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Vibrationally inelastic electron transport through a molecular bridge that is connected to two leads is
investigated. The study is based on a generic model of vibrational excitation in resonant transmission of
electrons through a molecular junction. Employing methods from electron-molecule scattering theory, the
transmittance through the molecular bridge can be evaluated numerically exactly. The current through the
junction is obtained approximately using a Landauer-type formula. Considering different parameter regimes,
which include both the case of a molecular bridge that is weakly coupled to the leads, resulting in narrow
resonance structures, and the opposite case of a broad resonance caused by strong interaction with the leads, we
investigate the characteristic effects of coherent and dissipative vibrational motion on the electron transport.
Furthermore, the validity of widely used approximations such as the wideband approximation and the restric-
tion to elastic transport mechanisms is investigated in some detail.
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I. INTRODUCTION

The experimental demonstration of the possibility to con-
nect two electrodes by a single molecule and to measure a
current through such a molecular junction1–3 has stimulated
increasing theoretical efforts to elucidate the basic mecha-
nisms of electron transport in such systems(see, for ex-
ample, Refs. 4–8 and references therein). Most of the theo-
retical work in recent years has been devoted to the
determination of the electronic structure of molecular junc-
tions, employing a variety of methods that include extended
Hückel approaches,9–14 ab initio quantum-chemistry
methods,15–17 and density functional theory.18–23 The major-
ity of these studies have focused on elastic mechanisms for
electron transport, where the current through the molecular
junction can be obtained from the single-electron transmis-
sion probability using the Landauer formula.24–26These stud-
ies have demonstrated the importance of the electronic en-
ergy level structure of the molecular bridge: the tunneling of
electrons through occupied and unoccupied levels of the
molecule results in resonance structures in the transmission
probability which in turn may cause strongly nonlinear
current-voltage characteristics.

Much less is known about the effect of vibrationally in-
elastic processes, associated with the vibrational motion of
the molecular bridge, on the electron transport. In experi-
ments on electron transport through H2 molecules between
two platinum electrodes2 as well as C60 molecules connected
to gold electrodes,27 indications for an influence of the
center-of-mass motion of the respective molecule on the con-
ductivity have been found. Effects of the internal vibrational
motion of the molecular bridge on the current through the
junction, on the other hand, have(to our knowledge) not yet
been reported. Such effects have, however, been predicted in
a variety of theoretical studies. For example, the “static” in-
fluence of the internal vibrational modes has been studied by
averaging the transmittance over the probability distribution
of the vibrational degrees of freedom.28–30 The dynamical
impact of the vibrational degrees of freedom on the tunneling
current in molecular junctions has been investigated within,

e.g., nearest-neighbor tight-binding models.31–34 The effect
of the center-of-mass motion on the current has been ex-
plored for transversal vibrations35 and for longitudinal vibra-
tions (shuttling mechanism).36,37 These studies have demon-
strated that the vibrational motion of the molecular bridge
may result in additional(vibrational) resonance structures in
the transmission probability which can alter the current-
voltage characteristic significantly. Furthermore, the excita-
tion of the vibrational degrees of freedom of the molecule
provides a mechanism for heating of the molecular junction
and thus is a possible source of instability.38,39

The effect of vibrationally inelastic processes on electron
transport has also been investigated for a variety of closely
related problems including the tunneling of electrons through
long polymer chains(molecular wires),40,41electron transport
through quantum dots and heterostructures,42–46 as well as
the theoretical description of single-molecule vibrational
spectroscopy in scanning tunneling microscopy(STM)
experiments.47–54 The formally related process of electron
transport in the presence of a laser field has also been
studied.55,56

Another closely related process is vibrationally inelastic
electron-molecule scattering. Here, it is well established that
the resonant scattering of a low-energy electron from a mol-
ecule can result in strong vibrational excitation. This process
has been studied in great detail experimentally(for reviews,
see e.g. Refs. 57 and 58). Furthermore, efficient theoretical
methods have been developed to describe the interaction of
electronic and vibrational degrees of freedom in resonant
collision processes of low-energy electrons with molecules.59

As a result, inelastic electron scattering from diatomic mol-
ecules is now well understood from first principles.60 Due to
the close similarities between the process of vibrational ex-
citation induced by electron scattering from a molecule and
vibrationally inelastic electron transmission trough a molecu-
lar junction, it is to be expected that the methods and con-
cepts developed in the former field can advantageously be
used in the latter field. An example is the so-called wideband
approximation, where the energy dependence of the coupling
between the molecule and the leads is neglected. This ap-
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proximation, which has been adopted in most of the theoret-
ical studies of vibrationally inelastic electron transport in
molecular junctions(for exceptions, see Refs. 31, 41, 43, 44,
and 61) has been tested in detail for resonant electron-
molecule scattering.59 It has been shown that the wideband
approximation breaks down at energies close to thresholds
and often does not accurately describe vibrational excitation
processes.

In this paper we study vibrationally inelastic effects on
electron transport through a molecular junction beyond the
wideband approximation. To this end, we consider a generic
model for vibrational excitation in resonant electron trans-
mission processes trough a molecular junction. The model
includes the coupling of an electronic resonance state, lo-
cated at the molecular bridge, to the continuum of electronic
lead states as well as the coupling of the electronic degrees
of freedom to a vibrational reaction mode of the molecule.
Employing projection-operator techniques62 well-known
from electron-molecule scattering,59 the transmission prob-
ability through the molecular junction can be evaluated nu-
merically exactly within this model. The current through the
bridge is obtained employing a generalized Landauer
formula.63 Based on numerical results for models in different
parameter regimes, we study the importance of inelastic ef-
fects on molecular conductance as well as the validity of the
wideband approximation.

