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The quantum Hall superfluid is presently the only viable candidate for a realization of quasiparticles with
fractional Berry phase statistics. For a simple vortex excitation, relevant for a subset of fractional Hall states
considered by Laughlin, nontrivial Berry phase statistics were demonstrated many years ago by Arovas,
Schrieffer, and Wilczek. The quasiparticles are in general more complicated, described accurately in terms of
excited composite fermions. We use the method developed by Kjønsberg, Myrheim, and Leinaas to compute
the Berry phase for a single composite-fermion quasiparticle and find that it agrees with the effective magnetic
field concept for composite fermions. We then evaluate the “fractional statistics,” related to the change in the
Berry phase for a closed loop caused by the insertion of another composite-fermion quasiparticle in the interior.
Our results support the general validity of fractional statistics in the quantum Hall superfluid, while also giving
a quantitative account of corrections to it when the quasiparticle wave functions overlap. Many caveats, both
practical and conceptual, are mentioned that will be relevant to an experimental measurement of the fractional
statistics. A short report on some parts of this article has appeared previously.
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I. INTRODUCTION

When hard-core particles are confined in two dimensions,
the configuration space is multiply connected, and paths with
different winding numbers are topologically distinct because
they cannot be continuously deformed into one another. The
particles are said to have statisticsu* if a path-independent
phase 2pu* results when one particle traverses around an-
other in a complete loop. A half loop is equivalent to an
exchange of particles, assuming translational invariance,
which produces a phase factoreipu*

=s−1du*
. As pointed out

by Leinaas and Myrheim,1 nonintegral values ofu* are al-
lowed, which are referred to as fractional statistics. Clearly,
fractional statistics can be consistently defined only in two
dimensions, because in higher dimensions the notion of a
particle going around another is topologically ill defined.

Given the experimental fact that all fundamental particles
in nature are either bosons or fermions, any discussion of
fractional statistics may appear academic. That would per-
haps be true from an elementary particle physicist’s perspec-
tive. However, there is no fundamental principle that pre-
cludes the possibility that certainemergentquasiparticles of
a condensed matter system might possess fractional statis-
tics; indeed, an appearance of such statistics would be an
interesting example of how entirely new concepts can
emerge2 in a many-body system. Obviously, it would take a
highly nontrivial state of matter in order for fractional statis-
tics particles to emerge, and nature has graciously provided a
possible candidate—namely, the quantum Hall superfluid
(QHS).3 The QHS is formed when interacting electrons con-
fined to two dimensions are exposed to a strong magnetic
field. It is characterized by quantized Hall plateaus and a
vanishing resistance at zero temperature(in spite of the pres-
ence of disorder). The investigation of the QHS has given
rise to much interesting physics since its discovery in the
early 1980s.3

The possibility of fractional statistics in the QHS was first
recognized by Halperin,4 demonstrated in a microscopic

theory by Arovas, Schrieffer, and Wilczek5 for a “vortex”
excitation in Laughlin’s wave function6 at filling factors of
the formn=1/m, m odd, and argued to be a general conse-
quence of incompressibility at a fractional filling of the low-
est Landau level.7

It is by now clear that the physics of the QHS can be
understood, both qualitatively and quantitatively, without any
mention of fractional statistics. Jain showed8 that the nonper-
turbative physics of the QHS lies in the formation of par-
ticles that arefermions, called composite fermions, which are
bound states of electrons and an even number of quantized
vortices. Many essential properties of the QHS can be ex-
plained by neglecting the interaction between composite fer-
mions altogether, as properties of almost free fermions. Ex-
tensive experimental and theoretical work has established
that the composite-fermion(CF) theory gives acompletede-
scription of the low-energy Hilbert space of the system,9–11

in that it correctly predicts the quantum numbers of the low-
energy states and also gives an accurate microscopic wave
function for them. Thus, neither the explanation of the phe-
nomenology nor a calculation of the experimentally measur-
able quantities requires, in principle, any consideration of
fractional statistics.

With the exception of the “quasihole” atn=1/m, the ex-
citations of fractional quantum Hall effect(FQHE) are not
described by a simple vortex, but have a much more compli-
cated structure, just as the FQHE ground states in general
have much more complex wave functions than those atn
=1/m. Analytical calculations for the Berry phase statistics
have not been possible for the nonvortex excitations, but
numerical calculations have been carried out and showed
surprising results. For thequasiparticles (as opposed to
quasiholes) at n=1/m, a calculation by Kjønsberg and
Myrheim12 with a trial wave function suggested by Laughlin6

showed that they donot possess a well-defined fractional
statistics, in the sense that the calculated statistics parameter
shows rapid variations with the separation between the two
quasiparticles and fails to reach an asymptotic limit. That
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appears to cast doubt on the generality of the concept of
fractional statistics and also on the validity of the earlier
heuristic derivations that were based on nothing more than
incompressibility at a fractional filling.7

The microscopic understanding in terms of composite fer-
mions has enabled further progress. Because the CF theory
gives a good account of the low-energy physics, it must also
contain information about fractional Berry phase statistics,
provided it really exists. One might naively think that the
fractional statistics is incompatible with the CF theory, but
that is not the case. As discussed in several articles13,14 the
CF theory, in fact, provides a straightforward heuristic “deri-
vation” for fractional statistics. The fractional statistics sim-
ply keeps track of how the effective magnetic field experi-
enced by composite fermions is affected by local
deformations in the density, as obtained, for example, by
creation of a localized excitation. The CF theory allows one
to go beyond the simple vortex atn=1/m through the gen-
eral understanding of quasiparticles as excited composite fer-
mions. The wave function for the CF quasiparticle atn
=1/m written by Jain8 is known to be more accurate than the
one suggested by Laughlin.15–18 An important step in the
clarification of the issue of fractional statistics was taken by
Kjønsberg and Leinaas, who showed that when the former
wave function is used for a calculation of the statistics, a
definite value is obtained.19 The present study confirms that
the result is robust to projection into the lowest Landau level,
sorts out certain subtle corrections left out in the earlier
study, and extends the calculation to more complex excita-
tions of other incompressible states. A brief account of some
of the results below has appeared previously in a short article
by the authors.20

The logical route to fractional statistics is displayed in
Fig. 1, which serves to clarify the cause-and-effect relation-
ship between various concepts. The fractional statistics is a
consequence of incompressibility at fractional filling
factors;21 the incompressibility itself results from the forma-
tion of composite fermions. Two notable facts consistent
with the directions of arrows in Fig. 1 are that(a) the frac-
tional statistics can be derived from composite fermions, but
the reverse is not possible, and(b) the fractional statistics is
tied to incompressibility, whereas composite fermions are
more general and apply to compressible states as well. The
CF theory is the microscopic theory of the QHS, whereas a
description in terms of fractional statistics quasiparticles is
an effective theory obtained when all but a few degrees of
freedom are integrated out.

