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Topological spin pumps: The effect of spin rotation on quantum pumps
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We have established semiclassical kinetic equations for various spin-correlated pumping phenomena incor-
poratingadiabatic spin rotation in wave functions. We employ this technique to study topological pumps and
illustrate spin pumping in a few models where various spin configurationgpmiogical motordrive adia-
batic pumps. In the Rashba model we find that a topological spin pump is driven by a meroposititie
one-half Skyrmion charge, the size of which can be controlled by external applied gates or Zeeman fields. In
the Dresselhaus model on the other hand, electron spins are pumped ot dgtizemeron. We examine the
effects of Zeeman fields on topological spin pumping and responses of Fermi seas in various topological
pumps. The phenomena of topological pumping are attributed to the beam splitting of electrons in the presence
of spin rotation, otopological Stern-Gerlach splittingand occur in a transverse direction along which charge-
pumping currents might either vanish or are negligible. The transport equations established here might also be
applied to the studies of anomalous Hall effect and spin-Hall effect as demonstrated in one of the appendixes.
All results are obtained in an adiabatic expansion.
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I. INTRODUCTION ciated that dissipation involved in adiabatic transport in this

Adiabatic transport of electrons or quantum pumping,/imit should also be smaller than that due to a transport cur-
which is nearly reversible, has been one very promisingent with biased voltages applied.
means to manipulate coherent wave packets in the extreme Given the obvious advantage of the adiabatic charge
quantum limit. In the presence of periodic adiabatic perturtransport, in this paper we intend to generalize the idea to
bations, a net charge can be transferred across a quantadiabatic spin transport. We will address the issue of spin
structure during each period that is independent of frequenpumping in both limits, which can be easily achieved in
cies of external perturbations and that represents a DC culaboratories and limits which are theoretically exciting but
rent induced by adiabatic perturbations. This phenomenomight not be as easy to be realized in solid state structures.
was first observed in an early work on transport of edgeParticularly, we will propose a spin-pumping mechanism that
electrons in quantum Hall statésBut general solutions to is based on the topological beam splitting of electrons in-
this problem were provided in Ref. 2 where conditions ofstead of the usual Zeeman splitting. Special classes of mod-
quantized charge transport were established. The robustnesls are introduced to facilitate discussions on topological
of quantized transport with respect to disorder potentials andpin pumping. At the end, we will compare the efficiency of
applications to quantum Hall effects were later studied in aifferent spin pumping schemes.
series of works. One obvious means to pump spin out of the system is to

The absence of dissipation during the adiabatic process &diabatically transfer polarized electrons in quantum struc-
evident if perturbations are applied to a closed quantuntures. During the adiabatic transport, the currents carried by
structure with nontrivial topology, such as a mesoscopic ringspin-up and spin-down electrons have an asymmetric part,
or torus. If one further assumes that the electron spectrum isnd therefore, electrons pumped out of the structures also
discrete and the external frequency is incommensurate witbarry net spins. This standard scheme is reviewed in Sec. lll.
energy gaps in the spectrum, then no resonance absorption In Sec. IV A, we discuss the phenomena of topological
can occur and quantum states evolve via unitary transformaéseam splitting in detail. Particularly, we demonstrate that
tion, which conserves the entropy. The absence of entropgpin rotation in either real spa¢& spacé or in Fermi seas
production in the adiabatic process is therefore a natural coreads to transverse motion of electrons. In Secs. IV B and
sequence of a pure state evolution, which has been knowtV C, we investigate topological spin pumping due to spin
for a while. rotation either in theX space or in Fermi seas. In both cases,

For a quantum structure with continuous spectra, eithespin-up and spin-down electrons, though both are electrically
because of contact with leads in a mesoscopic limit or moreegatively charged, carry certain topological charges with
generally because of thermal broadening, it is more convespposite signs. Consequently, spin-up and spin-down elec-
nient to introduce one-particle density matrices to describérons can be split because of opposite topological transverse
the evolution of quantum systems. The adiabaticity can béorces, an analogy of splitting of electrons, and positrons in
achieved when the frequency of applied perturbations isn orbital magnetic field. We would like to refer this kind of
lower than various relaxation rates characterizing the dynambeam splitting as topological Stern-Gerlach splitii®GS
ics of one-particle density matrix. The issue of entropy pro-to contrast the usual Stern-Gerlach splitting of spin-up and
duction in this case, however, has not been fully addresseshin-down particles in atomic physics. In this paper we focus
and is less well understood. Nevertheless, it is widely appreen the origin of this phenomenon and basic features. We plan
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to present a practical design of a topological spin pump in a t+t

subsequent paper. T=— 7= t' -t 2
Finally, in connection with topological spin pumping to

be discussed in the paper, it is worth mentioning a few recerfturthermore, one defines a generalized semiclassical density

works on anomalous Hall effects and spin injection wherematrix

the topology of Hilbert spaces plays a paramount role. In 1

Ref. 4, the authors pointed out that interactions between con- papK.l 0, T) == f dXdrexplik - X —iw7)

duction electrons and background Skyrmion configurations \4

activated in magnetite might be responsible for the sign and X X r r

temperature dependence of anomalous Hall effects observed Xpa/;<r + E’r - E;T+ E’T_ 5) (3)

in Ref. 5. The authors of Ref. 6 meanwhile argued that

k-space Chern-number densities also modify the equation of is the volume of systems.

motion for electrons. The corresponding contributions to the |n a semiclassical approximation, one obtains the equation

anomalous Hall effect in ferromagnetic semiconductors weref motion for the one-particle density matrix,

further studied in Ref. 7. Following these works, it is now . )
believed that the anomalous Hall effect can be an intrinsic %Pap(K.ri@.T) + {aHaﬁ’(k’r’T)i _ Mgk 5
phenomenon. It is indeed likely to occur when skew- ar dk ar ar dk

scattering from impurity atoms is absent, as proposed by

Karplus and Luttinger a while agoln Ref. 9 the authors +w J

have considered intrinsic spin-Hall currents in semiconduc- aT Jw
tors; many interesting features have been found. Related dis- ~
cussions can be also found in Ref. 10. = ~Hu e (K,r; M@ pgak,ro,T)
Independently, in a series of illuminating wotks' the :
authors studied spin injection in semiconductors character- +Z%p 5K, 10, T). (4)

ized by the Luttinger Hamiltonian. They have found that

singular topological structures in thespace have fascinat- Here

ing effects on accelerated electrons as well and lead to im- =1

pc?rtant consequencies on spin injection. In Ref. 12, the au- Aap © By = 2l AugBay + Bagsy,

thors further pointed out possible connections between ~

transverse spin-Hall currents and supercurrent in supercon- Aap®Bpy = AasBpy = Baphsy (5)

ductors. The issue of dissipation, however, is still under deandz¢" is a collision integral operator for elastinponmag-

bate and remains to be fully understood. netic) scattering processek.andr in Eq. (4) are variables
instead of operators. The gradient expansion, which is valid
as far as the transport occurs at a scale much larger than the

Il. KINETIC EQUATIONS FOR ONE-PARTICLE DENSITY Fermi wavelength, is sufficient for the study of semiclassical

MATRIX phenomena. In all models employed in this paper, we find
) . i i the commutatoH®p in Eg. (4) vanishes in the semiclassical
Consider the one-particle density matgixg(x’,x;t",1). approximation.

Subscriptsy, 8=+ are introduced as spin indices; later in this  The charge current and spin currenfi? with spin along

paper we also introducey,£=1,2,...N, as indices in an thee, direction are

N-dimensional parameter spage,v=x,y,z as indices in the

real or momentum spaces. The evolution of a one-particle I :f do d*k &Hag(k,r)lo k.1 w,T)
density matrix is determined by the following equation: ’ 2w (2m® ok et T T
do d% IH 5K, 1)
d Jd Z =| ———e,- — ; .
[i—+i—,:|pa5(X',X;t',t) . J 2 (@me Tea ™ g PelTi0T)
g ot
5 (6)
:Haﬂ’<xvi&;t)pB’B(X,:X;t’vt) To facilitate discussions on the adiabatic transport, one fur-

ther separates the one-particle density matrix into symmetric
d i SA
- paﬁf(x',x;t',t)Hﬁfﬁ<X’,i—, ;t') . (n @ndesymmetricpargyy)

To study the transport in a semiclassical limit, one intro-
1
duces T pog(k, 15 T) =0, T8 plp(k, ) = = plgk,rsT).

