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Dispersion relations for dipolar modes propagating along a chain of metal nanoparticles are calculated by
solving the full Maxwell equations, including radiation damping. The nanoparticles are treated as point dipoles,
which means the results are valid only fora/dø

1
3, wherea is the particle radius andd the spacing. The

discrete modes for a finite chain are first calculated, then these are mapped onto the dispersion relations
appropriate for the infinite chain. Computed results are given for a chain of 50 nm diam Ag spheres spaced by
75 nm. We find large deviations from previous quasistatic results: Transverse modes interact strongly with the
light line. Longitudinal modes develop a bandwidth more than twice as large, resulting in a group velocity that
is more than doubled. All modes for whichkmodeøv /c show strongly enhanced decay due to radiation
damping.
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I. INTRODUCTION

The possibility of using metal nanoparticle chains to
propagate optical excitations is attractive for integrated op-
tics applications, since it can lead to optical processing cir-
cuitry with dimensions comparable to the wavelength of the
light. Such small optical circuits are not possible with con-
ventional integrated optics techniques, which are generally
diffraction-limited in their size scale. The building blocks for
chain waveguides are closely spaced metal spheres or sphe-
roids with sizes in the tens of nanometer range, which is an
order of magnitude smaller than optical wavelengths. The
fundamental excitations that lead to propagation are the di-
polar resonances of the individual particles(also called Mie
resonances or plasma resonances).1 In practice these reso-
nances are well-defined excitations only for noble metal
spheroids and only in the frequency range for which the me-
tallic behavior is free-electron-like, i.e., Res«d,0 and
Ims«d,−Res«d, where«svd is the complex metal dielectric
response function.

Several recent studies investigate mode propagation in
metal nanoparticle chains.2–6 Quintenet al.2 give numerical
results for a chain of Ag spheres and find a 900 nm 1/e
intensity decay length for 50 nm diam spheres, spaced byd
=75 nm and excited at the dipole resonant frequency. Propa-
gation is found only for longitudinal excitation, i.e., the di-
pole moments aligned along the chain direction. Perpendicu-
lar propagation is much more highly attenuated. Brongersma
et al.3 model a similar chain of Ag spheres, but they treat
them as point dipoles and include only the lowest order qua-
sistatic 1/r3 interaction between the dipoles. They derive dis-
persion relations for modes in an infinite chain and find simi-
lar results for longitudinal and transverse propagation. Park
and Stroud4 allow for finite-sized metal spheres, but still
within the quasistatic approximation, by including the higher
order multipole fields in the interparticle interactions. These
interactions become important when the particles are nearly
touching. However, as long asaød/3, wherea is the par-
ticle radius andd the separation, they show that the point-

dipole results are adequate for the lowest(dipolar) bands.
Maier et al.6 present results from finite-difference time-
domain simulations for chains of 25 nm radius Au spheres
spaced by 75 nm, which they claim yield dispersion relations
correlating well with the point-dipole model.

In this paper we extend the results discussed above to
include the full, time-dependent fields of the oscillating di-
poles. We retain the point dipole approximation, which is
certainly adequate for frequencies near the dipolar resonance
and so long as the sphere separation is more than about three
times the radius. However, the interactions between dipoles
now contain terms varying as 1/r and 1/r2, in addition to the
quasistatic 1/r3 term. We also include in the dipole polariz-
ability the effects of radiation damping. These refinements to
the theory lead to major changes in the nature of the modes.
Modes near the Brillouin zone center, which are at the high-
est frequency for transverse propagation and the lowest for
longitudinal, are now highly damped via radiation damping,
even in the absence of loss in the metal. The modes for
transverse propagation are drastically modified when their
dispersion relation crosses the light line. This is the phase
matching condition between the free photon and the dipolar
chain mode, and it is not surprising that it leads to a strong
effect. In Sec. II we consider an infinite chain and recover
previous quasistatic results.3,4,6 The infinite chain can be
solved exactly in the quasistatic case, but the inclusion of
retardation requires a difficult analytic continuation into the
lower half frequency plane. We have found it simpler to
avoid this difficulty by considering a finite chain, which we
do in Sec. III. A chain ofN particles will haveN discrete
normal modes. In the limit of largeN, the normal mode
frequencies form a continuous distribution, corresponding to
the dispersion relationv=vskd. We show how to find these
modes and to map them onto the dispersion curve for an
infinite chain. In Sec. IV we consider propagation of a driven
excitation along the chain. We give some numerical results
for various potential experiments and previous model calcu-
lations and finally provide a brief summary.
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II. INFINITE CHAIN