It should be stressed that fractional statistics is a rather
delicate concept. The effective magnetic field of composite
fermions is a robust OsNd quantity, which has been directly
measured in experiments and gives an immediate explana-
tion for the FQHE and many other phenomena. The frac-
tional statistics, on the other hand, provides a natural inter-
pretation for a subtle, but perhaps measurable, property of
composite fermions, which specifies how the effective mag-
netic field changes upon an Os1d variation in the particle
density. That is the reason why it has not been possible to
confirm it so far, although several proposals have recently
been advanced.22

This paper is organized as follows: Section II is devoted
to the introduction of the composite-fermion concept and the

interpretation in terms of effective magnetic fields. In Sec.
III, we will first calculate the Berry phase for a single CF
quasiparticle and show that it is consistent with the effective
magnetic field principle. The effective magnetic field prin-
ciple is also shown to explain the situation when the CF
quasiparticle lies outside the quantum Hall droplet. The frac-
tional statistics of CF quasiparticles is calculated microscopi-
cally in Sec. IV. We will see that very small deviations in the
trajectory make corrections that are on the same order as the
statistics itself. The CF quasiparticles in different CF–quasi-
Landau levels are also found to exhibit the same fractional
statistics. Finally, constraints on experimental observations
of the fractional statistics are discussed.

II. COMPOSITE FERMIONS AND EFFECTIVE
MAGNETIC FIELD

The physics of the QHS is governed by the Hamiltonian

H = o
j

1

2mb
F"

i
= j +

e

c
Asr jdG2

+ o
j,k

e2

ur j − rku
. s1d

In the limit of very large magnetic fields, all electrons can be
taken to reside in the lowest Landau level(LL ), and the
Hamiltonian reduces, in appropriate units, to

H = PLLLo
j,k

1

ur j − rku
PLLL, s2d

wherePLLL denotes projection into the lowest LL.

FIG. 1. The logical path to fractional statistics. First, the inter-
acting electrons transform into weakly interacting composite fermi-
ons at an effective magnetic field. Composite fermions form incom-
pressible states at certain fractional fillings of the lowest Landau
level. Incompressibility implies fractional charge, which, finally,
leads to fractional statistics.
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The problem is highly nontrivial because of the lack of a
small parameter, but we have a good understanding of its
physics, both qualitatively and quantitatively, based on the
formation of a new kind of fermions called composite fermi-
ons, which are bound states of electrons and an even number
of quantized vortices. Through composite fermions, many
essential features can be understood through an analogy to
the well-understood integral quantum Hall effect(IQHE).
The wave function of the QHS has the following structure:

Cn = PLLLFn*p
j,k

szj − zkd2p. s3d

HereCn is the wave function of interacting electrons at fill-
ing factorn, defined asn=rf0/B (r is the two-dimensional
density of electrons,B is the external magnetic field, and
f0=hc/e is called the magnetic flux quantum). Fn* is the
wave function forweakly interactingelectrons at filling fac-
tor n* , related ton by

n =
n*

2pn* + 1
. s4d

The complex numberzj =xj − iyj denotes the position of the
j th electron in thex-y plane.Cn are known to be accurate
representations of the actual eigenfunctions of the lowest LL
projected Coulomb Hamiltonian,9–11 and it will be assumed
below that they provide a correct account of topological
properties like the fractional statistics.

The filling factor n is typically ,1, whereasn* is typi-
cally .1. The mapping in Eq.(3) leads to a simplification of
the problem because the space of candidate wave functions
at n* is much smaller than that atn. In particular, whenn*

=n (an integer), the ground-state wave functionFn is unique,
giving a unique wave functionCn at n=n/ s2pn+1d. That
explains the FQHE at these filling factors, which are the
prominently observed sequences of fractions.

The physics of the wave functionCn is best understood
prior to the lowest LL projection—that is, with

Cn
up = Fn*p

j,k

szj − zkd2p. s5d

The Jastrow factorp j,kszj −zkd2p binds 2p vortices to each
electron. The bound state is interpreted as a particle—
namely, the composite fermion. Now imagine a composite
fermion—i.e., an electron along with 2p vortices—traversing
a closed loop enclosing an areaA (in the counterclockwise
direction). The phase associated with this process contains
two terms:

F* = − 2p
BA

f0
+ 2p2pNenc, s6d

whereNenc is the number of composite fermions inside the
loop. The first term is the usual Aharonov-Bohm(AB) phase

F = − 2p
BA

f0
, s7d

produced when a particle of charge −e executes a counter-
clockwise loop, with the magnetic field pointing in the +z
direction. The second term is the phase due to 2p vortices

going aroundNencparticles inside the loop, with each particle
contributing a phase of 2p. Equation(6) will play a funda-
mental role in what follows. As we shall see, this equation
implies incompressibility at certain fractional fillings and
also explains the origin of fractional statistics.

We interpret the net phase as the AB phase due to an
effectivemagnetic fieldB* :

F* ; − 2p
B*A

f0
. s8d

In a mean-field approximation, we replaceNenc by its aver-
age valuerA, which gives

B* = B − 2prf0. s9d

Thus, the composite fermions behave as though they were in
a much smaller effective magnetic field.

To understand why the Berry phases coming from the
vortices in the Jastrow factor effectivelycancel(as opposed
to augment) the magnetic field, it is instructive to understand
the effective magnetic field by eliminating the phases of the
Jastrow factor in favor of a vector potential following the
standard approach.23,24 Consider the Schrödinger equation

F 1

2mb
o

i
Spi +

e

c
Asr idD2

+ VGp
j,k

szj − zkd2pFn*

= Ep
j,k

szj − zkd2pFn* , s10d

whereV is the interaction. The kinetic energy term will be
the important one in what follows.(We note that the un-
projected wave function is not an exact eigenfunction of the
Hamiltonian. For the sake of the present argument, one may
think of Fn* as an arbitrary wave function rather than the
solution of the noninteracting problem atn* ; then, the exact
eigenstate in question can always be written in the above
form. While performing the actual calculations of the Berry
phase, we will of course use the projected wave functions
which have a close to 100% overlap with the exact eigen-
states.) Display the phases due to the Jastrow factor explic-
itly:

p
j,k

szj − zkd2p = e−i2po j,kf jkp
j,k

uzj − zku2p. s11d

Here

f jk = i ln
zj − zk

uzj − zku
. s12d

We have been careful above to keep track of the fact thatz
=re−if, as appropriate for external magnetic field in the +z
direction. The Schrödinger equation can be rewritten as

F 1

2mb
o

i
Spi +

e

c
Asr id +

e

c
asr idD2

+ VGp
j,k

uzj − zku2pFn*

= Ep
j,k

uzj − zku2pFn* , s13d

where the additional vector potential, which simulates the
effect of the phases of the Jastrow factor, is given by
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asr id = −
2p

2p
f0o

j

8=ifi j , s14d

where the prime denotes the conditionj Þ i. The correspond-
ing magnetic field is

bi = − 2pf0ẑo
j

8d2sr i − r jd. s15d

Thus, the phase of the Jastrow factor is equivalent to each
electron seeing a flux tube of strength −2pf0 on all other
electrons; the minus sign indicates that the flux tube points in
the −z direction, opposite to the direction to the external field
B=Bẑ.