Furthermore, we investigate how vibrationally inelastic
effects on electron transport are altered if the vibrational mo-
tion has dissipative character. Dissipative vibrational pro-
cesses(such as, for example, vibrational dephasing and re-
laxation) are expected to be of importance in larger
molecules or in molecular bridges that are embedded in an
environment. To describe dissipative vibrational motion, we
consider the coupling of the reaction mode to a vibrational
bath. The various observables are then obtained employing
an expansion with respect to the number of quanta in the
final state of the bath. This technique, which was proposed
some years ago in the context of electron scattering from
large molecules,64 allows us to describe the effect of vibra-
tional relaxation in an approximate, yet controlled, way,
without invoking Markov-type approximations. Moreover, it
is shown that in the case of identical left and right leads and
zero bias voltage a unitarity condition can be exploited,
which allows a numerically exact evaluation of the transmis-
sion probability, including the effects of a dissipative vibra-
tional bath.

This paper is organized as follows: After an introduction
of the model and the observables of interest, Sec. II outlines
the theoretical methods used to describe the transmission
probability and the current through the molecular bridge. In
particular, we discuss various levels of the theoretical treat-
ment: a theoretical description based on purely elastic trans-
port mechanisms, the incorporation of vibrationally inelastic
processes(coherent and dissipative), as well as the wideband
approximation. Section III presents model studies of vibra-
tionally inelastic electron transport for different parameter
regimes, comprising both the case of a molecular bridge that
is weakly coupled to the leads, resulting in narrow resonance
structures, and the opposite case of a broad resonance caused
by strong interaction with the leads. Furthermore, the various

levels of theory are critically compared. Finally, Sec. IV
gives a summary and concludes.

II. THEORY

A. Model Hamiltonian

To investigate the influence of vibrational motion on the
transmission of electrons through a molecular bridge, we
consider a situation where two metallic leads, which serve as
a reservoir of electrons, are connected to a molecule through
which electrons can be transferred from one lead to the other.
As has been demonstrated in previous work on elastic elec-
tron transport(see, for example, Ref. 65), the transmission of
electrons through molecular junctions is typically character-
ized by resonances which correspond to the various elec-
tronic orbitals of the bridging molecule. From the theoretical
point of view, the situation is thus characterized by a set of
resonance states which are embedded in the continuum of
lead states. In this paper, we will consider, for simplicity, a
situation where only a single electronic resonance, corre-
sponding(in the limit of vanishing coupling to the leads) to
a molecular anion, contributes to the transmission process.

From the theory of resonant electron-molecule scattering,
it is well known that the influence of vibrational motion on
the electron transmission can be advantageously described
by choosing a basis of diabatic electronic states consisting of
a discrete stateufdl, which represents the resonance(i.e., the
situation where the transmitting electron is situated at the
bridging molecule) and a set of orthogonal continuum states,
ufkal, a=L ,R, describing the electron in the left and right
lead, respectively. Accordingly, the Hamiltonian reads

HS = ufdlH̃dkfdu + o
k,a=L,R

hufkalseka + H̃0dkfkau

+ ufdlVdkakfkau + ufkalVdka
* kfduj, s1d

whereH̃0 denotes the vibrational Hamiltonian of the neutral

molecule in the electronic ground state andH̃d the vibra-
tional Hamiltonian in the discrete electronic stateufdl. The
electronic coupling between the leads and the molecule is
specified by the coupling matrix elementsVdka.

The electronic parameters of the model Hamiltonian(1)
can in principle be determined by electronic structure
calculations.66 In the model studies considered below, we
have adopted a parameterization which is based on a reso-
nance description of the molecular bridge and a simple tight-
binding model for the leads, schematically shown in Fig. 1.
The molecular resonance is described by the discrete state
ufdl and the statesull, l = ±1, ±2, . . . represent the atomic
sites of the lefts−d and rights+d lead, respectively. It should
be noted that in contrast to the lead states, the discrete state
does not correspond to a single-site tight-binding description
(e.g., a single atomic orbital), but rather is a molecular reso-
nance state, and thus comprises typically contributions from
many atomic orbitals. This molecular orbital can be con-
structed for a molecule under bias resulting in voltage-
dependentufdl. For information on the construction of mo-
lecular resonance states we refer the reader to Ref. 59. The
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nearest-neighbor coupling constants between two lead sites
and between the leads and the molecule are specified byb
andv, respectively, andmL/R denotes the chemical potential
in the leads. The stationary continuum states in the right lead
are given by

ufkl = o
l

sinskld
Îpb sin k

ull, s2d

and similar for the left lead. The energye of the electron
satisfies the dispersion relation

e = eka = ma + 2b cosk, s3d

in the left and right lead,a=L /R, respectively. Using this
particular model for the leads we obtain

Vdka ; kfduHelufkal = vÎsin k

pb
. s4d

As we will see in Sec. II C, the electronic structure of the
leads enters the expressions for the observables of interest
only through the energy-dependent width function of the
leads(atomic units withe="=1 are used throughout the pa-
per unless stated otherwise)

Gased ; 2po
k

dse − ekaduVdkau2. s5d

The width functionGased is the imaginary part of the self-
energy function

Sased = o
k

uVdkau2

e+ − eka

; Dased −
i

2
Gased, s6d

where e+=e+ ig, g being a positive infinitesimal. The real
part of the self-energy function, the level-shift function
Dased, is related to the width function via Hilbert transfor-
mation, i.e.,

Dased =
1

2p
PE Gase8d

e − e8
de8, s7d

whereP denotes the principal value of the integral.
For the nearest-neighbor tight-binding model of the leads

introduced above, the self-energy functionSszd is given by
the Hubbard Green’s function,67,68multiplied by the coupling
strengthv between the last atomic site in the leads and the
bridge,

Saszd =
2v2

z− ma + Îsz− mad2 − 4b2
. s8d

Here, the width of the conduction band is given by 4b. Ana-
lytic continuation in the complex energyszd plane gives the
real part

Dased =5
v2

2b2se − mad for ue − mau , 2b

v2

2b2fse − mad 7 Îse − mad2 − 4b2g

for ± se − mad . 2b

s9d

and the imaginary part

Gased = 5 v2

b2
Î4b2 − se − mad2 for ue − mau , 2b

0 for ue − mau . 2b

. s10d

As will be demonstrated in Sec. III, the inclusion of the
energy dependence of the width functionGased and thus of
the coupling matrix elementsVdka, which complicates the
theoretical treatment significantly, is crucial in order to ac-
count correctly for inelastic effects, in particular for energies
close to the edge of the conduction band.