We begin with the standard expression for the electric
field generated by a point dipolep oscillating with frequency
vs~e−ivtd7

Esr ,td = FS1 −
ivr

c
D3r̂ ·pr̂ − p

r3 +
v2

c2

p − r̂ ·pr̂

r
Geivr/c.

s1d

Here r is the position vector pointing from the dipole to the
field point. We should emphasize that this expression con-
tains the full effects of retardation. For a linear chain of point
dipoles spaced a distanced, in the absence of an applied
field, the field at each dipole is the sum of the fields due to all
the other dipoles. The induced moment on thenth dipole is
the polarizabilityasvd times this field,

pn = asvd o
mÞn

SS1 −
ivun − mud

c
D3r̂ ·pmr̂ − pm

un − mu3d3

+
v2

c2

pm − r̂ ·pmr̂

un − mud Deivun−mud/c. s2d

Here we should keep in mind thatr̂ points along the chain.
We seek normal modes of the form of traveling wavespn
~einkd. We then get a pair of dispersion relations, one for the
transverse modesspn' r̂ d and one for the longitudinal modes
spni r̂ d,

1 + 2
asvd

d3 o
j=1

` SS1 − i
vd

c
jD 1

j3
−

v2d2

c2

1

j
Dcosjkdeivdj/c

= 0, sTransversed s3ad

1 − 4
asvd

d3 o
j=1

` SS1 − i
vd

c
jD 1

j3
Dcosjkdeivdj/c

= 0 . sLongitudinald s3bd

For k real these equations are to be solved for the complex
normal mode frequenciesv=vskd. Since the normal modes
must be decaying in time, it is clear that these normal mode
frequencies must have a negative imaginary part, Imsvdø0.
However, because of the factoreivdj/c, the sums converge
only for Imsvdù0. There is a prescription for dealing with
this difficulty: Evaluate the sums in the upper half-plane and
then analytically continue them into the lower half-plane. In
the following Section we show how to avoid this procedure
by considering a finite chain. This difficulty disappears in the
quasistatic approximation, which corresponds to forming the
limit c→`. Before discussing this limit, we must say some-
thing about the polarizability.

For a dielectric sphere in vacuum the quasistatic dipole
polarizability has the form

asvd =
«svd − 1

«svd + 2
a3, s4d

wherea is the sphere radius and«svd is the dielectric con-
stant. For a metal sphere we use the Drude model for the
dielectric response,8 that is

«svd = 1 −
vP

2

vsv + ind
, s5d

wherevp is the plasma frequency andn the electron scatter-
ing rate. To be consistent with our inclusion of retardation in
the dipole fields, we must include the effect of radiation re-
action in the polarizability. This effect can be introduced
through the usual prescription:9

1

a
→ 1

a
− i

2v3

3c3 . s6d

Although this form can lead to acausal behavior in the re-
sponse, it is satisfactory so long as the added term is small.10

With this form of the polarizability the dispersion rela-
tions (3) can be written in the form

v2

v0
2S1 + i

2vv0
2

3c3 a3D + i
nv

v0
2

= 1 + 2
a3

d3o
j=1

` S1 − i
vdj

c
−

v2d2j2

c2 Dcosjkd

j3
eivdj/c,

s7ad

v2

v0
2S1 + i

2vv0
2

3c3 a3D + i
nv

v0
2

= 1 + 4
a3

d3o
j=1

` S1 − i
vdj

c
Dcosjkd

j3
eivdj/c, s7bd

wherev0=vp/ Î3 is the plasma resonance frequency for the
sphere. Here, as in Eqs.(3), the upper equation is for the
transverse case and the lower for the longitudinal. One can
see by inspection that for realkd these expressions are ana-
lytic in the upper halfv-plane. The difficulty, as noted
above, is with the evaluation in the lower half-plane, where
the sums diverge.