This interpretation raises the following questions.(i) The
effective vector potential does not take care ofall of the
phases in the unprojected wave functionCn

up, because there
are additional vortices and antivortices inFn* . What about
their effect?(ii ) How does the projection into the lowest LL
affect the above considerations? The feature that 2p vortices
are strictly bound to electrons prior to the projection is lost
upon projection into the lowest LL. For example, for
n.1/3, where composite fermions manifestly carry two vor-
tices prior to projection, only one vortex can be bound to
each electronafter projection. The projection thus obscures
the physics of composite fermions. Is there any way of see-
ing an effective magnetic field directly with the projected
wave functions?

Even though the effective magnetic field is revealed most
clearly in the unprojected wave functions, the robustness of
the concept to perturbations has been confirmed in a model
independent manner by numerous facts.(i) Experiments
clearly show a remarkably close correspondence between the
FQHE and the IQHE, thus providing a nontrivial global con-
firmation of the effective magnetic field concept.(ii ) Direct
measurements of the cyclotron radius of the charge carrier25

are consistent withB* . (iii ) Exact diagonalization studies
show that the low-energy spectrum of interacting electrons at
B has a one-to-one correspondence with the low-energy
spectrum of noninteracting fermions atB* .11 (iv) The wave
functions of interacting electrons atBsnd are closely related
to the wave functions of noninteracting electrons atB*sn*d,
as seen in Eq.(3). From these observations, it is clear that the
concept of effective magnetic field is more generally valid
than the derivation based on the unprojected wave functions
Cup would suggest.

We now proceed to confirm Eq.(6) by calculating the
Berry phase explicitly for a closed loop of composite fer-
mion atn=1/3 andn=2/5 for thelowest LL projected wave
functions. The answers are fully consistent with the effective
magnetic field principle.

III. BERRY PHASE FOR A SINGLE CF QUASIPARTICLE

To confirm the effective magnetic field concept in a Berry
phase calculation, one can envision creating a localized
composite-fermion wave packet and determining the Berry
phase associated with a closed loop enclosing an areaA.
Consider first the ground state atn=n/ s2pn+1d, which maps

into n* =n filled quasi-Landau levels of composite fermions
at an effective magnetic field given byB* =B/ s2pn±1d.
From the analogous case ofn=n, wheren Landau levels are
fully occupied, it is obvious that it is not possible to make a
wave packet here without creating excitations. Therefore,
one is forced to consider excitations. Atn=n we can straight-
forwardly make a wave packet if we put an additional elec-
tron in the lowest unoccupied LL, which can then be moved
in any desired trajectory. That is what we will do with com-
posite fermions.

We will refer to as the “composite-fermion quasiparticle”
(CFQP) a composite fermion in the otherwise empty CF-
quasi-LL, which is the image of the electron state which has
n completely occupied LL’s and a single electron in thesn
+1dst LL. Similarly, the hole left behind when a composite
fermion is removed from the topmost CF-quasi-LL will be
termed “composite-fermion quasihole”(CFQH). The state at
n=n/ s2pn±1d is to be thought of as the “vacuum.” Relative
to the “vacuum” state, the CFQP or CFQH has a charge
excess or deficiency in a spatially localized region. It ought
to be stressed that even a single CFQP or a CFQH describes
a strongly correlated state of many interacting electrons.

Now take a CFQP in a loop enclosing an areaA. Because
it is nothing but a composite fermion, the phase is predicted
to be the same as in Eq.(6):

F* = − 2p
B*A

f0
= − 2p

eBA

s2pn+ 1dhc
. s16d

This is what we will first confirm.
The calculation of Berry phase requires microscopic wave

functions which are constructed starting with the wave func-
tion of a quasiparticle atn* =n, using the standard framework
of the CF theory. One problem is to figure out where to place
the electrons in the corresponding IQHE problem, so, when
the wave function is transformed to that of composite fermi-
ons, we get the CFQP’s at the desired location. To do so, we
implement the mapping fromn* to n in a manner that pre-
serves distances(to zeroth order). We first construct a quasi-
particle wave function atB* , multiply it by F1

2p, where

F1 = p
j,k=1

N

szj − zkdexpF−
1

4l1
2o

i

uziu2G , s17d

with l1
2="c/eB1="c/erf0, and finally project the product

into the lowest electronic LL. This mapping preserves the
size of the disk containing the quantum Hall droplet, because
while the Jastrow factor pushes the particles out, the Gauss-
ian pulls them in precisely by an amount to cancel the two
effects. It is easy to check that the density is not changed in
going fromn* =n to n=n/ s2pn+1d in this manner.(See the
article by Jain in Ref. 9 for more details.)

At n* , the single-particle orbitals in the lowest LL are
given by

zmszd ;
zm

Î2p2mm!
expF−

1

4l*2
uzu2G , s18d

wherel* =s2pn+1d1/2l is the magnetic length atB* . To put a
CFQP ath, we first construct the electronic wave function at
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n* with an electron in the relevant Landau level(otherwise
empty) at h in a familiar coherent state. The coherent state at
h in the lowest LL is given by

f̄h
s0dsrd = o

m=0

`

z̄mshdzmszd=expF h̄z

2l*2
−

uhu2

4l*2
−

1

4l*2
uzu2G .

s19d

One can elevate the coherent state to higher Landau levels by
repeated application of the LL raising operatora†;s2] /]z
− z̄/2d /Î2, which leads to the coherent-state wave function in
the sn+1dst LL, apart from a constant factor:

f̄h
sndsrd = sz̄− h̄dn expF h̄z

2l*2
−

uhu2

4l*2
−

1

4l*2
uzu2G . s20d

It is convenient to define

fh
sndsrd = sz̄− h̄dnexpF h̄z

2l*2
−

uhu2

4l*2
G , s21d

so

f̄h
sndsrd = fh

sndsrdexpF−
1

4l*2
uzu2G . s22d

As an example, consider the system atn=1/s2p+1d,
which is related to the CF fillingn* =1. The electron wave
function atn* =1 with fully occupied lowest LL and an ad-
ditional electron in the second LL ath is

F1
h =*

fh
s1dsr1d fh

s1dsr2d . . .

1 1 . . .

z1 z2 . . .

· · . . .

· · . . .

z1
N−2 z2

N−2 . . .

*expS− o
j

uzju2/4l*2D .

s23d

This leads to the(unnormalized) wave function for a CFQP
at n=1/s2p+1d:

C1/s2p+1d
h = PLLL*

fh
s1dsr1d fh

s1dsr2d . . .

