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We investigate phonon- and Auger-assisted tunnelings from an adjacent quantum well coupled to a quantum
dot by Fermi’s golden rule. The filling of quantum-well states is included, and we obtain an average tunneling
lifetime depending on the concentration in the quantum well. Depending on the barrier width between the
quantum dot and quantum well, both mechanisms can result in a tunneling time of a few to several hundred
picoseconds. For the condition of high concentration of carriers in a quantum well, the typical time scale of the
net increase of carriers in a quantum dot due to phonon-assisted tunneling can be in sub-picosecond range,
which agrees with the recent experimental observation.
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I. INTRODUCTION

Phonon-assisted tunneling was observed by Holonyaket
al. in heavily-doped siliconp-n junctions at 4.2 K.1 This was
the first example of inelastic tunneling which became a pow-
erful tool for inelastic electron tunneling spectroscopy.2–4 In
recent years, quantum dots(QDs) in semiconductor material
systems are of great interest not only due to their atomic-like
properties but also the potential applications in quantum
computation (information)5–7 and high-performance semi-
conductor lasers.8–12 However, carrier capture by the QDs
for semiconductor lasers is a problem because of the slow
phonon relaxation of the carriers to the ground state of the
QDs, which reduces the efficiency of lasing.13–15 A
tunneling-injection quantum well(QW) coupled QD laser
structure has recently been proposed.16–19The QW serves as
a collection layer of carriers, followed by lateral diffusion
and tunneling injection into the QDs. Experimentally, re-
duced threshold current density has been achieved by the
QW coupled to the QD.17 Coherent tunneling injection from
the QW to the QD has been investigated by Chuang and
Holonyak.20 In the QW-coupled-QD structure, various
mechanisms such as photon-, phonon-, and Auger-assisted
processes can also contribute to the tunneling. Chuanget al.
analyzed the possibility of photon-assisted tunneling.21 The
recent experimental observation of the differential transmis-
sion spectrum in similar structures has shown a phonon-
assisted tunneling time of 1.7 ps.8

For QDs grown in a QW wetting layer, a few carrier
relaxation processes have been researched.22–26Among them,
the relaxations caused by longitudinal-optical-phonon(LO)
scattering and Auger scattering receive the most attention.
Magnusdottiret al.22 calculated the Auger relaxation rate
from the wetting layer to the QD due to the Coulomb inter-
action of two carriers in the wetting layer. They also calcu-
lated the one-phonon and two-phonon assisted processes for
spherical QDs embedded in three-dimensional continuum.23

In their calculation, relaxation times of the order of picosec-
ond are possible for both mechanisms.

In this paper, we analyze phonon-assisted and Auger-
assisted tunneling rates in this QW coupled QD structure. We
present our theoretical model for the QW and QD wave

functions, followed by the phonon- and Auger-assisted cap-
ture from the QW to the QD.

II. MODEL FOR QW AND QD WAVE FUNCTIONS

The model is depicted in Fig. 1. The QW layer serves as
the collection layer of electrons. The electrons in the QW can
tunnel into the QD by emitting an LO phonon or transferring
energy via Coulomb repulsion to another electron in the QW.

FIG. 1. (a) The QW to QD LO-phonon-assisted tunneling. The
carriers in the QW emit an LO phonon and tunnel into the QD.(b)
The QW to QD Auger-assisted tunneling. Two electrons 1 and 2 in
the QW interact by Coulomb repulsion. One makes a transition to a
QD state labeled as 28 while the other is excited to a higher QW-
energy state labeled as 18.
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In the following formulation, we use the effective mass ap-
proximation and neglect the difference between the Bloch
periodic parts of the single-particle wave functions in the
QW and QD. For LO-phonon-assisted tunneling, the
Fröhlich Hamiltonian using bulk modes will be adopted
since it has been shown that in QD-related scattering prob-
lems the difference between confined and bulk LO-phonon
modes is not so significant.27 For Auger-assisted tunneling,
the screening effect will be neglected to simplify the situa-
tion.

The QD is modeled as a quantum disk with a heighth and
radiusr0. The distance from the center of the QW to that of
the QD is denoted aszd. We set the band edges of the barrier,
QD, and QW regions asVD, 0, andVD−Vw, whereVD andVw

are the potential depths of QD and QW, respectively. For
simplicity, we assume that the QD envelope wave function
can be approximated by the product of the in-plane and
growth-direction parts, namely,

fN̄sr d = flmnsr d = Clmsrdwnszd = Rlmsrd
eimf

Î2p
wnszd, s1d

whereN̄ represents the quantum numberssl ,m,nd, which are
in-plane radial quantum number, magnetic quantum number,
and the growth-direction quantum number, respectively. This
approximation works for the QD states whose eigenenergies
are not close to the barrier band edge.

