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Phonon- and Auger-assisted tunneling from a quantum well to a quantum dot
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We investigate phonon- and Auger-assisted tunnelings from an adjacent quantum well coupled to a quantum
dot by Fermi’s golden rule. The filling of quantum-well states is included, and we obtain an average tunneling
lifetime depending on the concentration in the quantum well. Depending on the barrier width between the
guantum dot and quantum well, both mechanisms can result in a tunneling time of a few to several hundred
picoseconds. For the condition of high concentration of carriers in a quantum well, the typical time scale of the
net increase of carriers in a quantum dot due to phonon-assisted tunneling can be in sub-picosecond range,
which agrees with the recent experimental observation.
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[. INTRODUCTION functions, followed by the phonon- and Auger-assisted cap-
ture from the QW to the QD.
Phonon-assisted tunneling was observed by Holorgtak

al. in heavily-doped silicorp-n junctions at 4.2 K. This was
the first example of inelastic tunneling which became a pow-  1l. MODEL FOR QW AND QD WAVE FUNCTIONS
erful tool for inelastic electron tunneling spectroscépyin
recent years, quantum dgi®Ds) in semiconductor material
systems are of great interest not only due to their atomic-li
properties but also the potential applications in quantu
computation (information®’ and high-performance semi-
conductor laser&:1> However, carrier capture by the QDs
for semiconductor lasers is a problem because of the slow 1 5 3 g [ 7%
phonon relaxation of the carriers to the ground state of the
QDs, which reduces the efficiency of lasitig!® A Ev 4~ g

The model is depicted in Fig. 1. The QW layer serves as

lﬁjhe collection layer of electrons. The electrons in the QW can
unnel into the QD by emitting an LO phonon or transferring
energy via Coulomb repulsion to another electron in the QW.

tunneling-injection quantum wellQW) coupled QD laser V=V,-V, | ! (\ E
structure has recently been propod&d? The QW serves as it

a collection layer of carriers, followed by lateral diffusion
and tunneling injection into the QDs. Experimentally, re-
duced threshold current density has been achieved by the .
QW coupled to the QB’ Coherent tunneling injection from N T

the QW to the QD has been investigated by Chuang and _% 0 % Zd‘% Z Zd*%
Holonyak?® In the QW-coupled-QD structure, various

mechanisms such as photon-, phonon-, and Auger-assisted (a)

processes can also contribute to the tunneling. Cheaiad I

i . V=0
Well | ! Dot
: [

z

analyzed the possibility of photon-assisted tunnefhghe \ > 3
recent experimental observation of the differential transmis- .1
sion spectrum in similar structures has shown a phonon- Ev 4 gis
. . . 2
assisted tunneling time of 1.7 ps. V=V,-¥y . :\
For QDs grown in a QW wetting layer, a few carrier E :
relaxation processes have been researéhd®mong them, A

the relaxations caused by longitudinal-optical-phorib®)
scattering and Auger scattering receive the most attention. ——t ——t
Magnusdotnr_et al?? calculated the Auger relaxation _rate -% 0 % zd—% % zd+%
from the wetting layer to the QD due to the Coulomb inter-
action of two carriers in the wetting layer. They also calcu- (b)
lated the one-phonon and two-phonon assisted processes for
spherical QDs embedded in three-dimensional contintum. g, 1. (8) The QW to QD LO-phonon-assisted tunneling. The
In their calculation, relaxation times of the order of picoseC'Carriers in the QW emit an LO phonon and tunnel into the Qiy.
ond are possible for both mechanisms. The QW to QD Auger-assisted tunneling. Two electrons 1 and 2 in
In this paper, we analyze phonon-assisted and Augelthe QW interact by Coulomb repulsion. One makes a transition to a
assisted tunneling rates in this QW coupled QD structure. WD state labeled as’ avhile the other is excited to a higher QW-
present our theoretical model for the QW and QD waveenergy state labeled as.1
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In the following formulation, we use the effective mass ap- jm¢
proximation and neglect the difference between the Bloch N1 = Bimn(r) = Vin(p) ¢n(2) =R|m(p)—v,;qon(2), (1)
periodic parts of the single-particle wave functions in the

QW and QD. For LO-phonon-assisted tunneling, thenereN represents the quantum numbérsn,n), which are