1 1 . . .

z1 z2 . . .

· · . . .

· · . . .

z1
N−2 z2

N−2 . . .

*
3 p

i,k=1

N

szi − zkd2pexpS− o
j

uzju2/4l2D . s24d

Here, we have used

1

l*2
+

2p

l1
2 =

1

l2
, s25d

which is equivalent to Eq.(9). This wave function is similar
to that considered by Kjønsberg and Leinaas,19 but not iden-
tical.

Figure 2 shows the excess density due to the presence of
a single localized CFQP forn=1/3. The localized excess
profile is clearly observed in the intended position indicated
by the arrow in the lower panel; the profile has a smoke-ring-
like shape since the quasiparticle is in the second CF-quasi-
LL. (The coherent wave packet for an electron in the second
LL also has a similar shape.) A deficit of the charge along the
boundary is also discernible.

In a similar way we can construct the wave function for a
CFQP of the state atn=n/ s2pn+1d for arbitraryn andp. For
example, the wave function atn=2/s4p+1d corresponding to
n=2 is given explicitly by

C2/s4p+1d
h = PLLL*

fh
s2dsr1d fh

s2dsr2d . . .

z̄1 z̄2 . . .

z̄1z1 z̄2z2 . . .

A A . . .

z̄1z1
N/2−2 z̄2z2

N/2−2 . . .

1 1 . . .

z1 z2 . . .

A A . . .

z1
N/2−1 z2

N/2−1 . . .

*
3 p

i,k=1

N

szi − zkd2p expS− o
j

uzju2/4l2D . s26d

There are two methods for performing projection into the
lowest LL. In one method,26 (i) normal ordering the factor
multiplying the Gaussian factor exps−o j uzju2/4l2d by bring-
ing all z̄i to the left of zi and (ii ) make the replacementz̄i
→2] /]zi with the understanding that the partial derivatives
do not act on the Gaussian factor exps−o j uzju2/4l2d. We em-
ploy a slightly different other projection method, described
in Ref. 10, which has many advantages in the numerical
calculation, especially for large systems. In the CF theory,
the unprojected wave function has the form

Cup = *
c1sz1d c1sz2d ¯

c2sz1d c2sz2d ¯

· · ¯

· · ¯

cNsz1d cNsz2d ¯

*
3 p

i,k=1

N

szi − zkd2p expS− o
j

uzju2/4l2D . s27d

Such wave functions can be rewritten in the form
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Cup = expS− o
j

uzju2/4l2D*
c1sz1dJ1

p c1sz2dJ2
p

¯

c2sz1dJ1
p c2sz2dJ2

p
¯

· · ¯

· · ¯

cNsz1dJ1
p cNsz2dJ2

p
¯

* ,

s28d

with Jj ;pkÞ jszj −zkd. Then the projected wave function is
given by projecting each element of the determinant sepa-
rately into the lowest Landau level by the method described
above.

In order to test the robustness of the results to how the
projection is carried out, we have studied wave function pro-
jected by the two ways as well as the unprojected one for the
CFQP atn=1/3. Theresults were independent of the em-
ployed state as long as the position of the CFQP is far from
the boundary of the system.

A. Berry phase

The Berry phase associated with a pathC is given by

F* =R
c

du

KChUi
d

du
ChL

kChuChl
, s29d

whereCh is the wave function containing a single CFQP at
h. For convenience, we takeh=Re−iu, and C refers to the

circular path withR fixed andu varying from 0 to 2p in the
counterclockwise direction.(Note that while the CFQP
moves in the counterclockwise direction in thex-y plane, the
complex coordinateh executes a clockwise loop in the com-
plex plane.) The integrand in Eq. (29) involves
2N-dimensional integrals over the CF coordinates, which we
evaluate by the Monte Carlo method. Approximately 4
3108 iterations are performed for each point. Forn=1/3 we
have studied systems withN=50, 100, and 200 particles, and
for n=2/5 we study systems withN=50 and 70 particles.
Projected wave functions are used in both cases.

The resulting values of Berry phase are displayed as a
function of the radius of the circular motion in Fig. 3. For
both n=1/3 and n=2/5 the Berry phase exhibits well-
defined values, which agree well with those in Eq.(16) pre-
dicted by the effective magnetic field description. The devia-
tion for largeh is a boundary effect, caused by the finiteness
of the system. The overall behavior forn=1/3 is consistent
with the result in Ref. 19. The effective magnetic field thus
survives projection into lowest LL.

B. Fractional local charge

Above we derived the Berry phase as coming from the
combination of two terms, due to an electron and 2p vortices

FIG. 2. Excess charge density relative to the ground state in the
presence of a single CFQP. We usedn=1/3, N=50, and h / l
=0.3Rd<5.2 with disk sizeRd;Î2N/n. The resulting position of
the CFQP is in good agreement with the intended position, which is
indicated by the arrow in the contour plot(lower panel).

FIG. 3. The Berry phaseF* for a single CFQP atn=1/3 (upper
panel) and n=2/5 (lower panel) as a function ofh. HereN is the
total number of composite fermions,l is the magnetic length, and
Fe;−2pBA/f0 is the Berry phase acquired by an electron moving
in an empty space. The error bars from Monte Carlo sampling
which are smaller than the symbol size are not shown explicitly.
The deviation at the largesth / l for eachN is due to proximity to the
edge.
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going around a closed loop. This actually provides a deriva-
tion of the local charge of the CFQP, where the local charge,
denoted by −e* , is defined to be charge excess associated
with it relative to the uniform ground state. The Berry phase
of a CFQP is also the AB phase for a charge −e* , which
gives, using Eq.(16),

− 2p
e*BA

hc
= − 2p

eBA

s2pn+ 1dhc
. s30d

Thus the local charge of a CFQP is

− e* = −
e

2pn+ 1
. s31d

The local charge can be derived in many other ways.6 An-
other way is to add the charge of the constituents of the
CFQP—namely, the electron and the vortices.9 The charge of
a vortex6 is ne, which is the occupation of a single orbital at
filling n. The local charge of the CFQP, a bound state of an
electron and 2p vortices, is thus −e* =−e+2pne=−e/ s2pn
+1d. One can also show that the addition of one electron
creates 2pn+1 CFQP’s, which again implies that the local
charge associated with each CFQP is −e/ s2pn+1d. The fact
that the local charge is independent of details(relying only
on incompressibility) provides insight into why the Berry
phase of the CFQP is robust to projection into the lowest LL.

C. CF quasiparticle outside the disk

In the previous sections, we have considered only the situ-
ation when the CFQP is inside a QHS droplet. It is interest-
ing to ask what happens when a CFQP is located outside the
droplet. Far from the droplet, the CFQP no longer has any
other CF’s nearby and therefore there is no screening hole.
Its local charge therefore is the same as a bare charge −e due
to the absence of the screening cloud. How about the Berry
phase acquired by the CFQP? Should it be the same asFe,
which is the Berry phase for an electron moving in the free
space in a uniform external magnetic fieldB?