70

X+ X’ (7)
= , X=x"=x;
2 And

125321-2



TOPOLOGICAL SPIN PUMPS: THE EFFECT OF PHYSICAL REVIEW B 70, 125321(2004)

A . _ s ) _ _ [ do d*k d dH o g(K, 13 T)
J dQ(K)pp(k,riw,T) = f dQ(K)Q(K)pSsK, 1, T) =0, 3= J 2m 2mDH T -—M(sawT
(8) 0] s
® (9_6k pﬁa(k,r;w,T). (12

Q(k) is introduced as a unit vector along the directiorkof ) .
in Eq. (8) and in the following sections. Here and in the rest of the paper, we Bete=1. This set of

In the relaxation approximation employed here, elasticcquations will be used to study various spin-pumping phe-

nonmagneticimpurity scattering only leads to momentum "omena.

relaxation because the collision integrals &#6(2) singlet

operators and act trivially on the density matyixs. This,

however, does nogenerallyimply that impurity scattering

combined with the spin-orbit coupling which we are going to

discuss should not cause transitions between different spin We first apply the kinetic equations to study adiabatic

states. Nevertheless in the adiabatic approximation employesharge transport of polarized electrons. The external pertur-

in this paper, in a special basis these transitions are negligiblgations are represented by external a.c. gates with same

[see discussions abo®J(2) gauge fields and adiabaticity periodT,, i.e.,

conditions in Secs. IV B and IV J. As far as the adiabatic-

ity conditions are satisfied, the collision integral can be Vex(r, 1) =2g,(T)V,(r —r,),

treated in the usual Born approximation even in the presence 7

of spin-orbit coupling. Please see more specific discussions _ _

about the adiabaticity at the beginning of Sec. IV C, and 9,(T)=g,(T+To). 7=1.2,.N. (13

discussions after Eq$72) and(100). For pumping phenomena, the boundary conditionsr at
Since we are interested in the transport phenomena at dis-+L/2e, (u=x,y) are chosen as

tance much longer than the mean free datbr at frequen-

IIl. CHARGE AND SPIN PUMPING OF POLARIZED
ELECTRONS

; i b i L L
cies much lower than the inverse of mean free time.e., pi,g(k,— Ee,L;w,T) - piﬂ<k,5eﬁ;w,T). (14)
L>lg=1vr, To> 7, (99 Equation(14) is valid when(a) the sample has a closed ge-

ometry alonge, or (b) more practically leads at boundaries

we adopt the standard diffusion approximation. Furthermore?'® ideal and are maintained in a them’.'a' eguilibrium, which
also corresponds to a current biased situation.

for the study of adiabatic charge and spin-pumping phenom? A icod | . ¥ at imeT th icl
ena, it is sufficient to keep the first-order term in an adiabatic:d S notlce' in aﬁrewous wor ,fatél'ms .t € O”e'gaf“c € |
expansion. Taking into account the definition of symmetric ensity matrix in the presence of adiabatic perturbation only

and antisymmetric components, one obtaifsand pS as depe_nds on_th_e potenti_als at that moment. Particularl_y, the
y P ¥ P density matrix is a function of,(T), »=1,2, ... N and their

time derivativeg,(T); and it has this local time dependence
d IH (K13 T) o d as a result of adiabaticity. The charge transport per péripd

A _ _ 7 -
Pap = ToVi€2,(K) ﬁrﬂﬁaﬂ,+ x, Je therefore, has the I4ollowing appealing general structure
3 (n,7,6=1,2,...,N),
0
Moe(K,r;T)  dpg gk 0,T)
DV 4k, 1w, T) = —2 © —28 _ W”§:<ii_ii)
T Je My Qe 99e 9,

(11) Kk _
XTr mp(kvr;{gn’}i{gn'}) . (15)

=|k|/m is the velocity andD,=v?7,/d is a diffusion con- .
vi= k| y k=UkTo Here we introduceQ; as the charge transport along the

stant;d=2,3 are the dimensions of the Fermi seas that inter- ™~ = ™" I ;

est us.pg is the equilibrium one-particle density matrix. g-dlrect|on. dg,Udg, is a skew symmetric wgdge product,
The charge- and spin-pumping currents, with spin point--€- dg,Jdg,=~dg,Lldg,. The traceTr is carried over the

ing in thez direction, can then be expressed as momentum, real space, and spin space. In 84, the

charge transport has been expressed explicitly in terms of the
adiabatic curvature m,,; the form of the curvature is

do ok d dH 5(k,r;T) d uniquely defined by the local time dependence of the one-
- === - Zapp™ 0 o 2 ! . . .
J#‘f 277(277)3[){ arﬂéaﬁ-'- o, ® de, particle density matrixp,g(K,r;{g,/(T},{9,/(T)}).
s In the following we are going to evaluate the one-particle
XppoKiT 0, T), density matrixp,z(k,r;T), and therefore, the curvatu
B 1€,
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explicitly including the spin polarization. As indicated in Eq.
(12), the antisymmetric part of the density matrix can be
expressed in terms of the symmetric part. And the symmetric
part of the density matrix receives a nonadiabatic correction

N N
— 17! — 17! .
Qu=1I C77 §§1 XntSpe M w=11 S” ggl X nSne;

following the second line in Eq.11); the solution is

1
S . - 0 . S1 .
paﬂ(kvrywaT) - paB(kyw) + DkMaB(kyriwaT)a

.0
Mi};(k,r;w,T)=fdr’G(r,r’)QVEHQB/(k,r’;{gnr(T)})
7

0
Ipg 5(K; w)
@ PP

16

P (16)

We have defined(r,r’) as a free propagator
V2G(r,r")=8(r,r'"). (17)

At boundaries, one se@(r,r’) to be zero. Superscri@l in

Eq. (16) refers to the first-order nonadiabatic corrections to
the symmetry part of one-particle density matrix. The matrix

MS5, or more specificallyM (k1 ; w,{g,/(T)} {9,/ (T)}) is
widely cited in the rest of this paper.

Correspondingly, one can also calculate the contributio
to the asymmetric component of density matrix in the first-

order adiabatic approximation using E.0). Substituting

mes=1'+)+I'(-). (20)

Alternatively one can obtain the charge transport by directly
evaluating Eq(15) taking into account Eqg11) and(16).

In Eqg. (20), we have introduced two antisymmetric ten-
Sors,

Spe= - S§17=J dg, [dg;

1(To F J
=5 f , dT[gn(T)ﬁ—ng(T) - gg(T)a—Tgn(T)]

drdr’
Xﬂ§:_X§n:ff r,_r Vn(f)&ixG(fif')Vf(r’)? (21)

and
d | 1 dv(e)

'+ :f Di—| =
( ) dek ka€k|:Dk (96k

No(€ = QMBB)] . (22

fHere v(e) is the one-particle density of states and the vol-

ume of structure i¥=L X L X L. IT'(+) depends on the com-
pressibility andH'(i)Xngzq-r,,g defines the longitudinaddia-

these results into the expression for currents, one arrives apatic curvatures of spin-up and spin-down electrons.

L om (2m)® K ar,
Jd

1 .
@ gk[D—kM?iAk,r :w,{gn&T)},{g,?,(T)})] ,

do d3 My pk,r:{g,(D})
2= | ———Dy&, X 0 u
® f 47 (2m)3 K82 % Taa ar,

1 .
€k k

Equations(20)<22) are the general results for charge and
spin pumping in the semiclassical limit.

Introducingkg, ez andDg as the Fermi momentum, Fermi
energy and diffusion constant at the Fermi surface respec-
tively, one rescales all quantities in EQ2),

Kl=kea, e =e(@em D= h(a)Dg;
‘9;(6“ —1@2P e =ne@e), (23
€ e

wheree(a), h(a) andf(a) are intrinsic functions determined
by the energy dispersiora varies from zero to infinity; at
Fermi surfacesa=1 ande(1)=0 andh(1)=f(1)=1.

We have neglected a term that does not contribute to the total 1o longitudinal adiabatic curvatures are

current because of the boundary conditions in 8df). In
the rest of the paper, we will use the notibin(k,r; T) and
_I\/Ililﬁ(k,r;w,T) without showing{g,, (T}, {g,,(T)}, explic-
itly.

In the absence of spin-dependent impurity scattei®gs
a good quantum number;

pos(K; ) = ng(€)IMGhg(k, w);

Gzﬁ(k,w) =(w- g+ o’gugB+ iTBl);z. (19

The kinetic energy ise,=#%k?/2m-e- and ny(e,) is the
Fermi distribution of electrons.

The total charg®,, and spin(pointing along the direction
of Zeeman field or along the axis) MZ, pumped alonge,
direction per period are evaluated using ELg). The final
results can be expressed in a form similar to 8d).

ch - aV(kF) 7T|C HIS - gugB 07V(k|:) ’7T|S'
(9€|: ' €|: ﬂEF '
me=- Zj dah(a)%[%no]
[ f@ 1 a_]
T f dah(a) aa{ h(a) d,e(a) da |’ 24

We are mainly interested in zero temperature results here and
in the following sections. I&, f, h are assumed to be smooth
functions in the vicinity ofa=1, and their dervatives a&
=1 are much less than unity, then in the leading order one
obtains7'°=2 and#S=d,h(1)/d,e(1).

