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Berry phases for composite fermions: Effective magnetic field and fractional statistics
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The quantum Hall superfluid is presently the only viable candidate for a realization of quasiparticles with
fractional Berry phase statistics. For a simple vortex excitation, relevant for a subset of fractional Hall states
considered by Laughlin, nontrivial Berry phase statistics were demonstrated many years ago by Arovas,
Schrieffer, and Wilczek. The quasiparticles are in general more complicated, described accurately in terms of
excited composite fermions. We use the method developed by Kjgnsberg, Myrheim, and Leinaas to compute
the Berry phase for a single composite-fermion quasiparticle and find that it agrees with the effective magnetic
field concept for composite fermions. We then evaluate the “fractional statistics,” related to the change in the
Berry phase for a closed loop caused by the insertion of another composite-fermion quasiparticle in the interior.
Our results support the general validity of fractional statistics in the quantum Hall superfluid, while also giving
a quantitative account of corrections to it when the quasiparticle wave functions overlap. Many caveats, both
practical and conceptual, are mentioned that will be relevant to an experimental measurement of the fractional
statistics. A short report on some parts of this article has appeared previously.
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I. INTRODUCTION theory by Arovas, Schrieffer, and WilcZekor a “vortex”

When hard-core particles are confined in two dimension (?xcitation in Laughlin’s wave functidnat filling factors of

the configuration space is multiply connected, and paths witt€ form 1;=_1/m, m Odd'_l"?‘“d arg:cjed to b(leﬁl_genefrarll c?nse—
different winding numbers are topologically distinct becauseq“encedO mlcogpressml ity at a fractional filling of the low-
they cannot be continuously deformed into one another. ThESt Landau level.

particles are said to have statistiésif a path-independent It IS by now clear that the physics of the QHS can be
phase 26" results when one particle traverses around an_understood, bOt.h qualltatllvgly anq quantitatively, without any
other in a complete loop. A half loop is equivalent to an mention of fractional statistics. Jain shoWehat the nonper-

exchange of particles, assuming translational invarianc%,lglgzti‘r’]zt‘;%Zircni.g; tgglI(e?(;-'cso:Leso;ntér;gr;?'gmzﬂom'(?I\ g‘;"é’
which produces a phase factef’ =(-1)? . As pointed out ! 1ons Pos| 1ons, whi

. , : . bound states of electrons and an even number of quantized
by Leinaas and Myrheirh,nonintegral values o#" are al- q

; ) e vortices. Many essential properties of the QHS can be ex-
lowed, which are referred to as fractional statistics. Clearlyplained by neglecting the interaction between composite fer-

fractional statistics can be consistently defined only in tWoyjong gitogether, as properties of almost free fermions. Ex-
dimensions, because in higher dimensions the notion of gnsjve experimental and theoretical work has established
particle going around another is topologically ill defined.  {hat the composite-fermiofCF) theory gives acompletede-
Given the experimental fact that all fundamental particlesscription of the low-energy Hilbert space of the sysfef,
in nature are either bosons or fermions, any discussion df that it correctly predicts the quantum numbers of the low-
fractional statistics may appear academic. That would perenergy states and also gives an accurate microscopic wave
haps be true from an elementary particle physicist's perspedunction for them. Thus, neither the explanation of the phe-
tive. However, there is no fundamental principle that pre-nomenology nor a calculation of the experimentally measur-
cludes the possibility that certaBmergeniquasiparticles of able quantities requires, in principle, any consideration of
a condensed matter system might possess fractional statisactional statistics.
tics; indeed, an appearance of such statistics would be an With the exception of the “quasihole” at=1/m, the ex-
interesting example of how entirely new concepts carcitations of fractional quantum Hall effe€¢EFQHE) are not
emergé in a many-body system. Obviously, it would take a described by a simple vortex, but have a much more compli-
highly nontrivial state of matter in order for fractional statis- cated structure, just as the FQHE ground states in general
tics particles to emerge, and nature has graciously providedfzave much more complex wave functions than those at
possible candidate—namely, the quantum Hall superfluid=1/m. Analytical calculations for the Berry phase statistics
(QHS).2 The QHS is formed when interacting electrons con-have not been possible for the nonvortex excitations, but
fined to two dimensions are exposed to a strong magnetioumerical calculations have been carried out and showed
field. It is characterized by quantized Hall plateaus and aurprising results. For theguasiparticles (as opposed to
vanishing resistance at zero temperatimespite of the pres- quasiholey at »=1/m, a calculation by Kjgnsberg and
ence of disorder The investigation of the QHS has given Myrheim'2with a trial wave function suggested by Laughlin
rise to much interesting physics since its discovery in theshowed that they dmot possess a well-defined fractional
early 19808 statistics, in the sense that the calculated statistics parameter
The possibility of fractional statistics in the QHS was first shows rapid variations with the separation between the two
recognized by Halperiti,demonstrated in a microscopic quasiparticles and fails to reach an asymptotic limit. That
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\

appears to cast doubt on the generality of the concept c/

fractional statistics and also on the validity of the earlier
heuristic derivations that were based on nothing more tha
incompressibility at a fractional filling.

The microscopic understanding in terms of composite fer
mions has enabled further progress. Because the CF thed
gives a good account of the low-energy physics, it must als
contain information about fractional Berry phase statistics

interacting electrons
in 2D at high B

4

weakly interacting
composite fermions at B*

provided it really exists. One might naively think that the

fractional statistics is incompatible with the CF theory, but % N

that is not the case. As discussed in several arfi¢léshe . ibilit her oh

CF theory, in fact, provides a straightforward heuristic “deri- mcompreSSln“ ¥ other phenomena
vation” for fractional statistics. The fractional statistics sim- at v = S Y——

ply keeps track of how the effective magnetic field experi-

enced by composite fermions is affected by local v N

deformations in the density, as obtained, for example, by

creation of a localized excitation. The CF theory allows ond  FQHE fractional charge

to go beyond the simple vortex at1/m through the gen-
eral understanding of quasiparticles as excited composite fe N8
mions. The wave function for the CF quasiparticle :at
=1/mwritten by Jaiff is known to be more accurate than the
one suggested by Laughfif:® An important step in the
clarification of the issue of fractional statistics was taken by\ /
Kjonsberg and Leinaas, who showed that when the former

wave function is used for a calculation of the statistics, a FIG. 1. The logical path to fractional statistics. First, the inter-
definite value is obtainetf. The present study confirms that acting electrons transform into weakly interacting composite fermi-
the result is robust to projection into the lowest Landau levelons at an effective magnetic field. Composite fermions form incom-
sorts out certain subtle corrections left out in the earliempressible states at certain fractional fillings of the lowest Landau
study, and extends the calculation to more complex excitalevel. Incompressibility implies fractional charge, which, finally,
tions of other incompressible states. A brief account of soméeads to fractional statistics.

of the results below has appeared previously in a short article

0 . . . . . .
by the authorsS interpretation in terms of effective magnetic fields. In Sec.

