
Topological spin pumps: The effect of spin rotation on quantum pumps

Fei Zhou
Department of Physics and Astronomy, University of British Columbia, 6224 Agriculture Road, Vancouver, Canada V6T 1Z1

(Received 14 April 2004; published 29 September 2004)

We have established semiclassical kinetic equations for various spin-correlated pumping phenomena incor-
poratingadiabaticspin rotation in wave functions. We employ this technique to study topological pumps and
illustrate spin pumping in a few models where various spin configurations ortopological motorsdrive adia-
batic pumps. In the Rashba model we find that a topological spin pump is driven by a meron withpositive
one-half Skyrmion charge, the size of which can be controlled by external applied gates or Zeeman fields. In
the Dresselhaus model on the other hand, electron spins are pumped out by anegativemeron. We examine the
effects of Zeeman fields on topological spin pumping and responses of Fermi seas in various topological
pumps. The phenomena of topological pumping are attributed to the beam splitting of electrons in the presence
of spin rotation, ortopological Stern-Gerlach splitting, and occur in a transverse direction along which charge-
pumping currents might either vanish or are negligible. The transport equations established here might also be
applied to the studies of anomalous Hall effect and spin-Hall effect as demonstrated in one of the appendixes.
All results are obtained in an adiabatic expansion.
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I. INTRODUCTION

Adiabatic transport of electrons or quantum pumping,
which is nearly reversible, has been one very promising
means to manipulate coherent wave packets in the extreme
quantum limit. In the presence of periodic adiabatic pertur-
bations, a net charge can be transferred across a quantum
structure during each period that is independent of frequen-
cies of external perturbations and that represents a DC cur-
rent induced by adiabatic perturbations. This phenomenon
was first observed in an early work on transport of edge
electrons in quantum Hall states.1 But general solutions to
this problem were provided in Ref. 2 where conditions of
quantized charge transport were established. The robustness
of quantized transport with respect to disorder potentials and
applications to quantum Hall effects were later studied in a
series of works.3

The absence of dissipation during the adiabatic process is
evident if perturbations are applied to a closed quantum
structure with nontrivial topology, such as a mesoscopic ring
or torus. If one further assumes that the electron spectrum is
discrete and the external frequency is incommensurate with
energy gaps in the spectrum, then no resonance absorption
can occur and quantum states evolve via unitary transforma-
tion, which conserves the entropy. The absence of entropy
production in the adiabatic process is therefore a natural con-
sequence of a pure state evolution, which has been known
for a while.

For a quantum structure with continuous spectra, either
because of contact with leads in a mesoscopic limit or more
generally because of thermal broadening, it is more conve-
nient to introduce one-particle density matrices to describe
the evolution of quantum systems. The adiabaticity can be
achieved when the frequency of applied perturbations is
lower than various relaxation rates characterizing the dynam-
ics of one-particle density matrix. The issue of entropy pro-
duction in this case, however, has not been fully addressed
and is less well understood. Nevertheless, it is widely appre-

ciated that dissipation involved in adiabatic transport in this
limit should also be smaller than that due to a transport cur-
rent with biased voltages applied.

Given the obvious advantage of the adiabatic charge
transport, in this paper we intend to generalize the idea to
adiabatic spin transport. We will address the issue of spin
pumping in both limits, which can be easily achieved in
laboratories and limits which are theoretically exciting but
might not be as easy to be realized in solid state structures.
Particularly, we will propose a spin-pumping mechanism that
is based on the topological beam splitting of electrons in-
stead of the usual Zeeman splitting. Special classes of mod-
els are introduced to facilitate discussions on topological
spin pumping. At the end, we will compare the efficiency of
different spin pumping schemes.

One obvious means to pump spin out of the system is to
adiabatically transfer polarized electrons in quantum struc-
tures. During the adiabatic transport, the currents carried by
spin-up and spin-down electrons have an asymmetric part,
and therefore, electrons pumped out of the structures also
carry net spins. This standard scheme is reviewed in Sec. III.

In Sec. IV A, we discuss the phenomena of topological
beam splitting in detail. Particularly, we demonstrate that
spin rotation in either real space(X space) or in Fermi seas
leads to transverse motion of electrons. In Secs. IV B and
IV C, we investigate topological spin pumping due to spin
rotation either in theX space or in Fermi seas. In both cases,
spin-up and spin-down electrons, though both are electrically
negatively charged, carry certain topological charges with
opposite signs. Consequently, spin-up and spin-down elec-
trons can be split because of opposite topological transverse
forces, an analogy of splitting of electrons, and positrons in
an orbital magnetic field. We would like to refer this kind of
beam splitting as topological Stern-Gerlach splitting(TSGS)
to contrast the usual Stern-Gerlach splitting of spin-up and
spin-down particles in atomic physics. In this paper we focus
on the origin of this phenomenon and basic features. We plan
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to present a practical design of a topological spin pump in a
subsequent paper.

Finally, in connection with topological spin pumping to
be discussed in the paper, it is worth mentioning a few recent
works on anomalous Hall effects and spin injection where
the topology of Hilbert spaces plays a paramount role. In
Ref. 4, the authors pointed out that interactions between con-
duction electrons and background Skyrmion configurations
activated in magnetite might be responsible for the sign and
temperature dependence of anomalous Hall effects observed
in Ref. 5. The authors of Ref. 6 meanwhile argued that
k-space Chern-number densities also modify the equation of
motion for electrons. The corresponding contributions to the
anomalous Hall effect in ferromagnetic semiconductors were
further studied in Ref. 7. Following these works, it is now
believed that the anomalous Hall effect can be an intrinsic
phenomenon. It is indeed likely to occur when skew-
scattering from impurity atoms is absent, as proposed by
Karplus and Luttinger a while ago.8 In Ref. 9 the authors
have considered intrinsic spin-Hall currents in semiconduc-
tors; many interesting features have been found. Related dis-
cussions can be also found in Ref. 10.

Independently, in a series of illuminating works11–13 the
authors studied spin injection in semiconductors character-
ized by the Luttinger Hamiltonian. They have found that
singular topological structures in thek-space have fascinat-
ing effects on accelerated electrons as well and lead to im-
portant consequencies on spin injection. In Ref. 12, the au-
thors further pointed out possible connections between
transverse spin-Hall currents and supercurrent in supercon-
ductors. The issue of dissipation, however, is still under de-
bate and remains to be fully understood.

II. KINETIC EQUATIONS FOR ONE-PARTICLE DENSITY
MATRIX

Consider the one-particle density matrixrabsx8 ,x ; t8 ,td.
Subscriptsa ,b=± are introduced as spin indices; later in this
paper we also introduceh ,j=1,2, . . .N, as indices in an
N-dimensional parameter space;m ,n=x,y,z as indices in the
real or momentum spaces. The evolution of a one-particle
density matrix is determined by the following equation:

Fi
]

]t
+ i

]

]t8
Grabsx8,x;t8,td

= Hab8Sx,i
]

]x
;tDrb8bsx8,x;t8,td

− rab8sx8,x;t8,tdHb8bSx8,i
]

]x8
;t8D . s1d

To study the transport in a semiclassical limit, one intro-
duces

r =
x + x8

2
, X = x8 − x;

T =
t + t8

2
, t = t8 − t. s2d

Furthermore, one defines a generalized semiclassical density
matrix

rabsk,r ;v,Td =
1

V
E dXdtexpsik ·X − ivtd

3rabSr +
X

2
,r −

X

2
;T +

t

2
,T −

t

2
D s3d

V is the volume of systems.
In a semiclassical approximation, one obtains the equation

of motion for the one-particle density matrix,

]rabsk,r ;v,Td
]T

+ F ]Hab8sk,r ;Td

]k

]

]r
−

]Hab8sk,r ;Td

]r

]

]k

+
]Hab8sk,r ;Td

]T

]

]v
G ^ rb8bsk,r ;v,Td

=
1

i
Hab8sk,r ;Td^̃ rb8bsk,r ;v,Td

+ IC.I.rabsk,r ;v,Td. s4d

Here

Aab ^ Bbg = 1
2fAabBbg + BabAbgg,

Aab^̃ Bbg = AabBbg − BabAbg, s5d

andIC.I. is a collision integral operator for elastic(nonmag-
netic) scattering processes.k and r in Eq. (4) are variables
instead of operators. The gradient expansion, which is valid
as far as the transport occurs at a scale much larger than the
Fermi wavelength, is sufficient for the study of semiclassical
phenomena. In all models employed in this paper, we find

the commutatorH^̃r in Eq. (4) vanishes in the semiclassical
approximation.

The charge currentJ and spin currentJz with spin along
the ez direction are

Jsr ,Td =E dv

2p

d3k

s2pd3

]Habsk,r d
]k

rbask,r ;v,Td,

Jzsr ,Td =E dv

2p

d3k

s2pd3ez · saa8

]Ha8bsk,r d

]k
rbask,r ;v,Td.

s6d

To facilitate discussions on the adiabatic transport, one fur-
ther separates the one-particle density matrix into symmetric
and asymmetric partssrab

S,Ad,

rabsk,r ;v,Td = rab
S sk,r ;v,Td + rab

A sk,r ;v,Td

IC.I.rab
S sk,r ;Td = 0, IC.I.rab

A sk,r ;Td =
1

t0
rab

A sk,r ;Td.

s7d

And
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E dVskdrab
A sk,r ;v,Td =E dVskdVskdrab

S sk,r ;v,Td = 0,

s8d

Vskd is introduced as a unit vector along the direction ofk
in Eq. (8) and in the following sections.