Two important general features of spin pumping deserve
some emphasis. One is that the spin-pumping current is zero
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if g,(t) is identical forp=1,2, ... N. More generally one can TSGS to happen, a certain mechanism has to be introduced
show that the pumped charge and spin have to be vanishirg rotate spins during transport. It can be achieved by a cou-
if the trajectory of vector g=(g;,0,,...,9y) in the  pling between electrons and an artificial background “mag-
N-dimensional space encloses a zero area. This is a welpetic” configuration. To illustrate this idea of TSGS, one
known fact emphasized on a few previous occasions whergtudies the following Hamiltonian:

charge pumping was studied; the pumping is a pure geomet- 2
ric effect determined by two-form curvatures and is absent in H= L V(r) + gugBoo - Q1) + Ve (r, 7). (29)
a one-dimensional parameter space. 2m

The second feature is that the longitudinal spin current isppo nit vectorQ is defined by two angles(r) and 4(r) in
proportional to the difference between adiabatic curvaturegpherical coordinates:

(IT'(+)) of spin-up and spin-down electrons. Therefore the

longitudinal spin-pumping efficiency is Q,(r)=sin6(r)cose(r),
z Is
Je Mix _ QMBBTT__ (25) Q,(r) =sino(r)sin ¢(r),
Qux €F m°
In the presence of orbital magnetic fields, one can also Q,(r) = cosé(r). (30)

evaluate the transverse charge and spin-pumping current,  cqnsider the following coherent states of electrons

N N
- - 0 o) ;
Qyx= Htcﬂ 5:21 XnSre Myx= Htsﬂ 5:21 XyeSye (26) lQr); +)=¥() ® cosEexp<— ié)ex%tanﬁe"ﬁa‘)

2 2
The transverse adiabatic curvatures that lead to these currents x|1),
are
5= 7oQ [ IT(+) £ TT(-)]. @D a@);-)=w() @ sin gexp(— ié)exp<— cot@e‘%‘)
QO.=eH./mcis defined as the cyclotron frequency of exter- 2 2 2
nal magnetic fields. Obviously, one can also introduce trans- x|1). (31

verse pumping anglé. and transverse spin-pumping angle

6 in analogy to the usual Hall angle | 1) is the spin-up state defined along thaxis ando™ is the
S ’

corresponding lowering operato€2; +) are spin-up and

y spin-down states defined in a local frame where veetor

tanfc = = 79{), coincides with unit vectof)(r), i.e.,
XX
Q@) -oQ; )= +|Q; +) (32
MZ, gugB 7° . . .
tangg= —= = Q¢ o (298 at every point. Electrons in these states experiedespace
Xx €& T spin rotation(XSSR.

Readers can easily confirm these results. In this scheme, the These states are called sgilus and spinminusstates to
spin-pumping current vanishes in the absence of Zeemape distinguished from spin-up and spin-down states defined

fields becausél'() are identical. before. Obviouslyplusandminusstates discussed above are
exact eigenstates of the local Zeeman coupling and their de-
IV. TOPOLOGICAL SPIN PUMPING generacy is lifted at a finit&,.
To demonstrate the beam splitting, one evaluates the ex-
A. Topological beam splitting pectation value of energy operatdt in these two sets of

The key idea of top0|ogica| spin pump|ng lies in the fact states. The results in this limit can be Conveniently cast into
that the transverse motion of electrons is not only affected byhe following form:
usual orbital magnetic fields or a gradient in Zeeman fields, 1
but also by spin rotation. Compared to Lorentz forces, which  (H), = <\If(r)|2—[p + AX(r) 2+ V(r)|W(r)) = gugBo.
act on spin-up and spin-down electrons undiscriminately, the m
topological force induced by spin rotation does discriminate (33
spin-up and spin-down electrons as if they are oppositel . o
“cphargréd.” Indged as one will see, spin-upy and sgiﬁ-dow erep is the momentum operator to bexd_lstmgwshed from
electrons carry opposite charges defined with respect to t € rr(;otrnegtutr:(, Wh'tCh IS ta \t/_arllabl]??”-fle!ds f\re lcon— |
Pontryagin topological fields. Splitting of spin-up and spin- Irmed o be he vector potentials of following topologica

down electrons in topological fields is therefore named aéields

topological Stern-Gerlach splittin g SGS. So before study- v 1 aQ(r)  0(r)

ing the kinetic approach to topological spin pumping, let us T =2 A1) o X T (34)
offer a qualitative picture of the phenomenon of TSGS. m v

Apparently, spin rotation does not occur in free spaces,,,==€,,,=—¢€,, IS an antisymmetric tensor. In both Egs.
where the electron spif, is a good quantum number. So for (33) and(34), we use superscripf to refer toX-space gauge
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fields. And in Eq.(33), we have neglected terms that are Q,(k) = sin 6(k)sin ¢(k),
identical to|+) states. This form of the kinetic energy of
spin-rotating electrons was previously derived to demon- Q,(K) = cosé(k) (40)
strate interactions between quasiparticles and spin fluctua-
tions in triplet superconductofs. and Q(k)=k/[k| is a unit vector along.

Therefore the total forces exerted on spins and spin- P & oK) -
minuselectrons are |Qk); +)= \P(k)coséex;{— iE)eXp<tan76|¢o_)|T>’

NI . P + AX(r)

Fi:<‘1’|—TiT |W). (35)

A w¢)
|Q(K); )—W(k)ex;{ |2)3|n2exp( cot 5 €% ||1).

The last identity holds when the spin rotation is adiabatic so

that transitions between Zeeman split splaos and spin- (41)
minusstates are negligible, i.e., o
0 As before we assume these spins and spinminus states
r . d i i i
¢(r) MW (1) L) | < gueBy.  (36) € SPlit by an effective Zeeman fiei}, _
2m or ar An electron in such a wave packet experienkespace

. . . - o ._spin rotation(KSSR), or spin rotation that depends on its
One can verify that when this adiabaticity condition is satis- . s mentum. For the same reason mentioned before, we fur-

f|e<|j, ?hﬂ IS an Iapp(ox;mat@ooq ql;antum nlumb(;arb | ther assume adiabaticity in spin rotation and use a semiclas-
n the semiclassical approximation émployed DEIOW, Weg;qo) approximation. This requires that

further assume that

J J
v, 0 a0l 17 > | = L=
im0 Zwe| > | 20| [EHOL g GuaBo> | 5y #k) - 5 |,
ar ar ar
So over the wavelength of electrons, spin rotation is negli- . 0 90(k do(k
gible. ’ P ’ B (k)é—kw)‘ > | 220) 1220 4

In addition to a term proportional to the field gradient of
scalar fields, there is a new force perpendicular to the veloc- The group velocities of these wave packets are
ity of electrons similar to the Lorentz force. More impor- v, =i([r H(rp)L)
tantly as indicated in Eq33), spinplusand spinminuselec- * ' A
trons carry opposite topological charges; therefore, the k _ dH(k;r)
corresponding forces are, in fact, along exactly opposite di- :<‘I’(k)|a + [V x AX(k)] % a—rw(k»' (43
rections. This shows that an XSSR does affect the orbital
motion of electrons and does differentiate splos states  SuperscriptK is introduced to specify th&-space gauge
from spinminusstates. It, therefore, leads to the promisedfields. So the velocity does acquire an additional nontrivial
phenomenon of TSGS. transverse term in the presence of an external field gradient
It is important to further emphasize here that to observeand topologically nontrivial fieldg*(k) of which A“(k) is
TSGS, the background configuration has to be topologicallghe vector potential. A calculation shows that
nontrivial (see more in the next sectipro thatT* is non- 1 0K 0K

zero. To highlight the relevance of topology of spin configu- Tf = —€,,,Q(K) - X . (44)
rations, let us consider spin states defined in @) where 4 K, K,
Q(r) corresponds to a hedgehog configuration, And more important the spin-up and spin-down electrons
r defined in the local frames drift in an opposite direction once
Q(r) = Mk (38)  again leading to TSGS.

The general property of electrons illustrated in E43)
Our calculations show that forces acting on two spin-rotatinghas been noted on a few different occasions. In Refs. 6 and 7,
electrons given in Eq(31) are equivalent to forces exerted T fields were expressed as the Chern-number density of
on two oppositely chargegbarticles in a resultant magnetic electron states, which was first introduced for the studies
monopole field of quantum-Hall and fractional quantum-quantum-Hall
conductance¥ In Ref. 11,TX fields are from a topological

=——. (39) monopole in the&k-space.

2Ir? The general form of topological fields obtained in Eqg.