The explicit forms of the approximate growth-direction
wave function and in-plane wave function of QDs are as
follows:

wnszd =5
Bn

zeiunennsz−zdd, in regions1,2,3,

An
z

2
se−iun/2eiknsz−zdd + eiun/2e−iknsz−zddd, in region4

Bn
ze−nnsz−zdd, in region5;

6
s2d

un = H0, if even parity for QD Hamiltonian in growth direction,

p, if odd parity for QD Hamiltonian in growth direction;
J s3d

Rlmsrd = HAlm
xyJmsklmrd, r ø r0,

Blm
xyKmsglmrd, r ù r0;

J s4d

whereBn
z andAn

z are the normalized constants of the growth-
direction wave function;nn and kn are the parameters de-
scribing the penetration into barrier and standing-wave be-
havior in the QD region;Alm

xy and Blm
xy are the in-plane

normalized constants;klm as well asglm play similar roles as
kn andnn for in-plane wave functions; andJm as well asKm
are themth-order Bessel function of the first kind and modi-
fied Bessel function of the second kind, respectively. The
growth-direction normalized constantsBn

z andAn
z as well as

the in-plane onesAlm
xy andBlm

xy satisfy the following two equa-
tions due to the continuity of the wave function across the
boundariesz=zd±h/2 andr=r0,

Bn
z = An

zennh/2 cosSkn
h

2
−

un

2
D , s5d

Blm
xy =

Jmsklmr0d
Kmsglmr0d

Alm
xy. s6d

For QW states, we model them as two-dimensional plane
waves:

fksr d =
eik·r

ÎA
Fwszd, s7d

wherek is the wave vector of the plane wave,A is the area
of the QW, andFwszd is the quantized wave function in the
growth direction.

The explicit expression of the growth-direction wave
function of QW is as follows:

Fwszd =5
Bw

z eiuwenwz, in region1,

Aw
z

2
se−iuw/2eikwz + eiuw/2e−ikwzd, in region2,

Bw
z e−nwz, in regions3,4,5;

6
s8d

uw = H0, if even parity for QW Hamiltonian in growth direction,

p, if odd parity for QW Hamiltonian in growth direction;
J s9d
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whereBw
z andAw

z are the normalized constants of the growth-
direction wave function, andnw and kw are the parameters
describing the penetration into barrier and standing-wave be-
havior in QW region. The normalized constantsBw

z and Aw
z

satisfy the following equation due to the continuity of the
wave function at the boundaryz= ±d/2:

Bw
z = Aw

z enwd/2 cosSkw
d

2
−

uw

2
D . s10d

In principle, the tunneling from excited subbands in QW can
also be considered. However, for simplicity, we will not con-
sider this kind of process in this paper.

III. THEORY FOR QW TO QD PHONON-ASSISTED
TUNNELING

Resonant(coherent) tunneling transfer(without phonon or
Auger assistance) does occur whenEw+"2k2/2mw

xy* =Ed, or
Ed.Ew. We refer to Ref. 20 for this fast coherent tunneling
process into the excited state of the dot. In this paper, we are
mainly interested inEd,Ew (the ground state of the dot),
when the phonon- or Auger-assisted process may be impor-
tant. For the 25 Å barrier, we have calculated the QD ground
state wave function in the presence and absence of the QW,
and found out they differ by only 2% in the overlap integral.
For a thin barrier width of about 10 Å or less, the QW and
QD may be strongly coupled. Improvements of the QW and
QD wave functions will be required but are beyond the scope
of this paper if we can keep these phonon- and Auger-
assisted formulations tractable.

Fermi’s golden rule based on these single-particle states
are applied. For LO-phonon scattering, the tunneling rate, or

the net capture rate of the QD stateuN̄,sl, wheres is the
spin of the state, is as follows:

W
w→N̄,s

phonon
=

2p

"
o
k,p

uM
N̄,k

s spdu2fsnLO + 1dfks1 − f N̄d − nLOs1

− fkdf N̄gdSEw +
"2k2

2mw
xy* − EN̄ − "vLOD , s11d

whereM
N̄,k

s spd is the Fröhlich matrix element;p is the wave
vector of the LO phonon;nLO=1/fexps"vLO/kBTd−1g is the
Bose-Einstein occupation number of the LO phonon;fk and
f N̄ are the occupation numbers of the QW state labeled by the
wave vectork and QD state labeled by quantum numberN̄,
respectively; andEw is the subband edge energy of the QW,
i.e., the energy of the QW state with a zero wave vector. The
LO phonon is modeled as dispersionless. The spin indices
have been neglected in the labeling of the occupation number
of both QW and QD states since they are spin-independent in
the current case

For LO-phonon scattering, the interaction matrix element
is given by the Fröhlich Hamiltonian:

M
N̄,k

s spd = iSe2"vLO

2«0Vol
D1/2F 1

«`

−
1

«s
G1/21

p
, N̄ueip·r uk . ,

s12d

whereVol is the volume of the bulk;p andvLO are the wave
vector and angular frequency of an LO phonon;e` andes are
the high-frequency and static dielectric constants, respec-
tively; and s is the spin of both initial and final states. Be-
cause LO-phonon scattering does not change the spin of the
carrier in the conduction band, we do not need to label both
the spins of the initial and final states. Specification of the
final spin state is enough.

Define a new vectorq=p+k. Because the wave vectork
of the stateufkl only has the component in the QW plane,
the growth-direction component of the wave vectorq is the
same as that of the wave vectorp:

qz = pz. s13d

We can rewrite Eq.(12):

M
N̄,k

s spd ; M̂
N̄

ssp + k,kd = iSe2"vLO

2«0Vol
D1/2F 1

«`

−
1

«s
G1/2 1

uq − k uE−`

`

dzwn
*szdeiqzzFwszdE

0

`

drr
Rlm

* srd
ÎA

E
−p

p

df
e−imf+iq'r cossfq−fd

Î2p

= iSe2"vLO

2e0Vol
D1/2F 1

e`

−
1

es
G1/2 1

uq − k u
3 Xsqzd

e−imfqsÎ2pimd
ÎA

E
0

`

drrRlm
* srdJmsq'rd, s14d

where the functionXsqzd is defined as

Xsqzd =E
−`

`

dzwn
*szdeiqzzFwszd. s15d

To simplify the expression above, we define two functions,
Ysqzd andUsq'd:

