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In this paper we demonstrate that soliton solutions, whose existence is well known in one-dimensional(1D)
model anharmonic systems, can also exist in more complex systems such as carbon nanotubes(CNT). We
investigate armchair and zigzag nanotubes and show that both can be simplified to anharmonic 1D lattice
models with reduced internal degrees of freedom. Because of the differences in chirality, the armchair and
zigzag nanotubes are represented, respectively, by homogeneous(one site per unit cell) and dimerized chains.
Starting with the Brenner potential we expand the tube energy into Taylor series and construct effective
interaction potentials for model lattices of armchair and zigzag CNTs. We then construct a continuous approxi-
mation for the model lattices and derive the Korteweg–de Vries(KdV) equation by applying the reductive
perturbation method. The stability of KdV solitons are checked by molecular dynamics simulations of model
lattices with parameters specific for CNTs. Numerical simulations attest to the stability of even narrow solitons
in most CNTs. We show that solitons can be generated by shock compression at one end of the model chains.
The formalism developed can also be applied to many quasi-1D objects such as polymers, nanowires, and
others.

DOI: 10.1103/PhysRevB.70.125409 PACS number(s): 65.40.Gr, 71.15.Pd, 71.20.Be, 75.40.Mg

I. INTRODUCTION

Carbon nanotubes(CNTs), discovered over a decade ago,1

consist of graphene sheets rolled up into cylindrical shapes
and possess a great aspect ratio. In many cases(e.g., electri-
cal as well as heat conduction) their behavior closely re-
sembles those of quasi-one-dimensional(Q1D) objects. Con-
siderable efforts have been expended in elucidating the
physical principles underlying the intriguing properties of
CNTs,2,3 and it has become clear that CNTs have many
unique properties not shared by the bulk carbon materials.

One of these properties is heat conductance. Recent ex-
periments have detected high values of thermal conductivity
skd for both an individual CNT4 and CNTs in suspension.5

Calculations have also demonstrated a high value ofk,6 but
no firm theoretical background for high values of heat con-
duction has yet been laid out. Some authors have pointed to
the unusually large phonon free path as a probable cause.6

Alternatively, theoretical evidence suggests that model one-
dimensional lattices describable with both harmonic and
nonlinear potentials have anomalous heat conduction with no
thermodynamical limit:k~Na, where N is the number of
particles in the chain, anda=0.25−0.44.7 The validity of
these conclusions in the case of Q1D objects such as CNTs is
still questionable. The possibility also exists that the high
values ofk may be caused by the presence of solitons. Soli-
tons are known to be the eigenstates of some exactly solv-
able equations(Korteweg–de Vries, sine-Gordon, and a few
others8) which are continuum approximations to some true
1D models, e.g., Fermi-Pasta-Ulam(FPU) chains9 and Toda

lattice.10 Solitons as solitary excitations can travel large dis-
tances without suffering dissipation and can release their en-
ergy at defect sites in the lattice where favorable conditions
for their propagation are absent. Solitons can be created by
supplying some energy(using any mechanism) at one end of
the chain, and once formed, they can propagate over large
distances. It should be noted that there are several works
where solitons are associated with CNTs. The first is devoted
to dynamical solitons in a plane isotropic hexagonal lattice,
treated using the Lennard-Jones interatomic potential.11 Here
the soliton represents a plane compression excitation moving
along a certain crystallographic direction and having only
one degree of freedom. Other works12–14deal with topologi-
cal solitons in CNTs, analogous to those proposed for
polyacetylenes.15 In the present work we consider a different
type of excitations in CNTs, dynamical excitations with three
degrees of freedom resulting from the carbon–carbon nonlin-
ear interactions. The present work aims to answer the ques-
tion of whether solitons can exist in Q1D objects such as
CNTs, and if they do how they can be generated experimen-
tally.

In the present work we focus our efforts on obtaining
solitonlike excitations in CNTs. In order to do this we treat
CNTs as Q1D objects and reduce the problem to that of a 1D
lattice with one, two, and three internal degrees of freedom
per unit cell(denoted by 1DF, 2DF, and 3DF, respectively, to
distinguish them from true one-, two-, and three-dimensional
systems) and make use of parameters taken from the expan-
sion of realistic classical potentials for CNTs. We then make
continuum approximation for constructed models and derive
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the Korteweg–de Vries(KdV) equation by applying the re-
ductive perturbation method.16,17In particular, we investigate
two types of achiral CNTs: armchair and zigzag, which can
be modeled by different lattices due to their different chirali-
ties.

The paper is organized as follows: We begin by expand-
ing Brenner’s potential18 in a series up to the third order, and
in a symmetry-conserving assumption reduce the problem to
a 3DF lattice with longitudinal, radial, and tangential degrees
of freedom. In Sec. II we construct Q1D models for achiral
CNTs and demonstrate that armchair and zigzag CNTs can
be reduced to two different models; armchair CNTs to a ho-
mogeneous 3DF lattice, and zigzag CNTs to an inhomoge-
neous 2DF lattice. The two different model lattices for arm-
chair and zigzag CNTs are considered separately. A
homogeneous 3DF chain is considered in Sec. III, and an
inhomogeneous 2DF chain is considered in Sec. IV. In both
cases we first perform the analytical derivation of the KdV
equation. This is then followed by a check of the stability of
the derived soliton solution by numerical simulation of
model lattices with CNT parameters corresponding to differ-
ent diameters. Problems of soliton generation are discussed
in Sec. V. Here we present the results of numerical simula-
tions, where sets of solitons of different velocities and am-
plitudes are produced by a shock compression at one end of
the model lattices for armchair and zigzag CNTs. The final
section (Sec. VI) contains concluding remarks and discus-
sions. There we also speculate on the possible role of soli-
tons in different CNT processes.