To study vibrationally inelastic effects on the transmission
through the molecular bridge, we consider a single vibra-
tional (reaction) mode, along which the equilibrium geom-
etry of the discrete electronic state is shifted with respect to
the continuum states due to the presence of the additional
electron at the molecule. Within the harmonic approxima-
tion, this situation is described by the vibrational Hamilto-
nians

H̃0 = vS a†a,

H̃d = vS a†a + lsa + a†d + ed = vS ad
†ad + ed −

l2

vS
. s11d

Here,vS is the vibrational frequency of the reaction mode,
anda† anda denote the creation and annihilation operators
for the reaction mode which are related to the corresponding
operators in the discrete electronic state by the shift in equi-
librium geometry,l / sÎ2vSd, i.e., ad=a+l /vS.

Most of the experimental studies of electron transport
through molecular bridges conducted so far have considered
relatively large molecules with many vibrational degrees of
freedom. In large molecules the coupling of reaction coordi-
nates(which are strongly coupled to the electronic degrees of

FIG. 1. Schematic representation of the tight-binding model used to parameterize the Hamiltonian, Eq.(1). The circles depict the atomic
sites for the leads and the molecular orbital for the bridge(with energy written below) and the lines indicate the nonzero hopping amplitudes
(written above).
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freedom) to the remaining(inactive) vibrational modes of the
molecule results in the process of intramolecular vibrational
redistribution, which is well known from the spectroscopy of
large molecules.69–75To study the effect of vibrational relax-
ation on the electron transmission, we adopt a linear re-
sponse model for vibrational relaxation64 in the discrete
state, where the reaction mode is coupled to a bath of har-
monic oscillators. Thus the Hamiltonian of the overall sys-
tem is given by

H = HS+ HB + HSB, s12d

where the “system” HamiltonianHS is given by Eq.(1), the
bath Hamiltonian reads

HB = o
j

v j bj
†bj , s13d

and the coupling between the reaction coordinate and the
bath is given by the bilinear interaction

HSB= ufdlo
j

cjsadbj
† + ad

†bjdkfdu. s14d

Here,bj
† andbj denote creation and annihilation operators for

the bath mode with frequencyv j, andcj is the corresponding
system-bath coupling constant. Because we work with the
normal modes of the neutral molecule[cf. Eqs. (11) and
(13)], there is no bilinear coupling between the system and
the bath modes if the molecule is in the neutral state(and
thus the electron in the lead states). In reality there is, of
course, coupling due to anharmonic effects in the neutral
state of the molecular bridge, describing, for example, vibra-
tional relaxation processes after an electron has been trans-
mitted through the bridge. The study of these effects, which
for the process of resonant electron-molecule scattering were
found to be small compared to the relaxation mechanism in
the discrete molecular state,64 will be the subject of future
work.

As is well known,76,77all properties of the vibrational bath
which influence the dynamics of the system are characterized
by the bath spectral density

Jsvd = o
j

cj
2dsv − v jd. s15d

In the numerical calculations reported below, it will be mod-
eled by a continuous ohmic bath with exponential cutoff76,77

Jsvd = hve−v/vc. s16d

Here, the characteristic frequencyvc defines the maximum
of the spectral density and the overall strength of the system-
bath coupling is measured byh.

B. Observables of interest

Various observables are of interest when investigating the
influence of vibrational motion on the electron transport
trough a molecular bridge. The most detailed information on
the transmission process of a single electron is comprised in
the initial- and final-state resolved scattering probability. Em-
ploying scattering theory, it is straightforward to show that

the probability for scattering of an electron with the energyei
from leadai into a state with energye f in the leada f, ac-
companied by a vibrational transition from stateuviluvil to
state uv fluv fl (we denote the bath vibrations with boldface
letters and the system mode vibrations with italic letters), is
given by59,78

taf←ai
se f,v f,v f,ei,vi,vid

= dsei + Evi
+ Evi

− e f − Evf
− Evf

d

3Gai
seidGaf

se fdukv fukv fukfdusei
+ − Hd−1ufdluviluvilu2,

s17d

whereEvi
, Evi

andEvf
, Evf

are the initial and final vibrational
energies of the bath and system modes, respectively. Writing
the transition probability in the form(17), we have assumed,
for simplicity, that the coupling elementVdka does not de-
pend on the vibrational degrees of freedom. The generaliza-
tion of the formula to include such effects is straightforward
(see, for example, Ref. 59).

While Eq.(17) describes the most detailed information on
the scattering process, in experiments typically more aver-
aged observables are measured. It is thus expedient to intro-
duce the integral transmission probability from leadai into
leada f (summed over all possible final vibrational states)

taf←ai
se f,eid ; o

vf,vf

taf←ai
se f,v f,v f,ei,vi,vid, s18d

and the total transmission probability, integrated over the fi-
nal energy of the electron,e f,

taf←ai
seid =E taf←ai

se f,eidde f . s19d

The most important observable for the study of electron
transport trough a molecular bridge is, of course, the current
which is induced when a finite voltage is applied to the mo-
lecular junction. To calculate the current through the bridge,
we employ the generalized Landauer formula5

I =
1

p
E dei E de fhtR←Lse f,eidfLseidf1 − fRse fdg

− tL←Rse f,eidfRseidf1 − fLse fdgj, s20d

where fasEd, a=L ,R, denotes the Fermi-Dirac distribution
for the left and right lead, respectively.