Before leaving this section, we generalize the argument t<S44) is a generalization of standard Pontryagin fields defined

momentum space topological effects. We then consider il the X-space. One easily recognizes that topological fields

orthogonalk-space wave packets; spins in these states ar%lsc(;l§sed hef[e arel equwalfnt to al%eé_rkr]y’s two-forlrln fields de-
pointing at eitherk or —k direction. Let us defing(k) and In€d In an external parameter space.ney generally repre-
#(K) as sent holonomy of parallel transporting eigenvectors in the

Hilbert spacé? in this particular case the holonomy of trans-
Q,(k) =sind(k)cos¢(k), porting a spin-up or spin-down eigenvector defined in local

T*=
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frames. We will discuss topological spin pumping in the [k = AX(r)]?
presence of this TSGS in Sec. IV C. Hk,r,T)= T om T gueB O + O

+ (O, + D)2]Y20,+ Ve (1, T).. (50)

Let us now look into the kinetics, which leads to spin HereSU2) gauge fields generated by pure spin rotation are

rotation while electron wave packets propagate in the 9
X-space. We study the spin-pumping phenomena in this case Aii =iU Y(r)—U(r)= Aﬁ’a’, (51
via applying kinetic equations derived in Sec. Il. N

Consider electrons coupled to a background spin configuy=x,y,z To simplify the formula, in this equation and the
ration or an artificial magnetic field with uniform magnitude, rest of paper, we do not show spin indices explicitly. A direct
but with spatially varying orientation. One models electronscalculation yields
with the following Hamiltonian

B. Adiabatic spin transport in the presence of XSSR

K2 ARX=~ s ne(r)—— ¢( )
Hk,r,T) = om T MFT guelBo2(r) X o+ Bo,] + Ve, (r,T). 2 Ny
(45) R J6(r) |
Again €(r) is a unit vector representing the orientation of a ©T2 Ny
background magnetic field. The scatter of impurity potentials
is taken into account in elastic collision integrals in E4). AXZ= 1 B )a¢(r) (52)
We assumeyugBo, gugB are much smaller than the Fermi p =5 COS

energyer. T

To facilitate discussions, one introduces the following unitand full covariantSU(2) fields 2 , vanish as one should
vectorn(r), which defines the direction of net Zeeman fieldsexpect for pure spin rotation.

in the above equation To proceed further, one notes that the degeneracy between
spin-up and spin-down states in the rotated basis or [gpis-
_ Qy and spinminusstates is completely lifted by various Zeeman
\J/Q)Z(+Q§+ (Q,+ 1?2’ fields. One again assumes that spin rotation is slow in the

X-space so that the adiabaticity specified in Bf) can be
satisfied. In the adiabatic approximation, one neglects transi-

= £y , tions between spiplus and spinminus states and sets off-
\/Qf( + Q§ +(Q,+1)? diagonal gauge potentials®, AXY as zero. Therefore in Eq.
(50), one only keeps#\*% which yields the usual Berry cur-

Q,+1 vatures for spirplus and spinminus states. Corresponding

= , (46)  U(1) gauge fields are
\/Qi + (232/ +(Q,+1)?
IN(r)  aNA(r)

wherel =B/B,, ) = o (53
Alternatively, similar to Eq(30), in spherical coordinates g K
one introduces the following characterizationrof So in this limit, only thez component ofSU2) gauge
potentials survives to contribute to pumping currents; it also
ne= sin@(r)cos?{ﬁ(r), defines well-known Pontryagin typgg(1) fields

~ ~ = zf,jol,
ny=sin (r)sin ¢(r),

J0(r) dp(r)  0(r) dg(r
X2 S|n0() (r) d(r) — 36(r) 9¢(r)
n,=cosd(r) (47) fu Mo Ty My
: ' h (54)
We use atilde to distinguish the spherical coordinatés¢  ~ ~ . . .
for n from 6, ¢ for Q. Equation(46) indicates that 6 and ¢ again are two spherical angles mffr) in Eq. (46).
In the rotated basis, the structure of equation for one-
- ~ sinA(r) particle density matrix should be identical to the one in Sec.
p=o(r), 6= arctan—cosa(r) e (48) |V A. However, according to a general consideration in the
semiclassical transport theory, the following transformation
We introduce a local spin rotation such that takes place in the equation of motion for electrons in the
presence of XSSR.
-1 . =
U™ (r)(n(r) - o)U(r) = o*. (49 MK ﬁ_[k P
The Hamiltonian becomes o Honien e
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IH(K,r;T) or ward calculations lead to the following expression for total
ok “a =[rHE D p- (55 charge and spin transported in a transverse directiger
period:
[ Ju, is the usual Poisson bracket defined with respect to N N
canonical coordinate§i,v}. k is the electron momentum QyXZHtc E XSt M)Z/X:Hts gl XS
k=p+AXr)oy; (56) e

20

andp andr are a pair of canonical coordinates. In the semi-
: p = QI+ F 1)) =2 (62

classical approximation, the resulting equation for the one-
particle density matrix, therefore, is as follows:

ap(K,r;w,T) [o?H(k,r ;1)
ar ar,

and () is introduced as an effective cyclotron frequency of
dH(k,r;T) topological fieldsS,.
kK, The transverse charge-pumping angle and transverse
spin-pumping angl&s are

+ Eﬁy(r) ®

d oHk,r;T) 0 oHk,r;T) ¢
o o 7 o B_(B
Ky Ky, al Jw tan ¢ = Toﬂct—gMB F(—O),
® p(k,1 0, T) = I p(k, i, T). (57) ¢ \B
Following Appendix A, the transverse pumping currents tan s= 75Q¢;. (63
are given as

| F(B) is a function of B; it approaches unity ag becomes
4K . . ) .
3,0 = r%) J d Dktr{EﬁV much less than one. The transverse spin-pumping efficiency

w(2w)d in this case is
HK,r:T) 0| 1 MZ,  tané B
K — ( )_[—MSl(k,r,w,T):|}, et:_ﬁ(:—szilz—l(_o). (64)
ar,  de| Dy Qy tanfc gugB B

’ It is important to note thak! diverges as the external

z _&f dk { X Zeeman fieldB goes to zero, signifying zero transverse

J2(r) = dw Dytry n(r) - o2 59 ero, sig g _ _
g 2m (2m)¢ - charge pumping. In practical cases, the topological spin
HK,r:T) o [ 1 ” pump?ng is always acqompanied by small transverse charge-

@ —————=—| =MS(Kk,r;0,T) |, (58 pumping current, a unique feature of topological fields. This

ar, el Dy also occurs in the scheme discussed in Sec. IV C. It is, how-

wheretr is only taken over the spin space. This is the centraPVer, in contrast to spin pumping of polarized electrons dis-
result for topological transverse spin and charge pumping ifussed in Sec. Il where the transverse spin-pumping current
the presence of XSSR. is negligible compared to the transverse charge-pumping cur-

Let us now again consider external perturbations specifief®Nt. This feature originates from the fact that spins and
in Eq. (13). To address spin pumping, we consider a backSPin-minuselectrons carry opposite topological charges. In

given below, currents of spirplus and spinminuselectron flow in oppo-
(il site transverse directions as a result of TSGS. So the total

; _ Z—Alylo L . charge pumping is zero but spin pumping current flows.
nx(r)+|ny(r)—|]_|[ Vz= 213, 1,)2+ 22 Z=IxFIny. In all topological pumps discussed here and below, we
Ve (59) have found that spins are pumped out by applied a.c. gate

voltages because of a spin configuration which yields either

zis introduced as a coordinate in the two-dimensiqa&)) ~ honzeroX) , as in Eq.(58), or nonzeroYs , as in Eq.(85).

plane.z(l,,1,)=1,a+il ,a represents a lattice site with, as  We intend to call these topological configuratidgologi-
integers anch the lattice constant. We also assume that ~Cal motorsin spin pumps.
<a. The average topological fields of this lattice are

C. Adiabatic spin transport in the presence of KSSR

To illustrate the effect of KSSR, we start with a 3D toy
model and discuss the topological mechanism. In the second
half of this section, we study the topological mechanism in
% more realistic models for electrons in semiconductors.
< gusmin{By, B} (61) In all subsections here, we assume that spin-orbit splitting

and Zeeman field splitting are much smaller than the Fermi

The equilibrium density matrix is still given in E¢19).  energy, but can be comparable among themselves. Zeeman
In the longitudinal direction the results are the same as in Eggplitting is introduced to ensure that spin degeneracids at
(24) and not repeated here. Furthermore, some straightfor0 are lifted and the adiabaticity holds for every state below

IESIE a—z (60)

The adiabaticity condition in Eq36) requires that

K|
M
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Fermi surfaces. The zero field limit should be taken when the 1 Kk K
adiabaticity conditions in Eq99) are satisfied. o dS_|k| T =1, (68)
S

In the presence of impurity scattering, to ensure adiaba-
ticity, we always assume that the impurity potentials aréyhere the surface integral is taken over|idt— +%. This
weak compared to the splitting between two spin bands eishows that spins of electrons form a monopole structure.
ther due to spin-orbit coupling or Zeeman field splitting. We This is not surprising because at very lakger smalll, n(k)
neglect, therefore, the interband transitions due to nonadigy jgentical to€)(k), which always points outward along the
batic corrections. For this reason, we only consider the limit44ius direction.
of st;ong spin-orbit coupling and present results at zero tem- Again we introduce &-space local spin rotation such that
perature.