Ysqzd = uXsqzdu2, s16d

Usq'd = UE
0

`

drrRlm
* srdJmsq'rdU2

. s17d

Also, define a variableQ due to the conservation of particle
and phonon energy:
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Q =
Î2mw

xy*sEN̄ + "vLO − Ewd

"
. s18d

By substituting Eqs.(16)–(18) into Eq.(11), and utilizing the
following identity of integration:

E
−p

p 1

a − b cost
=

2p

Îa2 − b2
, s19d

where a and b are two real numbers anduau. ubu, we can
simplify Eq. (11) as follows:

W
w→N̄,s

phonon
=

mw
xy*s2pd2

s2p"d3

e2"vLO

2e0
S 1

e`

−
1

es
D

3fsnLO + 1dfQs1 − f N̄d − nLOs1 − fQdf N̄g

3 E
0

`

dqE
−1

1

dt
q2YsqtdUsqÎ1 − t2d

Îsq + Qd2sq − Qd2 + s2Qqtd2
.

s20d

Equation(20) can then be evaluated numerically to give the
tunneling rate. Whenq=Q andt=0, the integrand contains a
singularity. This singularity should be specifically treated in
numerical simulations. Also, under the current model, the
functionsYsqtd andUsqÎ1−t2d both have analytical expres-
sions. We will discuss the derivation of these functions in
Appendix A.

IV. THEORY OF QW TO QD AUGER-ASSISTED
TUNNELING

As shown in Fig. 1(b), we consider the process in which
two electrons 1 and 2 in the QW interact with each other
through Coulomb interaction. One of them acquires enough
energy to be excited to a high-energy state 1’ in the QW

while the other tunnels into the QD stateuN̄,sl, which is
denoted as 2’ in Fig. 1(b). The net capture rate of the state

uN̄,sl caused by Auger-assisted tunneling is as follows:

W
w→N̄,s

Auger
=

2p

"
o

k1,k2,k18

suM
k18,N̄;k1,k2

s,s u2 + uM
k18,N̄;k1,k2

s,s̄ u2d

3fs1 − f N̄ds1 − fk18
dfk2

fk1
− s1 − fk2

ds1 − fk1
df N̄fk18

g

3dsEN̄ + Ek18
− Ek1

− Ek2
d, s21d

where s̄ is the opposite projection ofs; M
k18,N̄;k1,k2

s,s
is the

Auger matrix element when the states labeled by the wave
vectorsk1 and k2 both have spinss; and M

k18,N̄;k1,k2

s,s̄
is the

one when they have opposites spins.
The initial state is a two-particle stateuk1,k2l in the QW.

The final state is composed of one particle in the QD state

and the other in the high-energy state in the QW,uk18 ,N̄l. The
direct matrix element is

Mk18,N̄;k1,k2
=

e2

4pes

1

A3/2E
−`

`

dz2dz1wn
*sz2dFwsz2dFw

* sz1dFwsz1d

3E dr2dr1
Clm

* sr2de−ik18·r1eik2·r2eik1·r1

Îur2 − r1u2 + sz2 − z1d2
. s22d

Define the two vector variables for integration: the relative
coordinatex=r1−r2 as well as the center-of-mass coordinate
y=sr1+r2d /2. We also introduce the Fourier transformation

of the in-plane wave function, namely,C̃lmspd. Equation(22)
is rewritten as

Mk18,N̄;k1,k2
=

e2

4pes

1

A3/2E
−`

`

dz2dz1wn
*sz2dFwsz2dFw

* sz1dFwsz1d

3E dp

s2pd2C̃lm
* spd E dx

eisk1−k18−k2+pd·x/2

Îx2 + sz1 − z2d2

3E dyeisk2−p+k1−k18d·y. s23d

The integration over the center-of-mass coordinate results in
a delta function. In this way, the integration over the variable
p can be eliminated.

By using the following two identities of the zeroth-order
modified Bessel function of the second kindK0sqxd:

1
Îx2 + sz1 − z2d2

=
2

p
E

0

`

dq cosfqsz2 − z1dgK0sqxd, s24d

E dxK0sqxdeisk1−k18d·x =
2p

uk1 − k18u
2 + q2 , s25d

we can rewrite the matrix elementMk18,N̄;k1,k2
as

Mk18,N̄;k1,k2
=

e2C̃lm
* sk2 + k1 − k18d

4esA
3/2 Fsuk1 − k18ud, s26d

where the functionFsuk1−k18ud is related to the form factors
between QW states and between QW and QD states:

Fsuk1 − k18ud ; E
−`

`

dq
,wnueiqzuFw . , Fwue−iqzuFw.

uk1 − k18u
2 + q2 .

s27d

The form factor between QW states will be evaluated in
Appendix B.