_The logical route to fractional statistics is displayed iny e will first calculate the Berry phase for a single CF
Fig. 1, which serves to clarify the cause-and-effect relationy, . qinarticle and show that it is consistent with the effective
ship between various concepts. The fractional statistics is agnetic field principle. The effective magnetic field prin-

consequence of incompressibility at fractional filling ciple is also shown to explain the situation when the CF
factors?! the incompressibility itself results from the forma- inarticle i tside th tum Hall droolet. The frac-
tion of composite fermions. Two notable facts Consistent?.uaSIloar Icle ies outside the guantum Hall dropiet. The frac
with the directions of arrows in Fig. 1 are th@ the frac- |onal. statistics of CF _quaS|part|cIeS is calculatgd microscopi-

Pally in Sec. IV. We will see that very small deviations in the

tional statistics can be derived from composite fermions, but' <. ,
the reverse is not possible, afty) the fractional statistics is trajectory make corrections that are on the same order as the

tied to incompressibility, whereas composite fermions arestatistics itself. The CF quasiparticles in different CF—quasi-
more general and apply to compressible states as well. THeandau levels are also found to exhibit the same fractional
CF theory is the microscopic theory of the QHS, whereas &tatistics. Finally, constraints on experimental observations
description in terms of fractional statistics quasiparticles is0f the fractional statistics are discussed.

an effective theory obtained when all but a few degrees of

fractional statistics

freedom are integrated out.

It should be stressed that fractional statistics is a rather
delicate concept. The effective magnetic field of composite
fermions is a robust M) quantity, which has been directly

measured in experiments and gives an immediate explana-

tion for the FQHE and many other phenomena. The frac-
tional statistics, on the other hand, provides a natural inter-

Il. COMPOSITE FERMIONS AND EFFECTIVE
MAGNETIC FIELD

1% 2 e
H:E—[_—Vj+§A(rj)] + .
| 2myl i c j<k|rj_rk|

The physics of the QHS is governed by the Hamiltonian

1)

pretation for a subtle, but perhaps measurable, property Qf, the |imit of very large magnetic fields, all electrons can be
composite fermions, which specifies how the effective magiaren to reside in the lowest Landau level ), and the

netic_field chz_anges upon an(D yariation in the partic_:le Hamiltonian reduces, in appropriate units, to

density. That is the reason why it has not been possible to

confirm it so far, although several proposals have recently _ 1

been advancett. H= PLLL%(“J, - P 2
This paper is organized as follows: Section Il is devoted .

to the introduction of the composite-fermion concept and thevhereP | denotes projection into the lowest LL.
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The problem is highly nontrivial because of the lack of agoing aroundN,,.particles inside the loop, with each particle
small parameter, but we have a good understanding of itsontributing a phase of2 Equation(6) will play a funda-
physics, both qualitatively and quantitatively, based on thanental role in what follows. As we shall see, this equation
formation of a new kind of fermions called composite fermi- implies incompressibility at certain fractional fillings and
ons, which are bound states of electrons and an even numbalso explains the origin of fractional statistics.
of quantized vortices. Through composite fermions, many We interpret the net phase as the AB phase due to an
essential features can be understood through an analogy éffectivemagnetic fieldB":

the well-understood integral quantum Hall effe¢QHE). BA
The wave function of the QHS has the following structure: P =-270——. (8)
0
V=P P 1] (z - 2)%. 3 . o .
HH ,—EIK( i~ % & In a mean-field approximation, we replabg,. by its aver-

. i ) ) . age valuepA, which gives
HereWV , is the wave function of interacting electrons at fill-

ing factor v, defined as’=p¢,/B (p is the two-dimensional B" =B~ 2ppdo. 9)
density of electronsB is the external magnetic field, and
¢o=hcl/e is called the magnetic flux quantymd,- is the
wave function forweakly interactingelectrons at filling fac-
tor v, related tov by

Thus, the composite fermions behave as though they were in
a much smaller effective magnetic field.
To understand why the Berry phases coming from the
vortices in the Jastrow factor effectivetancel(as opposed
v to augmentthe magnetic field, it is instructive to understand
= va—” (4) the effective magnetic field by eliminating the phases of the
Jastrow factor in favor of a vector potential following the
The complex numbeg;=x;—iy; denotes the position of the standard approach:** Consider the Schrodinger equation
jth electron in thex-y plane. ¥, are known to be accurate
representations of the actual eigenfunctions of the lowest LL - ( + ) + - — 2)2P «
projected Coulomb Hamiltoniatr!! and it will be assumed lZ bE. P A(r) V} Ek(z’ 27y
below that they provide a correct account of topological
properties like the fractional statistics. = E_H (z - 207D, (10)
The filling factor v is typically <1, whereasy" is typi- I=<k
cally >1. The mapping in Eq.3) leads to a simplification of \whereV is the interaction. The kinetic energy term will be
the problem because the space of candidate wave functlomﬁe important one in what followgWe note that the un-
at v is much smaller than that at In particular, whenv"  projected wave function is not an exact eigenfunction of the
=n (an integey, the ground-state wave functidn, is unique,  Hamiltonian. For the sake of the present argument, one may
giving a unique wave function, at v=n/(2pn+1). That  think of ®, as an arbitrary wave function rather than the
explains the FQHE at these filling factors, which are thesolution of the noninteracting problem at; then, the exact

prominently observed sequences of fractions. eigenstate in question can always be written in the above
‘The physics of the wave functiodr, is best understood form. While performing the actual calculations of the Berry
prior to the lowest LL projection—that is, with phase, we will of course use the projected wave functions
hich have a close to 100% overlap with the exact eigen-
W= T (z = 2.)2° w : P ge
v, =, Ek(zl 297" ®) states). Display the phases due to the Jastrow factor explic-
itly:

The Jastrow factofl;(zj~2z)? binds 2 vortices to each 20 i )
electron. The bound state is interpreted as a particle— 11 (z - 20% = €'#=i<i] ] |z - zJ*. (11)

namely, the composite fermion. Now imagine a composite J=k J=k

fermion—i.e., an electron along wittp2/ortices—traversing Here

a closed loop enclosing an aréa(in the counterclockwise

direction. The phase associated with this process contains by =i InA =% (12)
two terms: 1z -z

We have been careful above to keep track of the factzhat
=re”'%, as appropriate for external magnetic field in the +
direction. The Schrodinger equation can be rewritten as

where Ngpc iIs the number of composite fermions inside the
loop. The first term is the usual Aharonov-BolAB) phase [_E (p " A(r )+ a(r )> +V}H Iz - 2D
2mb i I j<k : '