Frohlich Hamiltonian using bulk modes will be adopted i, pjane radial quantum number, magnetic quantum number,

since it has been shown that in QD-related scattering probyng the growth-direction quantum number, respectively. This

lems the difference between confined and bulk LO-phonorpproximation works for the QD states whose eigenenergies

modes is not so S|gn|f|CaI2If For AUger-aSSiSted tunneling, are not close to the barrier band edge‘

the screening effect will be neglected to simplify the situa-  The explicit forms of the approximate growth-direction

tion. wave function and in-plane wave function of QDs are as
The QD is modeled as a quantum disk with a helygand  follows:

radiuspg. The distance from the center of the QW to that of _

the QD is denoted ag,. We set the band edges of the barrier, Bre e, in regionsl,2,3,

QD, and QW regions a¢p, 0, andVp-V,,, whereVy andV,, AZ 0k () o o2z _

are the potential depths of QD and QW, respectively. Foren(2) = - (eee W+ gWogT %)) in regiond

simplicity, we assume that the QD envelope wave function 22y -

can be approximated by the product of the in-plane and Bye "=, in regions;

growth-direction parts, namely, (2

B {0, if even parity for QD Hamiltonian in growth direction,
=

3
r, if odd parity for QD Hamiltonian in growth direction; ®
[
AYI(Kimp)s P = Po, Im(Kimpo)
Rin(p) ={ o > @) B = () (6)
mKm(1mp), p = po; m{YimPo

For QW states, we model them as two-dimensional plane

whereB? andAZ are the normalized constants of the growth- Waves:

direction wave functiony, and k, are the parameters de- ik-p

scribing the penetration into barrier and standing-wave be- (1) = —=Dy(2), (7)
havior in the QD region;AlY and B}Y are the in-plane VA

normalized constant,, as well asy;,, play similar roles as  wherek is the wave vector of the plane waw,is the area

kn and v, for in-plane wave functions; andl, as well asK,,  of the QW, andd,,(z) is the quantized wave function in the
are themy-order Bessel function of the first kind and modi- growth direction.

fied Bessel function of the second kind, reSpeCtiVer. The The exp|icit expression of the growth_direction wave
growth-direction normalized constarl§ and A as well as  function of QW is as follows:

the in-plane onesyY andB} satisfy the following two equa-

tions due to the continuity of the wave function across the B¢ e, in regionl,

Poundaries:=z;xh/z andp=po Ai"(e‘if’m/Zeikwu éW2gk?) - in region2,

Pu(2)=) 5

h 6 BZe w, in regions3,4,5;
BZ = AZe'nh/2 CO{k o _n) , 5 W ! o
n n n2 2 ( ) (8)
|
_ ] 0, if even parity for QW Hamiltonian in growth direction, ©
Y| @, if odd parity for QW Hamiltonian in growth direction;
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whereBg, andA;, are the normalized constants of the growth- honon 27T -

direction wave function, and, and k,, are the parameters WoNo 72 |Mﬁ,k(p)|2[(”Lo + D1 -y —no(l
describing the penetration into barrier and standing-wave be- kp
havior in QW region. The normalized constai®s and AZ, _ _

satisfy the following equation due to the continuity of the ~ ffNlo| Bt o En-fiwo ), (1)
wave function at the boundag~ +d/2:

21,2

whereM%k(p) is the Frohlich matrix elemeng is the wave

vector of the LO phonom o= 1/[expfiw o/ KsT) - 1] is the

B\fv:A\ZNede/Z co{kwg _ ‘9_W). (10) B_ose—Einstein occ.upation number of the LO phonignand

2 2 fy are the occupation numbers of the QW state labeled by the
wave vectork and QD state labeled by quantum number
respectively; and,, is the subband edge energy of the QW,
i.e., the energy of the QW state with a zero wave vector. The
LO phonon is modeled as dispersionless. The spin indices
have been neglected in the labeling of the occupation number
of both QW and QD states since they are spin-independent in
the current case

In principle, the tunneling from excited subbands in QW can
also be considered. However, for simplicity, we will not con-
sider this kind of process in this paper.