For theexchangematrix element, we just switchk1 and
k2 in the expression of the direct one. With these matrix
elements, we can consider the scattering of two electrons
with the same or opposite spins. If the electrons in thek1 and
k2 states happen to have identical spin, says, the Auger
matrix element is

M
k18,N̄;k1,k2

s,s
=

e2C̃lm
* sk2 + k1 − k18d

4esA
3/2

3hFsuk1 − k18ud − Fsuk2 − k18udj. s28d

On the other hand, if the spins of the two particles in the
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initial states happen to be opposite, the matrix element is
then

M
k18,N̄;k1,k2

s,s̄
=

e2C̃lm
* sk2 + k1 − k18d

4esA
3/2 Fsuk1 − k18ud. s29d

We then consider the total tunneling rate from QW states

to QD stateuN̄,sl. From Eq.(21), the net capture rate of the

QD stateuN̄,sl is

W
w→N̄,s

Auger
=

2p

"

A3

s2pd6 E dk18dk1dk2suM
k18,N̄;k1,k2

s,s u2

+ uM
k18,N̄;k1,k2

s,s̄ u2dfs1 − f N̄ds1 − fk18
dfk2

fk1

− s1 − fk2
ds1 − fk1

df N̄fk18
gdsEN̄ + Ek18

− Ek1
− Ek2

d.

s30d

Equation(30) is the integral form of the Auger-assisted tun-
neling rate in this QW-QD system. The simplification and
approximation of this six-dimensional integration will be
presented in Appendix C. The final result of this net capture
rate for each spins then can be written in a three-
dimensional integration:

W
w→N̄,s

Auger .
3mw

xy*

2
S 1

4p"
D3Se2

es
D2E

0

`

dk1k1E
p̂sk1d

`

dk18k18E
−p

p

df̂

3 h, uFsuk1 − k18udu
2 . uC̃lmsk1 − k18du

2

3fs1 − f N̄ds1 − fk18
dfbsk18,k1dfk1

− s1 − fbsk18,k1dds1 − fk1
df N̄fk18

gj, s31d

wherebsk18 ,k1d andp̂sk1d are functions resulting from energy
conservation and will be defined in Appendix C.

V. THEORETICAL RESULTS FOR PHONON- AND
AUGER-ASSISTED CAPTURE RATES

Equations(11) and(21) are aimed at the occupation of the

QD stateuN̄,sl. For the carriers in the QW, we are more
interested in the average time constant for them to tunnel
into the QD. Denote the surface density of QDs asND. The
surface density of carriers in QW is given explicitly as fol-
lows:

nw =
2

A
o
k

fk =
mw

xy*kBT

p"2 lnf1 + esEFw−Ewd/kBTg, s32d

whereEFw is the quasi-Fermi level of the carriers in the QW.
If the initial occupation of the QD state is zero, the conser-
vation of particle numbers for these tunneling processes en-
ables us to define the net capture ratesW

w→N̄

phonon
, W

w→N̄

Auger
as well

as the average tunneling time constantstAv
phonon, tAv

Auger of the
two mechanisms and Auger coefficientCAuger, which all de-
pend on the surface carrier density in the QW:

W
w→N̄

phonon; o
s

W
w→N̄,s

phonon
, s33d

W
w→N̄

Auger; o
s

W
w→N̄,s

Auger
, s34d

nw

tAv
phononsnwd

; uNDW
w→N̄

phononu
fN̄=0

, s35d

nw

tAv
Augersnwd

; uNDW
w→N̄

Augeru
fN̄=0

; CAugersnwdnw
2 . s36d

In this paper, our definition of Auger coefficient includes the
surface density of QDs and is different from that defined in
the paper by Magnusdottiret al.22

For the calculations of these two tunneling mechanisms,
the following parameters for InxGa12xAs QW and QD are
used. Compositions and band offsets can be found in the
experiments of Refs. 8 and 28. Here, the Indium composition
of QD and QW are 0.175 and 0.202, respectively. In the
barrier, QW, and QD regions, the electron effective masses
are 0.067, 0.0525, and 0.0508m0, respectively, wherem0 is
the free electron mass. The potential depths of the QWsVwd
and the QDsVDd are 170.5 meV and 195.0 meV at room
temperature, respectively. The first quantized energy of the
QW state is 73.4 meV above the bottom of the QW potential.
The width of the QW region and the height of the QD region
are 50 and 100 Å, respectively. The radius of the QD is
100 Å, which will give rise to an energy difference of one
phonon energy between the QW subband edge and QD state
if there is no bias electric field. The LO phonon energy is
35.9 meV. The QD density is set as 1010 cm−2 unless other-
wise mentioned. Only the ground state of the QD in conduc-
tion band will be considered. The occupation of this state
will be assumed to be empty initially.

Figure 2(a) shows the net capture rate of the QD ground
state as a function of the QD ground-state energy. The QD
ground energy is shifted by the bias electric field and is ref-
erenced from the bottom of the unperturbed QD potential.
Figures 2(b) and 2(c) are the corresponding average tunnel-
ing time constantstAv

phonon, tAv
Auger and Auger coefficients. The

quasi Fermi level in the QW is set at 25 meV above the QW
subband edge energy. The temperature and the surface QW
carrier densitynw are 300 K and 7.331011 cm−2, respec-
tively. The barrier width is set at 25 Å. Due to the quantized
energy of the LO phonon, if the energy difference between
the QW subband edge and QD state is larger than one LO
phonon energy, there will be nofirst-order phonon-assisted
tunneling process. The QD energy has to be high enough so
that the difference between the subband edge energy of the
QW and the QD energy is within one phonon energy. On the
other hand, Auger-assisted tunneling does not have this re-
striction because the conservation of energy can easily be
satisfied by the two-particle process.