In principle the basis statesufdl, ufkal, and therefore also
the functionsGased and vibrational HamiltonianHd, depend
on the bias voltageV across the bridge. Here, we assume for
simplicity that the bias voltageV enters Eq.(20) only
through the Fermi distribution of the leads and the width
function Gased [cf. Eqs.(3) and(5)] via the chemical poten-
tials of the leadsmL/R= ±V/2. Moreover, in this paper we
will not consider thermal effects on the electron transport,
i.e., in all numerical calculations reported below we have
takenT=0 K. Thus the initial state of the vibrational degrees
of freedom is the ground state of the system and bath modes,
respectively,uvi =0luvi =0Bl and the Fermi-Dirac distribution
fasEd in Eq. (20) reduces to the Heaviside step function.
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The validity of the formula(20) for calculating currents
including inelastic effects has been discussed controversially
in the literature. The current formula is sometimes used with-
out the Pauli exclusion principle factorsf1− fsedg (see, for
example, the discussion in Refs. 26, 79, and 80). Employing
nonequilibrium Greens function theory and the second quan-
tized version of the Hamiltonian(1), it can be shown that Eq.
(20) gives the correct description of the current in the limit
where many-electron processes are negligible for the
dynamics.81 This limit is sometimes called the single particle
approximation. For the study of the tunneling through a vi-
brating single-molecule junction beyond this approximation
(but within the wide-band limit) see Ref. 82 and references
therein. It should also be mentioned that the use of Eq.(20)
implicitly assumes that the bridge relaxes into the ground
vibrational stateuvi =0luvi =0Bl before each subsequent trans-
mission event. In view of the low currents observed experi-
mentally, this should be a reasonable assumption(for a simi-
lar discussion in the case of STM currents, see, for example,
Ref. 50).

C. Method of solution

In this section, we introduce the method of solution of the
problem. We discuss different levels of theory, including
purely electronic(elastic) transmission, as well as vibra-
tionally inelastic transmission with and without dissipation.

1. Elastic transmission

Let us first consider the case without coupling to the vi-
brational degrees of freedom[i.e., l=h=0 in Eqs.(11) and
(16)]. In this case, only elastic processes contribute to the
electron transport, and the total transmission probability is
given by

tR←Lseid = tL←Rseid

=
GRseidGLseid

fei − ed − DLseid − DRseidg2 + fGLseid + GRseidg2/4
,

s21d

which is the well-known result for elastic resonant tunneling
transmission. The Landauer formula(20) for the current is
exact in this case(see, for example, Ref. 83) and the evalu-
ation of the current reduces to a simple numerical integra-
tion.

2. Inelastic transmission without dissipation

Let us next consider the influence of the coupling to the
vibrational degrees of freedom on the transmission of the
electron, i.e., vibrationally inelastic transmission through the
molecular bridge. If we exclude dissipative processes in-
duced by the coupling to the bath, the dynamics is described
by the system HamiltonianHS, Eq. (1). The probability for
transmitting an electron with energyei from the left lead into
a state with energye f in the right lead, accompanied by a
vibrational transition from the stateuvi =0l (which is the ini-
tial vibrational state at temperatureT=0) to the stateuv fl, is
given by80,84

tR←Lse f,eid = o
vf

dsei − e f − Evf
dGRse fdGLseidukv fuGd

sSdseidu0lu2,

s22d

where

Gd
SsEd ; kfdusE+ − HSd−1ufdl s23d

denotes the Green’s function projected on the resonance
state. The exact one-particle transmission probability(22)
can be obtained from the solution of both time-dependent51,61

and time-independent Schrödinger equations(see for ex-
ample, Refs. 43, 44, 80, and 84). The Green’s function(23)
can also be written in closed form. Employing projection
operator techniques well known from the theory of resonant
electron-molecule scattering(see Ref. 59 and references
therein), Gd

SsEd can be recast in the form

Gd
SsEd = fE+ − H̃d − SLsE − H̃0d − SRsE − H̃0dg−1. s24d

This form has the advantage that the electronic continuum
has been formally eliminated and only vibrational dynamics
in the discrete electronic space has to be evaluated. We
would like to stress that we do not assume the wideband
approximation(see the following section) in Eq. (24) and the
Hamiltonian operatorH0 enters the energy dependence ofS.
Efficient techniques have been developed85,87 to evaluate the
matrix elements of the Green’s function(24). In the present

case, whereH̃0 and H̃d describe harmonic oscillators, the
Green’s function(24) can be obtained, e.g., by inverting a

basis representation of the operatorE+−H̃d−SLsE−H̃0d
−SRsE−H̃0d for each energyE, employing efficient algo-
rithms for the inversion of tridiagonal matrices.88

3. Wideband approximation

While the expressions discussed so far take full account
of the energy dependence of the width functionGsed, in the
majority of previous work on the effect of vibrational motion
on electron transmission, the so-called wideband(WB) ap-
proximation has been invoked, where the width function is
assumed to be constant, i.e.,Gsed=const (for recent ex-
amples see Refs. 86 and 35). In this approximation, the level-
shift function vanishes[cf. Eq. (7)], Dsed=0. Introducing the

eigenstatesunl and eigenenergiesEn for the operatorH̃d the
transmission probability, Eq.(22), can be written as

tR←L
sWBdse f,eid = GRGLo

vf

dsei − e f − Evf
d

3 *on

kv funlknu0l

ei − En +
i

2
sGR + GLd*

2

, s25d

which yields after integration over the final energy of the
electron the total transmission probability
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tR←L
sWBdseid = GRGLo

n

uknu0lu2

sei − End2 +
1

4
sGR + GLd2

= GRGLo
n

1

n!
S l2

2vS
2Dn

e−l2/2vS
2

sei − End2 +
1

4
sGR + GLd2

. s26d

In Sec. III, we will study the validity of the wideband ap-
proximation based on the comparison of Eq.(26) with the
full inelastic transmission probability given by Eq.(22).

