polydispersity of the inclusions. Throughout the paper we considered a system consisting

While deriving Eq.(14) we completely neglected the fact of a colloidal solution in equilibrium with a pure solvent
that f is a function ofz near the interface. Indeed, one ex- (¢,=¢/,, Fig. 1. However, the same kind of calculation can
pects the filling fractionp(z) to be a smoothed steplike func- be used to account for the interface effects in the vicinity of
tion described by some characteristic “interface width”a boundary between a microinhomogeneous medium and a
£(é>a), such thatp(z> ¢)=f and ¢(z<0)=0. An accurate homogeneous dielectric. If the material of the dielectric is
incorporation of such a space-dependent filling factor considnot the same as the matrix of the composig# ¢, the
erably complicates the theory. However, >a, a rough influence of electrostatic images should be also taken into
approximation can be made substitutiagg) instead off in account® Apparently, the smaller the differenge,— €/, the
Egs.(14) and(15). Let us briefly discuss some possible con-more important the anisotropic two-particle effects are if
sequences of such an ansatz for the analysis of reflectancempared to the contribution from electrostatic one-particle
spectra. Generally the refractive index profile in the vicinityimages. A simple estimate follows from Eg4) and (14),
of an interface is modeled by a weighted sum of the refracindicating the region where E@l4) holds:

tive indices of the phases; and n,. In our casen; corre- c—¢ e —e \2
sponds to the solution refractive index in the bulk ando i < ( m—b ) f. (16
the one of the solvent. Both are constant for a fixede., €nt €y 2€m ™t €

they do not depend on This yield$” n(2)=ne(2)/f+n[1  oyside this region both effects are to be incorporated into
~¢(2)/f]. However, in the cas¢> A, where\ is the wave-  the model. Although possible, this would lead to much
length of the incident and reflected light, theependence of p|kier formulas.

the refractive index of the disordered mediumnmight be-

come important. Indeed, X is chosen in such a way that The author thanks Professor N. P. Malomuzh for introduc-
A< & and A>a (the latter inequality ensures the dielectric ing him to this field, and for many fruitful discussions.

*Electronic address: r.stepanyan@tn.utwente.nl M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedealibid. 143
1J. C. Maxwell,A Treatise on Electricity and Magnetisiand ed. 164 (1987).
(Dover, New York, 1954 reprinted from the 3rd ed., Clarendon, 17J. Schulz, A. Hirtz, and G. H. Findenegg, Physica244, 334
Oxford, 1891. (199%; G. H. Findenegg, A. Hirtz, and R. Subman,Abstracts
2J. C. M. Garnett, Philos. Trans. R. Soc. London, Se208 385 of 4th European Colloid & Interface Society ConferenCatan-
(1904). zaro, ltaly, 1990; E. H. Hoog, H. N. Lekkerkerker, J. Schulz, and
3K. W. Wagner, Arch. Electrochen®, 371(1914. G. H. Findenegg, J. Phys. Chem.1®3 10657(1999; A. Hirtz,
4B. U. Felderhof and R. B. Jones, Phys. Rev3B 5669(1989. W. Lawnik, and G. H. Findenegg, Colloids Suf1, 405(1990.
5R. G. Barrera, P. Villasefior-Gonzélez, W. L. Mochéan, and G.18R. Stepanyan, Phys. Rev. &7, 073403(2003.
Monsivais, Phys. Rev. Bl1, 7370(1990. 19R. Stepanyan, Russian Colloid Jourr6il, 781 (1999.
6S. V. Kuzmin and N. P. Malomuzh, J. Mol. Lic58, 81 (1993. 203. D. JacksonClassical ElectrodynamicgWiley, New York,
’L. Fu, P. B. Macedo, and L. Resca, Phys. Rev.4B 13818 1975.
(1993. 21T, Lokotosh and N. Malomuzh, Russian J. of Physical Chemistry
8S. E. Skipetrov, Phys. Rev. B0, 12 705(1999. 68, 885(1994).
9K. Hinsen and B. U. Felderhof, Phys. Rev.4B, 12 955(1992.  ?2|. Z. Fisher,The Statistical Theory of Liquid&Jniversity of Chi-
10R. Pelster, Phys. Rev. B9, 9214(1999. cago Press, Chicago, 1964
1R, Pelster and U. Simon, Colloid Polym. S@77, 2 (1999. 23This corresponds to a continuous size distribution described by
12K, Giinter and D. Heinrich, Z. Physl85, 345(1965. the Guassianp(a)=exg—(a-a)2/(2A2)]/(y27A) with small
137, Spanoudaki and R. Pelster, Phys. Rev6& 064205(2001). dispersion. The averages are computed &s(a;,a;))
1R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Vil-  =[gda[gdap(a)h(a;,a;).
lasefior, and W. L. Mochan, Phys. Rev.48, 13 819(199J). 24For this purpose one needs more terms in the expansiaR)t
153. Vlieger and D. Bedeaux, Thin Solid Filng9, 107 (1980); D. The full series can be calculated for arbitragy and e,. Then
Bedeaux and J. Vliegeibid. 102 265(1983. using Eq.(10) and a(2)-like equation for the bulk, one obtains
M. M. Wind, J. Vlieger, and D. Bedeaux, Physica M1, 33 epui For the interfacial terms, if we restrict ourselves to the first
(1987%; P. A. Bobbert and J. Vliegeibid. 147, 115(1987; M. alz contribution, the truncated expansiofis) are sufficient.

132201-4