When the QD energy is low, the large difference between
the QW subband edge and the QD state makes the effective
momentum transfer between two carriers in the QW high.
The Coulomb matrix element decreases as the transferred
momentum increases. The net capture rate due to Auger-
assisted tunneling thus becomes higher as the QD energy
increases, which is also pointed out in the paper by Magnus-
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dottir et al.22 On the other hand, for the phonon case, it has
the maximum capture rate when the energy difference be-
tween the QW subband edge and the QD state is exactly
one-phonon energy. The decrease of the net capture rate for
the phonon-assisted process results from two contributions.
First, the phonon-assisted process actually senses the carrier
distribution in the QW. As the QD energy increases, it senses
the carrier occupation of the high-energy states. The carrier
distribution in the QW is modeled as a Fermi-Dirac distribu-
tion with a 25 meV-quasi-Fermi level above the QW sub-
band edge energy, and thus reflects the decreasing trend.

This, however, does not apply to the Auger process. It is
always the low-energy carrier that is most probable to tunnel
into the QD no matter how close are the QW subband edge
energy and QD energy. Second, high-energy states in the
QW have higher momentum and thus smaller form factor
with the ground state of the QD. The smaller form factor
causes the decrease of the matrix element. Both conditions
result in the decrease of the net capture rate as the QD energy
gets higher. In addition, there is a cross-over of the tunneling
rates from two different mechanisms where the Auger-
assisted process gradually takes over. This cross-over de-
pends on the carrier density in the QW. For lower carrier
density, cross-over will happen at a higher QD-energy level
since the Auger-assisted tunneling will be weaker.

From Fig. 2(b), the average tunneling lifetime constants
also reflect the trend from Fig. 2(a). The Auger assisted-
process is usually not as efficient as the phonon-assisted pro-
cess. If the energy difference is large or the carrier density is
not high enough in the QW, the Auger process is usually too
slow to be used for the injection of the carriers into the QD.
Figure 2(c) shows the calculated Auger coefficient. Due to
the presence of the barrier, the calculated Auger coefficient is
much smaller than that calculated by Uskovet al.24 because
the relaxation from the wetting layer to the QD is faster
without the barrier. Our calculation shows the same trend as
that by Magnusdottiret al.22 The increase of the Auger co-
efficient can be explained as the result of the decrease of the
transferred momentum in the matrix element.

From Figs. 3–6, we consider the dependence of the tun-
neling rates on the QW surface carrier density. The bias elec-
tric field is set to zero. Figure 3(a) shows the net capture rate
of the QD ground state as a function of the surface carrier
density in the QW. Figures 3(b) and 3(c) are the correspond-
ing average tunneling time constants and Auger coefficient.
The barrier width is the same as that in the previous calcu-
lation s25 Åd. As the QW carrier density increases, the
phonon-assisted process gradually saturates due to the satu-
ration of the state occupation participating in the process
constrained by energy conservation. At low carrier density,
the net capture rate of the Auger-assisted process shows qua-
dratic dependence of the QW surface carrier density. How-
ever, at high carrier density, it also saturates because the
filling of high-energy QW states prevents the carriers at low
energy states from being excited, as predicted by Pauli’s ex-
clusion principle.

From Fig. 3(b), the average tunneling time constant for
the phonon process gradually increases while that of the Au-
ger assisted-process gradually stops decreasing. Because the
number of QDs is fixed, only a limited number of carriers in
the QW can tunnel into them. If the number of carriers in the
QW keeps on increasing, more and more electrons will just
accumulate in the QW without tunneling into QDs. Effec-
tively, the average tunneling lifetime of the carriers in the
QW will be longer at the high-density limit. The saturation at
the high carrier-density limit for the Auger process due to
Pauli’s exclusion principle results in the decrease of Auger
coefficients at high QW carrier density, as shown in Fig.
3(c).

Figure 4(a) shows the phonon-assisted net capture rate of
the QD ground state as a function of the surface carrier den-

FIG. 2. (a) The net capture rate due to phonon- and Auger-
assisted processes,W

w→N̄

phonon
and W

w→N̄

Auger
using Eqs.(33) and (34),

respectively, as a function of the QD energy level.(b) The average
tunneling time constants,tAv

phononsnwd andtAv
Augersnwd using Eqs.(35)

and (36), respectively.(c) The Auger coefficientCAugersnwd. The
parameters used ared=50 Å; h=100 Å; barrier width=25 Å;r0

=100 Å; ND=1010 cm−2; nw=7.331011 cm−2; andT=300 K.
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sity in the QW for different barrier widths. Figure 4(b) shows
the net capture rate due to Auger-assisted tunneling. All the
parameters are the same as those used in the simulations for
Fig. 3 except the barrier widths. The increase of barrier width
decreases the overlap of the QW states and QD states, and
thus the matrix elements in all the processes. For both
phonon- and Auger-assisted processes, the net capture rates
decrease as the barrier width increases.

Figures 5(a) and 5(b) show the average phonon- and
Auger-assisted tunneling rates of the carriers in the QW for
different surface QD densities. The inverse of these quanti-
ties are the average life constants of the QW carriers due to
these two mechanisms. All the parameters are the same as
those used in the simulations for Fig. 3 except the QD sur-
face density. The QD surface densities are set at 53109,
1010, and 531010 cm−2. If the number of the QDs is in-

FIG. 3. (a) The net capture rate due to phonon- and
Auger-assisted processes,W

w→N̄

phonon
and W

w→N̄

Auger
using Eqs.(33) and

(34), as a function of QW surface carrier density.(b) The
average tunneling time constantstAv

phononsnwd and tAv
Augersnwd using

Eqs. (35) and (36), respectively, and(c) the Auger coefficient
CAugersnwd. The parameters used ared=50 Å; h=100 Å; barrier
width=25 Å; r0=100 Å; Ew−EN̄<35.9 meV;ND=1010 cm−2; and
T=300 K.