4. Inelastic transmission including vibrational
relaxation

Finally, we consider the case of inelastic transmission of
an electron through the molecular bridge in the presence of
vibrational relaxation. The theoretical treatment of this prob-
lem is considerably more complicated than the cases consid-
ered above because we have to deal with two qualitatively
different continua: the electronic scattering continuum de-
scribing the leads and the dissipative vibrational mode con-
tinuum of the bath. In principle, it is possible to start from
the general formula for the transition probability(17) and
derive formal expressions as in Eqs.(22) and (24) with the

bath modes included inH̃0 andH̃d. However, with increasing
number of bath modes it becomes difficult to perform the
matrix inversion in Eq.(24) and, therefore, such an approach
is limited to very few bath modes.

To circumvent this problem, we adopt an approach that
has been proposed to describe the effect of vibrational relax-
ation in the context of resonant electron scattering from large
molecules.64 The basic idea of this method is to express the
transmission probability, Eq.(18), as a sum

tR←Lse f,eid = o
m=0

`

tR←L
smd se f,eid, s27d

where tR←L
smd se f ,eid describes transmission processes withm

quanta of excitation in the final state of the bath(as was
mentioned above, we assume that the initial state of the bath
at temperatureT=0 is given byuvi =0Bl). In the parameter
regime where the vibrational relaxation rate is small com-
pared to the electronic decay rate of the resonance, only the
first few terms in the expansion will contribute to the overall
transmission probability. The first two terms in the expan-
sion, which correspond to processes where the final state of
the bath contains zero or one quantum of excitation, respec-
tively, read

tR←L
s0d se f,eid = o

vf

dsei − e f − Evf
dGRse fdGLseidukv fuGdseidu0lu2,

s28ad

tR←L
s1d se f,eid = o

vf

Jsei − e f − Evf
dGRse fdGLseid

3ukv fuGdse f + Evf
dad Gdseidu0lu2, s28bd

with the Green’s function

GdsEd ; kfduSE+ − HS− ufdlad
†kfdu

3E dv
Jsvd

E+ − HS− v
ufdladkfduD−1

ufdl

=kfduSE+ − HS− ufdlad
†

3E dv JsvdGd
ssE − vdadkfduD−1

ufdl. s29d

The expressions for higher order termssm.1d can be found
in Ref. 64. The Green’s functionGdsEd can be evaluated
either as the unique solution of the Lippmann-Schwinger
equation

GdsEd = Gd
SsEd + Gd

SsEdFad
†E dvJsvdGd

SsE − vdadGGdsEd

s30d

using the iterative Schwinger-Lanczos method87,89 (which
converges with only few iterations) or employing matrix in-
version techniques as described in Ref. 64.

In general situations where the left and right lead are not
identical, e.g., due to a nonzero bias voltage, the expansion
in Eq. (27) has to be terminated for practical reasons at a
certain orderm and is thus only applicable in the case of a
weakly damped system mode. We would like to emphasize,
though, that the electronic coupling of the molecule to the
leads is treated exactly in the approach outlined above and it
can thus be arbitrarily strong. Furthermore, the treatment of
the dissipation described by Eq.(28) does not invoke
Markov-type approximations and is, therefore, not limited to
situations where the bath-correlation time is short compared
to the system dynamics.

In the case of identical left and right leads and zero bias,
however, one can exploit the unitarity condition to express
the sum of all higher order corrections, i.e.tR←L

smd with m.0,
in terms of the elastic(with respect to the bath) termstR←L

s0d

and tL←L
s0d . To see this, it is noted that in the symmetric case

we havetR←L
smd = tL←L

smd for all m.0. For m=0, the total trans-
mission probabilities are given by

tR←L
s0d seid = o

vf=0

`

GRsei − Evf
dGLseidukv fuGdseidu0lu2, s31ad
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tL←L
s0d seid = u1 − iGLseidk0uGdseidu0lu2

+ o
vf=1

`

GLsei − Evf
dGLseidukv fuGdseidu0lu2.

s31bd

The difference between the transmissions probabilities from
the left to the right lead and from the left back to the left lead
is due to the special role of the transition amplitude with the
same initial and final state which only contributes in the
latter case. Together with the unitarity condition

tL←L
s0d sed + o

m.0
tL←L
smd sed + tR←L

s0d sed + o
m.0

tR←L
smd sed = 1, s32d

this yields

tR←Lseid =
1

2
s1 + tR←L

s0d seid − tL←L
s0d seidd

= − GLseidImk0uGdseidu0l. s33d

Equation(33) is an exact formula for the total transmission
of the electron through the molecular bridge, including the
bath to all orders in the system-bath coupling. Moreover, it
can easily be evaluated numerically. Although it is limited to
symmetric leads, and thus cannot be applied directly to cal-
culate the current, it is very helpful for checking the conver-
gence properties of the expansion(27) for zero bias or in the
linear response regime.

III. RESULTS AND DISCUSSION

In this section we present the results of a model study of
the influence of vibrational motion and vibrational dissipa-
tion on the transmission probability and the current-voltage
characteristics of a molecular bridge. To obtain a comprehen-
sive picture of the various mechanisms, we shall consider
models in different parameter regimes. In particular, we will
consider both the case of a molecular bridge that is weakly
coupled to the leads, resulting in narrow resonance struc-
tures, and the opposite case of a broad resonance, caused by
strong interaction with the leads. The parameters specific to
the different models are collected in Table I. The nearest-
neighbor coupling strength in the leads isb=1 eV in all
models considered(this parameter is an overall energy scal-

ing factor). The characteristic frequency of the bath is chosen
to coincide with the frequency of the system mode, i.e.,vC
=vS, and we will consider a relatively weak coupling be-
tween the system mode and the bath,h=0.1.