. BA
P == 277'? + 272PNepe (6)
0

BA
O==27—, (7
o =E[llz-z/*®,, (13
produced when a particle of charge executes a counter- <k
clockwise loop, with the magnetic field pointing in the + where the additional vector potential, which simulates the

direction. The second term is the phase due plova@rtices  effect of the phases of the Jastrow factor, is given by
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2p , into »"=n filled quasi-Landau levels of composite fermions
a(ri) = - 5‘1’02 Vidij, (14)  at an effective magnetic field given by =B/(2pn+1).
) From the analogous case ofn, wheren Landau levels are
where the prime denotes the conditijp#i. The correspond- fully occupied, it is obvious that it is not possible to make a

ing magnetic field is wave packet here without creating excitations. Therefore,
) one is forced to consider excitations. Atn we can straight-
by == 2pepez>, & (ri—1)). (15)  forwardly make a wave packet if we put an additional elec-
i

tron in the lowest unoccupied LL, which can then be moved

Thus, the phase of the Jastrow factor is equivalent to each @ny desired trajectory. That is what we will do with com-
electron seeing a flux tube of strengthpd® on all other ~ POSite fermions. , , o
electrons; the minus sign indicates that the flux tube points in_ e will refer to as the “composite-fermion quasiparticle”
the —z direction, opposite to the direction to the external field(CFQP @ composite fermion in the otherwise empty CF-
B=B% quasi-LL, which is the image of the electron state which has
This interpretation raises the following questiotig.The N completely occupied LL's and a single electron in time
effective vector potential does not take careallf of the +1)St_ LL. Similarly, the hole left behind when a composite
phases in the unprojected wave functi#f, because there fermion is remoyed from the topmost CF-quasi-LL will be
are additional vortices and antivortices dn:. What about termed “composite-fermion quasiholeCFQH). The state at
their effect?(ii) How does the projection into the lowest LL »=Nn/(2pn£1) is to be thought of as the “vacuum.” Relative
affect the above considerations? The feature tpatdttices  to the “vacuum” state, the CFQP or CFQH has a charge
are strictly bound to electrons prior to the projection is lostexcess or deficiency in a spatially localized region. It ought
upon projection into the lowest LL. For example, for to be stressed that even a single CFQP or a CFQH describes
v>1/3, where composite fermions manifestly carry two vor-a strongly correlated state of many interacting electrons.
tices prior to projection, only one vortex can be bound to Now take a CFQP in a loop enclosing an afed@ecause
each electrorafter projection. The projection thus obscures it is nothing but a composite fermion, the phase is predicted
the physics of composite fermions. Is there any way of seeto be the same as in E):
ing an effective magnetic field directly with the projected B'A eBA
wave functions? ® =-27 =-2m .
Even though the effective magnetic field is revealed most ®o (2pn+ 1)hc
clearly in the unprojected wave functions, the robustness ofpjs is what we will first confirm.
the concept to perturbations has been confirmed in a model The calculation of Berry phase requires microscopic wave
independent manner by numerous fadty. Experiments  fynctions which are constructed starting with the wave func-
clearly show a remarkably close correspondence between gy of a quasiparticle at’ =n, using the standard framework
FQHE and the IQHE, thus providing a nontrivial global con- of the CF theory. One problem is to figure out where to place
firmation of the effective magnetic field concept) Direct  the electrons in the corresponding IQHE problem, so, when
measurements of the cyclotron radius of the charge c&irier the wave function is transformed to that of composite fermi-
are consistent witlB'. (i) Exact diagonalization studies ons we get the CFQP’s at the desired location. To do so, we
show that the low-energy spectrum of interacting electrons gfnplement the mapping from” to » in a manner that pre-

B has a one-to-one correspondence with the low-energ¥eryves distancego zeroth ordex We first construct a quasi-
spectrum of noninteracting fermions Bt.!! (iv) The wave particle wave function aB", multiply it by ®2°, where
functions of interacting electrons B{(v) are closely related

(16)

to the wave functions of noninteracting electronsBaty"), N 1
i jons, it © = I (z-zexp - 52> [z (a7
as seen in Eq3). From these observations, it is clear that the =1 4~ zJex 424 4
J<k= i

concept of effective magnetic field is more generally valid
than the derivation based on the unprojected wave functionaith 12=7c/eB,=%c/epe,, and finally project the product
WP would suggest. into the lowest electronic LL. This mapping preserves the

We now proceed to confirm Eq6) by calculating the size of the disk containing the quantum Hall droplet, because
Berry phase explicitly for a closed loop of composite fer-while the Jastrow factor pushes the particles out, the Gauss-
mion aty=1/3 andv=2/5 for thelowest LL projected wave ian pulls them in precisely by an amount to cancel the two
functions. The answers are fully consistent with the effectiveeffects. It is easy to check that the density is not changed in
magnetic field principle. going from v =n to v=n/(2pn+1) in this manner(See the

article by Jain in Ref. 9 for more details.
At v, the single-particle orbitals in the lowest LL are

Ill. BERRY PHASE FOR A SINGLE CF QUASIPARTICLE given by
To confirm the effective magnetic field concept in a Berry _ " 1.,
phase calculation, one can envision creating a localized {n(2) = \J’—sz”‘m' exp - 412 7|, (18

composite-fermion wave packet and determining the Berry
phase associated with a closed loop enclosing an Area wherel”=(2pn+1)'/ is the magnetic length &". To put a
Consider first the ground state@atn/(2pn+1), which maps CFQP aty, we first construct the electronic wave function at
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v with an electron in the relevant Landau leyetherwise

empty) at 7 in a familiar coherent state. The coherent state at

7 in the lowest LL is given by

* 2
Oy =S - = 7 _ =
¢7] (r) mzzo gm( n)gm(z) ex{ 2|*2 4|*2 4|*2 z

(19

PHYSICAL REVIEW B 70, 125316(2004)

1 2p 1
ANTINES
1

(25)

which is equivalent to Eq9). This wave function is similar
to that considered by Kjgnsberg and Lein&alsut not iden-
tical.