II. LATTICE MODELS OF ACHIRAL CNTS

In this section we first demonstrate how model lattice sys-
tems can be used to represent achiral carbon nanotubes. In an
earlier work19 we had proposed a quasi-one-dimensional
(Q1D) model for armchair CNTs. Here we briefly recall
these results and construct a similar model for zigzag CNTs.

An armchair CNTsn,nd is shown in Fig. 1(a). We use
cylindrical coordinates for convenience. We take the princi-
pal symmetry axis(nanotube axis) to be theZ axis, and allow
longitudinal s,d, radial srd, and angularswd degrees of free-
dom. We take thesn,nd CNT to consist of a series of rings
with each ring consisting of 2n atoms having the sameZ
coordinate.

Atoms belonging to theith ring are shown with light
circles in Fig. 1(a), and atoms in the neighboringi −1 andi
+1 rings are shown with dark circles. The symmetry-
preserving assumption involves assigning equal longitudinal
s,d, radial srd, and tangentialss=RtubeDwd displacements

from their equilibrium positions to all atoms in every ring
subject to an excitation. This allows us to simplify the prob-
lem by reducing it to a lattice with three degrees of freedom
per unit cell (3DF lattice), where each unit consists of 2n
atoms in the ring. This assumption implies that all atoms of
the ith ring have equal,i, ri, andsi displacements, and no
displacements of any other type inside the ring are permitted
for the atoms in the ring. In other words, every ring whether
moving along the nanotube axis or/and radially expanding or
contracting does it as a whole. In Fig. 2(a) we illustrate the
longitudinal, radial, and tangential displacements of atoms in
two adjacent rings of armchair zigzag CNT. Here the left
panel presents a portion of an armchair CNT consisting of
two rings with atoms belonging to the first ring shown with
light circles and atoms belonging to the next ring with dark
circles. The central panel of Fig. 2(a) illustrates longitudinal
displacements, the displacements of atoms in the first ring
(dark circles) shown in thick short arrows, and displacements
of atoms in the next ring(light circles) represented by long
arrows. The atomic displacements under uniform expansion-
contraction of every tube ring are shown in the right panel of
Fig. 2(a). Because of nonsymmetric interaction in the plane
perpendicular to the tube axis(in one direction every atom
interacts with one atom within its own ring, and in another
direction the atom interacts with two atoms of the adjacent
two rings) the mode involves both radial and tangential dis-
placements of every atom. Here, once again, both radial and
tangential displacements of the atoms in the first ring(dark
circles) are represented by thick short arrows, while the dis-
placements of atoms in the next ring(light circles) are rep-
resented by long thin arrows. In other words, we wish to
consider the simplest type of the dynamical mode, which can
be generated, for example, by uniform compression of the

FIG. 1. (a) Armchair s6,6d and (b) zigzag
s10,0d nanotubes.

FIG. 2. Longitudinal, radial, and tangential displacements of
atoms in two adjacent rings in armchair(a) and zigzag CNTs(b).
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tube in the longitudinal direction, or by a uniform radial
expansion.

Using the above assumptions one can start with a realistic
potential for carbon such as the Brenner potential18 and per-
form expansion in a series up to the third order term for the
interaction energy between two nearest rings for ansn,nd
armchair CNT of arbitraryn.19 The expansion for the inter-
action energy betweenith andsi +1dth rings is given by

Ei,i+1 =
1

2
c1s,i+1 − ,id2 −

1

3
c2s,i+1 − ,id3 + c3s,i+1 − ,id

3sri+1 + rid +
1

2
c4ri

2 + c5s,i+1 − ,idssi+1 + sid

+
1

2
c6si

2 − c7risi + Os,,r,sd, s1d

where all nearest-neighbor interaction harmonic terms, one
anharmonic term of the longitudinal variable[second term in
Eq. (1)], and the cross terms are retained. The subscripti
denotes the ring number, andOs, ,r ,sd denotes the dis-
carded terms in the expansion.Os, ,r ,sd includes not only
the higher-order terms of the third order and higher[except
s,i+1−,id3], but also several second-order terms. That is the
terms describing next-nearest-neighbor interaction are also
omitted. These terms have the formsxi+j ±xid2, wherex is ,,
r, or s, andj .1. The second type of discarded second-order
terms are those containingsri+1−rid and/or ssi+1−sid ex-
pressions, since the expansion[Eq. (1)] includes second-
order terms of sri+1+rid and ssi+1+sid expressions and
sri+1−rid! sri+1+rid and ssi+1−sid! ssi+1+sid. Thus the
expansion given by Eq.(1) now has a simple form which
includes the longitudinal anharmonicity and allows the deri-
vation of an analytical soliton solution. The validity of CNT
description using the model potential in the form of Eq.(1)
can be checked by numerical calculations only, where soliton
evolution is modeled in real CNTs described through the
Brenner potential. It would be a subject of future work and
the aim of the present work is the derivation of analytical
soliton and numerical examination of its stability in model
lattices.