A. Tunneling through a narrow resonance

First, we consider the resonant transmission of electrons
in the tunneling regime, which is characterized by a rela-
tively weak coupling of the electronic state localized at the
bridge to those in the leads. We have chosen a coupling
strength ofv=0.2 eV, which corresponds to a fifth of the
nearest-neighbor hopping amplitudeb in the leads. We will,
furthermore, consider a localized state that is situated well
inside the conduction band with an energy ofed=0.5 eV(for
zero voltage, the conduction band extends over the range
f−2 eV,2 eVg).

We start with model A, which is characterized by a rela-
tively weak coupling between the electronic degrees of free-
dom and the vibrational motion of the system mode,l
=0.3 eV. Figure 2 depicts the transmission probability for
model A obtained for zero voltage using the different levels
of theory introduced in Sec. II C: the elastic transmission
probability, Eq.(21), the vibrationally inelastic transmission
probability integrated over the final electron energy, Eq.(22),
the wide-band approximation of the vibrationally inelastic
transmission probability, Eq.(26), and the transmission prob-
ability in the presence of vibrational relaxation, Eq.(33). The
elastic transmission probability(dotted line) exhibits a rather
narrow peak at the position of the discrete electronic state.
Including the coupling of the electronic degrees of freedom
to the vibrational motion of system mode(vibrationally in-
elastic transmission, thick dashed line), this peak is seen to
become split into several subpeaks which correspond to the

TABLE I. Parameters for the different models considered. We
have setb=1 eV in all cases, andh=0.1,vC=vS if the coupling to
the dissipative bath is taken into account. Furthermore, the center of
the conduction band is equal to Fermi energymL/R= ± 1/2V=eF for
the left and right lead, respectively.

Model ed v vS l

A 0.5 0.2 0.5 0.3

B −0.5 0.2 0.5 0.3

C 0.5 0.2 0.4 0.7

D 1.6 1 0.4 0.7

E −0.7 1 0.4 0.7

FIG. 2. Transmission probabilities for model A at zero bias volt-
age. The results shown have been obtained at different levels of
theory: purely elastic transmittance(dotted line), numerically exact
inelastic transmittance(thick dashed line), and inelastic transmit-
tance in the wide band approximation(thin dashed line). The full
line depicts the inelastic transmission probability including vibra-
tional relaxation.
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different vibrational levels in the discrete electronic state.
This effect is well known from previous studies.45,46 The
comparison between the elastic and inelastic transmission
probability in Fig. 2 demonstrates that even in the case of
relatively weak electronic-vibrational coupling a theoretical
treatment which only includes elastic processes provides a
rather poor description. The wide-band approximation(thin
dashed line), on the other hand, which takes the vibrational
excitation into account but neglects the energy dependence
of the width function, is seen to give an excellent description
of the transmission probability. This is due to the fact that in
model A the resonance is situated well inside the conduction
band and, therefore, threshold effects are negligible.

The inclusion of the coupling to the vibrational bath(solid
line) causes a further broadening and slight shift of the peaks
belonging to the first and second excited vibrational level in
the discrete electronic state. The main peak, which corre-

sponds to tunneling trough the ground vibrational state ofH̃d,
on the other hand, remains almost unaffected. This is due to
the fact that(in a zero-order picture without electronic cou-

pling) the ground vibrational state ofH̃d is a stationary state,
while all excited vibrational states decay into the ground
state.

The result for the inelastic electron transmission including
vibrational relaxation depicted in Fig. 2 has been obtained
employing Eq.(33) which is only valid for zero bias. For
situations with nonzero bias(in particular, to evaluate the
current through the bridge), we will use the expansion of the
total transmission probability in terms of the number of ex-
citations in the final states of the bath, Eq.(27). It is therefore
important to study the validity of this expansion. The results
in Fig. 3 demonstrate that for the present example the expan-
sion (27) is well converged if bath states with zero and one
quantum of excitationsm=0,1d are taken into account.

Figure 4 shows the current through the bridge as a func-
tion of the applied voltage for model A. The results have

been obtained employing Eq.(20). As has been discussed in
detail by other authors,90,91each resonance peak in the trans-
mission probability has its counterpart in a step in the
current-voltage curve. Thereby, the steps occur in the order
as they appear in the transmission probability counted from
the zero-voltage Fermi energy(which is set to zero). Accord-
ingly, the current based on the elastic treatment of the trans-
mission(dotted line) exhibits only a single broad maximum
corresponding to the position of the discrete electronic state.
The inelastic current(thick dashed line), on the other hand,
exhibits several steps which belong to the different vibra-
tional peaks in the transmission probability. The wide-band
approximation(thin dashed line) is seen to give very good
results except at high voltages, where the resonances are
closer to the edge of the conduction band and, therefore, the
energy dependence of the width function becomes important.

Although there is a pronounced effect of the vibrational
motion on the current in model A, the influence of the cou-
pling to the bath(thick solid line) is rather small. This is a
consequence of the location of the discrete electronic state,
which is situated 0.5 eV above the Fermi energy in this
model. As a result, the current for low voltages(0 to 1 V) is
almost exclusively due to tunneling of electrons via the reso-

nance corresponding to the ground state ofH̃d, which is
hardly affected by dissipation(cf. the discussion above).

If we change the discrete state energy toed=−0.5 eV
(model B), the transmission functions, depicted in Fig. 5,
remain virtually unchanged except for a shift in energy by
1 eV. In contrast, the current-voltage characteristic for model
B, shown in Fig. 6, is qualitatively different from that of
model A(cf. Fig. 4). The reason is that the order of the peaks
as counted from the Fermi energy is reversed and therefore
the low-voltage region of the current is influenced by tunnel-

ing through excited vibrational states ofH̃d which are more
strongly affected by the presence of the bath. The current
with and without vibrational relaxation thus differs by
30–50% for voltages in the range 0.5−1 V.