U(k)n(k) - aU(K) = o*. (69

Under the spin rotation, the Hamiltonian becomes
In this section we consider electron spins coupled to the
momenta of electrons, and spin rotation occurs when a wave H(K.1;T) = & = gugBo[QF + QF + (Q,+ 1 (py)) V%0,
packet propagates in the momentum space. A propagating + Vot = AK:T). (70)
wave packet in the&k-space corresponds to an accelerated & '
electron. The artificial model introduced here to study topo- As before, SU2) gauge fields are generated under the
logical spin pumping can be considered a mathematical gerspin rotation
eralization of the Luttinger Hamiltonidhto spin-1/2 elec-
trons. _ _ _ AK(k) - iU—l(k)i
Consider the Hamiltonian . K,

1. A toy model

U(k) = Af70”. (71

H(k,r;T) = €~ gueBo( KD (K o + Q(K) - o] + Ver;T); I @ fixed gauge, one obtains

(65) 1 .~ dbk
A=~ = sin 6(k) ¢k) ,
| andB, are functions ofk|, andQ(k) is a unit vector along 2 Ky
the direction ofk; B
k Az)’: Eﬂ(k),
l=———, By(k|)=Tlk|, Qk)=:. (66) 2 &k
Bk oKD =TIk K .
In the toy model there are two spin-dependent terms; the AKZ—E cos@(k)a&(k)' (72)
term proportional too, represents the Zeeman splitting of ) ok

electrons in the presence of fields along thaxis, and the g

Q-0 term characterizes a collinear spin-orbit correlation. ~and thefull SU(2) fields again vanish. _ N
To understand the topology of spin configurations in In linear responses, the effective Zeeman field splitting
Fermi seas, we again introduce a unit vecttk) as a func- between spirplusand spinminusstates in Eq(70) is stron-

tion of Q(k) defined in Eq(46) in Sec. IV B. Especially, ger than external perturbations. Furthermore, we require that
the energy splitting is also stronger than impurity potentials.
H(K) = B(K) So the adiabaticity condition in E@42) is always satisfied.

We, therefore, seA*, A to be zero again to neglect tran-

sitions between spiptus and spinminusstates. In Eq(70),
sin (k) 67) we only keep thez component ofSU(2) potentialsAfj,
cosO(k) +1(|k|) which yields to Berry’s phases plus andminusstates. The
correspondingz component of reduce8U(2) gauge poten-

Again 6(k), ¢(k) are two spherical coordinates of unit vector tials, which enters our results below, is
9(k)-k/|k| and differ from two angles oh(k), 6(k) and . AR ) AR (k)
¢(k) [see Eq(30)]. 3k) = —t—— - :
One then considers a configurationrgk) on a sphere at K, Ky,
a very large momentum, which naturally defines a mapping We note that in the presence of spin-orbit coupling, impu-
from an externaf’ sphere in thé-space to a targed” space ity scattering combined witiAK*KY components oSU(2)
where n(k) lives. The topology of electron spin states in gauge fields does lead to transitions between different spin
Fermi seas is therefore characterized#¥S?), the second bands. The adiabaticity condition in this case, however, is
group of target spacg. sufficient to ensure that these contributions are negligible. So
Let us further introduc@X fields defined in Eq44) with  the Born-approximation employed in this paper is valid in
Q(k) replaced wittn(k). The winding number of a mapping the strong spin-orbit coupling and finite Zeeman field limit
or configuration can be characterized by the flugbffields ~ where the splitting betwegplus andminusspin bands at any
through a large surface. It is easy to verify that momentumnk,

Aé = arctal

(73
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20usl' [K{OZ + Q7 +[Q, + 1 (p) 32 (74) . sing 1 dl(py)
’ 2P¢:_ 1+|2+2 ol 3/22_ 9 (76)
is much stronger than the impurity potentials. ( cos6l)™“2p dpx
When the adiabaticity condition is satisfied, one shows
that andl is a function ofpy(=|k|) as defined in Eq(66).
1 ank)  on(k) It is convenient to redefine topological fields in terms of
K — Kz _ K
=-nk)- —X——. (75
b 2#,, 2 2 2n( ) X, o, (75 T,
In spherical coordinates wheke= (py, 8, ¢), one has the fol- TX(k) = L
lowing explicit results Tulk) =2 262 (k). 77
M 12+| cosf 3/2% One finds the following asymptotic behaviors at large and
(1+19+2 cosdl) small momenta,
|
1], 2\ Am _
2p 1- I cosd |e,— 2—p3 sin fey, whenp, > N,
TK(k) = k K (78)
2)\2 —e+ 2)\3 K [(1-3cog 6)e, + 3 sinfcosbe,], whenp, <\
[
And here ap(K,r;w T) dH(k r'T)} d
L] ) Q k + K k by v
B JT ok (k) 2 (k) @ ar, ar
Am=+ (79) HK,T) o dHK T 9
"r - Akl LSLELL e
ar, akﬂ T dw
defines the core of anisotropic monopoles when the Zeeman = |C.l5(k r;w,T). (82
fields are present. . .
When the Zeeman fielfl is set to zero of=0, unit vector The charge and spin current expressions transform, ac-
n(k) coincides withQ(k) and ¢= ¢(k), 6=6(k), therefore, cordingly; in the rotated basis one has
EM) vanishes. Equatio(76) in this limit indicates familiar do d3 « GH(K,r:T)
isotropic monopole fields in thke-space. In the presence of J(r,T)= | — 3TN | vk u(K) +2W(k) Q ——
finite Zeeman fields, topological fields are not strictly isotro- 2m (2m) ar,

pic because the inversion symmeiry> -z is broken by ex-
ternal Zeeman fields. Topological fields are along zheis @ pk,r;0,T)(,
at small momentum limit, but approach isotropic monopole
fields at large momenta. The crossover takes placg,at o d%
Under KSSR, the following transformation should occur r,T) :f Jw {n(k) |:Ukﬂ (K) +2K (®)

in the equation for the density matrix: 477(277)3Tr
) dH(K,r;T)
_dH(k,r;T) . kK = [k, HO D s ® o ] ® p(k,r ,w,T)}. (83
or ot
Equation(83) can be used to analyze contributions to the
MK T ar spin- and charge-pumping currents from different parts of
————= & —=[r,H(K,r; k. (80) Fermi surfaces.
kK ot ' Let us defineplus and minusFermi seas as shown sche-
matically in Figs. 1 and 2. In thelus Fermi sea, electron
The electron coordinate in the presence of KSSR is spins are along the direction of unit vectofk) and in the
minus Fermi sea spins are along the opposite direction of
r =x-AKqk)o,; (81 n(k). The corresponding Fermi surfaces are named as the
plus and minusFermi surfaces. For a system with an inver-
X,k are a pair of canonical coordinates in this case. sion symmetry, each Fermi sea has zero overall polarization
The corresponding kinetic equation becomes when the Zeeman field is absent. In the rotated basis, these
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(b)

FIG. 1. Comparison between the usual Stern-Gerlach beam
splitting and the topological Stern-Gerlach splitting. When the Zee-
man fields are applied along tkairection, as shown ia), in the
conventional Stern-Gerlach splittir§ is a good quantum number b
and no spin rotation occurs; the Zeeman field gradient drives FIG. 2. Plus and minus Fermi seas for the toy Hamiltonian in
spin-up and.spin-down particles. apart ak,mg yhd.irection. HOWf Eq. (65), the Rashba-Hamiltonian and Dresselhaus-Hamiltori@n.
ever, TSGS is always accompanied by spin r_otatlon as shc_)(\bj.ln and(b) are for the toy Hamiltonian. In thelus Fermi sea, each spin
Spins are represented by short arrows in this and other figures. points at the direction of its momentuishown in(a)]; in the minus

Fermi sea shown i), the spin of an electron points at the oppo-

. . ) site direction of its momentum. I¢c) and(d), we show the corre-
two Fermi seas correspond to spin-up and spin-down eleGsyonding Fermi seas for the 2D Rashba-HamiltoniankJak,
trons. plane, electron spins in thelus Fermi seas form a meron with a

Consider electrons subject to pumping potential gradienhalf Skyrmion charge when a Zeeman field is applied alongzthe
along the negative axis. One easily finds that spin-up elec- axis. At largek limit in the plus Fermi seas, spins point a
trons at the north pole gflus Fermi surface are subject to a x Q(k) direction while in theminusFermi seas spins point aie-
drift along they direction while spin-down electrons at the x Q(k); they both represent vortices with one updsitivevortic-
south pole ofplus Fermi surface are subject to a drift along ity. Here (k) is a unit vector along. At the center of Fermi seas,
the minus ydirection. For the same reason electrons at thespins are along thezdirections(not shown herg In (e) and(f), we
north and south pole ahinusFermi surface are subject to a show spin rotation in Fermi seas of the Dresselhaus model; electron
drift along minusandplus y direction, respectivelysee Fig.  spins in theplus Fermi seas form a meron with a half negative
4(C)]. Skyrmion charge. At large momenta, electron spins in both Fermi

Following these results one also finds that in the absencg@as form vortices with one uniegativevorticity.
of spin polarization, charge-pumping currents carried by
spin-up electrons at either the north polepbdis Fermi sur- do d3k
face or the south pole @hinusFermi surface flow in exactly Ji(f) :J T
the opposite direction of charge-pumping currents carried by