In the relaxation approximation employed here, elastic
nonmagneticimpurity scattering only leads to momentum
relaxation because the collision integrals areSUs2d singlet
operators and act trivially on the density matrixrab. This,
however, does notgenerally imply that impurity scattering
combined with the spin-orbit coupling which we are going to
discuss should not cause transitions between different spin
states. Nevertheless in the adiabatic approximation employed
in this paper, in a special basis these transitions are negligible
[see discussions aboutSUs2d gauge fields and adiabaticity
conditions in Secs. IV B and IV C)]. As far as the adiabatic-
ity conditions are satisfied, the collision integral can be
treated in the usual Born approximation even in the presence
of spin-orbit coupling. Please see more specific discussions
about the adiabaticity at the beginning of Sec. IV C, and
discussions after Eqs.(72) and (100).

Since we are interested in the transport phenomena at dis-
tance much longer than the mean free pathl0 or at frequen-
cies much lower than the inverse of mean free timet0, i.e.,

L @ l0 = t0vF, T0 @ t0, s9d

we adopt the standard diffusion approximation. Furthermore,
for the study of adiabatic charge and spin-pumping phenom-
ena, it is sufficient to keep the first-order term in an adiabatic
expansion. Taking into account the definition of symmetric
and antisymmetric components, one obtainsrA andrS as

rab
A = t0vkVmskdF−

]

]r m

dab8 +
]Hab8sk,r ;Td

]r m

^
]

]ek
G

3rb8b
S sk,r ;v,Td, s10d

Dk¹
2rab

S sk,r ;v,Td =
]Hab8sk,r ;Td

]T
^

]rb8b
0 sk,r ;v,Td

]v
.

s11d

vk= uk u /m is the velocity andDk=vk
2t0/d is a diffusion con-

stant;d=2,3 are the dimensions of the Fermi seas that inter-
est us.rab

0 is the equilibrium one-particle density matrix.
The charge- and spin-pumping currents, with spin point-

ing in thez direction, can then be expressed as

Jm =E dv

2p

d3k

s2pd3DkF−
]

]r m

dab +
]Habsk,r ;Td

]r m

^
]

]ek
G

3rba
S sk,r ;v,Td,

Jm
z =E dv

2p

d3k

s2pd3Dkez · saa8F−
]

]r m

da8b +
]Ha8bsk,r ;Td

]r m

^
]

]ek
Grba

S sk,r ;v,Td. s12d

Here and in the rest of the paper, we set"=e=1. This set of
equations will be used to study various spin-pumping phe-
nomena.

III. CHARGE AND SPIN PUMPING OF POLARIZED
ELECTRONS

We first apply the kinetic equations to study adiabatic
charge transport of polarized electrons. The external pertur-
bations are represented byN external a.c. gates with same
periodT0, i.e.,

Vextsr ,Td = S
h

ghsTdVhsr − r hd,

ghsTd = ghsT + T0d, h = 1,2,...N. s13d

For pumping phenomena, the boundary conditions atr
= ±L /2em sm=x,yd are chosen as

rab
S Sk,−

L

2
em;v,TD = rab

S Sk,
L

2
em;v,TD . s14d

Equation(14) is valid when(a) the sample has a closed ge-
ometry alongem or (b) more practically leads at boundaries
are ideal and are maintained in a thermal equilibrium, which
also corresponds to a current biased situation.

As noticed in a previous work,14 at timeT the one-particle
density matrix in the presence of adiabatic perturbation only
depends on the potentials at that moment. Particularly, the
density matrix is a function ofghsTd, h=1,2, ... ,N and their
time derivativesġhsTd; and it has this local time dependence
as a result of adiabaticity. The charge transport per periodT0,
therefore, has the following appealing general structure
sh ,h8 ,j=1,2, . . . ,Nd,14

Qii =E dgh ∧ dgjphj,

phj = S ]

]gh

]

]ġj

−
]

]gj

]

]ġh
D

3TrH k

2mLi
rsk,r ;hgh8j,hġh8jdJ . s15d

Here we introduceQii as the charge transport along the
ei-direction. dgh∧dgj is a skew symmetric wedge product,
i.e., dgh∧dgj=−dgj∧dgh. The traceTr is carried over the
momentum, real space, and spin space. In Eq.(15), the
charge transport has been expressed explicitly in terms of the
adiabatic curvature phj; the form of the curvature is
uniquely defined by the local time dependence of the one-
particle density matrixrabsk ,r ; hgh8sTdj ,hġh8sTdjd.

In the following we are going to evaluate the one-particle
density matrixrabsk ,r ;Td, and therefore, the curvaturephj
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explicitly including the spin polarization. As indicated in Eq.
(11), the antisymmetric part of the density matrix can be
expressed in terms of the symmetric part. And the symmetric
part of the density matrix receives a nonadiabatic correction
following the second line in Eq.(11); the solution is

rab
S sk,r ;v,Td = rab

0 sk ;vd +
1

Dk
Mab

S1 sk,r ;v,Td,

Mab
S1 sk,r ;v,Td =E dr 8Gsr ,r 8dġh

]

]gh

Hab8sk,r 8;hgh8sTdjd

^

]rb8b
0 sk ;vd

]v
. s16d

We have definedGsr ,r 8d as a free propagator

¹2Gsr ,r 8d = dsr ,r 8d. s17d

At boundaries, one setsGsr ,r 8d to be zero. SuperscriptS1 in
Eq. (16) refers to the first-order nonadiabatic corrections to
the symmetry part of one-particle density matrix. The matrix
Mab

S1 , or more specificallyMab
S1 sk ,r ;v ,hgh8sTdj ,hġh8sTdjd is

widely cited in the rest of this paper.
Correspondingly, one can also calculate the contribution

to the asymmetric component of density matrix in the first-
order adiabatic approximation using Eq.(10). Substituting
these results into the expression for currents, one arrives at

Jm =E dv

2p

d3k

s2pd3Dk

]Habsk,r ;hgh8sTdjd

]r m

^
]

]«k
F 1

Dk
Mba

S1 sk,r ;v,hgh8sTdj,hġh8sTdjdG ,

Jm
z =E dv

4p

d3k

s2pd3Dkez 3 saa8

]Ha8bsk,r ;hgh8sTdjd

]r m

^
]

]«k
F 1

Dk
Mba

S1 sk,r ;v,hgh8sTdj,hġh8sTdjdG . s18d

We have neglected a term that does not contribute to the total
current because of the boundary conditions in Eq.(14). In
the rest of the paper, we will use the notionHabsk ,r ;Td and
Mab

S1 sk ,r ;v ,Td without showinghgh8sTdj, hġh8sTdj, explic-
itly.

In the absence of spin-dependent impurity scattering,Sz is
a good quantum number;

rab
0 sk ;vd = n0sekdImGab

R sk,vd;

Gab
R sk,vd = sv − ek + szgmBB + it0

−1dab
−1 . s19d

The kinetic energy isek ="2k2/2m−eF and n0sekd is the
Fermi distribution of electrons.

The total chargeQxx and spin(pointing along the direction
of Zeeman field or along thez axis) Mxx

z pumped alongex
direction per period are evaluated using Eq.(18). The final
results can be expressed in a form similar to Eq.(15).

Qxx = Plc S
h,j=1,...

N

xhjShj, Mxx
z = Pls S

h,j=1,...

N

xhjShj;

Plc,ls = Pls+ d ± Pls− d. s20d

Alternatively one can obtain the charge transport by directly
evaluating Eq.(15) taking into account Eqs.(11) and (16).

In Eq. (20), we have introduced two antisymmetric ten-
sors,

Shj = − Sjh =E dgh ∧ dgj

=
1

2
E

0

T0

dTFghsTd
]

]T
gjsTd − gjsTd

]

]T
ghsTdG

xhj = − xjh =E E drdr 8

L
Vhsr d

]

]x
Gsr ,r 8dVjsr 8d; s21d

and

Pls±d =E dekDk
]

]ek
F 1

Dk

]nsekd
]ek

n0sek ± gmBBdG . s22d

Here nsekd is the one-particle density of states and the vol-
ume of structure isV=L3L3L. Pls±d depends on the com-
pressibility andPls±dxhj=phj defines the longitudinaladia-
batic curvatures of spin-up and spin-down electrons.
Equations(20)–(22) are the general results for charge and
spin pumping in the semiclassical limit.

IntroducingkF, eF andD0 as the Fermi momentum, Fermi
energy and diffusion constant at the Fermi surface respec-
tively, one rescales all quantities in Eq.(22),

uk u = kFa, ek = esadeF, Dk = hsadD0;

]nsekd
]ek

= fsad
]nseFd

]eF
, n0sekd = n0sesadeFd, s23d

whereesad, hsad and fsad are intrinsic functions determined
by the energy dispersion.a varies from zero to infinity; at
Fermi surfaces,a=1 andes1d=0 andhs1d= fs1d=1.

The longitudinal adiabatic curvatures are

Plc =
]nskFd

]eF
plc, Pls =

gmBB

eF

]nskFd
]eF

pls;

plc = − 2E dahsad
]

]a
F fsad

hsad
n0G,

pls =E dahsad
]

]a
F fsad

hsad
1

]aesad
]n0

]a
G . s24d

We are mainly interested in zero temperature results here and
in the following sections. Ife, f, h are assumed to be smooth
functions in the vicinity ofa=1, and their dervatives ata
=1 are much less than unity, then in the leading order one
obtainsplc=2 andpls=]ahs1d /]aes1d.

Two important general features of spin pumping deserve
some emphasis. One is that the spin-pumping current is zero
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if ghstd is identical forh=1,2, ... ,N. More generally one can
show that the pumped charge and spin have to be vanishing
if the trajectory of vector g=sg1,g2, . . . ,gNd in the
N-dimensional space encloses a zero area. This is a well-
known fact emphasized on a few previous occasions where
charge pumping was studied; the pumping is a pure geomet-
ric effect determined by two-form curvatures and is absent in
a one-dimensional parameter space.