Note that the exact form of the initial potential is not
essential in the construction of the model potential for CNTs;

all potentials, empirical as well as those constructed from
first principles, have the form of Eq.(1) with slightly differ-
ent values of expansion coefficients, as this expansion is per-
formed near the equilibrium.

The numerical values of coefficients in Eq.(1) are given
in Table I for armchair CNTs of different diameters. Note
that the expression given by Eq.(1) is the lowest-order ex-
pansion containing the minimum number of terms necessary
for further derivations of desired solutions. As a result, the
armchair CNT is represented by an anharmonic lattice de-
scribed by the expansion in Eq.(1), where every unit has
three internal degrees of freedom(,, r, s) and, therefore, can
be considered as a 3DF homogeneous lattice.

We next turn our attention to zigzagsn,0d CNTs. Once
again, if the tube axis is aligned along theZ axis, then the
tube can be thought of as consisting of a set of rings, with
each ring formed byn atoms having the sameZ value [see
Fig. 1(b)]. Let us consider a two-ring portion of a zigzag
CNT [see the left panel of Fig. 2(b)]. By taking thesv sym-
metry planes intersecting along the nanotube axis and pass-
ing through opposite atoms, it is easy to see that the uniform
contraction/expansion of every tube ring does not contribute
to the tangential displacement of atoms.

Thus the simplest dynamical mode in zigzag CNTs in-
volve a displacement where all atoms belonging to the first
ring have the same longitudinal[,, see the central panel of
Fig. 2(b)] and radial[r, see the right panel of Fig. 2(b)]
displacements. Here again, the displacements of atoms
marked by dark circles are shown by short thick arrows and
the displacements of atoms marked by light circles are
shown by long thin arrows.

Note thatsn,0d CNTs pose a severe challenge when at-
tempting any analytical treatment as bonds connecting adja-
cent layers are not equivalent, and need to be divided into
two subsets, denoted by “even” and “odd.” Let the rings be
numbered as shown in Fig. 1(b), i.e., rings formed by light
circles are labeled even and rings formed by dark circles are
labeled odd. It is easy to see that rings 2i and 2i +1 are joined
by n bonds, whereas the number of bonds between the 2i
−1th and 2ith ring is 2n. Thus the interaction of every ring
with its two nearest neighbors is asymmetrical, and the zig-
zag nanotube should be considered as a dimerized lattice. We
call this lattice an inhomogeneous one. As in the case of the
armchair nanotube, the simplifying assumptions leading to

TABLE I. Numerical coefficients in the Taylor expansion of the Brenner potential for armchair CNTs
sn,nd.

Coefficient (5,5) (10,10) (20,20) (50,50) (100,100) (500,500)

c1, eV/Å2 30 30 30 30 30 30

c2, eV/Å3 75 75 75 75 75 75

c3, eV/Å2 1.4 0.7 0.4 0.1 0.04 0.001

c4, eV/Å2 4.8 1.2 0.3 0.03 0.01 0.01

c5, eV/Å2 20 20 20 20 20 20

c6, eV/Å2 125 125 125 125 125 125

c7, eV/Å2 12 6 3 1.2 0.5 0.2

Tube radius, Å 3.5 6.9 13.9 34.6 69.2 350.0
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the representation of a ring by a single lattice unit are still
valid here.

Let us now consider a displacement mode where all atoms
in one ring have the same longitudinals,d and radialsrd
displacements without any tangential displacements. Then,
the expansion of any realistic carbon potential for zigzag
CNT will have the following form:

Ei =
1

2
q̃1s,i − ,i−1d2 +

1

2
q1s,i+1 − ,id2 −

1

3
q̃2s,i − ,i−1d3

−
1

3
q2s,i+1 − ,id3 + q̃3s,i − ,i−1dsri + ri−1d

+ q3s,i+1 − ,idsri+1 + rid +
1

2
q4ri

2 + Os,,rd, s2d

whereEi is the interaction energy between theith ring and its
two neighboring rings, and expansion coefficients with and
without the symbol “tilde” refer to inter-ring interaction
through 2n and n bonds (odd-even and even-odd interac-
tions), respectively, andOs, ,rd denotes all omitted terms as
above. Again, only the essential terms are retained in the
expansion in Eq.(2), and we use the assumption that zigzag
CNTs can be modeled by a 2DF anharmonic inhomogeneous
lattice interacting through the interatomic potential given by
Eq. (2) with numerical values of coefficients given in Table
II for zigzag tubes of different diameters. Note that equilib-
rium inter-ring distance in zigzag CNTs is essentially inde-

pendent of the tube diameter andl̃ o/ lo<2, wherelo and l̃ o
are equilibrium distances between rings 2i −1, 2i and be-
tween rings 2i, 2i −1, respectively[see Fig. 1(b)].

In the next two sections we consider different models for
armchair and zigzag CNTs in detail and derive the KdV
equation for both models. The stability of KdV solitons are
checked in numerical simulations.

III. MODELING ARMCHAIR CNTS

In this section we consider the 3DF model of armchair
CNTs. First, we perform analytical treatment of the model
lattice. Here we derive the KdV equation through construc-
tion of the continuum approximation of the model and apply
the reductive perturbation method.16,17 We then check the

stability and the evolution of the derived solution by numeri-
cal simulations of the model lattice with numerical coeffi-
cients of the interaction potential[Eq. (1)] corresponding to
armchair CNTs of different diameters(see Table I).