FIG. 4. (a) The net capture rate due to the phonon-assisted pro-
cessW

w→N̄

phonon
using Eq.(33), as a function of QW surface carrier

density for different barrier widths.(b) The net capture rate due to
the Auger-assisted process,W

w→N̄

Auger
using Eq.(34), as a function of

the QW surface carrier density for different barrier widths. The
parameters used ared=50 Å; h=100 Å; r0=100 Å; Ew−EN̄

<35.9 meV;ND=1010 cm−2; andT=300 K.
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creased, there will be more QD states for the QW carriers to
tunnel into. Thus, the tunneling of the QW carriers will be-
come faster.

Figure 6(a) shows the phonon-assisted net capture rate of
the QD ground state as a function of the surface carrier den-
sity in the QW under different temperatures. Figure 6(b)
shows the net capture rate due to Auger-assisted tunneling.
The temperature will affect the carrier distribution due to the
thermal Fermi-Dirac distribution. The energy difference be-
tween the QW subband edge energy and the energy of the
QD ground state is still about one phonon energy. For
phonon-assisted processes, under the condition of the same
carrier density, carriers tend to occupy lower-energy states at
low temperature. Therefore, at the low carrier-density limit,
the dense carrier occupations at lower-energy states of QW
guarantee that the net tunneling rate is higher than that at
high temperature. However, as the density increases, the dif-
ferences between these occupations at low temperature and
room temperature become smaller. The emission process at

high temperature is also more efficient at room temperature
due to the spontaneous emission of an LO phonon. Over a
critical density, the phonon-assisted capture rate at room
temperature exceeds that at low temperature. For the Auger-
assisted process, a similar argument of carrier occupations
also applies when the QW density is low. However, when the
carrier density is increased, the occupations of the higher-
energy states below the quasi-Fermi level also become
denser for the low-temperature case. From Pauli’s exclusion
principle, the occupations of high-energy states will not fa-
vor the Auger-assisted tunneling processes. Thus, the net
capture rate due to Auger-assisted process at low temperature
will saturate and decrease faster than that at higher tempera-
ture in the high-density limit.

FIG. 5. (a) The average tunneling rate of the QW carriers due to
the phonon-assisted process 1/tAv

phononsnwd using Eq.(35), as a func-
tion of the QW surface carrier density for different QD densities.(b)
The average tunneling rate of the QW carriers due to the Auger-
assisted process 1/tAv

Augersnwd using Eq.(36), as a function of the
QW surface carrier density for different QD densities. The param-
eters used ared=50 Å; h=100 Å; barrier width=25 Å;r0=100 Å;
Ew−EN̄<35.9 meV;ND=1010 cm−2; andT=300 K. FIG. 6. (a) The net capture rate due to the phonon-assisted pro-

cessW
w→N̄

phonon
using Eq.(33), as a function of the QW surface carrier

density for different temperatures.(b) The net capture rate due to
the Auger-assisted processW

w→N̄

Auger
using Eq.(34), as a function of

the QW surface carrier density for different temperatures. The pa-
rameters used ared=50 Å; h=100 Å; barrier width=25 Å;r0

=100 Å; Ew−EN̄<35.9 meV; andND=1010 cm−2.
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Bhattacharyaet al.8 measured a 1.7-ps phonon-assisted
capture time for the occupation of the conduction-band
ground state. They designed the QW and QD sizes so that the
QD ground state in the conduction band is about one phonon
energy below the QW subband edge energy. Although their
structure is not identical to ours, the corresponding net cap-
ture rates extracted from the experimental results, which cor-
respond to one half of the quantity defined in Eq.(33), are
within the same order of magnitude as our theoretical results.

VI. CONCLUSION

We have calculated the phonon-assisted and Auger-
assisted tunneling rates. The typical capture times from
phonon-assisted tunneling, depending on the barrier width
between the QD and barrier, range from less than a picosec-
ond to a few hundred picoseconds. For laser or detector ap-
plications, a thin barrier between the QD and QW can assist
the efficient capture of the carriers into QD states. Under the
low-density limit, the Auger-assisted process is usually much
weaker than the phonon-assisted one. However, unlike
phonon-assisted tunneling, it does not have the restriction on
the energy difference between the QW subband edge energy
and QD energy. At the high-density limit, the Auger-assisted
tunneling will dominate the tunneling process.
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APPENDIX A: FORM FACTOR BETWEEN QW AND QD
STATES IN PHONON-ASSISTED TUNNELING

For the numerical integration in Eq.(20), the numerical
values of two functionsYsqzd andUsq'd for arbitraryq have
to be known first. From Eq.(16), we can divide the evalua-
tion of the functionYsqzd into five regions:

Ysqzd = UE
−`

`

dzwn
*szdeiqzzFwszdU2

= Uo
I=1

5 E
I

dzwn
*szdeiqzzFwszdU2

, sA1d

where regions 1–5 are defined in Fig. 1. Using the explicit

expressions of the growth-direction component of the wave
functions for QW and QD states, we can carry out the inte-
grations in different regions explicitly as