We return to this difficulty in the following Section, but
first we consider the quasistatic response for a lossless metal
sphere, which corresponds to settingn=0 andc=`. The po-
larizability (4) then takes on the simple form:

1

asvd
=

1

a3S1 −
v2

v0
2D . s8d

We can rewrite the dispersion relations(7) as

v2

v0
2 = 1 + 2

a3

d3o
j=1

`
cosjkd

j3
, sTransversed s9ad
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v2

v0
2 = 1 − 4

a3

d3o
j=1

`
cosjkd

j3
. sLongitudinald s9bd

The sums in these equations can be easily evaluated to yield
the dispersion relations plotted as solid curves in Fig. 1.
These results are the same as those obtained earlier by
Brongersmaet al.3 and Park and Stroud.4

III. FINITE CHAIN

We remarked above that the infinite sums in the disper-
sion relations(3) do not converge for Imsvd,0, where nor-
mal mode frequencies must lie. A simple way to avoid this
problem is to consider a finite chain. As we show explicitly
in the following, a chain of 20 spheres is adequate to obtain
a dispersion curve. For a chain ofN spheres, Eq.(2) becomes
a set ofN coupled equations in theN unknown moments of
the spheres. We write these equations in matrix form:

Mp = 0, s10d

where p is the N-rowed column vector of the dipole mo-
ments and the matrixM is defined by

M n,n =
a3

asvd
, n = 1,¯ ,N

M n,mÞn =
a3

d3S1 − i
vun − mud

c
−

v2un − mu2d2

c2 D
3

eivun−mud/c

un − mu3
, stransversed

M n,mÞn = − 2
a3

d3S1 − i
vun − mud

c
Deivun−mud/c

un − mu3
. slongitudinald

s11d

The normal modes correspond to the complex zeros of the
determinant ofM ,

dethM svdj = 0. s12d

For a chain ofN spheres there will beN normal modes. The
problem is analogous to that of a chain of coupled oscillators
in which each oscillator is coupled to all the others. We have
usedMATLAB ® 6 to solve this problem for a chain of 20
spheres. For the purpose of comparison with previous re-
sults, we choosea=25 nm andd=75 nm. Since we are in-
terested in the response near the dipolar resonance of an Ag
sphere, we fixvp andn to yield the optical constants of Ag at
the resonance frequency"v0=3.5 eV, which gives"vp
=6.18 eV and"n=0.7 eV.11 The results are shown in Tables
I and II, where we give the real and imaginary parts of the
dimensionless normal mode frequenciesv /v0. The electron
scattering loss is underestimated for these small particles,
since we use bulk optical properties. However, this loss
mechanism is still the primary cause of the mode damping.

The first column in the tables is the mode number, which
we define as one plus the number of sign changes in the
normal mode solution. To find this solution and, hence, the
mode number, we solve the driven problem,

Mp = v, s13d

with a simple choice for the column vectorv (for example,
all but the first row equal to zero). EvaluatingM at the reso-
nance frequency, the normal mode solution is

p = M −1v. s14d

Strictly speaking, ifv is exactly at the normal mode fre-
quency, this solution will be infinite, since detsM d=0, but in
practice because of the small numerical inaccuracy the solu-
tion will be large but finite. In Fig. 2 we show the real part of
this normal mode solution plotted versus sphere number for
three examples, all for the transverse case. Corresponding
plots for the longitudinal modes look identical. The top and
bottom examples correspond, respectively, to the maximum
(19) and minimum(0) number of sign changes. The middle
curve shows one sign change. Clearly these mode solutions
are suggestive of standing waves, and the mode number is
easily determined. In the second column of the Tables we
show a value ofkd for each mode. We make this assignment
with the formula

kd=
sN − 2dn + 1

NsN − 1d
p, s15d

where n is the mode number. Note that forn=1 this formula
gives a wavelengthl=2Nd, in agreement with the profile
shown in the bottom of Fig. 2. The point in introducing this
quantity is that we can view these calculated points as a
discrete approximation to the continuous dispersion curve in
the Brillouin zone for an infinite periodic array. Finally, in
the remaining columns of the Tables, we give the real and

FIG. 1. Dispersion relations for dipolar modes in the quasistatic
approximation for an infinite chain of 50 nm diam Ag spheres
spaced by 75 nm. A lossless Drude response is assumed with"vp

=6.18 eV.
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imaginary parts of the calculated dimensionless normal mode
frequencies, first with the inclusion of loss in the metal and
then for the purely radiative case.