The second feature is that the longitudinal spin current is
proportional to the difference between adiabatic curvatures
sPls±dd of spin-up and spin-down electrons. Therefore the
longitudinal spin-pumping efficiency is

el =
Mxx

z

Qxx
=

gmBB

eF

pls

plc . s25d

In the presence of orbital magnetic fields, one can also
evaluate the transverse charge and spin-pumping current,

Qyx = Ptc S
h,j=1,. . .

N

xhjShj, Myx
z = Pts S

h,j=1,. . .

N

xhjShj. s26d

The transverse adiabatic curvatures that lead to these currents
are

Ptc,ts = t0VcfPls+ d ± Pls− dg. s27d

Vc=eHext/mc is defined as the cyclotron frequency of exter-
nal magnetic fields. Obviously, one can also introduce trans-
verse pumping angleuC and transverse spin-pumping angle
uS in analogy to the usual Hall angle,

tanuC =
Qyx

Qxx
= t0Vc,

tanuS=
Myx

z

Qxx
= t0Vc

gmBB

eF

pls

plc . s28d

Readers can easily confirm these results. In this scheme, the
spin-pumping current vanishes in the absence of Zeeman
fields becausePls±d are identical.

IV. TOPOLOGICAL SPIN PUMPING

A. Topological beam splitting

The key idea of topological spin pumping lies in the fact
that the transverse motion of electrons is not only affected by
usual orbital magnetic fields or a gradient in Zeeman fields,
but also by spin rotation. Compared to Lorentz forces, which
act on spin-up and spin-down electrons undiscriminately, the
topological force induced by spin rotation does discriminate
spin-up and spin-down electrons as if they are oppositely
“charged.” Indeed as one will see, spin-up and spin-down
electrons carry opposite charges defined with respect to the
Pontryagin topological fields. Splitting of spin-up and spin-
down electrons in topological fields is therefore named as
topological Stern-Gerlach splitting(TSGS). So before study-
ing the kinetic approach to topological spin pumping, let us
offer a qualitative picture of the phenomenon of TSGS.

Apparently, spin rotation does not occur in free spaces
where the electron spinSz is a good quantum number. So for

TSGS to happen, a certain mechanism has to be introduced
to rotate spins during transport. It can be achieved by a cou-
pling between electrons and an artificial background “mag-
netic” configuration. To illustrate this idea of TSGS, one
studies the following Hamiltonian:

H =
p2

2m
+ Vsr d + gmBB0s · Vsr d + Vextsr ,Td. s29d

The unit vectorV is defined by two anglesusr d andfsr d in
spherical coordinates;

Vxsr d = sinusr dcosfsr d,

Vysr d = sinusr dsinfsr d,

Vzsr d = cosusr d. s30d

Consider the following coherent states of electrons

uVsr d; + l = Csr d ^ cos
u

2
expS− i

f

2
DexpStan

usr d
2

eifs−D
3u↑l ,

uVsr d;− l = Csr d ^ sin
u

2
expS− i

f

2
DexpS− cot

usr d
2

eifs−D
3u↑l . s31d

u↑ l is the spin-up state defined along thez axis ands− is the
corresponding lowering operator.uV ; ± l are spin-up and
spin-down states defined in a local frame where vectorez
coincides with unit vectorVsr d, i.e.,

Vsr d · suV; ± l = ± uV; ± l s32d

at every pointr . Electrons in these states experienceX-space
spin rotation(XSSR).

These states are called spin-plus and spin-minusstates to
be distinguished from spin-up and spin-down states defined
before. Obviously,plusandminusstates discussed above are
exact eigenstates of the local Zeeman coupling and their de-
generacy is lifted at a finiteB0.

To demonstrate the beam splitting, one evaluates the ex-
pectation value of energy operatorH in these two sets of
states. The results in this limit can be conveniently cast into
the following form:

kHl± = kCsr du
1

2m
fp ± AXsr dg2 + Vsr duCsr dl ± gmBB0.

s33d

Here p is the momentum operator to be distinguished from
the momentumk, which is a variable.AX-fields are con-
firmed to be the vector potentials of following topological
fields

Tl
X =

1

4
elmnVsr d ·

]Vsr d
]r m

3
]Vsr d

]r n

. s34d

elmn=−emln=−elnm is an antisymmetric tensor. In both Eqs.
(33) and(34), we use superscriptX to refer toX-space gauge
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fields. And in Eq.(33), we have neglected terms that are
identical to u± l states. This form of the kinetic energy of
spin-rotating electrons was previously derived to demon-
strate interactions between quasiparticles and spin fluctua-
tions in triplet superconductors.15

Therefore the total forces exerted on spin-plus and spin-
minuselectrons are

F± = kCu−
]Vsr d

]r
± TX 3

p ± AXsr d
m

uCl. s35d

The last identity holds when the spin rotation is adiabatic so
that transitions between Zeeman split spin-plus and spin-
minusstates are negligible, i.e.,

U "

2m

]fsr d
]r

3 ImC*sr d
]

]r
Csr dU ! gmBB0. s36d

One can verify that when this adiabaticity condition is satis-
fied, s ·V is an approximategood quantum number.

In the semiclassical approximation employed below, we
further assume that

UImC*sr d
]

]r
Csr dU @ U ]usr d

]r
U,U ]fsr d

]r
U . s37d

So over the wavelength of electrons, spin rotation is negli-
gible.

In addition to a term proportional to the field gradient of
scalar fields, there is a new force perpendicular to the veloc-
ity of electrons similar to the Lorentz force. More impor-
tantly as indicated in Eq.(33), spin-plusand spin-minuselec-
trons carry opposite topological charges; therefore, the
corresponding forces are, in fact, along exactly opposite di-
rections. This shows that an XSSR does affect the orbital
motion of electrons and does differentiate spin-plus states
from spin-minusstates. It, therefore, leads to the promised
phenomenon of TSGS.

It is important to further emphasize here that to observe
TSGS, the background configuration has to be topologically
nontrivial (see more in the next section) so thatTX is non-
zero. To highlight the relevance of topology of spin configu-
rations, let us consider spin states defined in Eq.(31) where
Vsr d corresponds to a hedgehog configuration,

Vsr d =
r

ur u
. s38d

Our calculations show that forces acting on two spin-rotating
electrons given in Eq.(31) are equivalent to forces exerted
on two oppositely chargedparticles in a resultant magnetic
monopole field

TX =
r

2ur u3
. s39d

Before leaving this section, we generalize the argument to
momentum space topological effects. We then consider two
orthogonalk-space wave packets; spins in these states are
pointing at eitherk or −k direction. Let us defineuskd and
fskd as

Vxskd = sinuskdcosfskd,

Vyskd = sinuskdsinfskd,

Vzskd = cosuskd s40d

andVskd=k / uk u is a unit vector alongk.

uVskd; + l = Cskdcos
u

2
expS− i

f

2
DexpStan

uskd
2

eifs−Du↑l,

uVskd;− l = CskdexpS− i
f

2
Dsin

u

2
expS− cot

uskd
2

eifs−Du↑l.

s41d

As before we assume these spin-plus and spin-minusstates
are split by an effective Zeeman fieldB0.

An electron in such a wave packet experiencesk-space
spin rotation(KSSR), or spin rotation that depends on its
momentum. For the same reason mentioned before, we fur-
ther assume adiabaticity in spin rotation and use a semiclas-
sical approximation. This requires that

gmBB0 @ U ]

]k
fskd ·

]

]r
Hsr dU ,

UImC*skd
]

]k
CskdU @ U ]uskd

]k
U,U ]fskd

]k
U . s42d

The group velocities of these wave packets are

v± = ikfr ,Hsr ,pdg−l±

= kCskdu
k

m
7 f¹ 3 AKskdg 3

]Hsk ;r d
]r

uCskdl. s43d

SuperscriptK is introduced to specify thek-space gauge
fields. So the velocity does acquire an additional nontrivial
transverse term in the presence of an external field gradient
and topologically nontrivial fieldsTKskd of which AKskd is
the vector potential. A calculation shows that

Tl
K =

1

4
elmnVskd ·

]Vskd
]km

3
]Vskd

]kn

. s44d

And more important the spin-up and spin-down electrons
defined in the local frames drift in an opposite direction once
again leading to TSGS.

The general property of electrons illustrated in Eq.(43)
has been noted on a few different occasions. In Refs. 6 and 7,
TK fields were expressed as the Chern-number density of
electron states, which was first introduced for the studies
of quantum-Hall and fractional quantum-quantum-Hall
conductances.16 In Ref. 11,TK fields are from a topological
monopole in thek-space.

The general form of topological fields obtained in Eq.
(44) is a generalization of standard Pontryagin fields defined
in the X-space. One easily recognizes that topological fields
discussed here are equivalent to Berry’s two-form fields de-
fined in an external parameter space.17 They generally repre-
sent holonomy of parallel transporting eigenvectors in the
Hilbert space,18 in this particular case the holonomy of trans-
porting a spin-up or spin-down eigenvector defined in local
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frames. We will discuss topological spin pumping in the
presence of this TSGS in Sec. IV C.

B. Adiabatic spin transport in the presence of XSSR

Let us now look into the kinetics, which leads to spin
rotation while electron wave packets propagate in the
X-space. We study the spin-pumping phenomena in this case
via applying kinetic equations derived in Sec. II.