Figure 2 shows the excess density due to the presence of
a single localized CFQP for=1/3. Thelocalized excess

One can elevate the coherent state to higher Landau levels [yofile is clearly observed in the intended position indicated

repeated application of the LL raising operasde=(24/dz

by the arrow in the lower panel; the profile has a smoke-ring-

~712)/:2, which leads to the coherent-state wave function inik€ Shape since the quasiparticle is in the second CF-quasi-

the (n+1)St LL, apart from a constant factor:

| 1
g;)(r):(?—ﬁn ex%ﬁ_ﬁ_ﬁ Z|2] (20)
It is convenient to define
(n) n 7z |772
¢, (1) =Z-n"exp 555~ | (21)
2l 4]
SO
$(r) = ¢(,,”)(r)e><p[— e ZIZ} (22

As an example, consider the system iatl/(2p+1),
which is related to the CF filing”=1. The electron wave
function atv' =1 with fully occupied lowest LL and an ad-
ditional electron in the second LL afis

$P(r) PPy
1 1
z z \
P7= ! z exp(—z |z[%141 2).
j
A2 4

(23)

This leads to thgunnormalizegl wave function for a CFQP
at v=1/(2p+1):

d’(ﬂl)(r 1) ¢(7,l)(r2)
1 1
Z Z
W i2p+n) = PriL
22 27

(24)

N
x I1 (Za-zk)Zpexp(—E |Zj|2/4|2)-
j

i<k=1

Here, we have used

LL. (The coherent wave packet for an electron in the second
LL also has a similar shapeA deficit of the charge along the
boundary is also discernible.

In a similar way we can construct the wave function for a
CFQP of the state at=n/(2pn+1) for arbitraryn andp. For
example, the wave function at2/(4p+1) corresponding to
n=2 is given explicitly by

#20r) 21y
2 2
217 22,

- - N/2-2 S _N/2-2

‘I’g/(4p+1> =PuL|zaz 27,

1 1
y4) Zs

ZJ’\_UZ_l Zl2\1/2—l

N
x 11 @z-20% exp(—E |zj|2/4|2>. (26)
i<k=1 j

There are two methods for performing projection into the
lowest LL. In one method® (i) normal ordering the factor
multiplying the Gaussian factor e&gs,|z?/41%) by bring-
ing all z to the left ofz and (ii) make the replacemeif
— 24/ 9z, with the understanding that the partial derivatives
do not act on the Gaussian factor éxp;|z|/412). We em-
ploy a slightly different other projection method, described
in Ref. 10, which has many advantages in the numerical
calculation, especially for large systems. In the CF theory,
the unprojected wave function has the form

n(z) iz -
bz Yoz -
PP = . R

InNz) YNz -
N
x 11 (a—zkﬁpexp(—Elzjlzﬂtlz). (27)
j

i<k=1

Such wave functions can be rewritten in the form
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FIG. 2. Excess charge density relative to the ground state in th 77/l

presence of a single CFQP. We usee1/3, N=50, and #/I
=O.3Rd~5._2 yvith disk sizeRy= \s“Zl_\l/v. The resulting pqsition (_)f ~ FIG. 3. The Berry phas®” for a single CFQP at=1/3 (upper
the CFQP is in good agreement with the intended position, which ipane) and v=2/5 (lower pane) as a function ofy. HereN is the

indicated by the arrow in the contour pldower panej. total number of composite fermionkjs the magnetic length, and
o .=-27BA/ ¢y is the Berry phase acquired by an electron moving
2.)JP Z)JP .. in an empty space. The error bars from Monte Carlo sampling
a(z) ;13 ¥1(2) er which are smaller than the symbol size are not shown explicitly.

Po(z)I Po(z)I5 - The deviation at the larges/| for eachN is due to proximity to the

Pup = ex%— > |Zj\2/4|2) . . . edge.
i
b P .. circular path withR fixed andé varying from 0 to 27 in the
@)Y In(Z) counterclockwise direction(Note that while the CFQP

(28) moves in the counterclockwise direction in thg plane, the
complex coordinate; executes a clockwise loop in the com-

with J;=Tl;(z~2J. Then the projected wave function is élex plane) The integrand in Eq. (29) involves

given by projecting each element of the determinant sep
rately into the lowest Landau level by the method describe valuate by the Monte Carlo method. Approximately 4

above. x 10 iterations are performed for each point. Rer1/3 we

In order to test the robustness of the results to how th%ave studied systems witi=50, 100, and 200 particles, and
projection is carried out, we have studied wave function pro; ’ ! '

jected by the two ways as well as the unprojected one for thfé,)r v=2/5 westudy systems wittN=50 and 70 particles.
CFQP atr=1/3. Theresults were independent of the em- rojected wave functions are used in both cases.

I . The resulting values of Berry phase are displayed as a
ployed state as long as the position of the CFQP is far fron?unction of the radius of the circular motion in Fig. 3. For
the boundary of the system.

both »=1/3 and v=2/5 the Berry phase exhibits well-
defined values, which agree well with those in Etp) pre-
dicted by the effective magnetic field description. The devia-

N-dimensional integrals over the CF coordinates, which we

A. Berry phase

The Berry phase associated with a pétfs given by tion for largen is a boundary effect, caused by the finiteness
of the system. The overall behavior for1/3 is consistent
P ii\If” with the result in Ref. 19. The effective magnetic field thus
P 24; 40 dé , (29) survives projection into lowest LL.
)

B. Fractional local charge

whereW7 is the wave function containing a single CFQP at  Above we derived the Berry phase as coming from the
5. For convenience, we take=Re'?, andC refers to the combination of two terms, due to an electron apdv@rtices
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going around a closed loop. This actually provides a deriva 6
tion of the local charge of the CFQP, where the local charge
denoted by €', is defined to be charge excess associate
with it relative to the uniform ground state. The Berry phase 4l
of a CFQP is also the AB phase for a charge,-which

gives, using Eq(16),
€BA_ o €BA
he =~ 7" (2pn+ 1)hc’

_211

Thus the local charge of a CFQP is

.___ e
~ 2pn+1’

The local charge can be derived in many other wWas-

PHYSICAL REVIEW B 70, 125316(2004)

¢/Ra ' o
-

2 - -

(30 -y
fanls!
’/ 1 1 1

OO 4 8 12 16

(31) n/Ra

FIG. 4. Actual location¢ of a CFQP(in units of the disk size

other way is to add the charge of the constituents of théa=IV2N/v) as a function of the parameter for »=1/3 andN

CFQP—namely, the electron and the vortiéd@he charge of

=50 when the CFQP is outside the quantum Hall superfluid droplet.

a vorte¥ is ve, which is the occupation of a single orbital at The dashed line ig=7 and the solid line isf=7/(2pn+1), the
filling ». The local charge of the CFQP, a bound state of arposition the CFQP would have in the absence of any other compos-

electron and @ vortices, is thus € =-e+2pre=-e/(2pn

+1). One can also show that the addition of one electron _ _ _ _
creates Bn+1 CFQP’S, which again |mp||es that the local closed area is not filled Un|f0rm|y with CF,S, we can no

charge associated with each CFQP & (2pn+1). The fact
that the local charge is independent of detéitdying only

ite fermions(in the case ofv=1/3, wehave&=#/3; see text

longer use thauniform effective magnetic field in Eq9).
Instead, we must use E@). Outside the droplet, the number

on incompressibility provides insight into why the Berry ©Of enclosed 'compc;sit('e fermions My,.=N-1 and the en-
phase of the CFQP is robust to projection into the lowest LLClosed area if=m¢", yielding the Berry phase