Before proceeding further within the CF theory, we
should reexamine how the actual CFQP position is related to
the parameterh in the wave function. The condition that the
position of the CFQP be given byh was derived under the
assumption that the CFQP is surrounded by other uniform
CF’s; we can no longer expect that the CFQP position is
given by h when it is off the droplet. Far from the droplet,
the CFQP will experience thebareexternal magnetic fieldB
rather thanB* =B/ s2pn+1d. Accordingly, the use of effective
magnetic lengthl* in the coherent state leads to the actual
position of the CFQP given byj<h / s2pn+1d. This is veri-
fied in Fig. 4, which plots the actual locationj obtained
numerically as a function of the parameterh. The numerical
calculation was performed atn=1/3 for N=50 composite
fermions. When the parameterh exceeds the droplet size
Rd; lÎ2N/n, the positionj deviates from the(dashed) line
j=h. As h is increased further,j approaches the(solid) line
j=h / s2pn+1d.

The CF theory also makes a prediction for the Berry
phase of a single CFQP outside the droplet. Since the en-

closed area is not filled uniformly with CF’s, we can no
longer use theuniform effective magnetic field in Eq.(9).
Instead, we must use Eq.(6). Outside the droplet, the number
of enclosed composite fermions isNenc=N−1 and the en-
closed area isA=pj2, yielding the Berry phase

F*

Fe
= 1 −

4psN − 1d
sj/ld2 . s32d

The second term, the contribution from the composite fermi-
ons on the QHS droplet, is of orderOsj−2d.

Figure 5 demonstrates clearly that the prediction in Eq.
(32), denoted by the dashed line in the figure, explains nicely
the behavior ofF* when the CFQP is outside the droplet.
Indeed, the numerical data begin to deviate when the CFQP
approaches the boundary of the droplet and eventually give a
definite value 1/s2pn+1d inside the system(the Berry phase
for a CFQP inside the disk are not shown in Fig. 5). Because
the local charge of a CFQP becomes −e just outside the
droplet, the long tail,Osj−2d in F* /Fe is not explained by

FIG. 4. Actual locationj of a CFQP(in units of the disk size
Rd; lÎ2N/n) as a function of the parameterh for n=1/3 andN
=50 when the CFQP is outside the quantum Hall superfluid droplet.
The dashed line isj=h and the solid line isj=h / s2pn+1d, the
position the CFQP would have in the absence of any other compos-
ite fermions(in the case ofn=1/3, wehavej=h /3; see text).

FIG. 5. Berry phaseF* acquired by a CFQP when it is outside
the quantum Hall droplet. The system hasN=50 composite fermi-
ons at the fillingn=1/3. Thedashed line is the prediction of the CF
theory, and the squares are calculated from the microscopic wave
functions.
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the alternate interpretation of the Berry phase in terms of a
charge of −e* moving under the external magnetic fieldB.

IV. TWO CF QUASIPARTICLES: FRACTIONAL
STATISTICS

We have confirmed Eq.(6) for a single CFQP in a closed
loop, when the other composite fermions make a uniform
background state. How about the situation when the density
is not uniform? The simplest question one may ask is, how
does the Berry phase change when we change the number of
enclosed particles in a loop by a number of order unity?
Following Ref. 14, Eq.(6) predicts

DF* = 2p2pDkNencl. s33d

To be specific, we will add a single CFQP inside the loop,
which, counting the correlation hole around it, carries an
excess ofDkNencl=1/s2pn+1d electrons, which gives:

DF* = 2p
2p

2pn+ 1
; 2pu* , s34d

with

u* =
2p

2pn+ 1
. s35d

A fractional value ofu* is often interpreted through an as-
signment of a fractional statistics to the CFQP’s. Note that
the fractionally quantized value foru* is a direct conse-
quence of the fractional quantization of the local charge. It
should also be stressed thatu* is a much more subtle quantity
than B* , sensitive to order unity changes in the enclosed
particle number. Equation(6) is surely correct in a mean-
field sense, but it is by no means obvious that it captures
Os1d effects accurately.

The meaning of fractional statistics is complicated in the
QHS context by the presence of a magnetic field, which pro-
duces its own phase for any closed loop, even when it does
not include another CFQP.(Of courseall loops enclose other
composite fermions; here we think of only the excitations as
the CFQP’s.) The fractional statistics is defined as thediffer-
encein the phase for a given closed path when one CFQP is
added to the interior. It is a small perturbation on a large
effect. Even though we have derived the fractional statistics
as an immediate corollary of the effective magnetic field
principle,14 the value ofu* had been derived prior to the CF
theory from general arguments,4,7 assuming incompressibil-
ity at a fractional filling; the earlier values(if evaluated with
B in the +z direction) differ from the one quoted here by 1
(mod 2). The reason for this deviation is that our theory deals
with quasiparticles that obey fermionic exchange statistics,
so an additional factors−1d arises from the mere position
exchange of two CF quasiparticles in the microscopic wave
function, whereas the previous ones assume bosonic ex-
change statistics. In Ref. 19 the result was shifted by unity.
We prefer not to do that. The quasiparticles that we work
with are the actual quasiparticles(as would be obtained in an
exact diagonalization study if, say, two impurities were
placed to localize two quasiparticles), and therefore the

phases given below are what an actual experiment would
measure.

Our goal is to confirm Eq.(35) in a microscopic calcula-
tion. The statistics parameter is given by

u* =R
C

du

2p

KCh,h8Ui
d

du
Ch,h8L

kCh,h8uCh,h8l
−R

C

du

2p

KChUi
d

du
ChL

kChuChl
,

s36d

whereCh is the wave function containing a single CFQP at
h, andCh,h8 has two CFQP’s ath andh8. Here we takeh
=Re−iu, andC refers to the path withR fixed andu varying
from 0 to 2p in the counterclockwise direction, as in the
calculation of a single-CFQP Berry phase. For convenience,
we will take h8=0 and denote the microscopic numerical

value ofu* by ũ*(the reason will be clear below).
Before proceeding further, we mention a curious fact to

illustrate the fragility of fractional statistics. Laughlin had
proposed the following wave function for two quasiparticles
at n=1/m (m odd):

CL
h = expS− o

j

uzju2/4l2Dp
j=1

N

s]zj
− hd p

j,k=1

N

szj − zkdm,

CL
h,h8 = expS− o

j

uzju2/4l2Dp
j=1

N

s]zj
− hds]zj

− h8d

3 p
j,k=1

N

szj − zkdm. s37d

Kjønsberg and Myrheim12 found that the Berry phase calcu-
lation of the statistics of the quasiparticle using this wave
function does not produce a well-defined answer. It was re-
alized by Kjønsberg and Leinaas19 that the more accurate
wave function of the CF theory produces a well-defined
value for u* . What makes it all the more surprising is that
both the wave functions of Laughlin and Jain produce the
correct local charge for a single quasiparticle. It is not under-
stood why one of them fails to produce proper statistics, but
the example underscores how the statistics may be sensitive
to rather subtle correlations in the wave function.