Consider electrons coupled to a background spin configu-
ration or an artificial magnetic field with uniform magnitude,
but with spatially varying orientation. One models electrons
with the following Hamiltonian

Hsk,r ,Td =
k2

2m
− mF − gmBfB0Vsr d 3 s + Bszg + Vextsr ,Td.

s45d

Again Vsr d is a unit vector representing the orientation of a
background magnetic field. The scatter of impurity potentials
is taken into account in elastic collision integrals in Eq.(4).
We assumegmBB0, gmBB are much smaller than the Fermi
energyeF.

To facilitate discussions, one introduces the following unit
vectornsr d, which defines the direction of net Zeeman fields
in the above equation

nx =
Vx

ÎVx
2 + Vy

2 + sVz + Id2
,

ny =
Vy

ÎVx
2 + Vy

2 + sVz + Id2
,

nz =
Vz + I

ÎVx
2 + Vy

2 + sVz + Id2
, s46d

whereI =B/B0.
Alternatively, similar to Eq.(30), in spherical coordinates

one introduces the following characterization ofn,

nx = sin ũsr dcosf̃sr d,

ny = sin ũsr dsin f̃sr d,

nz = cosũsr d. s47d

We use atilde to distinguish the spherical coordinatesũ, f̃
for n from u, f for V. Equation(46) indicates that

f̃ = fsr d, ũ = arctan
sinusr d

cosusr d + I
. s48d

We introduce a local spin rotation such that

U−1sr dsnsr d · sdUsr d = sz. s49d

The Hamiltonian becomes

Hsk,r ,Td =
fk − AXsr dg2

2m
− eF − gmBB0fVx

2 + Vy
2

+ sVz + Id2g1/2sz + Vextsr ,Td. s50d

HereSUs2d gauge fields generated by pure spin rotation are

Am
X = iU−1sr d

]

]r m

Usr d = Am
Xgsg, s51d

g=x,y,z. To simplify the formula, in this equation and the
rest of paper, we do not show spin indices explicitly. A direct
calculation yields

Am
Xx = −

1

2
sin ũsr d

]f̃sr d
]rm

,

Am
Xy =

1

2

]ũsr d
]rm

,

Am
Xz=

1

2
cosũsr d

]f̃sr d
]rm

; s52d

and full covariant SUs2d fields S̃mn
X vanish as one should

expect for pure spin rotation.
To proceed further, one notes that the degeneracy between

spin-up and spin-down states in the rotated basis or spin-plus
and spin-minusstates is completely lifted by various Zeeman
fields. One again assumes that spin rotation is slow in the
X-space so that the adiabaticity specified in Eq.(36) can be
satisfied. In the adiabatic approximation, one neglects transi-
tions between spin-plus and spin-minusstates and sets off-
diagonal gauge potentialsAXx, AXy as zero. Therefore in Eq.
(50), one only keepsAXz, which yields the usual Berry cur-
vatures for spin-plus and spin-minus states. Corresponding
Us1d gauge fields are

Smn
Xzsr d =

]Am
Xzsr d
]r n

−
]An

Xzsr d
]r m

. s53d

So in this limit, only thez component ofSUs2d gauge
potentials survives to contribute to pumping currents; it also
defines well-known Pontryagin typeUs1d fields

Smn
X = Smn

Xzsz,

Smn
Xz =

1

2
sin ũsr dF ]ũsr d

]r m

]f̃sr d
]r n

−
]ũsr d
]r n

]f̃sr d
]r m

G .

s54d

ũ and f̃ again are two spherical angles ofnsr d in Eq. (46).
In the rotated basis, the structure of equation for one-

particle density matrix should be identical to the one in Sec.
IV A. However, according to a general consideration in the
semiclassical transport theory, the following transformation
takes place in the equation of motion for electrons in the
presence of XSSR.

−
]Hsk,r ;Td

]r
→ ]k

]t
= fk,Hsk,r ;Tdgr ,p;
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]Hsk,r ;Td
]k

→ ]r

]t
= fr ,Hsk,r ;Tdgr ,p. s55d

f gu,v is the usual Poisson bracket defined with respect to
canonical coordinateshu,vj. k is the electron momentum

k = p + AXzsr dsz; s56d

andp andr are a pair of canonical coordinates. In the semi-
classical approximation, the resulting equation for the one-
particle density matrix, therefore, is as follows:

]rsk,r ;v,Td
]T

− HF ]Hsk,r ;Td
]r m

+ Smn
X sr d ^

]Hsk,r ;Td
]kn

G
3

]

]km

]Hsk,r ;Td
]km

]

]r m

+
]Hsk,r ;Td

]T

]

]v
J

^ rsk,r ;v,Td = IC.I.rsk,r ;v,Td. s57d

Following Appendix A, the transverse pumping currents
are given as

Jmsr d =
t0

m
E dv

ddk

s2pddDktrHSmn
X

^
]Hsk,r ;Td

]r n

]

]ek
F 1

Dk
MS1sk,r ;v,TdGJ ,

Jm
z sr d =

t0

2m
E dv

ddk

s2pddDktrHnsr d · sSmn
X

^
]Hsk,r ;Td

]r n

]

]ek
F 1

Dk
MS1sk,r ;v,TdGJ , s58d

wheretr is only taken over the spin space. This is the central
result for topological transverse spin and charge pumping in
the presence of XSSR.

Let us now again consider external perturbations specified
in Eq. (13). To address spin pumping, we consider a back-
ground spin configuration of square half Skyrmion lattice
given below,

nxsr d + inysr d = p
l1,l2

z− zsl1,l2d
Îuz− zsl1,l2du2 + lS

2
; z= r x + ir y.

s59d

z is introduced as a coordinate in the two-dimensional(2D)
plane.zsl1, l2d= l1a+ il 2a represents a lattice site withl1,2 as
integers anda the lattice constant. We also assume thatlS
!a. The average topological fields of this lattice are

Sxy
Xz= S0 =

p

a2 . s60d

The adiabaticity condition in Eq.(36) requires that

uk u
"

mls
! gmBminhB0,Bj. s61d

The equilibrium density matrix is still given in Eq.(19).
In the longitudinal direction the results are the same as in Eq.
(24) and not repeated here. Furthermore, some straightfor-

ward calculations lead to the following expression for total
charge and spin transported in a transverse directiony per
period:

Qyx = Ptc S
h,j=1,...

N

xhjShj, Myx
z = Pts S

h,j=1,...

N

xhjShj;

Ptc,ts = t0VctfPls+ d 7 Pls− dg, Vct =
S0

m
, s62d

andVct is introduced as an effective cyclotron frequency of
topological fieldsS0.

The transverse charge-pumping angleuC and transverse
spin-pumping angleuS are

tanuC = t0Vct
gmBB

eF
FSB0

B
D ,

tanuS= t0Vct. s63d

Fsbd is a function ofb; it approaches unity asb becomes
much less than one. The transverse spin-pumping efficiency
in this case is

et =
Myx

z

Qyx
=

tanuS

tanuC
=

eF

gmBB
F−1SB0

B
D . s64d

It is important to note that«t diverges as the external
Zeeman fieldB goes to zero, signifying zero transverse
charge pumping. In practical cases, the topological spin
pumping is always accompanied by small transverse charge-
pumping current, a unique feature of topological fields. This
also occurs in the scheme discussed in Sec. IV C. It is, how-
ever, in contrast to spin pumping of polarized electrons dis-
cussed in Sec. II where the transverse spin-pumping current
is negligible compared to the transverse charge-pumping cur-
rent. This feature originates from the fact that spin-plus and
spin-minus electrons carry opposite topological charges. In
the absence of polarization, there are equal amplitudes of
currents of spin-plus and spin-minuselectron flow in oppo-
site transverse directions as a result of TSGS. So the total
charge pumping is zero but spin pumping current flows.

In all topological pumps discussed here and below, we
have found that spins are pumped out by applied a.c. gate
voltages because of a spin configuration which yields either
nonzeroSmn

X , as in Eq.(58), or nonzeroSmn
K , as in Eq.(85).

We intend to call these topological configurationstopologi-
cal motorsin spin pumps.

C. Adiabatic spin transport in the presence of KSSR

To illustrate the effect of KSSR, we start with a 3D toy
model and discuss the topological mechanism. In the second
half of this section, we study the topological mechanism in
more realistic models for electrons in semiconductors.

In all subsections here, we assume that spin-orbit splitting
and Zeeman field splitting are much smaller than the Fermi
energy, but can be comparable among themselves. Zeeman
splitting is introduced to ensure that spin degeneracies atk
=0 are lifted and the adiabaticity holds for every state below
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Fermi surfaces. The zero field limit should be taken when the
adiabaticity conditions in Eq.(99) are satisfied.

In the presence of impurity scattering, to ensure adiaba-
ticity, we always assume that the impurity potentials are
weak compared to the splitting between two spin bands ei-
ther due to spin-orbit coupling or Zeeman field splitting. We
neglect, therefore, the interband transitions due to nonadia-
batic corrections. For this reason, we only consider the limit
of strong spin-orbit coupling and present results at zero tem-
perature.

1. A toy model

In this section we consider electron spins coupled to the
momenta of electrons, and spin rotation occurs when a wave
packet propagates in the momentum space. A propagating
wave packet in thek-space corresponds to an accelerated
electron. The artificial model introduced here to study topo-
logical spin pumping can be considered a mathematical gen-
eralization of the Luttinger Hamiltonian19 to spin-1/2 elec-
trons.

Consider the Hamiltonian

Hsk,r ;Td = ek − gmBB0suk udfIsuk udsz + Vskd · sg + Vextsr ;Td;
s65d

I andB0 are functions ofuk u, andVskd is a unit vector along
the direction ofk;

I =
B

B0suk ud
, B0suk ud = Guk u, Vskd =

k

uk u
. s66d

In the toy model there are two spin-dependent terms; the
term proportional tosz represents the Zeeman splitting of
electrons in the presence of fields along thez axis, and the
V ·s term characterizes a collinear spin-orbit correlation.