1 Sk
47 (2m)3 DkTr{n(k) UEW(k)

spin-down electrons in the south pole m@fis Fermi surface HK,r;T) o

and the north pole ofminus Fermi surface. So while the © a, Mk, (- (85)
spin-pumping current flows, the net charge pumping van- o )

ishes. Only when electrons are polarizedBoiis nonzero, Taking into account E¢(75), one then arrives at expres-

charge pumping is possible along the transverse direction. Sions for charge and spin pumping currents. The longitudinal
Given the expressions fg* in Eq. (11) and the current SpPin and charge pumping are still given by Eg0). The

expressions in Appendix B, one evaluates the transverséansverse spin- and charge-pumping currents are more in-
charge- and spin-pumping currents, volved. To evaluate the spin and charge current, one notices

the following identities:

do ok 1 < Tr(0™Sy) = 25K Tr(o*Sg) = Tr(o¥S5) =0 (86)
3= -3 TN 2K
according to Eq(75). Final expressions for spin- and charge-
® aH(k’r’T)Mﬂ(k,r;w,T) , (84) pumping currents only depend on tecomponent of re-
or ducedSU(2) fields. For this reason, one is able to obtain a

14
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rather simple form for transverse adiabatic curvatures de- 2. The 2D Rashba model

fined in Eq.(26) In Sec. IV C, we discuss the topological spin pumping
dQ(k) 1 k(&) due to thek-space spin rotation in an artificial model. Now
fdfkf NA(K) 2y —— Nol&), we turn to more realistic models for semiconductors and
Je limit ourselves to 2D cases. Spin-orbit coupling can be either
due to the Dresselhaus term or the Rashba #rfiIn the
fdekf M—QMBFPK[Qi*'Qi latter case, or in the Rashba model for 2D semiconductors,
the spin-orbit coupling has a particularly simple form be-
(€ ano(ek) cause of either a bulk-inversion asymmetry or a structure-
X; s (87) inversion asymmetr§# We start with discussions about this
de I model.
The topological motorsX? in this case is an anisotropic I the 2D Rashba model, the spin-dependent Hamiltonian

monopole discussed in Eq75) We only present results in can be presented as

]cihrﬁit;c.)"owmg weak Zeeman field and strong Zeeman field He = - gueBo(K)[1(K) o2 + &, - @ X o). (93)
Since the topological fields have distinct large and smalln bracket[ ], the first term is due to Zeeman fields and the

momentum asymptotics, the topological pumping has &econd one is the Rashba coupling term. As in (68), we

strong dependence on Zeeman fields. The spin and chargeve defined (k)=B/By(|k|), and Bo=T'|k|. (k) is a 2D

topologically pumped out per period are again given by Equnit vector along the direction ,

(26); the transverse adiabatic curvatuidé$'s are calculated

+(Q,+ 1(p 212

and results are 0, = cos(k) = Ly
k)1 1 K
' =7 ( L ) | —II',
)\m ’7TC Dom
y=sing(k) = |k| (94)
tc— _tc kF) 1 1 gmeB
=m ()\ Dom & o (88 Here ¢(k) is a polar angle ok vector in the 2D plane.

To characterize the spin configurations (ky,k,) plane,

|C . . . .
I1'¢, 7° are provided in Sec. D, is the diffusion constant we study the unit vecton(k) defined as

andm is the electron mass. We should mention that when the

Zeeman field vanished]* goes to zero, bull' remains -0
finite; as pointed out before, this is a distinct feature of a Nx= 1+12
topological spin pump where an electron beam splits because v
of TSGS.
B<TIkg corresponds to a limit where the core size of N = Q
monopoleA, is much smaller thak, Y oy1+12
k I ¢ k N
A%) ke ()ooa) o .
Am/ 120 N\ Am ke n,= Tip (95
\/
B>T'kg corresponds to a limit where the core size of
monopoleh, is much larger tharke, 9ne ~aIso obtains simple results for spherical angles
0(k), ¢(k) of n(k) in this case,
T 10, 41k of k)
2 4 ~
)\m )\m )\m ¢=¢(k)+g,

In deriving these results fo#'S', we have neglected the
k-dependence in diffusion constants and derivatives of the
density of states.

The corresponding charge- and spin-pumping angles are 6=arcta I(|k|) (96)
tana :Wm(ﬁ)igﬂBB 1 One notes that ak=0, I(k) becomes infinity, and as a
¢ Am/ 7 & Dom’ result, unit vectom(k) points at the direction o&, because
of Zeeman fields. At the largelimit, 6 approachesr/2, and
tan = 7 ( kF) 11 (91) n relaxes and lies in the equator plane of two spi®ré&o 0
Am/ 7 Dom Dom’ varies from O tomr/2 as one moves away from the center of
Finally, the transverse spin-pumping efficiency is Fermi seas whilep=¢. This behavior of unit vecton im-

plies a meron or half Skyrmion in the 2D momentum space.
(92) Merons have been proven to play important roles in Yang-
Mills theory as well as in quantum magnetigpt® The size

tan 03 _ ’Tl'ts(kp/)\m) €p

t— =
tan ec 7th(k|:/)\m) g,LLBB '
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of half Skyrmion, outside which the spin polarization alang 7K
direction becomes unsubstantial, is
B
A= (97) &
A
To confirm the peculiar topology of electron spin states ’
one examines the homotopy class of mapping frigank,) L
space to a two spher® defined byn(k). ConsiderT de- 0 )
fined in Eq.(44) in terms of then(k) vector instead of).
The winding number can be easily calculated, as follows: FIG. 3. Topological fieldT as a function ofp, in the 2D
Rashba modelschematigx \g, which defines the size of meron, is
1 1 (™ - o~ 1 chosen to be smaller than the Fermi momenkgn
deez-TK:—f désing= -, (98)
2J, 2
As
which precisely shows a meron in thg-k, plane. Fep whenpy > g,
In general,I' is a quantity that can be controlled by an TK(K) = Pk (102
electric field®® \q is a function of both Zeeman fields and 1 3Pk henpy < ..
applied external gate voltages that offers great opportunities 2)\2 2)\2 € Whenpx

to manipulate the meron structure and control topological
spin pumps as discussed below. In this model, the adiabatic- In the absence of Zeeman fields, we fid 0 and 3K2 is

ity condition in Eq.(42) requires that for eack, zero everywhere in the momentum space excepk==a0.
That is
MNexlr) 11 Nim(r) 11
——— |min min Kz _
or i . |k| pe [ " |k| Sy = mAK). (103

_ Note that the topological fields though zero everywhere are
< gugmaxBo((k|), B}. (99) singular at the origin of th&-space. In general, topological

Here V,, is the impurity potential. The sufficient condition fields are negligible whep, is much larger than the Skyr-

for Eq. (99) to hold is that mion size\. However, we find this is sufficient to produce a
spin-pumping current even if the Skyrmion-sizgis much
Next| | NVim < (gugB)? (100 smaller than the Fermi radids. The topological motor in
a 1 er r - this model is a positive merogsee Fig. 3.

Let us again definplusandminusFermi seas. In thplus
Furthermore the size of systems has to be larger thapermi sea, all electron spins are alontk) while in the
min{x;*, |k| ™} to ensure the semiclassical approximafién. minusFermi sea all electron spins are along tha(k) di-
At last we would like to emphasize one more time that therection. In the rotated basis, tfgus and minusFermi seas
impurity potential has to be weak compared to either thehecome spin-up and spin-down Fermi seas, respectively. In

Zeeman splitting or the splitting due to spin-orbit coupling sopjus and minus Fermi seas, electrons subject to external
that the adiabaticity condition can be satisfied. Therefore thgumping fields along axis drift along plus and minug

transitions between the split spin bands are also negligible igirection, respectively, as shown in Figd#
the adiabatic limit. As mentioned on a few occasions in this  The spin and charge topologically pumped out per period
paper, for this reason the Born approximation is always valichre again given by Eq26); the transverse adiabatic curva-

in the adiabatic approximaticti. turesII®®'s are given in the following equations:
Similar to the procedure introduced in Sec. IVC, it is

possible to introduce spin rotation to diagonalize this Hamil- s = f f d¢(k) 1 n(k) EKzﬁV(fk) (&)

tonian. In the rotated basis, spin-up and spin-down states are 2 2 Jey Motk

split by a combined field of external Zeeman splitting and

internal spin-orbit coupling with the following strength, . de(k)
gueBoy1+12([k|). The resultantU(1) gauge fields in the 15 dekf—z Ous
two-dimensionk-space are vortexlike. We present the result

i i = J an
in polar coordinate& =(p, , ¢), erk\'TZ(m) 25; v(€) o(ek)_ (104)
1 | &Ek (9€k
AKZ( k)= > —’1 E We have used subscriptto refer to the adiabatic curvatures
Py in the Rashba model. Taking into account the profile of to-
pological fields in Eq(101), we obtain the following results
1 1 dp) for the transverse adiabatic curvatures:
Epd) o 2\3/2 (101
20 (1+1%)32 5p, s (kp> 1 1 .
The asymptotics for the vector fieldK are g Am/ ¢ Dy mH ’

125321-13



FEI ZHOU PHYSICAL REVIEW B 70, 125321(2004)

i <3 dylé d i N dy|4 Hg:: WIC(&)ALQ#BBHK (105)

- NS o . Ic
= N gl N

7y s 7 y (see Sec. Ill for discussions di'®, #'°). 7' and #'° are
‘ \ ’ calculated using rescaled parameters introduced inZ3),

3
-
3

th(b):%fd se(a) f(@) 1 _1(ba) dl(ba)

da h(@a(l+12 ga

f(a) 1 1(ba) dl(ba) dng
(b :fda - -—. 106
™ (b) h(@al+I> da oda (108
2 2 We again present results in the limit of strong and weak

o ! vykd Zeeman fields.