The differences between the various levels of the theoret-
ical treatment become more significant if we consider a

FIG. 3. Transmission probability for model A as in Fig. 2. The
different levels of approximation for the treatment of the bath are
shown together with exact result(solid line) and the result obtained
without coupling to the bath(thick dashed line). The result includ-
ing up to one quantum in the final state of the bathsts0d+ ts1dd is
indistinguishable from the exact result(full t).

FIG. 4. Current-voltage characteristic for model A obtained at
different level of theory.
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model with larger coupling between the electronic and vibra-
tional degrees of freedom. Such a situation is described by
model C, where the vibrational frequency is chosen asvS
=0.4 eV and the vibronic coupling strength asl=0.7 eV.
The location of the discrete state is the same as in model A,
ed=0.5 eV. The transmission probability for model C is
shown in Fig. 7. It is seen that the stronger vibronic coupling
results in a pronounced vibrational progression in the trans-
mission probability. In contrast to the cases considered
above, the wideband approximation essentially fails to de-
scribe the transmission probability. It predicts an amplitude
which is too small by about a factor of 2. Furthermore, the
position of the peaks is not correctly described in the wide-
band approximation due to the neglect of the level-shift func-
tion DsEd, and the individual peaks in the numerically exact
results are narrower than in the wideband approximation.
This effect of “vibrational narrowing” is well-known from
resonant electron-molecule scattering88 and results from the
interference between overlapping resonances.

The effect of vibrational relaxation on the transmission
probability, illustrated in Fig. 8, also is much more pro-
nounced in this model than in model A. Except for the lowest
two peaks, the vibrational resonances are smeared into a
broad hump, when vibrational dissipation is included. This is
due to the fact that the vibrational relaxation process be-
comes more effective for higher excited vibrational states.
Also shown in Fig. 8 is the expansion of the total transmis-
sion probability in terms of the number of excitations in the
final state of the bath, Eq.(27). As a result of the importance
of higher vibrational states and the relatively small electronic
coupling to the leads, the expansion is seen to converge
much slower than in the models considered above.

Let us next consider the current-voltage characteristic for
model C, depicted in Fig. 9. It is seen that the coupling to the
vibrational motion has a rather strong effect on the current
through the bridge. In particular, the current-voltage charac-

FIG. 5. Transmission probabilities for model B at zero bias volt-
age. Shown are results obtained at different levels of theory as
explained in the caption of Fig. 2.

FIG. 6. Current-voltage characteristic for model B. Shown are
results obtained at different levels of theory.

FIG. 7. Transmission probabilities for model C at zero bias volt-
age. Shown are results obtained at different levels of theory.

FIG. 8. Transmission probabilities for model C at zero bias volt-
age. Shown are the numerically exact results for the inelastic trans-
mittance with(thick dashed line) and without(full line) vibrational
relaxation, as well as the convergence of the expansion with respect
to the number of quanta in the final state of the bath(thin lines).
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teristic exhibits steplike structures corresponding to the dif-
ferent vibrational levels in the discrete electronic state. As
expected from the discussion of the transmission probability
above, both the elastic treatment and the wideband approxi-
mation fail severely in the description of the current. Figure
10 demonstrates that the coupling to the bath has a strong
effect on the current-voltage characteristic in model C. In
particular, the steplike structure is washed-out and the mag-
nitude of the current decreases by more than a factor of 2.
Also shown in Fig. 10 is the contribution of the different
terms in the expansion(27) to the total current. In contrast to
the transmission probability, the expansion for the current
converges relatively fast for this model. The reason for this,
at first sight surprising, finding is that, due to the Pauli prin-
ciple exclusion factors in the formula for the current, terms
with a higher number of excitations in the final state of the
bath are suppressed at lower voltage.

B. Transmission through a bridge strongly coupled to the
leads

All models considered so far were characterized by a rela-
tively weak coupling of the discrete electronic state to the
leads, which results in narrow resonance structures. In this
section we shall consider the opposite limit of a localized
state that is strongly coupled to the leads. Such a situation is
realized in model D, where the coupling strength between
the discrete electronic state and the leads is chosen asv
=1 eV. The position of the discrete state is in the upper part
of the conduction band,ed=1.6 eV. All other parameters are
the same as in model C. We mention that if the coupling to
the bath is not considered, model D is essentially equivalent
to a model studied by Gelfandet al.61 in the context of in-
elastic tunneling in heterostructures.

The results for the transmission probability are depicted in
Fig. 11. The strong coupling to the leads results in a rather
broad transmission probability, which is qualitatively well
described taking into account only elastic processes. Vibra-
tionally inelastic contributions to the transmission probabil-
ity manifest themselves in various cusp structures. Thereby,
each cusp indicates the opening of a new vibrational channel.
It is well-known from the theory of electron-molecule scat-
tering that the wideband approximation is not at all appli-
cable in this case. The effect of the coupling to the bath,
which is well described including the two lowest terms in the
expansion(27), is very small. This is a consequence of the
strong electronic coupling which results in a very short resi-
dence time of the electron on the bridge.

Figure 12 displays the current-voltage characteristic for
model D. As to be expected from the transmission probabili-
ties, the differences among the various levels of theory are
small with the exception of higher bias voltages. For higher
voltages, the elastic current vanishes due to the empty over-
lap of the left and right conduction bands. Inelastic transmis-
sion processes, however, which are accompanied by an en-
ergy loss of the electron, are still allowed.

Although there are no structures in the transmission prob-
ability in Fig. 11 which are obviously related to the position

FIG. 9. Current-voltage characteristic for model C. Shown are
results obtained at different levels of theory as explained in the
legend.