To understand the topology of spin configurations in
Fermi seas, we again introduce a unit vectornskd as a func-
tion of Vskd defined in Eq.(46) in Sec. IV B. Especially,

f̃skd = fskd,

ũ = arctan
sinuskd

cosuskd + Isuk ud
. s67d

Again uskd, fskd are two spherical coordinates of unit vector

Vskd=k / uk u and differ from two angles ofnskd, ũskd and

f̃skd [see Eq.(30)].
One then considers a configuration ofnskd on a sphere at

a very large momentum, which naturally defines a mapping
from an externalS2 sphere in thek-space to a targetS2 space
where nskd lives. The topology of electron spin states in
Fermi seas is therefore characterized byp2sS2d, the second
group of target spaceS2.

Let us further introduceTK fields defined in Eq.(44) with
Vskd replaced withnskd. The winding number of a mapping
or configuration can be characterized by the flux ofTK fields
through a large surface. It is easy to verify that

1

2p
R

S

dS
k

uk u
·TK = 1, s68d

where the surface integral is taken over atuk u→ +`. This
shows that spins of electrons form a monopole structure.
This is not surprising because at very largek or smallI, nskd
is identical toVskd, which always points outward along the
radius direction.

Again we introduce ak-space local spin rotation such that

U−1skdnskd · sUskd = sz. s69d

Under the spin rotation, the Hamiltonian becomes

Hsk,r ;Td = ek − gmBB0fVx
2 + Vy

2 + sVz + Isrkdd2g1/2sz

+ Vextsr − AK;Td. s70d

As before,SUs2d gauge fields are generated under the
spin rotation

Am
Kskd = iU−1skd

]

]km

Uskd = Am
Kgsg. s71d

In a fixed gauge, one obtains

Am
Kx = −

1

2
sin ũskd

]f̃skd
]km

,

Am
Ky =

1

2

]ũskd
]km

,

Am
Kz =

1

2
cosũskd

]f̃skd
]km

; s72d

and thefull SUs2d fields again vanish.
In linear responses, the effective Zeeman field splitting

between spin-plusand spin-minusstates in Eq.(70) is stron-
ger than external perturbations. Furthermore, we require that
the energy splitting is also stronger than impurity potentials.
So the adiabaticity condition in Eq.(42) is always satisfied.
We, therefore, setAKx, Aky to be zero again to neglect tran-
sitions between spin-plus and spin-minusstates. In Eq.(70),
we only keep thez component ofSUs2d potentialsAmn

Kz,
which yields to Berry’s phases ofplusandminusstates. The
correspondingz component of reducedSUs2d gauge poten-
tials, which enters our results below, is

Smn
Kzskd =

]Am
Kzskd
]kn

−
]An

Kzskd
]km

. s73d

We note that in the presence of spin-orbit coupling, impu-
rity scattering combined withAKx,Ky components ofSUs2d
gauge fields does lead to transitions between different spin
bands. The adiabaticity condition in this case, however, is
sufficient to ensure that these contributions are negligible. So
the Born-approximation employed in this paper is valid in
the strong spin-orbit coupling and finite Zeeman field limit
where the splitting betweenplusandminusspin bands at any
momentumk,
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2gmBGuk uhVx
2 + Vy

2 + fVz + Isrkdg2j1/2 s74d

is much stronger than the impurity potentials.
When the adiabaticity condition is satisfied, one shows

that

Smn
K = Smn

Kzsz, Smn
Kz =

1

2
nskd ·

]nskd
]km

3
]nskd
]kn

. s75d

In spherical coordinates wherek =srk ,u ,fd, one has the fol-
lowing explicit results

Suf
Kz =

1 + I cosu

s1 + I2 + 2 cosuId3/2

1

2rk
2

Srf
Kz = −

sinu

s1 + I2 + 2 cosuId3/2

1

2rk

]Isrkd
]rk

s76d

and I is a function ofrks=uk ud as defined in Eq.(66).
It is convenient to redefine topological fields in terms of

Tm
K,

Tm
Kskd = 1

2emnlSnl
Kzskd. s77d

One finds the following asymptotic behaviors at large and
small momenta,

TKskd =5
1

2rk
2F1 −

2lm

rk
cosuGer −

lm

2rk
3 sinueu, whenrk @ lm;

1

2lm
2 ez +

rk

2lm
3 fs1 − 3 cos2 uder + 3 sinu cosueug, whenrk ! lm.6 s78d

And here

lm =
B

G
s79d

defines the core of anisotropic monopoles when the Zeeman
fields are present.

When the Zeeman fieldB is set to zero orI =0, unit vector

nskd coincides withVskd and f̃=fskd, ũ=uskd, therefore,
Srf

Kz vanishes. Equation(76) in this limit indicates familiar
isotropic monopole fields in thek-space. In the presence of
finite Zeeman fields, topological fields are not strictly isotro-
pic because the inversion symmetryz→−z is broken by ex-
ternal Zeeman fields. Topological fields are along thez axis
at small momentum limit, but approach isotropic monopole
fields at large momenta. The crossover takes place atlm.

Under KSSR, the following transformation should occur
in the equation for the density matrix:

−
]Hsk,r ;Td

]r
→ ]k

]t
= fk,Hsk,r ;Tdgx,k ,

]Hsk,r ;Td
]k

→ ]r

]t
= fr ,Hsk,r ;Tdgx,k . s80d

The electron coordinate in the presence of KSSR is

r = x − AKzskdsz; s81d

x ,k are a pair of canonical coordinates in this case.
The corresponding kinetic equation becomes

]rsk,r ;v,Td
]T

+ FvkVmskd + Smn
K skd ^

]Hsk,r ;Td
]r n

G ]

]r m

−H ]Hsk,r ;Td
]r m

]

]km

+
]Hsk,r ;Td

]T

]

]v
J ^ rsk,r ;v,Td

= IC.Irsk,r ;v,Td. s82d

The charge and spin current expressions transform, ac-
cordingly; in the rotated basis one has

Jsr ,Td =E dv

2p

d3k

s2pd3TrHFvkVmskd + Smn
K skd ^

]Hsk,r ;Td
]r n

G
^ rsk,r ;v,TdJ ,

Jzsr ,Td =E dv

4p

d3k

s2pd3TrHnskd · sFvkVmskd + Smn
K skd

^
]Hsk,r ;Td

]r n
G ^ rsk,r ;v,TdJ . s83d

Equation (83) can be used to analyze contributions to the
spin- and charge-pumping currents from different parts of
Fermi surfaces.

Let us defineplus andminusFermi seas as shown sche-
matically in Figs. 1 and 2. In theplus Fermi sea, electron
spins are along the direction of unit vectornskd and in the
minus Fermi sea spins are along the opposite direction of
nskd. The corresponding Fermi surfaces are named as the
plus andminusFermi surfaces. For a system with an inver-
sion symmetry, each Fermi sea has zero overall polarization
when the Zeeman field is absent. In the rotated basis, these
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two Fermi seas correspond to spin-up and spin-down elec-
trons.

Consider electrons subject to pumping potential gradient
along the negativex axis. One easily finds that spin-up elec-
trons at the north pole ofplus Fermi surface are subject to a
drift along they direction while spin-down electrons at the
south pole ofplus Fermi surface are subject to a drift along
the minus ydirection. For the same reason electrons at the
north and south pole ofminusFermi surface are subject to a
drift along minusandplus ydirection, respectively[see Fig.
4(c)].

Following these results one also finds that in the absence
of spin polarization, charge-pumping currents carried by
spin-up electrons at either the north pole ofplus Fermi sur-
face or the south pole ofminusFermi surface flow in exactly
the opposite direction of charge-pumping currents carried by
spin-down electrons in the south pole ofplus Fermi surface
and the north pole ofminus Fermi surface. So while the
spin-pumping current flows, the net charge pumping van-
ishes. Only when electrons are polarized orB is nonzero,
charge pumping is possible along the transverse direction.

Given the expressions forrA in Eq. (11) and the current
expressions in Appendix B, one evaluates the transverse
charge- and spin-pumping currents,

Jmsr d =E dv

2p

d3k

s2pd3

1

Dk
TrHSmn

K skd

^
]Hsk,r ;Td

]r n

MS1sk,r ;v,TdJ , s84d

Jm
z sr d =E dv

4p

d3k

s2pd3

1

Dk
TrHnskd · sSmn

K skd

^
]Hsk,r ;Td

]r n

MS1sk,r ;v,TdJ . s85d

Taking into account Eq.(75), one then arrives at expres-
sions for charge and spin pumping currents. The longitudinal
spin and charge pumping are still given by Eq.(20). The
transverse spin- and charge-pumping currents are more in-
volved. To evaluate the spin and charge current, one notices
the following identities:

TrsszSxyd = 2SKz, TrssxSxy
K d = TrssySxy

K d = 0 s86d

according to Eq.(75). Final expressions for spin- and charge-
pumping currents only depend on thez component of re-
ducedSUs2d fields. For this reason, one is able to obtain a

FIG. 1. Comparison between the usual Stern-Gerlach beam
splitting and the topological Stern-Gerlach splitting. When the Zee-
man fields are applied along thez direction, as shown in(a), in the
conventional Stern-Gerlach splittingSz is a good quantum number
and no spin rotation occurs; the Zeeman field gradient drives
spin-up and spin-down particles apart along they direction. How-
ever, TSGS is always accompanied by spin rotation as shown in(b).
Spins are represented by short arrows in this and other figures.