In the CF theory, the wave function for two CFQP’s at
n=1/s2p+1d is a natural extension of that containing a
single CFQP. The electron wave function atn* =1 with fully
occupied lowest LL and two additional electrons in the sec-
ond LL at h andh8 is
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F1
h,h8 = *

fh
s1dsr1d fh

s1dsr2d ¯

fh8
s1dsr1d fh8

s1dsr2d ¯

1 1 ¯

z1 z2 ¯

· · ¯

· · ¯

z1
N−3 z2

N−3
¯

*expS− o
j

uzju2/4l*2D .

s38d

This leads to the(unnormalized) wave function for two
CFQP’s atn=1/s2p+1d:

C1/s2p+1d
h,h8 = PLLL*

fh
s1dsr1d fh

s1dsr2d . . .

fh8
s1dsr1d fh8

s1dsr2d . . .

1 1 . . .

z1 z2 . . .

· · . . .

· · . . .

z1
N−3 z2

N−3 . . .

*
3 p

i,k=1

N

szi − zkd2pexpS− o
j

uzju2/4l2D . s39d

The extension to the general fillingn=n/ s2pn+1d is again
straightforward. For reference, we give an explicit expres-
sion of the two-CFQP wave function atn=2/5:

C2/5
h,h8 = PLLL*

fh
s2dsr1d fh

s2dsr2d . . .

fh8
s2dsr1d fh8

s2dsr2d . . .

z̄1 z̄2 . . .

z̄1z1 z̄2z2 . . .

A A . . .

z̄1z1
N/2−3 z̄2z2

N/2−3 . . .

1 1 . . .

z1 z2 . . .

A A . . .

z1
N/2−1 z2

N/2−1 . . .

*
3 p

i,k=1

N

szi − zkd2 expS− o
j

uzju2/4l2D . s40d

The statistics parameterũ* for n=1/3 andn=2/5 was

shown in Ref. 20, reproduced in Fig. 6 for completeness.ũ*

takes a well-defined value for large separations. Atn=1/3 it

approaches the asymptotic value ofũ* =−2/3, which is con-
sistent with that obtained in Ref. 19 without lowest LL pro-
jection. The calculation atn=1/3 explicitly demonstrates

that ũ* is independent of whether the projected or the un-
projected wave function is used. Assuming the same is true
for other fractions, we have performed the calculation atn
=2/5 without the projection.(The calculation of the statis-

tics, a small difference between two large quantities, requires
much greater accuracy than the calculation ofB* considered
in the previous section. The use of projected wave functions
is in principle possible, but very costly in terms of computa-
tion time.) At n=2/5 thesystem size is smaller and the sta-
tistical uncertainty bigger, but the asymptotic value is clearly

seen to beũ* =−2/5. At short separations there are substan-

tial deviations inũ* ; it reaches the asymptotic value only
after the two CFQP’s are separated by more than,10 mag-
netic lengths. Such deviations are presumably due to a sig-
nificant overlap between CFQP’s when they are close.(In
contrast, the effective magnetic field is well defined for arbi-
trarily small closed loops.)

A. Sign puzzle

The microscopic valueũ* obtained above has the same
magnitude asu* in Eq. (35) but the opposite sign. The sign
discrepancy, if real, cannot be reconciled with Eq.(6) and
would cast doubt on the fundamental interpretation of the CF
physics in terms of an effective magnetic field.

To gain insight into the issue, consider two composite
fermions in the otherwise empty lowest LL, for which vari-
ous quantities can be obtained analytically. When there is
only one composite fermion ath=Re−iu, it is the same as an
electron, with the wave function given by

FIG. 6. The statistical angleũ* for the CFQP’s atn=1/3 (upper
panel) andn=2/5 (lower panel) as a function ofd;uh−h8u. Here
N is the total number of composite fermions, andl is the magnetic
length. The error bar from Monte Carlo sampling is not shown
explicitly when it is smaller than the symbol size. The deviation at
the largestd/ l for eachN is due to proximity to the edge. This
figure was shown earlier in Ref. 20 and is reproduced here for
completeness.
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xh = expF h̄z

2l2
−

R2

4l2
−

uzu2

4l2
G . s41d

For a closed loop,

R
C

du

2p

KxhUi
d

du
xhL

kxhuxhl
= −

R2

2l2
= −

pR2B

f0
. s42d

Two composite fermions, one ath and the other ath8=0, are
described by the wave function

xh,0 = sz1 − z2d2pseh̄z1/2 − eh̄z2/2de−sR2+uz1u2+uz2u2d/4. s43d

Here, we expectu* =2p. However, an explicit evaluation of
the Berry phase shows, neglecting OsR−2d terms,

R
C

du

2p

Kxh,0Ui
d

du
xh,0L

kxh,0uxh,0l
= −

R2

2l2
− 2p, s44d

which givesũ* =−2p for largeR. Again, it apparently has the
“wrong” sign.

A calculation of the density forxh,0 shows that the actual
position of the outer composite fermion is notR= uhu but R8,
given by

R82

l2
=

R2

l2
+ 4 3 2p s45d

for largeR. This can also be seen in the inset of Fig. 2 of Ref.
20. The correct interpretation of Eq.(44) therefore is

R
C

du

2p

Kxh,0Ui
d

du
xh,0L

kxh,0uxh,0l
= −

R82

2l2
+ 2p, s46d

which producesu* =2p. The O(1) correction to the area en-
closed thus makes a nonvanishing correction to the statistics.
(It is noted that the CFQP ath=0 is also a little off center
and executes a tiny circular loop which provides another cor-
rection to the phase, but this contribution vanishes in the
limit of large R.)

This exercise tells us that an implicit assumption made in
the earlier analysis—namely, that the position of the outer
CFQP labeled byh remains unperturbed by the insertion of
another CFQP–leads to an incorrect value foru* . In reality,
inserting another CFQP inside the loop pushes the CFQP at
h very slightly outward.

To determine the correction atn=n/ s2pn+1d, we note
that the mapping into composite fermions preserves dis-
tances to zeroth order, so Eq.(45) ought to be valid also at
n=n/ s2pn+1d. This is consistent with the shift seen in Fig. 2
of Ref. 20 for the position of the CFQP calculated numeri-
cally directly from the wave function. Our earlier result

R
C

du

2p

KCh,0Ui
d

du
Ch,0L

kCh,0uCh,0l
= −

R2

2l*2
−

2p

2pn+ 1
s47d

ought to be rewritten, usingl*2 / l2=B/B* =2pn+1, as

R
C

du

2p

KCh,0Ui
d

du
Ch,0L

kCh,0uCh,0l
= −

R82

2l*2
+

2p

2pn+ 1
. s48d

When the contribution from the closed path without the other
CFQP, −R82/2l*2, is subtracted out,u* of Eq. (35) is ob-
tained. The neglect of the correction in the radius of the loop
introduces an error which just happens to be twice the nega-
tive of the “correct” answer.