A. Analytical results

Let us consider a chain where every unit has three degrees
of freedom,, r, ands and the interunit interaction potential
is given by Eq.(1).

The equations of motion for theith particle are

ṅi = c1fs,i+1 − ,id − s,i − ,i−1dg − c2fs,i+1 − ,id2 − s,i − ,i−1d2g

+ c3fsri+1 + rid − sri + ri−1dg − c5fssi+1 + sid

− ssi + si−1dg,

ṁi = − c3fs,i+1 − ,id + s,i − ,i−1dg − c4ri + c7si ,

v̇i = c5fs,i+1 − ,id + s,i − ,i−1dg + c7ri − c6si ,

,̇i = ni , ṙi = mi , ṡi = vi . s3d

Hereafter, we setm=1 and take spatial variables in units of
the equilibrium bond length,0=1, making them dimension-
less.

Next we construct a continuum approximation for the sys-
tem [Eq. (3)] assuming small displacements from equilib-
rium positions and a long wavelength limit. Under these as-
sumptions the displacements in Eq.(3) can be expanded in a
series up to fourth order terms as follows:

,i±1 = ,i ± ,i8 +
1

2
,i9 ±

1

6
,i- +

1

24
,i

IV,

ri±1 = ri ± ri8 +
1

2
ri9 ±

1

6
ri- +

1

24
ri

IV,

si±1 = si ± si8 +
1

2
si9 ±

1

6
si- +

1

24
si

IV. s4d

Spatial derivatives are denoted by primes hereafter. Substi-
tuting this expansion in Eq.(3) and introducing the new vari-
able j;,8, one gets the continuum approximation to the
discrete system[Eq. (3)]:

TABLE II. Numerical coefficients in the Taylor expansion of the Brenner potential for zigzag CNTs
sn,0d.

Coefficient (10,0) (20,0) (50,0) (100,0) (250,0) (1000,0)

q̃1, eV/Å2 40 40 40 40 40 40

q1, eV/Å2 25 25 25 25 25 25

q̃2, eV/Å3 120 120 120 120 120 120

q2, eV/Å3 30 30 30 30 30 30

q̃3, eV/Å2 3.7 1.9 0.9 0.4 0.008 0

q3, eV/Å2 1.2 0.6 0.3 0.1 0.003 0

q4, eV/Å2 3.6 0.9 0.2 0 0 0

Tube radius, Å 4.0 8.0 20.0 40.0 100.0 400.0
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ṅ = c1j8 +
c1

12
j- − c2sj2d8 + 2c3r8 +

c3

3
r- − 2c5s8 −

c5

3
s-,

ṁ = − 2c3j −
c3

3
j9 − c4r + c7s,

v̇ = 2c5j +
c5

3
j9 + c7r − c6s,

j̇ = n8, ṙ = m, ṡ = v. s5d

We next introduce a small number,«, and expand all vari-
ables as

j = «j1 + «2j2 ¯ ,

r = «r1 + «2r2 ¯ ,

s = «s1 + «2s2 ¯ ,

n = «n1 + «2n2 ¯ ,

m = «m1 + «2m2 ¯ ,

v = «v1 + «2v2 ¯ . s6d

Simultaneously, we transform the space and time coordinates
as

z ; «1/2sz− votd, t ; «3/2t. s7d

If we substitute Eqs.(6) and(7) into Eq.(5) and set terms of
order«3/2 to be zero, then we get

r1sz,td = a1j1sz,td,

s1sz,td = a2j1sz,td,

n1sz,td = − voj1sz,td + fstd,

m1sz,td = a1j̇1sz,td,

v1sz,td = a2j̇1sz,td, s8d

where

vo
2 = c1 − 4

c3
2c6 + c4c5

2 + 2c3c5c7

c4c6 − c7
2 ,

a1 = 2
c5c7 − c3c6

c4c6 − c7
2 ,

a2 = 2
c4c5 − c3c7

c4c6 − c7
2 , s9d

and f is an arbitrary function oft. We put fstd=0 since we
seek a solution so thatj, r, ands tend to zero asuz u →0.

Equating terms of order«5/2 to zero and taking into ac-
count Eqs.(8) and (9) we get the KdV equation forj1

j̇1 − aj1j18 + bj1- = 0, s10d

where the dot and the prime mean partial derivatives with
respect to new timet and spacez coordinates, anda=c2 and
b=vo

2/12.
One-soliton solution of the KdV equation[Eq. (10)] has

the form

j1 = A sech2Bsz − vsoltd, s11d

where

B2 = vsol/s4bd, A = − 6bB2/a, s12d

and other variables are expressed according to Eq.(8).
We next check numerically the soliton stability in a dis-

crete parent 3DF chain with the potential given by Eq.(1)
with coefficientsc1−c7 appropriate for armchair CNTs. The
soliton instability in the 3DF discrete chain may be attributed
to two factors. The first is caused by the fact that the soliton
is a solution of the continuum equation which, in turn, is an
approximation to the discrete system under certain condi-
tions. The second has to do with the fact that the soliton is
only an approximate solution of the continuum equation.