From the Tables we see that in the absence of loss in the
metal, where all the loss is due to the radiated power, the
points nearer the zone center have much larger imaginary
parts than those near the zone boundary. This effect is much
reduced for a lossy metal, where the imaginary parts are
always large. The mode number dependence is a radiation
effect that will be discussed more fully below.

In Fig. 3 we plot results for the transverse case. The solid
curve is the same quasistatic result shown in Fig. 1, and the
solid round points are the quasistatic normal mode frequen-
cies obtained by the above method for a finite chain with 20
particles. The excellent agreement indicates that a finite
chain of 20 particles is sufficient to reproduce the dispersion
relation for an infinite chain. We expect this to be true even
with the inclusion of the full retarded fields. The square
points are a plot of the real values given in Table I. The
points are joined by dotted straight line segments to guide
the eye. The nearly vertical dashed line is the light linev
=ck. There is a dramatic deviation from the quasistatic result
when the light line intersects the dispersion curve. At this
point the dipolar modes are phase-matched to the free photon
propagating along the chain at the same frequency. Finally,
the triangular points correspond to an ideal metalsn=0d with
the same plasma frequency, showing the small effect on the
dispersion curve of loss in the metal. However, metallic loss

has a larger effect on the imaginary part of the mode fre-
quency, especially forkd nearp.

In Fig. 4 we show the same results for the longitudinal
case. The biggest difference here, compared with transverse
excitation, is that there is no sharp interaction with the light
line, since only transverse photons can propagate along the
chain. There are also significant differences compared with
the quasistatic approximation, e.g., the band width is nearly
doubled by the inclusion of the full retarded fields and the
group velocity near the band center is increased by more
than a factor of two.

The effects of radiation damping are shown in Fig. 5,
where we plot the imaginary part of the normal mode fre-
quency as a function ofkd for a lossless metal chain. For any
k-value such thatkmode,v /c, the array will generate strong
far-field radiation at an angleu to the chain axis where
cossud=kmodec/v. This condition onk occurs approximately
at mode number 9, indicated by the dashed vertical line in
Fig. 5 for the parameters we are using; it leads to a large
increase in −Imsv /v0d for all lower modes. The result ap-
plies to both longitudinal and transverse modes.

IV. PROPAGATION ALONG A FINITE CHAIN

In the previous Section we considered the problem of de-
termining the complex normal mode frequencies. In terms of
a dispersion relationv=vskd, we there found the complexv
for real k. In discussing propagation we must, so to speak,

TABLE I. Normal mode frequencies for transverse excitation in a chain of 20 Ag spheres of radius 25 nm spaced by 75 nm. The Ag
optical response is modeled as«svd=1−vp

2/ sv2+ ivnd with "vp=6.18 eV.sv0=vp/ Î3d.