FIG. 10. Current-voltage characteristic for model C. Shown are
results that illustrate the convergence of the expansion with respect
to the number of quanta in the final state of the bath, as well as the
result without vibrational relaxation(thick dashed line).

FIG. 11. Transmission probabilities for the case of a bridge
strongly coupled to the leads(model D) at zero bias voltage.
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of the discrete electronic state, the location of this state does
play an important role. This is demonstrated in Fig. 13,
which shows the transmission probability for model E, which
differs from model D only in a lower energy of the discrete
electronic state,ed=−0.7 eV. This different location of the
discrete state results in pronounced peaks and minima in the
transmission function, which are somewhat smoothed, but
not destroyed, by the coupling to the bath. To facilitate the
interpretation of these structures, Fig. 14 shows the potential-

energy curve of the discrete state(corresponding toH̃d) to-
gether with the energies of the vibrational states. In addition,

the potential energy ofH̃0 is shown, shifted by ±2 eV, re-
spectively, to indicate the energy which electrons coming
from the conduction band may carry into the bridging mol-
ecule. Though the localized state is strongly coupled to the
continuum, due to the shift of the two potential curves, the

ground vibrational state inH̃d has only a small overlap with

the respective ground state inH̃0. Consequently the coupling
between the two states is effectively small and sharp reso-
nances may be observed. If the discrete state is localized

higher in energy(as in model D), the potential energy curve

of H̃d is shifted up. Then, the ground state ofH̃d still has a

small overlap with the ground state ofH̃0 but the decay into
higher vibrational states becomes energetically possible. The
sharp resonances thus “dissolve” in the continuum. As is
demonstrated in Fig. 15, the sharp structures close to the
bottom of the conduction band have no significant effect on
the current, and the overall appearance of the current-voltage
characteristic is similar as in model D.

IV. CONCLUSIONS

In this paper we have studied vibrationally inelastic ef-
fects on electron transport through a molecular bridge that is
connected to two metal leads. The study was based on a
generic model for vibrational excitation in resonant electron
transmission processes through a molecular junction. Em-
ploying projection-operator methods well-known from reso-
nant electron-molecule scattering, we have outlined how the
transmission probability can be evaluated numerically ex-

FIG. 12. Current-voltage characteristic for model D.

FIG. 13. Transmission probabilities for the case of a bridge
strongly coupled to the leads(model E) at zero bias voltage.

FIG. 14. Potential-energy curves for the interpretation of the
vibrational structures in model E(as explained in the text).

FIG. 15. Current-voltage characteristic for model E.
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actly within this model, without invoking the wideband ap-
proximation or perturbation theory with respect to the cou-
pling between the bridging molecule and the leads.
Furthermore, the influence of dissipative vibrational pro-
cesses was investigated by considering the coupling of a vi-
brational reaction mode to a dissipative bath.

The results of the model study can be summarized as
follows: In the case of tunneling through a molecular bridge
which is weakly coupled to the leads, the transfer of an elec-
tron may result in strong vibrational excitation, which mani-
fests itself in pronounced vibrational resonance structures in
the transmission probability and in a steplike appearance of
the current-voltage characteristic. Since in this case the resi-
dence time of the electron on the molecular bridge is rela-
tively long, dissipative processes such as vibrational relax-
ation can have a significant effect on the dynamics. In
particular, they result in a broadening of the resonance peaks
in the transmittance and of the steplike structures in the
current-voltage characteristic. Furthermore, vibrational relax-
ation may result in this case in a significant reduction of the
overall magnitude of the current. Due to the pronounced ef-
fects of the vibrational degrees of freedom, a theoretical
treatment which only includes elastic processes is not appro-
priate in this parameter regime. Our studies also show that
the wideband approximation can only be applied if the elec-
tronic resonance state is situated well within the conduction
band and the electron-vibrational coupling is weak.

In the opposite case of a molecular bridge that is strongly
coupled to the leads, the transmission probability is typically
characterized by a broad distribution, which in turn results in
a rather structureless current-voltage characteristic. Never-
theless, the vibrational motion may manifest itself in cusp
structures in the transmittance. Furthermore, sharp resonance
structures may occur in the transmission probability, if the
energy of the discrete electronic state is low enough and the
electronic-vibrational coupling sufficiently strong, such that

the vibrational ground state ofH̃d has some overlap with

lower-lying vibrational states ofH̃0. Except for the latter
case, the effect of vibrational relaxation is very small in this

parameter regime. The comparison of the results obtained at
different levels of theory shows that methods which only
include elastic processes can give a rather good qualitative
description of the electron transport in this case, although
they miss the detailed cusp and resonance structures. The
wideband approximation, on the other hand, is not valid in
this parameter regime; due to the strong molecule-lead cou-
pling, threshold effects become important which are ne-
glected in the wideband approximation.

To study the basic mechanisms of vibrationally inelastic
electron transport, we have focused in this work on relatively
simple models with a single harmonic reaction coordinate
and a single electronic resonance state. It should be noted,
however, that the methods employed in this work are not
limited to these models. The extension of the theory to an
anharmonic reaction coordinate, several reaction coordinates,
and several resonance states is relatively straightforward.
Also, it should be emphasized that the potential-energy sur-
faces of such models can in principle be determinedab initio
by electronic structure calculations. In this way, for example,
the possibility of dissociation of the molecular bridge in-
duced by a strong current can be studied.

Finally, it is noted that in the present work the current
through the molecular junction was obtained with the gener-
alized Landauer formula, Eq.(20). Although this formula
gives the correct description in the limit of weak coupling
between molecule and leads as well as in the situation when
only single-electron processes are important, it needs to be
extended for applications where these assumptions are not
fulfilled. A theoretical treatment of inelastic processes with-
out these limitations is possible within the framework of
nonequilibrium Green’s function theory.83 The combination
of this formalism with the methods employed in this paper is
a challenging subject for future research.
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