E
1

dzwn
*szdeiqzzFwszd =

Bn
z*Bw

z

nw + nn + iqz

3eisuw−unde−nnzd−snw+nndd/2e−iqzd/2,

E
2

dzwn
*szdeiqzzFwszd

=
Bn

z*Aw
z

2
e−iune−nnzdHe−iuw/2efisqz+kwd+nngd/2 − e−fisqz+kwd+nngd/2

isqz + kwd + nn

+ eiuw/2efisqz−kwd+nngd/2 − e−fisqz−kwd+nngd/2

isqz − kwd + nn
J ,

E
3

dzwn
*szdeiqzzFwszd =

Bn
z*Bw

z

2
e−iune−nnzd

3Hefiqz+snn−nwdgszd−h/2d − efiqz+snn−nwdgd/2

iqz + snn − nwd J
E

4
dzwn

*szdeiqzzFwszd

=
An

z*Bw
z

2
esiqz−nndzdHeiun/2efisqz−kwd−nngh/2 − e−fisqz−kwd−nngh/2

isqz − kwd − nn

+ e−iun/2efisqz+knd−nwgh/2 − e−fisqz+knd−nwgh/2

isqz + knd − nw
J ,

E
5

dzwn
*szdeiqzzFwszd =

Bn
z*Bw

z

nw + nn − iqz
ennzdef−snw+nnd+iqzgszd+h/2d,

sA2d

The functionYsqzd is then obtained by squaring the magni-
tude of the sum of the above equations.

For the functionUsq'd, from Eq. (4), we can get the
explicit expressions of the analytical wave functions for this
two-dimensional quantum disk model:

E
0

`

drrRlm
* srdJmsq'rd =

Alm
xy*r0

klm
2 − q'

2 fq'Jmsklmr0dJm−1sq'r0d − klmJm−1sklmr0dJmsq'r0dg

+
Blm

xy*r0

glm
2 + q'

2 fq'Kmsglmr0dJm−1sq'r0d + glmKm−1sglmr0dJmsq'r0dg. sA3d

If the magnitude of the wave vectorq' happens to be identical toklm, the following alternative equation can be used:
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lim
q'→klm

E
0

`

drrRlm
* srdJmsq'rd =

Alm
xy*r0

2klm
h− 2mJm−1sklmr0dJmsklmr0d + klmr0fJm−1

2 sklmr0d + Jm
2 sklmr0dgj

+
Blm

xy*r0

glm
2 + klm

2 fklmKmsglmr0dJm−1sklmr0d + glmKm−1sglmr0dJmsklmr0dg. sA4d

Equation(A3) or (A4) is then substituted into Eq.(17) to
give the numerical values of the functionUsq'd.

APPENDIX B: FORM FACTORS BETWEEN WELL STATES

The form factor of the growth-direction component of the
QW states is relatively easy to carry out. In this paper, only
one QW quantized band is considered. Similar to Eq.(A1),
we divide the integration into different parts corresponding
to regions 1–5:

kFwueiqzuFwl = o
I=1

5

kFwueiqzuFwlI . sB1d

The individual integrations in different regions are as fol-
lows:

kFwueiqzuFwl1 =
uBw

z u2

2nw + iq
e−s2nw+iqdd/2,

kFwueiqzuFwl2 =
uAw

z u2

2
Heiuw

sinfsq − 2kwdd/2g
q − 2kw

+
2 sinsqd/2d

q

+ e−iuw
sinfsq + 2kwdd/2g

q + 2kw
J ,

kFwueiqzuFwl3,4,5 =
uBw

z u2

2nw − iq
e−s2nw−iqdd/2. sB2d

APPENDIX C: FORMULATION OF AUGER-ASSISTED
TUNNELING

Consider the following matrix elements:

A3uM
k18,N̄;k1,k2

s,s u2 = S e2

4es
D2

uC̃lm
* sk2 + k1 − k18du

2

3huFsuk1 − k18udu
2 + uFsuk2 − k18udu

2

− 2 RefFsuk1 − k18ud * Fsuk2 − k18udgj
sC1d

A3uM
k18,N̄;k1,k2

s,s̄ u2 = S e2

4es
D2

uC̃lm
* sk2 + k1 − k18du

2uFsuk1 − k18udu
2.

sC2d

The matrix element with identical initial spins has an inter-

ference term. If both the Fourier transformationC̃lm
* sk2+k1

−k18d and the functionFsuk1−k18ud have to be significant, the
arguments of these functions have to be small. The interfer-
ence term will be significant only when all the three wave
vectors are small. However, energy conservation will not al-
low this if EN̄ is much below the subband edge energy of the
QW. We can safely neglect the interference term. Equation
(30) is rewritten as follows:

W
w→N̄,s

Auger
=

3

"
S 1

2p
D5S e2

4es
D2E dk18dk2dk1

3huC̃lmsk2 + k1 − k18du
2uFsuk1 − k18udu

2

3fs1 − f N̄ds1 − fk18
dfk2

fk1
− s1 − fk2

ds1 − fk1
df N̄fk18

g

3dsEN̄ + Ek18
− Ek1

− Ek2
dj. sC3d

Equation(C3) is still too complicated to be used for a nu-
merical analysis. To proceed, we will setk2 in the expression
as zero since the relaxation of a QW electron with wave
vectork2 into the QD state usually occurs near the subband
edge of the QW, wherek2.0.