B<TIke corresponds to a limit where the core size of
meron\g is much smaller thaR.

Wts(&) = }’ﬁtc(&) = } (107
) 27 N 4

B>Tk- corresponds to a limit where the core size of
meron\g is much larger thaikg.

71,ts(&) :17th<&) :1<&>2 (108)
A/ 20 AN/ 4\
The corresponding charge and spin-pumping angles and
@ the transverse spin-pumping efficiency are still given by Egs.
(91) and(92); for the Rashba modetr's and 7*¢ (calculated
above should be used to determine the angles and efficiency.
FIG. 4. Responses of Fermi seas and individual electrons t&Vithout losing generality, we again have neglected the
external pumping fields applied along thedirection. (a) is for k-dependence i, and dv(€)/de, in deriving results for
polarized electrons in the presence of orbital magnetic fields direct7!St¢ jn this section. In the 2D model, we further choose to
ing along thez direction. Spin-up and spin-down Fermi seas expe-work in a limit wheredv(e)/ de, is nonvanishing because of

rienceidentical displacementd along the longitudinal directiox band structures so that the longitudinal charge pumping is
and transverse directiop which are shown in the two upper left nonzero.

insets of Fermi seagb) is for electrons with spin rotation in the
X-space; in this case spin-up and spin-down Fermi seas have oppo-
site displacemerd along the transverse directigras shown in two
insets for two Fermi seas. [it) we illustrate differences in electron In the Dresselhaus model, the spin-orbit and Zeeman cou-
responses in thplusandminusFermi seas. We want to emphasize plings are given as

that Fermi seas do not have collective displacement along a trans-

verse directiony or dy=0. In insets we show the external-field- ~

induced drift or groupyvelocity of individual electrong in differ- Ho = = gugBol o~ Q(K) + ol ([k])]; (109

ent regions of Fermi seas. The transverse drift of an electron in the -

upper part of a Fermi sea with momentumis in an opposite hereA-B is defined asA,B,—A,B,. Again one introduces a
direction of the drift of the electron with momentunk -in the  unit vectorn(k) to specify spin configurations in Fermi seas.

lower part, which results in self-twists of Fermi seas. In uppertpe ynit vectom(k) is characterized bg}(k), and:ﬁ(k) is

(lower) insets, we show the drift of electrons in the noftioutt) given in terms ofl (|k|) and ¢ in the following equations,
poles of plus and minus Fermi seas, respectively; the big arrows

across Fermi seas indicate the direction of two distinct twists of -
plusandminusFermi seas. Iiid), we illustrate responses of tipus d=-¢(K),
andminusFermi seas in the 2D Rashba model. In this case, again

two Fermi seas have zero displacement in the transueidiesc- 1
tions (dy=0). However, the spin-plus and spin-minus electrons in 0= arcta )
two Fermi seas acquire field-inducdispersivegroup velocities in |(|k|)

the oppositey direction as shown in the two insets(d); the field- . . . . .
. . . Calculations for the spin-pumping current are identical to
induced transveral group velocity decreases rapidly as the momen-

tum increases. See Sec. V for detailed discussions. thqse in Sec. IV. B. The Wlnc_ilng number of the configuration
defined byn(k) in this case is

3. The 2D Dresselhaus model

(110
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1 1 (™ - - 1 In the adaibatic approximation employed in this paper,
W= ;fd$z'TK=—§J désin 0=-3, (111)  only the diagional part of displacement tensor is nonzero.

0 One studies these elements to analyze the responses of Fermi
representing a meron with a negative one-half Skyrmiorf€as to pumping fields. For weakly polarized electrons in
charge. This is topologically distinct from the spin configu- Orbital magnetic fields, spin-up and spin-down Fermi sur-
ration in the Rashba model. Naturally, all topological fieldsfaces are displaced in the same longitudinal and transverse
in this model are pointing in the negatizeaxis. directions; electrons in each Fermi sea drift with almost the

In the Rashba model we find that ttepological motoris ~ same velocity when the Zeeman splitting is much smaller
a positive meron in Fermi seas while in the Dresselhaushan the Fermi energy. Following the calculations in Sec. II,
model themotor is a negative meron. We anticipate that
spins should be pumped out in an opposite transverse direc- g = — E)Ma {5 + 7400 (1 +019MBB)6 }
tion in these two models. This is as well true for charge- m Jr, i R ¢ & )
pumping currents in two limits when a Zeeman field is (114
present. So both topological spin- and charge-pumping cur-
rents flow in an opposite transverse direction compared td he responses of Fermi surfaces are summarized in Fig. 4.
currents in the Rashba model. In an XSSR-based pump, theus and minusFermi sur-
More specifically, we find that transverse adiabatic curvafaces are displaced along the same longitudinal direction, but
tures in the Dresselhaus modglubscriptD refers to this along the opposite transverse directions.
mode) are related to those in the Rashba madebscriptR
for this modeJ via the following identity L= 7o Nexdr,T)
m dr,

H’(Ds,tc - _ Hg’tc- (112)

70
ayx[ S+ olaziii} . (115

o ) . . . For KSSR-based pumping, Fermi seas respond in very
This is an exact result as far as the adiabaticity conditions igyjstinct ways. In the generalized Luttinger model, the Rashba
Egs. (36) and (42) are satisfied and is independent of the mode| and the Dresselhaus model, Fermi seas only experi-
spin-orbit coupling strength in the 2D Rashba and Dresselgnce displacement in the longitudinal direction,
haus models.

In all models, we have found that topological spin- and 70 Nexlr, T)
charge-pumping are suppressed by strong Zeeman fields be- d,=- m o SuvOus
cause of spin polarization. This is a general feature of topo- !
logical pumps; the topological fields are absent when elecand Fermi seas are not displaced along the transverse direc-
trons are completely Zeeman polarized. Furthermore, thdon. In this regard, there is a fundamental difference be-
topological charge pumping has a maximum when the Zeetween spin pumping of polarized electrons—an XSSR spin
man field is comparable to spin-orbit fields, i.B5T'ke. In pump and a KSSR spin pump. In the latter case, the one-
Appendix C, we have found similar effects on the spin-Hallparticle density matrix, surprisingly, does not develop an
and Hall conductivity. In the case where both the Rashba andsymmetric component along the transverse direction. The
Dresselhaus terms are present and controllable, it is interes$pin current, therefore, is characteristic of persistent currents,
ing to understand how a topological pump reverses the diwhich do not involve distortion of Fermi seas. This observa-
rection of its spin flow. tion appears to be consistent with a proposed analogy be-
tween a spin-injection current in the Luttinger model and a
supercurrent in Ref. 12.

(116

V. COLLECTIVE RESPONSES OF VARIOUS FERMI SEAS

TO PUMPING POTENTIALS: TRANSVERSE However, in this case the group velocity of electrons ac-
DISPLACEMENT VERSUS SELF-TWIST quires a transverse term in the rotated basis along the trans-

We also would like to emphasize that different schemes o¥€rsevy direction; the dispersion of group velocity tensor is
spin pumps discussed in this paper correspond to different
responses of Fermi seas to adiabatic perturbations. Tp study V= oQy, + &EKi(k)M. (117)
displacement of Fermi seas or more general deformations of K’ or
various Fermi seas, one examines the adiabatic displacement . .
when pumping fields are applied along thexis. It is useful ~ consider the toy model in Sec. IVC 1. In terms of group

to introduce the displacement vector-tensiok) to charac- velqcities, one finds that th? upper h_alf of fhies Fermi sea
terize collective motion of Fermi seas is displaced along the positivg direction and the lower half

twists along theminusv, direction. For theminusFermi sea,
ap°(k) the upper half twists along theninusv, direction and the
dp(k,r;T)=mv -d(k) Je lower half twists along thelus v, direction. Thereforelus
v andminusFermi surfaces experience two distinct self-twists.
d All these occur while there is no displacement of Fermi seas
w . .
Sp(k,r;T) :j —[pk,r;o,T) - p(k;w)], along the transverse direction.
27 This is also true for the Rashba and Dresselhaus models.
do The displacement vector tensor does not have a transverse
p°(k) :f ;po(k;w). (113 component; only the group velocities of electrons develop a