Before ending this subsection we note another subtle ef-
fect. A quasiparticle in the bulk induces a quasihole at the
boundary, the charge of which is nonuniformly distributed
over the edge when the bulk quasiparticle is off center. As
the primary quasiparticle is taken around a loop, the “center”
of the induced edge quasihole also executes a complete loop.
The contribution of the latter to the Berry phase is neglected
in the heuristic derivation of the statistics as well as in the
analytical calculation of Arovaset al.,5 but is explicitly in-
cluded in the numerical calculations with a boundary. The
consistency of the numerical results with the heuristic expec-
tation indicates that the boundary effects are negligible, at
least as long as the primary quasiparticles are sufficiently far
from the edge.

B. Approach to the asymptotic value

In the previous section, it was shown that the asymptotic
value of the statistic parameter is explained within the CF
theory. The next question is how the asymptotic value is
reached as the distance between two CFQP’s is increased. In

Fig. 6, particularly forn=1/3, we can seethat ũ* approaches
its asymptotic value very slowly even ford*10l. Is that
slow convergence real or only a result of the fact that the
actual position of the CFQP has slight corrections? Should
the slow convergence persist foru* , which would cast doubt
on the usefulness of the concept of fractional statistics.

To examine the origin of such long tail, we consider in
more detail two composite fermions in the lowest CF-quasi-
LL. For 2CF sp=1d, we can explicitly calculate the statistics
parameter in Eq.(36) through the use of the wave function in
Eq. (43), leading to

ũ* =

−
R2

2l2
F4R2

l2
+ 32 +e−R2/2l2SR4

l4
−

20R2

l2
+ 64DG

FR4

l4
+

16R2

l2
+ 32 −e−R2/2l2SR4

l4
−

16R2

l2
+ 32DG .

s49d

In the limit of R@ l, ũ* reduces to

ũ* = − 2 + 16S l

R
D2

+ OS l

R
D4

. s50d

As observed forn=1/3, we findthat the deviation ofũ* from
the asymptotic value decays only algebraically. The density
profile for two 2CF’s on the lowest CF-quasi-LL is straight-
forwardly computed to be
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rh,0sxd ~ e−sx − Rd2/2l2sx4 + 8x2 + 8d

− 2e−sR2−Rx+x2d/2l2fx2sx − Rd2 + 8xsx − Rd + 8g

+ e−x2/2fsx − Rd4 + 8sx − Rd2 + 8g s51d

along thex axis, with the outer composite fermion intended
to be located atsR,0d. As discussed in the previous section,
the actual positionR8 of the outer composite fermion is
given by

R8

l
=

R

l
+ 4S l

R
D − 32S l

R
D3

+ OS l

R
D5

; R+ DR. s52d

At the same time, the inner composite fermion also shifts to
sR9 ,0d=s−DR,0d. The Berry phase(divided by 2p) acquired
due to the position shift of the composite fermions is

Du* = −
BDA

f0
= −

1

2pl2
fpR82 + pR92 − pR2g

= − 4 + 16S l

R
D2

+ OS l

R
D4

. s53d

The real statistical parameteru* = ũ* −Du* is given by

u* = 2 +OS l

R
D4

, s54d

with the +Osl /Rd2 term canceling out. Thus, the power law
tail in the difference between the CF valueu* =2 and the

microscopic valueũ* in Eq. (49) is not real, but caused by a
shift in the positions of the CFQP’s.

If the same argument holds for nonzeron and p=1, the
additional Berry phase(divided by 2p) due to the position
shift can be written as

Du* = −
4

2n + 1
+

16

2n + 1
S l

d
D2

+ OS l

d
D4

s55d

through the use of the effective magnetic fieldB* /B
=1/s2n+1d. Adding the asymptotic valueu* =2/s2n+1d
gives

ũ* = −
2

2n + 1
+

16

2n + 1
S l

d
D2

+ OS l

d
D4

. s56d

This heuristic prediction of the CF theory is plotted in Fig. 7
(dashed line) and agrees well with the long tail of the nu-
merical behavior for larged/ l.

C. Two nearby CF quasiparticles

We now turn to the situation when the two CFQP’s are
located very close to one another. When the distance be-
comes comparable to the size of the CFQP’s, it is not pos-
sible to define the distance between the CFQP’s in a mean-
ingful manner, so we will consider here the dependence of
fractional statistics ond= uh−h8u, which is a parameter en-
tering the wave function.

The microscopic valueũ* for smalld, as shown in Fig. 8,
exhibits significant deviation from its asymptotic value. For

very smalld it grows monotonically from −1 before under-
going a crossover to the asymptotic value. To gain insight
into this behavior, we again resort to CF’s in an otherwise
empty lowest CF-quasi-LL. In the limit ofR! l, Eq. (49)
reduces to

ũ* = − 1 +
1

4
SR

l
D2

+ OSR

l
D4

, s57d

showing a quadratic increase from −1. Similar behavior is
displayed by two electrons in the second Landau level for
small separations. Forn=1, the statistics parameter for elec-
trons separated by a distanced is given by

ũ* = −
sd/ld2

2s1 − e−d2/2l2d
. s58d

This yields in the limitd! l

FIG. 7. The statistical angleũ* for the CFQP’s atn=1/3 for
larged;uh−h8u. HereN is the total number of composite fermions,
andl is the magnetic length. The dashed line is Eq.(56), which is in
good agreement with the long tail of the numerical data. The points
near the edge deviate significantly from the dashed line.

FIG. 8. The statistical angleũ* for the CFQP’s atn=1/3 (left
panel) andn=2/5 (right panel) for small d;uh−h8u. The symbols
are the same as in Fig. 7, andl is the magnetic length. The heuristic
formula in Eq.(60) (dashed lines) agrees well with the actual result
for small d.
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ũ* = − 1 +
1

4
Sd

l
D2

+ OSd

l
D4

, s59d

which is identical to that for composite fermions in lowest
CF-quasi-LL.

We can expect similar behavior for CFQP’s in higher CF-
quasi-LL’s. The only difference is that they feel an effective
magnetic fieldB* =B/ s2pn+1d, which changes the length

scale froml to l* . It is expected that for smalld, ũ* is given
by

ũ* = − 1 +
1

4s2pn+ 1d
SR

l
D2

+ OSR

l
D4

. s60d

Figure 8 presents the calculatedũ* for small separation at
n=1/3 and 2/5along with the heuristic expression of Eq.
(60). As can be seen in Fig. 8, Eq.(60) gives a good account
of the behavior at both fillings.