FIG. 2. Plus and minusFermi seas for the toy Hamiltonian in
Eq. (65), the Rashba-Hamiltonian and Dresselhaus-Hamiltonian.(a)
and(b) are for the toy Hamiltonian. In theplusFermi sea, each spin
points at the direction of its momentum[shown in(a)]; in theminus
Fermi sea shown in(b), the spin of an electron points at the oppo-
site direction of its momentum. In(c) and (d), we show the corre-
sponding Fermi seas for the 2D Rashba-Hamiltonian. Inkx−ky

plane, electron spins in theplus Fermi seas form a meron with a
half Skyrmion charge when a Zeeman field is applied along thez
axis. At large k limit in the plus Fermi seas, spins point ate
3Vskd direction while in theminusFermi seas spins point at −e
3Vskd; they both represent vortices with one unitpositivevortic-
ity. HereVskd is a unit vector alongk. At the center of Fermi seas,
spins are along the ±z directions(not shown here). In (e) and(f), we
show spin rotation in Fermi seas of the Dresselhaus model; electron
spins in theplus Fermi seas form a meron with a half negative
Skyrmion charge. At large momenta, electron spins in both Fermi
seas form vortices with one unitnegativevorticity.
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rather simple form for transverse adiabatic curvatures de-
fined in Eq.(26)

Pts =E dek E dVskd
4p

1

Dk
nzskdSxy

Kz]nsekd
]ek

n0sekd,

Ptc =E dek E dVskd
4p

2

Dk
gmBGrkfVx

2 + Vy
2

+ sVz + Isrkdd2g1/2Sxy
Kz]nsekd

]ek

]n0sekd
]ek

. s87d

The topological motorSmn
Kz in this case is an anisotropic

monopole discussed in Eq.(75). We only present results in
the following weak Zeeman field and strong Zeeman field
limits.

Since the topological fields have distinct large and small
momentum asymptotics, the topological pumping has a
strong dependence on Zeeman fields. The spin and charge
topologically pumped out per period are again given by Eq.
(26); the transverse adiabatic curvaturesPtc,ts are calculated
and results are

Pts = ptsS kF

lm
D 1

plc

1

D0m
Plc,

Ptc = ptcS kF

lm
D 1

plc

1

D0m

gmBB

eF
Plc. s88d

Plc, plc are provided in Sec. III;D0 is the diffusion constant
andm is the electron mass. We should mention that when the
Zeeman field vanishes,Ptc goes to zero, butPts remains
finite; as pointed out before, this is a distinct feature of a
topological spin pump where an electron beam splits because
of TSGS.

B!GkF corresponds to a limit where the core size of
monopolelm is much smaller thankF,

ptsS kF

lm
D =

1

12
ln

kF

lm
, ptcS kF

lm
D = oSlm

kF
D . s89d

B@GkF corresponds to a limit where the core size of
monopolelm is much larger thankF,

ptsS kF

lm
D =

1

2
ptcS kF

lm
D =

1

4
S kF

lm
D2

. s90d

In deriving these results forpts,tc, we have neglected the
k-dependence in diffusion constants and derivatives of the
density of states.

The corresponding charge- and spin-pumping angles are

tanuC = ptcS kF

lm
D 1

plc

gmBB

eF

1

D0m
,

tanuS= ptsS kF

lm
D 1

plc

1

D0m
. s91d

Finally, the transverse spin-pumping efficiency is

et =
tanuS

tanuC
=

ptsskF/lmd
ptcskF/lmd

eF

gmBB
. s92d

2. The 2D Rashba model

In Sec. IV C, we discuss the topological spin pumping
due to thek-space spin rotation in an artificial model. Now
we turn to more realistic models for semiconductors and
limit ourselves to 2D cases. Spin-orbit coupling can be either
due to the Dresselhaus term or the Rashba term.20–23 In the
latter case, or in the Rashba model for 2D semiconductors,
the spin-orbit coupling has a particularly simple form be-
cause of either a bulk-inversion asymmetry or a structure-
inversion asymmetry.24 We start with discussions about this
model.

In the 2D Rashba model, the spin-dependent Hamiltonian
can be presented as

HR = − gmBB0skdfIskdsz + ez · V 3 sg. s93d

In bracket[ ], the first term is due to Zeeman fields and the
second one is the Rashba coupling term. As in Eq.(65), we
have definedIskd=B/B0suk ud, and B0=Guk u. Vskd is a 2D
unit vector along the direction ofk,

Vx = cosfskd =
kx

uk u
,

Vy = sinfskd =
ky

uk u
. s94d

Herefskd is a polar angle ofk vector in the 2D plane.
To characterize the spin configurations inskx,kyd plane,

we study the unit vectornskd defined as

nx =
− Vy

Î1 + I2
,

ny =
Vx

Î1 + I2
,

nz =
I

Î1 + I2
. s95d

One also obtains simple results for spherical angles

ũskd ,f̃skd of nskd in this case,

f̃ = fskd +
p

2
,

ũ = arctan
1

Isuk ud
. s96d

One notes that atk =0, Iskd becomes infinity, and as a
result, unit vectornskd points at the direction ofez because

of Zeeman fields. At the largek limit, ũ approachesp /2, and

n relaxes and lies in the equator plane of two sphereS2. So ũ
varies from 0 top /2 as one moves away from the center of
Fermi seas whilef̃=f. This behavior of unit vectorn im-
plies a meron or half Skyrmion in the 2D momentum space.
Merons have been proven to play important roles in Yang-
Mills theory as well as in quantum magnetism.25,26 The size
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of half Skyrmion, outside which the spin polarization alongz
direction becomes unsubstantial, is

ls =
B

G
. s97d

To confirm the peculiar topology of electron spin states
one examines the homotopy class of mapping fromskx,kyd
space to a two sphereS2 defined bynskd. ConsiderTK de-
fined in Eq.(44) in terms of thenskd vector instead ofV.
The winding number can be easily calculated, as follows:

W=
1

2p
E dSez ·TK =

1

2
E

0

p/2

dũ sin ũ =
1

2
, s98d

which precisely shows a meron in thekx−ky plane.
In general,G is a quantity that can be controlled by an

electric field.23 ls is a function of both Zeeman fields and
applied external gate voltages that offers great opportunities
to manipulate the meron structure and control topological
spin pumps as discussed below. In this model, the adiabatic-
ity condition in Eq.(42) requires that for eachk,

U ]Vextsr d
]r

UminH 1

ls
,

1

uk uJ,U ]Vimsr d
]r

UminH 1

ls
,

1

uk uJ
! gmBmaxhB0suk ud,Bj. s99d

Here Vim is the impurity potential. The sufficient condition
for Eq. (99) to hold is that

U ]Vext

]r
U,U ]Vim

]r
U !

sgmBBd2

G
. s100d

Furthermore, the size of systems has to be larger than
minhls

−1, uk u−1j to ensure the semiclassical approximation.27

At last we would like to emphasize one more time that the
impurity potential has to be weak compared to either the
Zeeman splitting or the splitting due to spin-orbit coupling so
that the adiabaticity condition can be satisfied. Therefore the
transitions between the split spin bands are also negligible in
the adiabatic limit. As mentioned on a few occasions in this
paper, for this reason the Born approximation is always valid
in the adiabatic approximation.28

Similar to the procedure introduced in Sec. IV C, it is
possible to introduce spin rotation to diagonalize this Hamil-
tonian. In the rotated basis, spin-up and spin-down states are
split by a combined field of external Zeeman splitting and
internal spin-orbit coupling with the following strength,
gmBB0Î1+I2suk ud. The resultantUs1d gauge fields in the
two-dimensionk-space are vortexlike. We present the result
in polar coordinatesk =srk ,fd,

Af
Kzskd =

1

2rk

I
Î1 + I2

,

Srf
Kz = −

1

2rk

1

s1 + I2d3/2

]Isrkd
]rk

. s101d

The asymptotics for the vector fieldTK are

TKskd =5
ls

2rk
3ez, whenrk @ ls,

1

2ls
2S1 −

3rk
2

2ls
2Dez, whenrk ! ls.6 s102d

In the absence of Zeeman fields, we findũ=u andSKz is
zero everywhere in the momentum space except atk =0.
That is

Sxy
Kz = pdskd. s103d

Note that the topological fields though zero everywhere are
singular at the origin of thek-space. In general, topological
fields are negligible whenrk is much larger than the Skyr-
mion sizels. However, we find this is sufficient to produce a
spin-pumping current even if the Skyrmion-sizels is much
smaller than the Fermi radiuskF. The topological motor in
this model is a positive meron(see Fig. 3).

Let us again defineplusandminusFermi seas. In theplus
Fermi sea, all electron spins are alongnskd while in the
minusFermi sea all electron spins are along the2nskd di-
rection. In the rotated basis, theplus and minusFermi seas
become spin-up and spin-down Fermi seas, respectively. In
plus and minus Fermi seas, electrons subject to external
pumping fields alongx axis drift along plus and minusy
direction, respectively, as shown in Fig. 4(d).