C. CF quasiparticle outside the disk

In the previous sections, we have considered only the sit

@ _ . _4p(N-1

o T (@ 32

YThe second term, the contribution from the composite fermi-

ation when the CFQP is inside a QHS droplet. It is interest- ns on the QHS droplet, is of ordeX( ).

ing to ask what happens when a CFQP is located outside the
droplet. Far from the droplet, the CFQP no longer has an
other CF's nearby and therefore there is no screening holé
Its local charge therefore is the same as a bare chagieie

to the absence of the screening cloud. How about the Berr
phase acquired by the CFQP? Should it be the samk.as

which is the Berry phase for an electron moving in the free]cor a CFQP inside the disk are not shown in Fig. Because

the local charge of a CFQP becomes just outside the
groplet, the long taikO(£72) in @/ d, is not explained by

space in a uniform external magnetic fid@

Before proceeding further within the CF theory, we
should reexamine how the actual CFQP position is related t
the parametet in the wave function. The condition that the
position of the CFQP be given by was derived under the
assumption that the CFQP is surrounded by other uniform

(0]

1

CF’s; we can no longer expect that the CFQP position is 0.8
given by » when it is off the droplet. Far from the droplet, 6
the CFQP V\iill experience thieare external magnetic fiel&® ‘b*/q’e'
rather tharB" =B/ (2pn+1). Accordingly, the use of effective 0.4
magnetic lengti” in the coherent state leads to the actual

position of the CFQP given by~ »/(2pn+1). This is veri- 0.2
fied in Fig. 4, which plots the actual locatioh obtained

numerically as a function of the parametgrThe numerical 0

calculation was performed at=1/3 for N=50 composite
fermions. When the parameter exceeds the droplet size

Ry=I1V2N/v, the positioné deviates from the&dashedl line
¢=7. As 7 is increased furtheg approaches thesolid) line

&=7/(2pn+1).

Figure 5 demonstrates clearly that the prediction in Eqg.
32), denoted by the dashed line in the figure, explains nicely
he behavior of®* when the CFQP is outside the droplet.
Indeed, the numerical data begin to deviate when the CFQP
prroaches the boundary of the droplet and eventually give a
definite value 1¢2pn+1) inside the systenthe Berry phase

0

¢/ Ry

FIG. 5. Berry phas@” acquired by a CFQP when it is outside
the quantum Hall droplet. The system Hds50 composite fermi-

ons at the fillingy=1/3. Thedashed line is the prediction of the CF
The CF theory also makes a prediction for the Berrytheory, and the squares are calculated from the microscopic wave
phase of a single CFQP outside the droplet. Since the erunctions.
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the alternate interpretation of the Berry phase in terms of phases given below are what an actual experiment would

charge of €" moving under the external magnetic fiedd measure.
Our goal is to confirm Eq(35) in a microscopic calcula-
IV. TWO CF QUASIPARTICLES: FRACTIONAL tion. The statistics parameter is given by
STATISTICS
We have confirmed Ed6) for a single CFQP in a closed
loop, when the other composite fermions make a uniform o | S o] Spn
background state. How about the situation when the density p _3@ de de jg de de
is not uniform? The simplest question one may ask is, how - o 2m <\Im”,|q,m,> 2m (e

does the Berry phase change when we change the number of

enclosed particles in a loop by a number of order unity? (36)
Following Ref. 14, Eq(6) predicts
AD" = 272pA(Negno - (33

whereW7 is the wave function containing a single CFQP at
To be specific, we will add a single CFQP inside the loop, g g Q

7y , /
which, counting the correlation hole around it, carries an”’ andw”” has two CFQP's ay and 7'. Here we takey

- . e =Re'% andC refers to the path witlR fixed and# varying
excess 0f(Neng =1/(2pn+1) electrons, which gives: from 0 to 27 in the counterclockwise direction, as in the

calculation of a single-CFQP Berry phase. For convenience,

A" = 2W2pn+ 1 =274, (34) we will take »'=0 and denote the microscopic numerical
. value of 8 by 6'(the reason will be clear below
with Before proceeding further, we mention a curious fact to
2p illustrate the fragility of fractional statistics. Laughlin had

g = . (35 proposed the following wave function for two quasiparticles
2pn+1 at v=1/m (m odd):

A fractional value ofé" is often interpreted through an as-
signment of a fractional statistics to the CFQP’s. Note that
the fractionally quantized value fof* is a direct conse- N N
quence of the fractional quantization of the local charge. It ”— _ 127412 _ o _om
should also be stressed tftatis a much more subtle quantity ot eXF( Ej 374 ),1:[1 (&Zi ”)j<1;[:1 (7 =2J%
than B", sensitive to order unity changes in the enclosed
particle number. Equatio(6) is surely correct in a mean-
field sense, but it is by no means obvious that it captures
0O(1) effects accurately. N

The meaning of fractional statistics is cpmplicateq in the ‘I’[""I - exp(— 2 |Zj|2/4|2)1‘[ (0, - 78, - 7)
QHS context by the presence of a magnetic field, which pro- i =1 i
duces its own phase for any closed loop, even when it does N
not include another CFQPROf courseall loops enclose other % I @-zgm
composite fermions; here we think of only the excitations as ) '
the CFQP’9. The fractional statistics is defined as ttiéer-
encein the phase for a given closed path when one CFQP is
added to the interior. It is a small perturbation on a large
effect. Even though we have derived the fractional statisticKjgnsberg and Myrheift found that the Berry phase calcu-
as an immediate corollary of the effective magnetic fieldlation of the statistics of the quasiparticle using this wave
principle the value of¢" had been derived prior to the CF function does not produce a well-defined answer. It was re-
theory from general argumerfté,assuming incompressibil- alized by Kjgnsberg and Leinddsthat the more accurate
ity at a fractional filling; the earlier valug# evaluated with  wave function of the CF theory produces a well-defined
B in the +z direction differ from the one quoted here by 1 value for . What makes it all the more surprising is that
(mod 2. The reason for this deviation is that our theory dealshoth the wave functions of Laughlin and Jain produce the
with quasiparticles that obey fermionic exchange statisticscorrect local charge for a single quasiparticle. It is not under-
so an additional factof-1) arises from the mere position stood why one of them fails to produce proper statistics, but
exchange of two CF quasiparticles in the microscopic waveéhe example underscores how the statistics may be sensitive
function, whereas the previous ones assume bosonic efe rather subtle correlations in the wave function.
change statistics. In Ref. 19 the result was shifted by unity. In the CF theory, the wave function for two CFQP’s at
We prefer not to do that. The quasiparticles that we workv=1/(2p+1) is a natural extension of that containing a
with are the actual quasiparticléss would be obtained in an single CFQP. The electron wave functionzat1 with fully
exact diagonalization study if, say, two impurities wereoccupied lowest LL and two additional electrons in the sec-
placed to localize two quasiparticlesand therefore the ond LL atn and %’ is