B. Numerical simulations

Let us first consider the main features of the solution
given by Eq.(11). Here,A is soliton amplitude andB is a
parameter which is in inverse proportion to the soliton half-
width w. One can easily check[see Eqs.(12) and(7)], that in
the limit of infinite w the amplitudeA tends to zero and
soliton velocity approaches a certain value which is a sound
velocity. If w tends to zero, on the other hand, both ampli-
tude and the soliton velocity tend to infinity and we have a
narrow width high-amplitude excitation traveling at high
speed. Thus the lesser the soliton half-widthw, the higher its
velocity vsol as well as its amplitude,A.

One can also see that the smaller the tube diameter the
slower the soliton. As will be shown below, it is a result of
the presence of additional degrees of freedom(radial and
tangential) interaction with main longitudinal degree of free-
dom and taking soliton energy. Numerical simulations show
that the stronger the interaction between longitudinal, radial,
and tangential degrees of freedom the lower the soliton sta-
bility.

One can see that the soliton amplitude is always negative
sA,0d, which implies that only solitons of compression ex-
ist, and no stable nonlinear elongation excitations of the type
given by Eq.(11) can be obtained. This fact provides a useful
tool in molecular dynamics(MD) simulations to check the
existence of a real soliton in the lattice. If the excitation gets
destroyed as a result of reversal of the sign of its amplitude,
it is an evidence of a true soliton. This is an important test
since harmonic excitations with small amplitudes and large
half-widths are equally stable for both signs of relative
atomic displacements. The differences in evolution of soli-
tons with positive and negative amplitudes are due to the
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presence of the termaj1j18 in Eq. (10). In the case of a
smaller excitation amplitude the second term in the left-hand
side of Eq.(10) is much smaller than the first term and we
have a wave equation describing the system where wide ex-
citations with both signs of amplitude are highly stable.

The solution given by Eq.(11) is a supersonic soliton
svsol.vsound=vod with soliton half-widthw<1.76/B, where

vsoundis the sound velocity in the model 3DF lattice. Param-
etersA, B, andvsol are related by Eq.(12). That is, the choice
of any one parameter is sufficient to determine others. Thus
Eq. (11) describes a continuous set of one-parameter soli-
tons. We find it convenient to choosew as a natural primary
parameter.

We next present our results for numerical simulations of
soliton evolution in model lattices. The numerical values of
coefficientsc1−c7 are taken from the expansion in Eq.(1)
(see Table I). We first consider 1DF chain modeling armchair
CNTs with frozen radial and tangential modes. This case, in
fact, is nothing other than the widely studieda-FPU
problem.9

Generally, the wider the soliton, the greater its stability
and consequently, one needs to investigate only the lower
limit on soliton width required for stability. As a rule, the
intrinsic characteristics of a soliton are vividly on display
when the contribution of harmonic and nonlinear terms to the
energy in Eq.(1) are comparable. This ensures that its am-
plitude is sufficiently large enough to be stable. It should be
noted that solitons that are too narrow with a width compa-
rable to the lattice spacing are considerably less stable.

We use two examples to demonstrate that solitons are
stable in the 1DF discrete lattice. Our MD simulation results
are shown in Fig. 3. Here we model a 1DF lattice with pa-
rametersc1=30 andc2=75 (see Table I). These coefficients
do not depend on the tube diameter as they are determined
by the local environment only.

The first example shows the case of a soliton undergoing
a change in sign of its amplitudeA in Eq. (11). The soliton is
found to be very stable forA,0 [Fig. 3(a)] and unstable for
A.0 [Fig. 3(b)]. A value w<2.5 is chosen in both cases
with vsol=1.08vsound and A70.1, respectively. Small vibra-
tions following the soliton are due to the discreteness of the
lattice. These fluctuations become negligible as the soliton
width gets larger. As can clearly be seen in Fig. 3(a), the
soliton velocity exceeds the sound velocity represented by
vibrational fluctuations.

Another essential soliton feature worth noting is the ab-
sence of any interaction on collision and it suffers only a
phase shift.8 Figure 3(c) illustrates the collision of two soli-
tons when a narrower and faster soliton with larger ampli-
tude runs over the slower one. Their half-widths are 1.8 and
2.5; amplitudes 0.2 and 0.1; and velocities 1.15vsound and
1.08vsound, respectively.

Thus a simplified 1DF nonlinear discrete lattice contain-
ing parameters specific for CNTs can be a good model for
solitons starting with a half-width as small aswù1.

Let us now consider a 3DF lattice modeling an armchair
CNT with all allowed degrees of freedom with variablesj, r,
ands taken to be longitudinal, radial, and tangential degrees
of freedom, respectively. For performing simulations of soli-
ton evolution in the 3DF homogeneous lattice, we use pa-
rameters for armchairsn,nd nanotubes forn=10–100(see
Table I). We find the soliton to be rather stable in almost all
cases if its half-width is greater thanw=0.8. This is because
of the high rigidity of the tangential mode which is the same
for all tubes.