The spin and charge topologically pumped out per period
are again given by Eq.(26); the transverse adiabatic curva-
turesPtc,ts are given in the following equations:

PR
ts =E dek E dfskd

2p

1

Dk
nzskdSyx

Kz]nsekd
]ek

n0sekd,

PR
tc =E dek E dfskd

2p
2gmB

3Grk
Î1 + I2srkd

1

Dk
Syx

Kz]nsekd
]ek

]n0sekd
]ek

. s104d

We have used subscriptR to refer to the adiabatic curvatures
in the Rashba model. Taking into account the profile of to-
pological fields in Eq.(101), we obtain the following results
for the transverse adiabatic curvatures:

PR
ts = ptsS kF

lm
D 1

plc

1

D0m
Plc,

FIG. 3. Topological fieldTK as a function ofrk in the 2D
Rashba model(schematic). ls, which defines the size of meron, is
chosen to be smaller than the Fermi momentumkF.
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PR
tc = ptcS kF

lm
D 1

plc

1

D0m

gmBB

eF
Plc s105d

(see Sec. III for discussions onPlc, plc). pts and ptc are
calculated using rescaled parameters introduced in Eq.(23),

ptssbd =
1

2
E da

]esad
]a

fsad
hsad

1

a

Isbad
s1 + I2d2

]Isbad
]a

n0,

ptcsbd =E da
fsad
hsad

1

a

Isbad
1 + I2

]Isbad
]a

]n0

]a
. s106d

We again present results in the limit of strong and weak
Zeeman fields.

B!GkF corresponds to a limit where the core size of
meronls is much smaller thankF.

ptsSkF

ls
D =

1

2
ptcSkF

ls
D =

1

4
. s107d

B@GkF corresponds to a limit where the core size of
meronls is much larger thankF.

ptsSkF

ls
D =

1

2
ptcSkF

ls
D =

1

4
SkF

ls
D2

. s108d

The corresponding charge and spin-pumping angles and
the transverse spin-pumping efficiency are still given by Eqs.
(91) and(92); for the Rashba model,pts andptc (calculated
above) should be used to determine the angles and efficiency.
Without losing generality, we again have neglected the
k-dependence inDk and ]nsekd /]ek in deriving results for
pts,tc in this section. In the 2D model, we further choose to
work in a limit where]nsekd /]ek is nonvanishing because of
band structures so that the longitudinal charge pumping is
nonzero.

3. The 2D Dresselhaus model

In the Dresselhaus model, the spin-orbit and Zeeman cou-
plings are given as

HD = − gmBB0fs·̃Vskd + szIsuk udg; s109d

hereA ·̃B is defined asAxBx−AyBy. Again one introduces a
unit vectornskd to specify spin configurations in Fermi seas.

The unit vectornskd is characterized byũskd, and f̃skd is
given in terms ofIsuk ud andf in the following equations,

f̃ = − fskd,

ũ = arctan
1

Isuk ud
. s110d

Calculations for the spin-pumping current are identical to
those in Sec. IV B. The winding number of the configuration
defined bynskd in this case is

FIG. 4. Responses of Fermi seas and individual electrons to
external pumping fields applied along thex direction. (a) is for
polarized electrons in the presence of orbital magnetic fields direct-
ing along thez direction. Spin-up and spin-down Fermi seas expe-
rience identical displacementd along the longitudinal directionx
and transverse directiony, which are shown in the two upper left
insets of Fermi seas.(b) is for electrons with spin rotation in the
X-space; in this case spin-up and spin-down Fermi seas have oppo-
site displacementd along the transverse directiony as shown in two
insets for two Fermi seas. In(c) we illustrate differences in electron
responses in theplus andminusFermi seas. We want to emphasize
that Fermi seas do not have collective displacement along a trans-
verse directiony or dy=0. In insets we show the external-field-
induced drift or group velocity of individual electronsvy in differ-
ent regions of Fermi seas. The transverse drift of an electron in the
upper part of a Fermi sea with momentumk is in an opposite
direction of the drift of the electron with momentum −k in the
lower part, which results in self-twists of Fermi seas. In upper
(lower) insets, we show the drift of electrons in the north(south)
poles of plus and minus Fermi seas, respectively; the big arrows
across Fermi seas indicate the direction of two distinct twists of
plusandminusFermi seas. In(d), we illustrate responses of theplus
andminusFermi seas in the 2D Rashba model. In this case, again
two Fermi seas have zero displacement in the transversey direc-
tions sdy=0d. However, the spin-plus and spin-minus electrons in
two Fermi seas acquire field-induceddispersivegroup velocities in
the oppositey direction as shown in the two insets in(d); the field-
induced transveral group velocity decreases rapidly as the momen-
tum increases. See Sec. V for detailed discussions.
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W=
1

2p
E dSez ·TK = −

1

2
E

0

p/2

dũ sin ũ = −
1

2
, s111d

representing a meron with a negative one-half Skyrmion
charge. This is topologically distinct from the spin configu-
ration in the Rashba model. Naturally, all topological fields
in this model are pointing in the negativez axis.

In the Rashba model we find that thetopological motoris
a positive meron in Fermi seas while in the Dresselhaus
model themotor is a negative meron. We anticipate that
spins should be pumped out in an opposite transverse direc-
tion in these two models. This is as well true for charge-
pumping currents in two limits when a Zeeman field is
present. So both topological spin- and charge-pumping cur-
rents flow in an opposite transverse direction compared to
currents in the Rashba model.

More specifically, we find that transverse adiabatic curva-
tures in the Dresselhaus model(subscriptD refers to this
model) are related to those in the Rashba model(subscriptR
for this model) via the following identity

PD
ts,tc = − PR

ts,tc. s112d

This is an exact result as far as the adiabaticity conditions in
Eqs. (36) and (42) are satisfied and is independent of the
spin-orbit coupling strength in the 2D Rashba and Dressel-
haus models.

In all models, we have found that topological spin- and
charge-pumping are suppressed by strong Zeeman fields be-
cause of spin polarization. This is a general feature of topo-
logical pumps; the topological fields are absent when elec-
trons are completely Zeeman polarized. Furthermore, the
topological charge pumping has a maximum when the Zee-
man field is comparable to spin-orbit fields, i.e.,B,GkF. In
Appendix C, we have found similar effects on the spin-Hall
and Hall conductivity. In the case where both the Rashba and
Dresselhaus terms are present and controllable, it is interest-
ing to understand how a topological pump reverses the di-
rection of its spin flow.

V. COLLECTIVE RESPONSES OF VARIOUS FERMI SEAS
TO PUMPING POTENTIALS: TRANSVERSE

DISPLACEMENT VERSUS SELF-TWIST

We also would like to emphasize that different schemes of
spin pumps discussed in this paper correspond to different
responses of Fermi seas to adiabatic perturbations. To study
displacement of Fermi seas or more general deformations of
various Fermi seas, one examines the adiabatic displacement
when pumping fields are applied along thex axis. It is useful
to introduce the displacement vector-tensordskd to charac-
terize collective motion of Fermi seas,

drsk,r ;Td = mv ·dskd
]r0skd

]ek
,

drsk,r ;Td =E dv

2p
frsk,r ;v,Td − r0sk ;vdg,

r0skd =E dv

2p
r0sk ;vd. s113d

In the adaibatic approximation employed in this paper,
only the diagional part of displacement tensor is nonzero.
One studies these elements to analyze the responses of Fermi
seas to pumping fields. For weakly polarized electrons in
orbital magnetic fields, spin-up and spin-down Fermi sur-
faces are displaced in the same longitudinal and transverse
directions; electrons in each Fermi sea drift with almost the
same velocity when the Zeeman splitting is much smaller
than the Fermi energy. Following the calculations in Sec. II,

dm = −
t0

m

]Vextsr ,Td
]r n

dnxFdmn + t0VcS1 + szgmBB

eF
DeznmG .

s114d

The responses of Fermi surfaces are summarized in Fig. 4.
In an XSSR-based pump, theplus and minusFermi sur-

faces are displaced along the same longitudinal direction, but
along the opposite transverse directions.

dm = −
t0

m

]Vextsr ,Td
]r n

dnxFdmn + szt0

m
Smn

XzG . s115d

For KSSR-based pumping, Fermi seas respond in very
distinct ways. In the generalized Luttinger model, the Rashba
model and the Dresselhaus model, Fermi seas only experi-
ence displacement in the longitudinal direction,

dm = −
t0

m

]Vextsr ,Td
]r n

dmndnx, s116d

and Fermi seas are not displaced along the transverse direc-
tion. In this regard, there is a fundamental difference be-
tween spin pumping of polarized electrons—an XSSR spin
pump and a KSSR spin pump. In the latter case, the one-
particle density matrix, surprisingly, does not develop an
asymmetric component along the transverse direction. The
spin current, therefore, is characteristic of persistent currents,
which do not involve distortion of Fermi seas. This observa-
tion appears to be consistent with a proposed analogy be-
tween a spin-injection current in the Luttinger model and a
supercurrent in Ref. 12.

However, in this case the group velocity of electrons ac-
quires a transverse term in the rotated basis along the trans-
versevy direction; the dispersion of group velocity tensor is

vm = vVkm + szSmn
Kzskd

]Vextsr d
]r n

. s117d

Consider the toy model in Sec. IV C 1. In terms of group
velocities, one finds that the upper half of theplusFermi sea
is displaced along the positivevy direction and the lower half
twists along theminusvy direction. For theminusFermi sea,
the upper half twists along theminus vy direction and the
lower half twists along theplus vy direction. Thereforeplus
andminusFermi surfaces experience two distinct self-twists.
All these occur while there is no displacement of Fermi seas
along the transverse direction.

This is also true for the Rashba and Dresselhaus models.
The displacement vector tensor does not have a transverse
component; only the group velocities of electrons develop a
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vy component. Following Eq.(117), the dispersion of group
velocity is given by the calculated meron fieldsTK in Sec.
IV C 3.

So we find that in an XSSR spin pump, Fermi seas expe-
rience periodical displacement along the transverse direction
and at any moment, spin-plusand spin-minusFermi seas are
displaced toward two opposite points in the transverse axis.
In the KSSR pumping scheme, on the other hand, Fermi seas
do not have periodical transverse displacement; however,
group velocities are renormalized by external fields. These
responses of Fermi seas lead to topological spin pumping
phenomena.