Mode
# kd

"n=0.7 eV "n=0

Resv /v0d Imsv /v0d Resv /v0d Imsv /v0d

1 0.157 080 1.046 665 −0.168 112 1.064 838 −0.062 402

2 0.305 892 1.044 235 −0.170 080 1.062 334 −0.064 203

3 0.454 704 1.039 432 −0.173 101 1.057 937 −0.067 202

4 0.603 516 1.033 535 −0.178 439 1.051 393 −0.071 448

5 0.752 329 1.022 636 −0.183 155 1.041 861 −0.076 846

6 0.901 141 1.011 361 −0.203 115 1.028 288 −0.083 853

7 1.049 953 0.988 978 −0.199 264 1.006 917 −0.091 521

8 1.198 766 0.874 471 −0.134 102 0.947 637 −0.087 735

9 1.347 578 0.920 553 −0.095 956 0.946 439 −0.032 017

10 1.496 390 0.950 655 −0.085 079 0.960 098 −0.011 306

11 1.645 202 0.966 177 −0.087 880 0.970 231 −0.003 948

12 1.794 015 0.972 249 −0.091 193 0.975 668 −0.001 455

13 1.942 827 0.974 841 −0.093 493 0.978 102 −0.000 002

14 2.091 639 0.975 637 −0.095 173 0.979 818 −0.000 048

15 2.240 452 0.975 533 −0.096 463 0.979 846 −0.000 003

16 2.389 264 0.974 997 −0.097 491 0.979 184 −0.000 041

17 2.538 076 0.974 322 −0.098 302 0.978 911 −0.000 077

18 2.686 888 0.973 670 −0.098 912 0.978 102 −0.000 002

19 2.835 701 0.973 143 −0.099 339 0.977 560 −0.000 044

20 2.984 513 0.972 804 −0.099 592 0.977 291 −0.000 002
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invert this problem and study propagation in a chain of
spheres driven with a real frequency. Consider, therefore, a
chain in which the first sphere is driven with an applied
optical field at frequencyv=v0. The column-vector of the
dipole moments will then be given by Eq.(14), but now with
the matrixM evaluated at the real driving frequencyv0 and
with v the column vector in which all but the first row is
zero. The result for a chain of 50 Ag spheres is shown in Fig.
6, in which the square of the absolute value of the dipole
moment is plotted versus distance both for longitudinal and
transverse excitations. Note that after an initial transient in
which the decay is rapid and nonexponential, these log plots
become approximately straight lines(with endpoint effects
for the last few spheres in the chain). We fit a straight line to
the pointsn=35–45 and extract the decay lengthsa−1 shown
in the figure. Although the choice of points to use for the fit
is somewhat arbitrary, this choice gives an excellent fit and it
allows us to compare with the decay lengths obtained by
other methods. To get the phase of the wave, we fit the cal-
culated complex dipole moment to the form

psxd = A expSikd
x

d
−

1

2
axD . s16d

The results are shown in Fig. 7, where the real part of the
dipole moment is plotted versus distance, again for longitu-
dinal and transverse excitation. The fitted curves are shown
as solid lines, the points are the solution of Eq.(14).

TABLE II. Normal mode frequencies for longitudinal excitation in a chain of 20 Ag spheres of radius 25 nm spaced by 75 nm. The Ag
optical response is modeled as«svd=1−vp

2/ sv2+ ivnd with "vp=6.18 eV.sv0=vp/ Î3d.

Mode
# kd

"n=0.7 eV "n=0

Resv /v0d Imsv /v0d Resv /v0d Imsv /v0d

1 0.157 080 0.842 932 −0.186 396 0.870 986 −0.092 440

2 0.305 892 0.846 043 −0.181 791 0.873 955 −0.088 063

3 0.454 704 0.851 659 −0.173 807 0.879 052 −0.080 872

4 0.603 516 0.859 481 −0.163 724 0.886 494 −0.071 168

5 0.752 329 0.870 402 −0.149 855 0.896 579 −0.059 159

6 0.901 141 0.884 943 −0.135 540 0.909 791 −0.045 555

7 1.049 953 0.902 368 −0.117 555 0.926 571 −0.030 938

8 1.198 766 0.929 751 −0.099 795 0.947 985 −0.017 313

9 1.347 578 0.962 603 −0.091 531 0.972 423 −0.007 940

10 1.496 390 0.992 058 −0.092 911 0.996 191 −0.003 509

11 1.645 202 1.013 288 −0.097 271 1.016 871 −0.002 008

12 1.794 015 1.030 228 −0.099 193 1.034 535 −0.001 324

13 1.942 827 1.045 850 −0.100 711 1.049 957 −0.000 885

14 2.091 639 1.058 989 −0.102 093 1.063 351 −0.000 614

15 2.240 452 1.070 506 −0.102 999 1.074 867 −0.000 409

16 2.389 264 1.080 129 −0.103 886 1.084 567 −0.000 269

17 2.538 076 1.088 007 −0.104 473 1.092 481 −0.000 162

18 2.686 888 1.094 132 −0.104 980 1.098 630 −0.000 089

19 2.835 701 1.098 497 −0.105 302 1.103 018 −0.000 038

20 2.984 513 1.101 121 −0.105 505 1.105 651 −0.000 009

FIG. 2. (Color online) Mode profiles for transverse excitation in
a chain of 20 50 nm diameter Ag spheres spaced by 75 nm. The
horizontal line for each mode corresponds to Realspd=0.
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Quintenet al.2 considered this same problem of propaga-
tion down a chain of 50 Ag spheres. They included the effect
of higher multipoles, but restricted the calculation to the near
field, which we interpret to mean the quasistatic approxima-
tion. Thus their calculation should be based on the same
model as that of Park and Stroud.4 But as shown by these
latter authors, the effects of higher multipoles are negligible
for the parameters chosensa/d= 1