FIG. 3. MD simulations results for a 1DF homogeneous chain
showing:(a) single soliton evolution,(b) evolution of the excitation
after the reversal in the sign of amplitude and,(c) evolution of two
solitons of different half-widths and velocities. Inset panel in(a)
shows the front part of the fourth curve with a well-distinguished
single soliton.
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Figure 4 presents the soliton evolution in the 3DF lattices
with parameters appropriate for as10,10d tube(see Table I).
Initial soliton parameters are taken to bew=2.0, A=−0.1,
andvsol=1.12vsound. As seen in the figure, the soliton is very
stable. The twofold behavior of the soliton can be seen here.
While thej ands components clearly reveal soliton features,
radial componentr shows regular features. This difference in
the behavior can be attributed to the difference in the rigidity
of the degrees of freedom; the longitudinal and tangential
degrees of freedom are rigid and the radial degree of freedom
is soft (see Table I). The numerical simulations show that for

the whole range of parameters corresponding to armchair
CNTs of different diameters, the radial degree of freedom
behaves as a soft mode, i.e., only oscillations of ther mode
are observed. So, it serves as an energy reservoir, slowly
absorbing the soliton energy and transforming it to the vibra-
tions at a rate depending on the strength of interaction be-
tween all degrees of freedom.

We next turn our attention to zigzag CNTs which can be
modeled by a different lattice; i.e., by an inhomogeneous 2D
anharmonic lattice(see Sec. II).

IV. LATTICE MODELS OF ZIGZAG CNTS

Let us consider the expansion in Eq.(2) for zigzag CNTs,
which is really an inhomogeneous nonlinear lattice with two
internal degrees of freedom, longitudinal and radial. Simula-
tions using the Brenner potential show that there is no con-
tribution to the tangential degree of freedom when an exci-
tation is created in which all atoms of one ring have equal
radial and longitudinal displacements. We, therefore, exclude
the tangential degree of freedom from any further consider-
ation. Unlike thesn,nd CNTs, model lattices for the zigzag
CNTs are dimerized lattices with two particles per unit cell,
where particle masses are equal, but the force constants dif-
fer.

A. Analytical results

Let us consider the inhomogeneous 2DF chain with two
internal degrees of freedom, and r and the interaction en-
ergy described by Eq.(2). Because of the two types of bonds
in the chain we consider equations of motion for the even,2i,
r2i and odd,2i−1, r2i−1 coordinates, separately. The equations
of motion are

,̈2i = q1s,2i+1 − ,2id − q̃1s,2i − ,2i−1d − q2s,2i+1 − ,2id2

+ q̃2s,2i − ,2i−1d2 + q3sr2i+1 + r2id − q̃3sr2i + r2i−1d,

,̈2i−1 = q̃1s,2i − ,2i−1d − q1s,2i−1 − ,2i−2d − q̃2s,2i − ,2i−1d2

+ q2s,2i−1 − ,2i−2d2 + q̃3sr2i + r2i−1d − q3sr2i−1 + r2i−2d,

r̈2i = − q3s,2i+1 − ,2id − q̃3s,2i − ,2i−1d − q4r2i ,

r̈2i−1 = − q̃3s,2i − ,2i−1d − q3s,2i−1 − ,2i−2d − q4r2i−1.

s13d

We then introduce new variableshi =,2i, h̃i =,2i−1, %i =r2i,

%̃i =r2i−1, ni = ,̇2i, ñi = ,̇2i−1, mi = ṙ2i, and m̃i = ṙ2i−1, and as in
the previous case, we make a continuum approximation as-
suming small displacements from the equilibrium positions
and long wavelength limit. Under these assumptions the de-
viations in new variables are expanded as

FIG. 4. Soliton evolution in 3DF homogeneous lattices with
parameters for thes10,10d CNT: (a) j, (b) r, and (c) s soliton
components.
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hi±1 = hi ± hi8 +
1

2
hi9 ±

1

6
hi- +

1

24
hIV

i ,

h̃i±1 = h̃i ± h̃i8 +
1

2
h̃i9 ±

1

6
h̃i- +

1

24
h̃i

IV,

%i±1 = %i ± %i8 +
1

2
%i9 ±

1

6
%i- +

1

24
%i

IV,

%̃i±1 = %̃i ± %i8 +
1

2
%̃i9 ±

1

6
%̃i- +

1

24
%̃i

IV. s14d

Substituting this expansion in Eq.(13) and introducing two

new variablesj;h8 and j̃; h̃8, one gets the continuum ap-
proximation to the discrete system[Eq. (13)]:

ṅ = sq1j − q̃1j̃d +
1

2
sq1j8 + q̃1j̃8d +

1

6
sq1j9 − q̃1j̃9d

+
1

24
sq1j- + q̃1j̃-d − sq2j2 − q̃2j̃2d −

1

4
fq2sj8d2 + q̃2sj̃8d2g

− sq2jj8 − q̃2j̃j̃8d + 2sq3% − q̃3%̃d + sq3%8 + q̃3%̃8d

+
1

2
sq3%9 − q̃3%̃9d +

1

6
sq3%- + q̃3%-d,

ṅ̃ = sq̃1j̃ − q1jd +
1

2
sq̃1j̃8 + q1j8d +

1

6
sq̃1j̃9 − q1j9d

+
1

24
sq̃1j̃- + q1j-d − sq2j2 − q̃2j̃2d −

1

4
fq2sj8d2 + q̃2sj̃8d2g

− sq2jj8 − q̃2j̃j̃8d + 2sq3% − q̃3%̃d + sq3%8 + q̃3%̃8d

+
1

2
sq3%9 − q̃3%̃9d +

1

6
sq3%- + q̃3%-d,

ṁ = − sq3j + q̃3j̃d −
1

2
sq3j8 − q̃3j̃8d −

1

6
sq3j9 + q̃3j̃9d − q4%,

ṁ̃ = − sq̃3j̃ + q3jd −
1

2
sq̃3j̃8 − q3j8d −

1

6
sq̃3j̃9 + q3j9d − q4%̃,

j̃
˙

= ñ8, j̇ = n8,

ṙ = m,

ṙ̃ = m̃. s15d

Then, as in the previous case, we introduce a small number«
and expand all variables as