Define a functionbsk,k1d:

bsk18,k1d =Îk18
2 − k1

2 − 2mw
xy*sEw − EN̄d

"2 . sC4d

In this way, the delta function due to energy conservation can
be rewritten in terms of the magnitudes of the wave vectors
k18, k1, andk2:

dsEN̄ + Ek18
− Ek1

− Ek2
d =

mw
xy*

"2

dsk2 − bsk18,k1dd
k2

. sC5d

With the aid of Eqs.(C4) and (C5) and that the integration
over the azimuthal angle of the vectork2 only gives rise to a
factor of 2p, the net capture rate is rewritten as
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W
w→N̄,s

Auger
=

3mw
xy*

2p
S 1

2p"
D3S e2

4es
D2R dfk1E

0

`

dk1k1dfk18

3E
p̂sk1d

`

dk18k18huC̃lmsk1 − k18du
2uFsuk1 − k18udu

2

3fs1 − f N̄ds1 − fk18
dfbsk18,k1dfk1

− s1 − fbsk18,k1dds1 − fk1
df N̄fk18

gj, sC6d

where p̂sk1d=Îk1
2+s2mw

xy* /"2dsEw−EN̄d is the lower bound
becausebsk18 ,k1d must be positive as indicated in Eq.(C4).

Let f̂ be the angle betweenk1 and k18. The integration
over the azimuthal anglefk18

is the same as that integrated

over the anglef̂ and can be approximated by the product of
two integrations:

R dfk18
uC̃lmsk1 − k18du

2uFsuk1 − k18udu
2

. R df̂uC̃lmsk1 − k18du
2 1

2p
R df̂uFsuk1 − k18udu

2

= R df̂uC̃lmsk1 − k18du
2kuFsuk1 − k18udu

2l, sC7d

wherekuFsuk1−k18udu
2l is the angular average of the function

uFsuk1−k18udu
2:

kuFsuk1 − k18udu
2l =

1

2p
R df̂uFsuk1 − k18udu

2. sC8d

This approximation will be valid if either the function
Fsuk1−k18ud or the Fourier transformationC̃lmsk1−k18d varies
slowly as the azimuthal anglefk18

changes. We can manipu-
late the integration of the functionFsuk1−k18ud explicitly:

R df̂uFsuk1 − k18udu
2 =E

−`

`

dq1kwnueiq1zuFwlkFwue−iq1zuFwl

3 E
−`

`

dq2kFwueiq2zuFwlkFwue−iq2zuwnl

3 R df̂
1

uk1 − k18u
2 + q1

2

1

uk1 − k18u
2 + q2

2 .

sC9d

In Eq. (C9), the integration over the anglef̂ can be simpli-
fied as

R df̂
1

uk1 − k18u
2 + q1

2

1

uk1 − k18u
2 + q2

2

=
1

q1
2 − q2

2E
−p

p

df̂F 1

q2
2 + k1

2 + k18
2 − 2k18k1 cossf̂d

−
1

q1
2 + k1

2 + k18
2 − 2k18k1 cossf̂d

G . sC10d

Equation(C10) can be evaluated by using the same proce-
dure as that for equation(19). The final result is

R df̂
1

uk1 − k18u
2 + q1

2

1

uk1 − k18u
2 + q2

2 = 2p
2sk1

2 + k18
2d + sq2

2 + q1
2d

Îfsk1 + k18d
2 + q2

2gfsk1 − k18d
2 + q2

2g + Îfsk1 + k18d
2 + q1

2gfsk1 − k18d
2 + q1

2g

3
1

Îfsk1 + k18d
2 + q2

2gfsk1 − k18d
2 + q2

2g

1

Îfsk1 + k18d
2 + q1

2gfsk1 − k18d
2 + q1

2g
. sC11d

If we substitute Eq.(C11) into (C9), the integration for the
Auger-assisted tunneling rate is still hard to carry out due to
the dimension of integration.

There is a trick to further approximate Eq.(C11). Given a
nonsingular functionfsx,yd around the origin, if the follow-
ing conditions are valid:

U ]f

]x
U

sx,yd=s0,0d
Þ 0, sC12d

U ]f

]y
U

sx,yd=s0,0d
Þ 0, sC13d

then the following approximation will be correct up to the
first order in Taylor’s expansion:

fsx,yd . Îfs2x,0dfs0,2yd. sC14d

Further, if fsx,yd has an asymptotic value when any of its
arguments tends to infinity, this approximation will result in
the same asymptotic value as both the arguments tend to
infinity.

Let x=q1
2, y=q2

2. We identify the functionfsq1
2,q2

2d as the
nonseparable part of Eq.(C11):
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fsq1
2,q2

2d =
2sk1

2 + k18
2d + sq2

2 + q1
2d

Îfsk1 + k18d
2 + q2

2gfsk1 − k18d
2 + q2

2g + Îfsk1 + k18d
2 + q1

2gfsk1 − k18d
2 + q1

2g
. sC15d

With the aid of Eq.(C14), the nonseparable part can be approximated as

fsq1
2,q2

2d .Î 2sk1
2 + k18

2 + q1
2d

uk1
2 − k18

2u + Îfsk1 + k18d
2 + 2q1

2gfsk1 − k18d
2 + 2q1

2g
Î 2sk1

2 + k18
2 + q2

2d

uk1
2 − k18

2u + Îfsk1 + k18d
2 + 2q2

2gfsk1 − k18d
2 + 2q2

2g
.

sC16d

The angular average of the functionuFsuk1−k18udu
2 is

kuFsuk1 − k18udu
2l . UE

−`

`

dqkwnueiqzuFwlkFwue−iqzuFwlÎ 2sk1
2 + k18

2 + q2d

uk1
2 − k18

2u + Îfsk1 + k18d
2 + 2q2gfsk1 − k18d

2 + 2q2g

3
1

Îfsk1 + k18d
2 + q2gfsk1 − k18d

2 + q2g
U2

. sC17d

In Eq. (C6), the integration over the azimuthal anglefk1
will only result in a factor of 2p. We substituted Eq.(C17) into (C6)

and thus obtain Eq.(31).
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