IIil. THEORY FOR QW TO QD PHONON-ASSISTED For LO-phonon scattering, the interaction matrix element
TUNNELING is given by the Frohlich Hamiltonian:
- i Fhoo\™ 1 1 [*1 —
Resonantcoherent tunneling transfe(without phonon or M2, (p) = i<_LO> [_ _ _} = < N|ePTlk >
Auger assistangedoes occur wheik,,+%2k?/2mY =Eg, or Nk NS €. g5 P ’
Eq>E,. We refer to Ref. 20 for this fast coherent tunneling (12)

process into the excited state of the dot. In this paper, we are )

mainly interested irE4<E,, (the ground state of the dot WhereVy is the volume of the bulkp andw ¢ are the wave
when the phonon- or Auger-assisted process may be impo¥ector and angular frequency of an LO phonenande; are

tant. For the 25 A barrier, we have calculated the QD groundn€ high-frequency and static dielectric constants, respec-
state wave function in the presence and absence of the QWYelY: anda is the spin of both initial and final states. Be-
and found out they differ by only 2% in the overlap integral. cause ITO-phonon scattering does not change the spin of the
For a thin barrier width of about 10 A or less, the QW ang carrier in the conduction band, we do not need to label both
QD may be strongly coupled. Improvements 6], the QW an he spins of the initial and final states. Specification of the
QD wave functions will be required but are beyond the scopeInal spin state is enough.

£ thi i K th h d A Define a new vectog=p+k. Because the wave vectkr
of this paper It we can Keep nese phonon- and AUQEeTqt the state|d,) only has the component in the QW plane,
assisted formulations tractable.

. , _ the growth-direction component of the wave veadois the
Fermi’s golden rule based on these single-particle states;me as that of the wave vectar

are applied. For LO-phonon scattering, the tunneling rate, or
M, ;=P (13

the net capture rate of the QD stai¢, o), whereo is the
spin of the state, is as follows: We can rewrite Eq(12):

o o (Ehoo\y 1 1*2 1 (7, = R (p) [T eimtiaLe coddg-a)
My (P) = M{(p +k,k) = I<—Lo) o e iq-K dZQDn(Z)e'qZZ‘I’W(Z)J dpp ':k f d¢ —
—00 O J —ar

26V, £r  Es V2w
- (%)1’2{6—1 - ﬂmﬁ x X(qz)w%\(”_\z'\z—m f: dppRin(p)3n(0. ). (14
I
where the functiorX(q,) is defined as Y(a,) =|X(gy)]?, (16)
X(a,) = f dz4,(2) €7 D,(2). (15 U(a,)= ‘ f: dppRin(p)Im(d.p) . (17)

To simplify the expression above, we define two functions,Also, define a variabl® due to the conservation of particle
Y(g,) andU(q,): and phonon energy:
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[2mY (Ex+ hw o - E € 1 (F . .
. my (B - @ro W)_ (18) Mz Nikyk, = HAT’ZJ dz0dz,¢,(2) Py(2) P, (21) D\ (2)
s -
By substituting Eqs(16)—(18) into Eq.(11), and utilizing the y f dpad W (py)eKipigkzpagkin 22
following identity of integration: N pa-pifP+ (z-2)?

w 1 - Define the two vector variables for integration: the relative
f st (19 coordinatex=p,—p, as well as the center-of-mass coordinate
—-a-b cost va“-b y=(p;+p,) /2. We also introduce the Fourier transformation
of the in-plane wave function, namel;,(p). Equation(22)
is rewritten as

wherea and b are two real numbers and| > |b|, we can
simplify Eqg. (11) as follows:

B e 1 [~ . .
honon MY (22 hio, o ( 1 1) M Nk, = 5 a3 f 42,02 0,(22) P(22) P, (21) Po(22)
non _ = _= s —»
w—N,o (2ﬂ'ﬁ)3 2¢y €. € e'(kl Kj—kg+p) X2
X[(no+ Dfg(l - fy) = no(1 - fo)fy] f 2 )z‘lﬂm( )f NoryE—"
/ 1 2
- Y(qhU(gV1 -t?)
X d dt . §(KomDtk s —k )
fo qf g+ Qa- Q7+ (2Qqy? . f dyetorrrrta, @3

(20 The integration over the center-of-mass coordinate results in

a delta function. In this way, the integration over the variable
p can be eliminated.