q1j = «u1 + «2u2 + ¯ ,

q̃1j̃ = «u1 − «2u2 + ¯ ,

% = «%1 + «2%2 + ¯ ,

%̃ = «%1 + «2%2 + ¯ ,

q1n = «v1 + «2v2 + ¯ ,

q̃1ñ = «v1 − «2v2 + ¯ ,

m = «m1 + «2m2 + ¯ ,

m̃ = «m1 + «2m2 + ¯ . s16d

Simultaneously, we suppose that

sq1q̃2 − q̃1q2d/ < «2sq1q̃2 + q̃1q2d,

q3q̃3/q4 < «2Îq1q̃1, s17d

which indicates the presence of weak anharmonicity in the
system and also the weak interaction betweenj and r de-
grees of freedom.

Thus, transforming the space and time coordinates as in
the previous case[Eq. (7)], taking into account Eqs.(16) and
(17), and equating terms of order«3/2 to be zero we get

%1sz,td = au1sz,td,

v1sz,td = − vou1sz,td + fstd, s18d

where

vo
2 =

2q1q̃1

q1 + q̃1

−
sq3 + q̃3d2sq̃1q3 + q1q̃3d2

sq1 + q̃1d2q4

,

a =
q̃1q3 + q1q̃3

q1q̃1q4

, s19d

and f is an arbitrary function oft. We put fstd=0 since we
find such a solution thatj andr tend to zero asuzu→0.

Equating terms of order«5/2 to zero and taking into ac-
count Eqs.(18) and (19) we get the KdV equation foru1

u̇1 − au1u18 + bu1- = 0, s20d

where the dot and the prime mean partial derivatives with
respect to new timet and spacez coordinates, correspond-
ingly, and a=sq1

2q̃2+ q̃1
2q2d /q1sq1+ q̃1dq̃1 and b=vo

2/12. The
one-soliton solution of Eq.(20) is then given by Eq.(11).

B. Numerical simulations

We next investigate the soliton evolution in 2DF inhomo-
geneous lattices by numerical methods. We have verified the
soliton stability in 2DF inhomogeneous lattices with param-
eters appropriate for zigzag CNTs of different diameters. We
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tested coefficientsq1−q4 andq̃1− q̃4 in Eq. (2) corresponding
to zigzagsn,0d tubes forn=10–200(see Table II) and find
that solitons are stable in all cases. An example is shown in
Fig. 5 for parametersq1−q4, q̃1− q̃4 corresponding to the

s10,0d tube. Here we present evolutionary pictures for allj̃,
j, %̃, and % components. Initial soliton parameters arew
=3.1, vsol=1.1vsound. One can see that soliton features are

well distinguished for all components, and the ratio ofj̃ and
j amplitudes is very close to the valueq1/ q̃1, which confirms

the assumption that in the first appriximationq1j< q̃1j̃ in Eq.
(16). The vibrations left behind by the solitons are due to the
discreteness of the lattice and approximations made in Eqs.
(16) and (17). One can, thus, conclude that solitons do exist
and are rather stable in 2DF inhomogeneous lattices which
are models for zigzag CNTs.

V. SOLITON GENERATION BY SHOCK COMPRESSION

The numerical simulations presented in this work have
demonstrated high soliton stability. In all numerical calcula-
tions solitons survive for a long time moving along the chain
consisting of thousands of atoms. We next turn our attention
to the physical reasons responsible for giving rise to soliton
generation under normal conditions. It should be noted that

the initial conditions used in our calculations were of a spe-
cial type [see Eq.(11)] requiring highly coordinated dis-
placements and velocities of particles. It is difficult, if not
impossible, to imagine external natural sources capable of
producing such highly coherent excitations. The question
arises, therefore, if solitons can exist in real systems describ-
able by the KdV equation, and in particular, in CNTs. Or, in
other words, whether naturally occurring initial conditions
can produce solitons. If the answer is “yes” then what is the
precise form of these initial conditions?

The answer to this question is contained in the spectral
theory(see, for example, Ref. 8). It predicts that in a system
described by the KdV equation a wide range of initial con-
ditions result in a series of solitons of different velocities and
amplitudes, and solitons are separated with time evolution
due to the differences in their velocities. The initial condi-
tions resulting in soliton generation should include a narrow
and strong compression of one end of the chain; and initial
shock compression is one of the ways to produce such initial
conditions.

Following these ideas we next simulate soliton generation
by shock compression. A shock compression has a rectangu-
lar profile and can be formed by the application of an exter-
nal force at one end of the chain. The value of the applied
force in the simulations is three units23 and its duration
250 MD steps(each MD step<0.35 fs). We investigated

FIG. 5. Soliton evolution in 2DF inhomogeneous lattice with parameters for as10,0d CNT: (a) j̃, (b) j, (c) %̃, and(d) % components of

soliton variables. The total number of units in the lattice modeled is 2000. So the number of variablesj̃ andj is 1000. This explains the
multiplication factor of 2 in the caption for thex axis.
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both model lattices for armchair and zigzag CNTs. The re-
sults are presented in Fig. 6. In both cases the external action
is the same.