(37

j<k=1
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Oy Dy s 0.0 T T T T T
¢, (1) ¢,,(ry) - 0.2 100 &
200 e
. ! 1 X - 04 i -
77 = 2 2, s lexp =2 |Z]-|2/4| 2). 0 B
j 06 F L3 o 4 o
) U%E!@Aé,gA....-.
: 08F ™ .
N-3 N-3 a
Z Z 1.0 O L | 1 1 1
(39) ) 5 10 15 20 25 30
. . . d/l
This leads to the(unnormalizegl wave function for two 0.0 T . T . . T
CFQP’s atv=1/(2p+1):
02} L i {—
</>(,71)(|’1) ¢(,71)(r2) 04 & B IiE!.DE : % E %
#0000 g by
1 1 .. 0.6 O iy
) v=2/5
Viidprn=Pur| z z .. 08k *® / N=50 o -
= 100 e
-1.0 1 1 1 1 1 1
. . 0 5 10 15 20 25 30 35
A S S d/l
N -
FIG. 6. The statistical anglé” for the CFQP’s a=1/3 (upper
. — 2p _ 127412
><i<1;[:1 (z-2) ex[{ E, |ZJ| 4l ) (39 pane) and »=2/5 (lower panel as a function ofd=|»—7'|. Here

N is the total number of composite fermions, dnd the magnetic
The extension to the general filling=n/(2pn+1) is again  length. The error bar from Monte Carlo sampling is not shown
straightforward. For reference, we give an explicit expres_explicitly when it is smaller than the symbol size. The deviation at

sion of the two-CFQP wave function at2/5: the largestd/| for eachN is due to proximity to the edge. This
figure was shown earlier in Ref. 20 and is reproduced here for
2 2
¢’(7,)(r1) ¢(7])(r2) completeness.

Po(r) Br) . . . .
7 7 tics, a small difference between two large quantities, requires
z 2 much greater accuracy than the calculatiorBotonsidered
Zz % ... !n Fhe preyious seqtion. The use of projected wave functions
is in principle possible, but very costly in terms of computa-
w17 =P : y tion time) At v=2/5 thesystem size is smaller and the sta-
25 LLL - n2-3 5o Ni2-3

72 2z, tistical uncertainty bigger, but the asymptotic value is clearly
1 1 seen to bed =-2/5. At short separations there are substan-
7 2 tial deviations in#'; it reaches the asymptotic value only

after the two CFQP’s are separated by more thd® mag-
N/'Z_l N/'z_l netic lengths. Such deviations are presumably due to a sig-
Z % nificant overlap between CFQP’s when they are clgge.
N contrast, the effective magnetic field is well defined for arbi-
x [T (z-2)? ex;{— S g4 2)_ (40) trarily small closed loops.
i

i<k=1

- A. Sign puzzle
The statistics parameted” for »=1/3 andv=2/5 was

shown in Ref. 20, reproduced in Fig. 6 for completen@*ss. ; s L .
takes a well-defined value for large separationsvAill/3 it magthde as_9 in Eq. (35 but the opposite s_|gnThe sign
discrepancy, if real, cannot be reconciled with E6) and

approaches the asymptotic valuetf~2/3, which is con- \youd cast doubt on the fundamental interpretation of the CF
sistent with that obtained in Ref. 19 without lowest LL pro- physics in terms of an effective magnetic field.

jection. The calculation av=1/3 explicitly demonstrates To gain insight into the issue, consider two composite
that ¢" is independent of whether the projected or the unfermions in the otherwise empty lowest LL, for which vari-
projected wave function is used. Assuming the same is trueus quantities can be obtained analytically. When there is
for other fractions, we have performed the calculationvat only one composite fermion aj=Re, it is the same as an
=2/5 without the projection(The calculation of the statis- electron, with the wave function given by

The microscopic valug/ obtained above has the same
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n R |7 ol 4 o
1= exp = - — — | 41 e =W
X p{zﬁ 42 412 4D 3g do de __RZ .
For a closed loop, c2m (WP 277 2pn+ 1’
a2 When the contribution from the closed path without the other
3g do \ X | de" R 7RB w) CFQP, R'2/21"2, is subtracted out§” of Eq. (35) is ob-
c2m Ol 22 gy tained. The neglect of the correction in the radius of the loop

introduces an error which just happens to be twice the nega-
Two composite fermions, one gtand the other ay’ =0, are  tive of the “correct” answer.
described by the wave function Before ending this subsection we note another subtle ef-
_ _ oo fect. A quasiparticle in the bulk induces a quasihole at the
X0 = (zy - 2,) (7% — e722) e RHal ™24 (43)  poundary, the charge of which is nonuniformly distributed
over the edge when the bulk quasiparticle is off center. As
the primary quasiparticle is taken around a loop, the “center”
of the induced edge quasihole also executes a complete loop.

Here, we expect’ =2p. However, an explicit evaluation of
the Berry phase shows, neglectingR>?) terms,

20/ d 70 The contribution of the latter to the Berry phase is neglected
do \X X R2 in the heuristic derivation of the statistics as well as in the
ﬁ: ZW =Tor 2p, (44)  analytical calculation of Arovast al.® but is explicitly in-

cluded in the numerical calculations with a boundary. The
consistency of the numerical results with the heuristic expec-
tation indicates that the boundary effects are negligible, at
least as long as the primary quasiparticles are sufficiently far
from the edge.

which gives#’ =-2p for largeR. Again, it apparently has the
“wrong” sign.