VI. CONCLUSION

To summarize, we have developed a kinetic approach to
analyze topological spin pumps in some detail. In all topo-
logical spin pumps discussed here, spins as well as charges,
are pumped out in a transverse direction by various topologi-
cal spin configurations, which we calltopological motors.
We have introduced the spin-pumping efficiency and spin-
pumping angle to characterize topological spin pumps that
could operate in the absence of spin polarization through a
mechanism of TSGS.

Following Eqs. (63) and (91) for a given longitudinal
charge pumping current, the transverse spin-pumping angle
for XSSR based pumpsuS is bigger in clean systems than in
dirty systems; this is similar to the usual Hall angle in dirty
metals. Transverse spin pumping in this case is attributed to
distinct displacement of spin-plusand spin-downFermi seas.
On the other hand, following Eq.(91) for KSSR-based
pumping, the transverse spin-pumping angleuS is bigger in
dirty structures. Transverse topological spin pumping in this
case occurs when Fermi seas are not displaced along the
transverse direction.

A unique feature of topological pumps is their Zeeman
field dependence. We have illustrated that when Zeeman
fields are much stronger than spin-orbit coupling fields, the
topological pumping mechanism is strongly suppressed. In
the 2D Rashba model, a topological spin pump is driven by a
meron living in Fermi seas while in the Dresselhaus model,
spins are pumped out in a transverse direction by a meron
with a negative half Skyrmion charge. The suppression oc-
curs as the size of meron increases. This general feature also
appears in the spin-Hall and Hall currents in these models. In
a subsequent paper, we will discuss a design that can be used
to establish a topological spin pump in laboratories.

Finally, we would like to point out that generalization to
various mesoscopic quantum systems is possible. A meso-
scopic mechanism of charge pumping was proposed and
studied in a few recent works.14,29,30The possibility of pump-
ing charges in an open mesoscopic structure was first noticed
in Ref. 29. In an extreme quantum limit, external potentials
can be applied to manipulate coherent wave packets rather
than to vary chemical potentials; the resultant pumping cur-
rent, therefore, is greatly enhanced at the low-temperature
limit and decays rapidly at a range of few hundred mk to one
kelvin. Such a quantum electron pump has been achieved in
a remarkable experiment.31

A few interesting aspects of coherent charge pumping
were addressed in later works. The symmetry of charge
pumping in the quantum limit was studied in Ref. 32. The
issue of counting statistics was raised and addressed in a
fascinating work:33 the counting statistics might shed light on
the issue of dissipation in an adiabatic pump and remains to
be studied in experiments. Pumping of coherent Andreev
states was analyzed in Ref. 34. At last, we should also men-
tion that various other proposals for spin pumps have been
made by different groups, see, for example, Refs. 35–40. We
refer readers to those works for detailed discussions in vari-
ous limits. In chaotic quantum dots, where current experi-
ments are carried out, an adiabatic spin pump of coherent
polarized electrons was proposed in Ref. 36; the effect of
spin-orbit scattering has been further studied in a recent
article.40
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APPENDIX A: CURRENT EXPRESSIONS IN THE
PRESENCE OF XSSR

Under the spin rotation defined in Sec. IV B, we would
like to underscore the following transformation in the equa-
tion of motion for the one-particle density matrix

]Hsk,r ;Td
]r m

→ ]Hsk,r ;Td
]r m

+ Smn
X sr d ^

]Hsk,r ;Td
]kn

.

sA1d

Because of gauge fields in the rotated basis, the asymmet-
ric component of the density matrix acquires an additional
term representing the transverse motion of electrons in the
presence of topological fields. Calculations show

rAsk,r ;v,Td = t0vVkmF−
]

]r m

+
]Hsk,r ;Td

]r m

]

]ek
+ DkSmn

X sr d

^
]Hsk,r ;Td

]r n

]2

]2ek
G ^ rSsk,r ;v,Td. sA2d

The solution ofrS is still given by Eq.(11).
Taking into account the asymmetric component derived

above, we obtain various charge and spin currents in both
longitudinal and transverse directions. Superscriptsl and t
stand for longitudinal and transverse directions,c ands stand
for charge or spin currents, and 1 and 2 are for transport and
pumping currents, respectively.

Various charge currents are
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Jm
lc1sr d =E dv

2p

ddk

s2pddDkTrH ]Hsk,r ;Td
]r m

^
]

]ek
r0sk ;vdJ ,

Jm
lc2sr d =E dv

2p

ddk

s2pddDkTrH ]Hsk,r ;Td
]r m

^
]

]ek
F 1

Dk
MS1sk,r ;v,TdGJ;

Jm
tc1sr d =

t0

m
E dv

2p

ddk

s2pddDkTrHFSmn
X sr d ^

]Hsk,r ;Td
]r n

G
^

]

]ek
r0sk ;vdJ ,

Jm
tc2sr d =

t0

m
E dv

2p

ddk

s2pddDkTrHSmn
X sr d ^

]Hsk,r ;Td
]r n

^
]

]ek
F 1

Dk
MS1sk,r ;v,TdGJ . sA3d

Spin currents are

Jm
z,ls1sr d =E dv

4p

ddk

s2pddTrHn · sDk
]Hsk,r ;Td

]r m

^
]

]ek
r0sk ;vdJ ,

Jm
z,ls2sr d =E dv

4p

ddk

s2pddTrHn · sDk
]Hsk,r ;Td

]r m

^
]

]ek
F 1

Dk
MS1sk,r ;v,TdGJ;

Jm
z,ts1sr d =

t0

m
E dv

4p

ddk

s2pddDkTrHn · sFSmn
X sr d ^

]Hsk,r ;Td
]r n

G
^

]

]ek
r0sk ;vdJ,

Jm
z,ts2sr d =

t0

m
E dv

4p

ddk

s2pddDkTrHn · sSmn
X sr d ^

]Hsk,r ;Td
]r n

^
]

]ek
F 1

Dk
MS1sk,r ;v,TdGJ; sA4d

d=2,3 is thedimension of Fermi seas.
CurrentsJtc1 and Jz,ts1 in these expressions yield contri-

butions to the anomalous Hall effect and spin-Hall current,
respectively. SuperscriptS1 has been introduced to specify
the symmetric part of density matrix, which is linear in the
external frequency.

APPENDIX B: CURRENT EXPRESSIONS IN THE
PRESENCE OF KSSR

In the presence of KSSR the longitudinal spin or charge
currents are the same as given in Appendix A. The transverse

spin and charge transport(i) or pumping(ii ) currents are

Jm
tc1sr d =E dv

2p

ddk

s2pddTrHSmn
K skd ^

]Hsk,r ;Td
]r n

r0sk ;vdJ ,

Jm
tc2sr d =E dv

2p

ddk

s2pddTrHSmn
K skd

^
]Hsk,r ;Td

]r n

1

Dk
MS1sk,r ;v,TdJ ,

Jm
z,ts1sr d =E dv

4p

ddk

s2pddTrHnskd · sSmn
K skd

^
]Hsk,r ;Td

]r n

r0sk ;vdJ ,

Jm
z,ts2sr d =E dv

4p

ddk

s2pddTrHnskd · sSmn
K skd

^
]Hsk,k ;Td

]r n

1

Dk
MS1sk,k ;v,TdJ . sB1d

APPENDIX C: ZEEMAN FIELD DEPENDENCE OF THE
HALL AND SPIN-HALL CURRENTS IN THE

RASHBA MODEL

In this section, we apply the results obtained in Appendix
B to briefly discuss the Hall current and spin-Hall current.
The spin-Hall current in the Rashba model has been studied
in various papers and we do not intend to reproduce all re-
sults in detail. Here we address the effect of Zeeman fields
using the approach developed above.

We define the Hall conductivity and spin-Hall conductiv-
ity in the usual way,

Jy = syxEx, Jy
z = syx

z Ex. sC1d

After taking into account the symmetry ofSxy
K , we find the

following expressions for spin-Hall and Hall conductivity in
terms ofSxy

Kz,

syx
z =

1

2
E d2k

s2pd22nzskdSxy
Kzskdn0sekd,

syx =E d2k

s2pd22gmBGrkf1 + I2skdg1/2Sxy
Kzskd

]

]ek
n0sekd.

sC2d

The rest of the calculations are straightforward, and we
derive the following results for the spin-Hall and Hall con-
ductivity in terms ofIsrkd

syx
z = −

1

4p
E drk

I

s1 + I2d2

]I

]rk
n0sed,

syx = −
1

2p
E drk

gmBB0srkd
1 + I2

]I

]rk

]n0sekd
]ek

. sC3d
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Finally, we obtain the Zeeman field dependence of the
spin-Hall and Hall conductivity,

syx
z =

1

8p

kF
2

ls
2 + kF

2 ,

syx =
1

4p

gmBB

eF

kF
2

ls
2 + kF

2 . sC4d

ls is defined in Sec. IV C 2. As mentioned before, we have
set"=e=1 in this paper.

syx
z at zero Zeeman field was studied in a few recent

works using the Kubo formula.41 We find that sxy
z is a

smooth monotonous function of Zeeman fields and decreases
as fields increase.syx has a maximum atls=kF. Note all
results are valid when the adiabaticity conditions in Sec.
IV C 2 are satisfied. Since the main contribution to the spin-
Hall current is actually from states close touk u=0, it is es-
sential to lift the degeneracy atk =0. So in the presence of
impurity scattering, the adiabaticity condition implies that a
finite Zeeman field needs to be present and the limit of zero
field should be taken with great care.
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