In Fig. 6(a) we present the results for a 3DF homogeneous
chain. Here we only give the evolution of thej component,
sufficient for observing the solitons generation. Similarly, in
the case of a 2DF inhomogeneous chain we also present the
evolution of only thej component as shown in Fig. 6(b).

As seen in Fig. 6, the initial impulse, after traveling some
distance, splits into a set of well separated solitons with dif-
ferent amplitudes with the larger the amplitude, the greater
its speed. As a result solitons are aligned according to their
amplitudes. The soliton with the largest amplitude has the
largest velocity and the least half-width(right most soliton)
as predicted by the theory[Eq. (12)]. To verify the soliton
nature of the solitary waves formed, we allow them to reflect
from the free end of the chain[see fifth curve in Fig. 6(a)].
The reflection causes the set of compression excitations to
transform into elongation excitations which are not eigen-
states of the lattice and, therefore, easily destroyed. Note that
fixed boundary conditions, on the other hand, preserve the
compression nature of the excitations, and solitons survive

after reflection in this case. Oscillations are dissipated due to
the discreteness of the chain.

By observing similarities in the evolution ofj variables in
Figs. 4(a) and 6(a) it is easy to see that Fig. 6(a) can be
obtained by a superposition of evolution pictures of solitons
of different half-widths. Note that a close-up view of the
propagating soliton[inset in Fig. 4(a)] shows that we have
clearly identified a single solitary excitation. This means that
an initially formed excitation is close to being an eigenstate
of the system, confirming the validity of the analytical ap-
proximation made in Sec. IIIA. Numerical analysis shows
that the number of solitons generated depends on the ampli-
tude and duration of the shock compression. It is quite pos-
sible to choose initial conditions in such a way as to obtain a
single soliton.

Theory and numerical simulations thus show that solitons
are easily produced by initial shock compression applied at
one end of the chain. Therefore solitons should be observed
when similar external action is applied to the systems which
can be modeled by any anharmonic chain.

VI. CONCLUSIONS

Since it is not possible to obtain an exact soliton solution
for real CNTs, we avoided using the contemporary math-
ematical theory of solitons(see, e.g., Refs. 20 and 21) and
instead focused on developing a semiquantitative approach
assuming the existence of approximate solutions having the
form of KdV solitons. Particular attention was paid to veri-
fying the stability of obtained solutions using molecular dy-
namics simulations.

Our results can be summarized as follows: Armchair and
zigzag nanotubes have different chiralities and, hence, can be
modeled by distinct lattices; armchair by homogeneous 3DF
lattice and zigzag can be modeled by inhomogeneous 2DF
lattice. Our results show that soliton solutions can indeed
exist in both models with parameters appropriate for real
CNTs. The presence of solitons in these systems is caused by
the nonlinear longitudinal interaction between nanotube
rings. The required leading terms in the expansion of any
potential necessary for simulating solitons are harmonic and
cubic terms of the longitudinal variable.

The radial and tangential degrees of freedom seem to
have a negative effect on the solitons. Radial and tangential
degrees of freedoms are found to absorb some soliton energy,
turning it into thermal or irregular vibrations. The more rigid
the radial-tangential mode, the less the interaction between
longitudinal and radial-tangential modes and the more stable
the soliton. The soliton stability depends on the relations
between the parameters corresponding to longitudinal, radial,
and tangential modes. Obviously, the larger the diameter of
the modeled nanotube, the more stable is the soliton.

Nevertheless, numerical calculations show that solitons
are stable even in tubes of small diameters, i.e., solitons
travel through thousands of rings without suffering any sig-
nificant changes in form and amplitude. Thus numerical cal-
culations prove that the method applied is suitable for the
derivation of approximate solutions. We have also shown
that solitons can be easily generated by initial shock com-

FIG. 6. Soliton generation by initial shock compression applied
to the left end of the chain:(a) j component of 3DF chain and(b) j
component of 2DF homogeneous chain. Inset panels show front
part of fourth curve with distinguished set of solitons of the corre-
sponding picture.
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pression applied at one end of the chain. This leads to the
expectation that solitons can be observed experimentally
when similar external action is applied to the systems which
can be modeled by any anharmonic chain.

Our method and results obtained from it can be useful in
the treatment of solitary excitations in other Q1D systems
such as nanowires, linear polymers, and other similar struc-
tures. Currently very little is known about the possible role
of solitons in different physical processes in Q1D systems, in
part because of a lack of reliable experimental results. We
can, however, point to a few possibilities. For example,
soliton-assisted electron drag can be expected to be more
pronounced than a phonon-assisted phenomenon.22 The close
relation between electronic structure and geometry in CNTs
opens up the possibility of electromechanical effects and pi-
ezoelectricity. The role of solitons in heat conductance in
Q1D systems, including CNTs, is still unresolved and further
investigations are needed.

In the present work we were interested mainly in the non-
linear dynamical properties of achiral carbon nanotubes and
neglected the electronic properties. The reason being that the
geometric perturbations caused by the solitons are usually

too small to induce any significant changes in the electronic
structure. We do, however, plan to include the investigation
of the soliton-electron interaction in the future even though
we expect the soliton contribution to the electronic structure
to be negligible. The situation is very different in the case of
inelastic interaction of solitons with defects(cap, free ends,
etc.) in the nanotubes. These effects were described in our
previous paper where effects on the electronic structure were
considered.19
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