A calculation of the density fox”° shows that the actual
position of the outer composite fermion is rit| 7| butR’,
given by

R2 B. Approach to the asymptotic value
2 = 2 +4X2p (45) In the previous section, it was shown that the asymptotic
value of the statistic parameter is explained within the CF

for largeR. This can also be seen in the inset of Fig. 2 of Ref.theory. The next question is how the asymptotic value is

20. The correct interpretation of E¢d4) therefore is reached as the distance between two CFQP’s is increased. In
d Fig. 6, particularly forv=1/3, we can sethat " approaches
q x™° id—ex’%o R'2 its asymptotic value very slowly even far=10. Is that
é _eﬁ =-—+2p, (46)  slow convergence real or only a result of the fact that the
c2m  (xX™Ix™0) 2l actual position of the CFQP has slight corrections? Should

hich prod =20, Th . h the slow convergence persist f6r, which would cast doubt
V\i Ic dpLO ucesz =2p. The QI%_correc'uon_to t er;':lrea €N" on the usefulness of the concept of fractional statistics.
closed thus makes a nonvanishing correction to the statistics. 15 axamine the origin of such long tail, we consider in

(Itis noted that the CFQP ay=0 is also a little off center .0 getail two composite fermions in the lowest CF-quasi-
and executes a tiny circular loop which provides another COM | For 2CF (p=1), we can explicitly calculate the statistics

rection to the phase, but this contribution vanishes in th%arameterin Eq36) through the use of the wave function in

limit of large R.) -

This exercise tells us that an implicit assumption made inEq' (43), leading to
the earlier analysis—namely, that the position of the outer rR2 [ 4R2 (R 20R?
CFQP labeled byy remains unperturbed by the insertion of gl Tt 32 +g 2 <|—4 gt 64)

another CFQP—leads to an incorrect value darIn reality, g = _

inserting another CFQP inside the loop pushes the CFQP at R' 16R° 2 RY16R?
. +32-€ ——-—+32

n very slightly outward.

IR ERNE

To determine the correction at=n/(2pn+1), we note (49)
that the mapping into composite fermions preserves dis-
tances to zeroth order, so E@5) ought to be valid also at

v=n/(2pn+1). This is consistent with the shift seen in Fig. 2 In the limit of R>1, ¢ reduces to

of Ref. 20 for the position of the CFQP calculated numeri- _ 1\2 | \4
cally directly from the wave function. Our earlier result 6=-2+ 1E<—) + O(E) . (50
Y700 - iation of
% dé de 3 iz 2p (47 As observed fow=1/3, we findthat the deviation of" from
c2m (g0 o2 2pn+1 the gsymptotlcz va!ue decays only algebralqally._The d_enS|ty
profile for two “CF’s on the lowest CF-quasi-LL is straight-

ought to be rewritten, using?/1>=B/B"=2pn+1, as forwardly computed to be

125316-10
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p7O(x) oc & X R (% 4 832 + 8)
— 2g RE-RANy2(x — R)2 4 8x(x ~ R) + 8]
+e* [ (x-R)*+8(x-R?2+8] (51)
along thex axis, with the outer composite fermion intended
to be located atR,0). As discussed in the previous section,
the actual positionR’ of the outer composite fermion is

given by
R R (I I\® (I)5
—= 4 = 1-32 = —| =R+AR. (52
* (R) (R) +O\g) =R*AR (52

PHYSICAL REVIEW B 70, 125316(2004)

-0.3 T T T T
N=50 o
oul 100 &
200 o
5* 0.5 :‘13 7
\w\ o] a
06 Fpe *
exre..
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0.7 ' ' ' :
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d/l

At the same time, the inner composite fermion also shifts to  FIG. 7. The statistical anglé” for the CFQP’s atv=1/3 for

(R”,0)=(-AR, 0). The Berry phasédivided by 27) acquired
due to the position shift of the composite fermions is

" BAA 1
A =———=- —Z[WR’2+ R’ - 7R?]
¢0 2’7T|
I\? \4
:—4+16<—> +(’)(—> . (53
R R
The real statistical parametéi=6" —-A¢" is given by
| 4
0*=2+O(—> : (54)
R

with the +O(I/R)? term canceling out. Thus, the power law
tail in the difference between the CF val#é=2 and the

microscopic valued' in Eq. (49) is not real, but caused by a
shift in the positions of the CFQP’s.

If the same argument holds for nonzereand p=1, the
additional Berry phasédivided by 2r) due to the position
shift can be written as

larged=|7%-7'|. HereN is the total number of composite fermions,
and| is the magnetic length. The dashed line is &#), which is in
good agreement with the long tail of the numerical data. The points
near the edge deviate significantly from the dashed line.

very smalld it grows monotonically from -1 before under-
going a crossover to the asymptotic value. To gain insight
into this behavior, we again resort to CF's in an otherwise
empty lowest CF-quasi-LL. In the limit oR<I, Eq. (49
reduces to

1

ool

(57)

showing a quadratic increase from —-1. Similar behavior is
displayed by two electrons in the second Landau level for
small separations. Far=1, the statistics parameter for elec-
trons separated by a distandés given by

, 4 16 (12 ( | )4
AG =- + —| +0| = 55 ~ d/n)?
2n+1 2n+1<d) d 9 0:——( )2 . (58)
. . . 2(1 _ e—d 121 )

through the use of the effective magnetic fieRl/B
=1/(2n+1). Adding the asymptotic valued =2/(2n+1)
gives This yields in the limitd<|

~ 2 16 (12 <| )4 0.0

0 =- + - +0l- . 56 . T T T 1 T T T T

2n+1 2n+ 1( d) d (56 / /

. - - _ o 02t v=1/3 / 1 v=2/5 /o
This heuristic prediction of the CF theory is plotted in Fig. 7 / /&
(dashed ling and agrees well with the long tail of the nu- 04}k < Al AR
merical behavior for largel/I. ' /

-0.6 - ,’/E Ela ,/ID -
C. Two nearby CF quasiparticles sk A AL /6/ i

We now turn to the situation when the two CFQP’s are /gIA L /I/Erl L
located very close to one gnother. When the.di.stance be- -1-00 - 1 2 3 4 0 1 2 3 4 5
comes comparable to the size of the CFQP’s, it is not pos- d/l d/l

sible to define the distance between the CFQP’s in a mean-
ingful manner, so we will consider here the dependence of
fra_ctlonal statistics 0r_111:|77— 7’|, which is a parameter en- pane) and »=2/5 (right pane} for smalld=|5-»'|. The symbols
tering the wave funCt'on,;* are the same as in Fig. 7, ahid the magnetic length. The heuristic

The microscopic valu@ for smalld, as shown in Fig. 8, formula in Eq.(60) (dashed linesagrees well with the actual result
exhibits significant deviation from its asymptotic value. Forfor small d.