3
d. Therefore, we conclude

that the differences between our results and those of Quinten
et al. are entirely due to our inclusion of the effects of retar-
dation. The most important difference is that Quintenet al.
conclude that no significant propagation occurs for trans-
verse excitation. On the contrary, as shown in Fig. 6, we find
that although for transverse excitation the initial decay is
more rapid, at long distances the decay is even slower than
that for longitudinal excitation. Surprisingly, the 1/e decay
length they find for longitudinal excitationsa−1=900 nmd is
comparable to ourss,700 nmd.

Our quasistatic solution to the same chain of 50 Ag
spheres shows a much faster initial decay. We also find that
the initial decay rate is lowest when the chain is excited near
the band centersv=v0d, but the rate far down the chain is
rather insensitive to the driving frequency. However, this re-
sult depends on our use of the Drude model for the metal
response, which is clearly not valid far from the band center.

Maier et al.6 recently simulated propagation in a chain of
50 nm diam Au spheres spaced by 75 nm using a finite-

difference time-domain method that solves the full set of
Maxwell’s equations. They chose Drude parameters("vp
=4.47 eV,"v=0.164 eV) to model the optical response of
Au in the vicinity of the plasma resonance. However, these
parameters do not fit the Au optical data of Johnson and
Christy,11 nor are they consistent with the simulated results
shown in their Fig. 2.12 These authors state that their simu-
lated data “are in excellent agreement with the predictions
from the point-dipole model.” Since the model they refer to
is quasistatic, this statement is difficult to reconcile with the
fact that we find rather large differences between the full

FIG. 3. (Color online) Dispersion curves for transverse excita-
tion as described in the text. Solid line is the same curve in Fig. 1
for an infinite chain. Points are for a finite 20-sphere chain: Black
circles (P)for the quasistatic approximation, green squares(j) for
the full retarded solution with a lossy metal, red triangles(.) for
the full solution and an ideal metal. Dashed line is the light line,
v=ck.

FIG. 4. (Color online) Same plots as in Fig. 3 for longitudinal
excitation. Note the increased bandwidth associated with the full
solution.

FIG. 5. (Color online) Imaginary part of the normal mode fre-
quencies from the last columns in Tables I(red triangles) and II
(black circles) for a 20-sphere chain of lossless metal particles. The
dashed vertical line corresponds approximately tokmode=v /c.
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solution to Maxwell’s equations and the quasistatic approxi-
mation.

A drawback of using spherical noble-metal particles is
that thed-band absorption at the plasma resonance frequency
significantly increases the loss in the metal above its free-
electron value. This is especially true for Au and Cu and to a
lesser extent for Ag. The solution to this problem, as dis-
cussed extensively in the literature on surface-enhanced Ra-
man scattering,13,14is to use nonspherical particles. All of the
methods developed above for spherical particle chains can be
easily adapted to spheroidal particles with a single change.
The expression forasvd /a3 in Eq. (11) for the diagonal ele-
ments of the matrixM must be replaced by the general for-
mula for a spheroid:

asvd
a3 → 1

3

«svd − 1

1 + f«svd − 1gfL − iv3V/6pc3g
, s17d

whereV is the volume of the spheroid andL is the depolar-
ization factor.1 For a sphere,L= 1

3; for a prolate spheroid in

the long direction or an oblate spheroid in the wide direction,
L will be less than1

3, and the plasma resonance will be
shifted to lower frequencies. This frequency shift lowers
both thed-band absorption loss and the radiative damping
loss.

In summary, we have found the dispersion relations for
dipolar modes propagating in a chain of metal nanoparticles.
We use the point-dipole model for the fields, which means
the results are valid when the sphere spacing is greater than
or equal to about three times the sphere radius, and we solve
the full Maxwell equations including the retarded fields. The
effects of these retarded fields are quite striking compared
with results from previous quasistatic treatments. In a loss-
less metal radiation damping affects all modes for which
kmode,v /c. Transverse modes are strongly perturbed when
kmode>v /c. Longitudinal modes develop a larger band-
width, and their group velocity is more than twice its value
in the quasistatic case.
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