14

125321-15



FEI ZHOU PHYSICAL REVIEW B 70, 125321(2004)

vy component. Following Eq.117), the dispersion of group A few interesting aspects of coherent charge pumping
velocity is given by the calculated meron fiel@§ in Sec. were addressed in later works. The symmetry of charge
IV C 3. pumping in the quantum limit was studied in Ref. 32. The
So we find that in an XSSR spin pump, Fermi seas expeissue of counting statistics was raised and addressed in a
rience periodical displacement along the transverse directiofascinating worké® the counting statistics might shed light on
and at any moment, spiplus and spinminusFermi seas are the issue of dissipation in an adiabatic pump and remains to
displaced toward two opposite points in the transverse axidve studied in experiments. Pumping of coherent Andreev
In the KSSR pumping scheme, on the other hand, Fermi seasates was analyzed in Ref. 34. At last, we should also men-
do not have periodical transverse displacement; howevetion that various other proposals for spin pumps have been
group velocities are renormalized by external fields. Thesenade by different groups, see, for example, Refs. 35-40. We
responses of Fermi seas lead to topological spin pumpingefer readers to those works for detailed discussions in vari-
phenomena. ous limits. In chaotic quantum dots, where current experi-
ments are carried out, an adiabatic spin pump of coherent
polarized electrons was proposed in Ref. 36; the effect of

spin-orbit scattering has been further studied in a recent
R

VI. CONCLUSION

To summarize, we have developed a kinetic approach t@ticl
analyze topological spin pumps in some detail. In all topo-
logical spin pumps discussed here, spins as well as charges,
are pumped out in a transverse direction by various topologi- ACKNOWLEDGMENTS

cal spin configurations, which we catbpological motors g7 \yoyld like to acknowledge very helpful discussions
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charge pumping current, the transverse spin-pumping ang CCSPP10, No. 02SIC25, and by the NWO-MK “projec-

for XSSR based pumpés is bigger in clean systems than in ,imte” No. 00PR1929: it is also supported by a research
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metals. Transverse spin pumping in this case is attributed t
distinct displacement of spiplusand spindownFermi seas.

On the other hand, following Eq91) for KSSR-based APPENDIX A: CURRENT EXPRESSIONS IN THE

pumping, the transverse spin-pumping an@des bigger in PRESENCE OF XSSR
dirty structures. Transverse topological spin pumping in this

case occurs when Fermi seas are not displaced along the Under the spin rotation defined in Sec. IV B, we would

transverse direction. like to underscore the following transformation in the equa-
A unique feature of topological pumps is their Zeemantion of motion for the one-particle density matrix

field dependence. We have illustrated that when Zeeman

fields are much stronger than spin-orbit coupling fields, the ~ 2H&.r:D  dH(k,riT) 31N e M
topological pumping mechanism is strongly suppressed. In ar, ar, - K,
the 2D Rashba model, a topological spin pump is driven by a (A1)

meron living in Fermi seas while in the Dresselhaus model, ] ) ]

spins are pumped out in a transverse direction by a meron Because of gauge fields in the rotated basis, the asymmet-
with a negative half Skyrmion charge. The suppression octic component 'of the density matrix acquires an addlt_lonal
curs as the size of meron increases. This general feature allym representing the transverse motion of electrons in the
appears in the spin-Hall and Hall currents in these models. IRresence of topological fields. Calculations show

a subsequent paper, we will discuss a design that can be used g HK,r:T) o

to establish a topological spin pump in laboratories. K, wT) = rOqu#{— — t———=—4 DKEﬁV(r)
Finally, we would like to point out that generalization to oy Ny €

various mesoscopic quantum systems is possible. A meso- HK,r:T) & S

scopic mechanism of charge pumping was proposed and ® Tﬁz_ek ® pk,r;o,T). (A2)

studied in a few recent workd:2°-3°The possibility of pump-
ing charges in an open mesoscopic structure was first noticethe solution ofpS is still given by Eq.(11).

in Ref. 29. In an extreme quantum limit, external potentials Taking into account the asymmetric component derived
can be applied to manipulate coherent wave packets rathabove, we obtain various charge and spin currents in both
than to vary chemical potentials; the resultant pumping curfongitudinal and transverse directions. Superscripéd t

rent, therefore, is greatly enhanced at the low-temperaturstand for longitudinal and transverse directiomands stand
limit and decays rapidly at a range of few hundred mk to ondor charge or spin currents, and 1 and 2 are for transport and
kelvin. Such a quantum electron pump has been achieved jpumping currents, respectively.

a remarkable experimeft. Various charge currents are
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Icl( . f do d {aH(k N T) O(k )} spin and charge transpdi) or pumping(ii) currents are
J E— 1)
27 (2 )d ar ' w d% dH(k,r;T)
" I r) = f 2 o1 B ® = =
d . v
12 do dk dHk,r;T)
J ( ) d kTr
27 (2m) a, o d%
JtCZ( ) f d EKV(k)
a1 o 2 (2) g
® —| S MIkKeT) |
dei | Dy Hk,r;T) 1 o
®— M=k, ,T) [,
do d% HK,r;T) Ty B
w sy
J5Hr) = J o dDkTT { A1) ® —}
2m (2m) oIy ztsl/ .\ — d d’% K
' J5(r) = e 2 )dTr n(k) - o%,,(k)
® P (k;w) [,
€ H(Kk,r;T
® —(&rr )po(k;w)},
dw d% MHK,r;T "
Iy == f e O e DN (SX ki)
2m (2m) g ar, © do d%k K
a1 J (r):f;r(zw)dTr n(k) - 0%, (k)
® —| =M3K,1;0,T) (A3)
. ® —————M%(k,k:ow,T){. (Bl
Spin currents are ar, Dy
dw d% MHK,r;T
3%5(r) = f @ { op KT
47 (2m) ar, APPENDIX C: ZEEMAN FIELD DEPENDENCE OF THE
HALL AND SPIN-HALL CURRENTS IN THE
® §—p0(k;w) , RASHBA MODEL
€k
In this section, we apply the results obtained in Appendix
| deo dik AH(K,r:T) B to briefly discuss the Hall current and spin-Hall current.
Jf;sz(r) = 4—(2 )dTr n -aDkT The spin-Hall current in the Rashba model has been studied
& M in various papers and we do not intend to reproduce all re-
a1l o sults in detail. Here we address the effect of Zeeman fields
® (9_€k DkM (k,r;,T) using the approach developed above.
We define the Hall conductivity and spin-Hall conductiv-
) ity in the usual way,
J“Sl( )= fdw dk D,Tryn -0'|:EX (re® —0H(k,r,T)}
47 (2 )d k mr ar, Jy: 0'yxEx: J§: aflex- (Cy
0 After taking into account the symmetry éf)fy, we find the
® &_kp (k;w)(, following expressions for spin-Hall and Hall conductivity in
terms of 21,
sy = 70 [ deo_dk X () @ HOGTT) 1 dk ’
JP« (I’) - m f 477 (ZW)deTr n- UEMV(r) ® &ry O'f,x— 5 Wan(k)E Z(k)no(Ek)
J| 1
@—[—Mﬁ(k,r;w,T)”; (A4)
Jex | Dk f 2 )zngBFPk[l +12(k)JM2 (k)_no(fk)

d=2,3 is thedimension of Fermi seas.
CurrentsJ®®® and J*'! in these expressions yield contri- (C2
butions to the anomalous Hall effect and spin-Hall current, The rest of the calculations are straightforward, and we

respectively. Superscri#l has been introduced to specify gerive the following results for the spin-Hall and Hall con-
the symmetric part of density matrix, which is linear in the gyctivity in terms ofl(p,)
external frequency.

1 I al
APPENDIX B: CURRENT EXPRESSIONS IN THE o‘f,x= - J dpk—zz—no(e),
PRESENCE OF KSSR 4 (1 +15)%dpx
In the presence of KSSR the longitudinal spin or charge gueBo(pi) 9 dno(e)
currents are the same as given in Appendix A. The transverse =- f 1412 op, o6 (C3
k k
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Finally, we obtain the Zeeman field dependence of the of,x at zero Zeeman field was studied in a few recent

spin-Hall and Hall conductivity,

L1
yx 877)\§+k,2:,
_ 1 9gugB K

(C4)

Oyy — .
X 47 €E )\g + k'Z:

works using the Kubo formuld We find that o}, is a
smooth monotonous function of Zeeman fields and decreases
as fields increaseoy, has a maximum aks=ke. Note all
results are valid when the adiabaticity conditions in Sec.
IV C 2 are satisfied. Since the main contribution to the spin-
Hall current is actually from states close td=0, it is es-
sential to lift the degeneracy &t=0. So in the presence of
impurity scattering, the adiabaticity condition implies that a

\s is defined in Sec. IV C 2. As mentioned before, we havefinite Zeeman field needs to be present and the limit of zero

sethA=e=1 in this paper.

field should be taken with great care.
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