FIG. 8. The statistical angING* for the CFQP’s atv=1/3 (left
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~ % 1 d 2 d 4 0.5 T T T T T T
Og=—-1+-|—-) +0| -], (59) N =50 o
4\ | I
o 100 2
which is identical to that for composite fermions in lowest 00F m 200 o
CF-quasi-LL. g N
We can expect similar behavior for CFQP’s in higher CF- -
quasi-LL’s. The only difference is that they feel an effective 05 = - A .
magnetic fieldB"=B/(2pn+1), which changes the length I S B,
scale froml to I". It is expected that for smadl, ¢ is given
_ 1 1 1 1 1 1
by 1'OO 5 10 15 20 25 30 35
~6’*——1+;<B>2+0(B)4 (60) 4/t
- 42pn+ )\ | 1)

~ FIG. 9. The statistical anglé’ for the CFQP’s in different CF-
Figure 8 presents the calculat# for small separation at quasi-LL's at the fillingr=1/3 as afunction of d=|»-7'|. The
v=1/3 and 2/5along with the heuristic expression of Eq. CFQP at the origin is in the third CF-quasi-LL while the CFQP

(60). As can be seen in Fig. 8, E(0) gives a good account traversing a closed loop is in the second CF-quasi-LL. Hiigthe
of the behavior at both fillings. total number of composite fermions, ahé the magnetic length.

D. CF quasiparticles in different CF quasi-Landau levels functions constructed according to Laughlin’s ansatz and the

In this section we investigate another interesting questionone used above based on the CF theoryvatl/3. For
What is the relative statistics for two CFQP’s in different CFQP’s there are many candidates for two-quasiparticle
CF-quasi-Landau levels? This corresponds to the situatiostates. The CIEN-2,2] with both quasiparticles in the sec-
when a CFQP is inserted into an excited CF-quasi-Landagnd CF-quasi-LL has lowest energy among the candidates as
level. From the CF point of view, the statistics is related toexpected from the fact that it has the lowest effective cyclo-
the excess charge due to the presence of the additional CFQfén energy. As discussed in Ref. 18, Laughlin’s wave func-
as shown in Eq(34). Since the local charge of the CFQP is tion for two quasiparticles is more akin to tfisl-2,1,1]
independent of the quasi-Landau level to which it belongsstate of composite fermions, with one CFQP in the second
the resulting statistics is expected to be the same as th@F-quasi-Landau level and the other in the third; both states
when both CFQP’s are in the same CF quasi-Landau leveliave the same total angular momentum and their density

For an explicit calculation, we investigate the situationprofiles look alike. One might therefore have expected that
that a CFQP in the second CF-quasi-Landau level goete [N-2,1,1] state would not display definite statistics.
around a CFQP in the third CF-quasi-Landau level at theqowever, our result above demonstrates that even[khe
filing for »=1/3. Thewave function for two CFQP’s is -2,1,1] state is fundamentally different from the one in

given by Eqg. (37).
¢, (1) #(r)
¢<,72,)(f1) ¢(772,)(r2) E. Composite fermions: Fermions or anyons?
1 1 The fractional statistics of the CFQP’s ought not to be
\yf;g’ =P z z, confused with the fermionic statistics of composite fermions.

The wave functions of composite fermions are single valued
and antisymmetric under particle exchange; the fermionic
statistics of composite fermions has been firmly established

z'i'"g ZQ—S through a variety of facts, including the observation of the
Fermi sea of composite fermions, the observation of FQHE
at fillings that correspond to the IQHE of composite fermi-

2 2 2
X.<1;[— (z-2) exp( 2 |z[*/41 ) (61)  ons, and also by the fact that the low-energy spectra in exact

calculations on finite systems have a one-to-one correspon-
For simplicity, we sety’ =0. dence with those of weakly interacting fermich¥he ap-
Figure 9 demonstrates that the asymptotic value of thgearance of fractional statistics may seem at odds with the
relative statistics of two CFQP’s in two different CF-quasi- fermionic nature of composite fermions, but there is no con-
Landau levels is the same as for those in the same CF-quagiadiction. After all, any fractional statistics in natuneust
Landau level. On the other hand, there is significant differ-arise in a theory of particles that are either fermions or
ence for small separations between two CFQP's. Théosons when an “effective” description is sought in terms of
behavior at small separations is believed to be sensitive ta small number of collective degrees of freedom. The frac-
the local structure of each CFQP, because corrections to tH®nal statistics appears in the CF theory when all of the
statistics are caused by their overlap. original particles afz} are integrated outor treated in an
Jeon and Jai§ noted that for two quasiparticles at the average, mean-field sende formulate an effective descrip-
origin there is a qualitative difference between the wavetion in terms of the few CFQP’s diy}. If we work with all
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composite fermions, then E¢) is sufficient. measurable error in the trajectory produces a finite correction
to 6°, changing its sign.In fact, one may ask how quantum
fluctuations in each QN) quantity affect the QL) difference
. ] _and whether the Q) difference can be defined in a rigorous
There are features that complicate a possible observatiofanner8 (In this context, it is noted that the effective mag-
of fractional statistics(i) The CFQP’s are natleal anyons.  netic field is related to the total Berry phase associated with
As seen in our calculations, the fractional statistics is sharply path, an ordeN quantity, and therefore robust to quantum
defined only asymptotically; in general there are correctiongnechanical fluctuations which are of smaller orpeiii)
to it. Substantial deviation of from its asymptotic value is There are many other features likely to be present in a real
seen at separations of up to 10 magnetic lengths. Therefore experimental situation that would be inimical to an observa-
measurement o’ must ensure that there is no overlap be-tion of fractional statistics—for example, disorder and finite
tween the CFQP’s at any time. One might expect that théemperature, both of which generate particle-hole pairs
interaction between the CFQP’s will be repulsive which will which would provide a correctioriv) The current flows at
automatically ensure that they do not come very close to onge edge of an incompressible FQHE system, where the frac-
another. That turns out not to be the case, however. Thonal statistics is not well defined due to the absence of a
interaction between the CFQP's is very weak and ofter@@p:° This creates a problem for a detection of fractional
attractive?’ (ii) There is another important aspect throughStalistics in a transport experimenw) It is not known how
which the situation here differs from that for ideal anyons_robust the fractional statistics concept is to perturbations. We

For two ideal anyons, the Berry phase is zero for paths wit!ave confirmed it fornoninteracting composite fermions.
zero winding number and-24" for paths with unit winding owever, it has been found that interactions between com-

One therefore only needs to measure the Berry phase for osite fermions can produce S|gn|f|cant corrections to appar-

; . ntly topological quantitied! Also, the fact that certain qua-
path that encircles another particle. In the case of the FQHE, - functi —1 h
on the other hand, the fractional statistics, itself afl)O Eglpar'uce wave functions at=1/m do not produce a sharp

. i diff b fractional statistics shows that it is not as robust as the frac-
quantity, arises as a difference between twONDBerry  yiona charge or the effective magnetic field. Whether it sur-
phases, vv_herBI is the number of part|cl_es enclosed by the yjyes a more realistic calculation remains to be tested.
closed trajectory. For the reason listed(iy N must neces-

sarily be quite large. A precise measurement of the difference ACKNOWLEDGMENTS
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