D. CF quasiparticles in different CF quasi-Landau levels

In this section we investigate another interesting question:
What is the relative statistics for two CFQP’s in different
CF-quasi-Landau levels? This corresponds to the situation
when a CFQP is inserted into an excited CF-quasi-Landau
level. From the CF point of view, the statistics is related to
the excess charge due to the presence of the additional CFQP
as shown in Eq.(34). Since the local charge of the CFQP is
independent of the quasi-Landau level to which it belongs,
the resulting statistics is expected to be the same as that
when both CFQP’s are in the same CF quasi-Landau levels.

For an explicit calculation, we investigate the situation
that a CFQP in the second CF-quasi-Landau level goes
around a CFQP in the third CF-quasi-Landau level at the
filling for n=1/3. The wave function for two CFQP’s is
given by

C1/3
h,h8 = P*

fh
s1dsr1d fh

s1dsr2d ¯

fh8
s2dsr1d fh8

s2dsr2d ¯

1 1 ¯

z1 z2 ¯

· · ¯

· · ¯

z1
N−3 z2

N−3
¯

*
3 p

i,k=1

N

szi − zkd2 expS− o
j

uzju2/4l2D . s61d

For simplicity, we seth8=0.
Figure 9 demonstrates that the asymptotic value of the

relative statistics of two CFQP’s in two different CF-quasi-
Landau levels is the same as for those in the same CF-quasi-
Landau level. On the other hand, there is significant differ-
ence for small separations between two CFQP’s. The
behavior at small separations is believed to be sensitive to
the local structure of each CFQP, because corrections to the
statistics are caused by their overlap.

Jeon and Jain18 noted that for two quasiparticles at the
origin there is a qualitative difference between the wave

functions constructed according to Laughlin’s ansatz and the
one used above based on the CF theory atn=1/3. For
CFQP’s there are many candidates for two-quasiparticle
states. The CFfN−2,2g with both quasiparticles in the sec-
ond CF-quasi-LL has lowest energy among the candidates as
expected from the fact that it has the lowest effective cyclo-
tron energy. As discussed in Ref. 18, Laughlin’s wave func-
tion for two quasiparticles is more akin to thefN−2,1,1g
state of composite fermions, with one CFQP in the second
CF-quasi-Landau level and the other in the third; both states
have the same total angular momentum and their density
profiles look alike. One might therefore have expected that
the fN−2,1,1g state would not display definite statistics.
However, our result above demonstrates that even thefN
−2,1,1g state is fundamentally different from the one in
Eq. (37).

E. Composite fermions: Fermions or anyons?

The fractional statistics of the CFQP’s ought not to be
confused with the fermionic statistics of composite fermions.
The wave functions of composite fermions are single valued
and antisymmetric under particle exchange; the fermionic
statistics of composite fermions has been firmly established
through a variety of facts, including the observation of the
Fermi sea of composite fermions, the observation of FQHE
at fillings that correspond to the IQHE of composite fermi-
ons, and also by the fact that the low-energy spectra in exact
calculations on finite systems have a one-to-one correspon-
dence with those of weakly interacting fermions.9 The ap-
pearance of fractional statistics may seem at odds with the
fermionic nature of composite fermions, but there is no con-
tradiction. After all, any fractional statistics in naturemust
arise in a theory of particles that are either fermions or
bosons when an “effective” description is sought in terms of
a small number of collective degrees of freedom. The frac-
tional statistics appears in the CF theory when all of the
original particles athzj are integrated out(or treated in an
average, mean-field sense) to formulate an effective descrip-
tion in terms of the few CFQP’s athhj. If we work with all

FIG. 9. The statistical angleũ* for the CFQP’s in different CF-
quasi-LL’s at the fillingn=1/3 as afunction of d;uh−h8u. The
CFQP at the origin is in the third CF-quasi-LL while the CFQP
traversing a closed loop is in the second CF-quasi-LL. HereN is the
total number of composite fermions, andl is the magnetic length.
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composite fermions, then Eq.(6) is sufficient.

F. Constraints on possible observation of fractional statistics

There are features that complicate a possible observation
of fractional statistics.(i) The CFQP’s are notideal anyons.
As seen in our calculations, the fractional statistics is sharply
defined only asymptotically; in general there are corrections
to it. Substantial deviation ofu* from its asymptotic value is
seen at separations of up to 10 magnetic lengths. Therefore, a
measurement ofu* must ensure that there is no overlap be-
tween the CFQP’s at any time. One might expect that the
interaction between the CFQP’s will be repulsive which will
automatically ensure that they do not come very close to one
another. That turns out not to be the case, however. The
interaction between the CFQP’s is very weak and often
attractive.27 (ii ) There is another important aspect through
which the situation here differs from that for ideal anyons.
For two ideal anyons, the Berry phase is zero for paths with
zero winding number and 2pu* for paths with unit winding.
One therefore only needs to measure the Berry phase for a
path that encircles another particle. In the case of the FQHE,
on the other hand, the fractional statistics, itself an O(1)
quantity, arises as a difference between two OsNd Berry
phases, whereN is the number of particles enclosed by the
closed trajectory. For the reason listed in(i), N must neces-
sarily be quite large. A precise measurement of the difference
therefore requires an almost perfect control over the trajec-
tory. Fluctuations in the trajectory on the order of the size of
the CFQP will produce OsÎNd fluctuations in each Berry
phase which will completely obscure the O(1) difference.
(Our calculation actually provides an example where an im-

measurable error in the trajectory produces a finite correction
to u* , changing its sign.) In fact, one may ask how quantum
fluctuations in each OsNd quantity affect the O(1) difference
and whether the O(1) difference can be defined in a rigorous
manner.28 (In this context, it is noted that the effective mag-
netic field is related to the total Berry phase associated with
a path, an order-N quantity, and therefore robust to quantum
mechanical fluctuations which are of smaller order.) (iii )
There are many other features likely to be present in a real
experimental situation that would be inimical to an observa-
tion of fractional statistics—for example, disorder and finite
temperature, both of which generate particle-hole pairs
which would provide a correction.(iv) The current flows at
the edge of an incompressible FQHE system, where the frac-
tional statistics is not well defined due to the absence of a
gap.30 This creates a problem for a detection of fractional
statistics in a transport experiment.(v) It is not known how
robust the fractional statistics concept is to perturbations. We
have confirmed it fornoninteractingcomposite fermions.
However, it has been found that interactions between com-
posite fermions can produce significant corrections to appar-
ently topological quantities.31 Also, the fact that certain qua-
siparticle wave functions atn=1/m do not produce a sharp
fractional statistics shows that it is not as robust as the frac-
tional charge or the effective magnetic field. Whether it sur-
vives a more realistic calculation remains to be tested.
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