By using the following two identities of the zeroth-order
modified Bessel function of the second kiKg(gx):

Equation(20) can then be evaluated numerically to give the
tunneling rate. Wheq=Q andt=0, the integrand contains a

singularity. This singularity should be specifically treated in
numerical simulations. Aiso, under the current model, the"

functionsY(qt) andU(qy1-t?) both have analytical expres- 1 2 (=
sions. We will discuss the derivation of these functions in T J dg codd(z; - z)JKo(x), (24)
. X+ (zy-z)° 7o
Appendix A.
. ’ 27T
kq-k
IV. THEORY OF QW TO QD AUGER-ASSISTED JdXKo(qX)e'( = KK+ (25
TUNNELING to
we can rewrite the matrix elemeM,; ., , as
As shown in Fig. ib), we consider the process in which 12
two electrons 1 and 2 in the QW interact with each other B ezqflm(k2+ ky— "
through Coulomb interaction. One of them acquires enough Micz Nikyk, = 4eSA3’2 F(lky—ki), (26

energy to be excited to a high-energy state 1’ in the QW

denoted as 2’ in Fig. (b). The net capture rate of the state between QW states and between QW and QD states:

|N,cr> caused by Auger-assisted tunneling is as follows: E(lk )= f" g <@ €D, > < D,|e7D,>
_ : L k=i + P
uger __ [ 2 0,0 _ 2
W\:—N,a Y (M, ,N;kl,k2| +|Mki,N;kl,k2| ) (27
kq,k k
v B The form factor between QW states will be evaluated in
XA -fA - fi)fifi, - (1 - )@ -fi)ffc]  Appendix B.
_ For theexchangematrix element, we just switck; and
X S(EN+ = B, ~Bo). (22) k, in the expression of the direct one. With these matrix
elements, we can consider the scattering of two electrons
where o is the opposite projection of; Mk Nk is the  with the same or opposite spins. If the electrons inkhand
172

K. states happen to have identical spin, saythe Auger

Auger matrix element when the states Iabeled by the wav
r matrix element is

vectorsk; andk, both have spingr; and M, | is the
1R 12 ~ % ’
one when they have opposites spins. Mo = &Win(kp +ky —ky)
The initial state is a two-particle stafie;,k,) in the QW. KNk Ky ™ 4€sA3/2

The final state is composed of one particle in the QD state

and the other in the high-energy state in the Q&,N). The X{F(ky—kal) -Fllke—kiD}. (28
direct matrix element is On the other hand, if the spins of the two particles in the
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initial states happen to be opposite, the matrix element is wileer zv\ﬁugej (34)
then WoN < WoNg!
v U(katky =k
U’,U*, = F(|kl - k,|) (29) Ny honol
k! N:kq,k 3/2 1 — = - = , 35
1 NiKg. Ko 4eA Tg\?/ono ) DY w—N r’fﬁ:o (39
We then consider the total tunneling rate from QW states
to QD sta@N,q). From Eq.(21), the net capture rate of the N _ ugg,‘ _ chuge )2 (36)
QD state|N, o) is AU () D™ w—Nlf =0 W
uger :2_77 A3 fdk’dk Ao (M7= 2 In this paper, our definition of Auger coefficient includes the
woNo g (277)° PRk Nk kg surface density of QDs and is different from that defined in
o5 , the paper by Magnusdottet al??
+ |Mki,ﬁ;k1,k2| LA -0 =) fifi For the calculations of these two tunneling mechanisms,
_ _ the following parameters for &g, ,As QW and QD are
- (1-f ) A - fi)ffgl8EN+ Eq - B —Ey,). used. Compositions and band offsets can be found in the

(30) experiments of Refs. 8 and 28. Here, the Indium composition
of QD and QW are 0.175 and 0.202, respectively. In the
Equation(30) is the integral form of the Auger-assisted tun- barrier, QW, and QD regions, the electron effective masses
neling rate in this QW-QD system. The simplification and are 0.067, 0.0525, and 0.05@8, respectively, wheren, is
approximation of this six-dimensional integration will be the free electron mass. The potential depths of the @\Y
presented in Appendix C. The final result of this net capturegnd the QD(Vp) are 170.5 meV and 195.0 meV at room
rate for each spino then can be written in a three- temperature, respectively. The first quantized energy of the
dimensional integration: QW state is 73.4 meV above the bottom of the QW potential.
3”’(73/* 1 \3/&?\2 (* o T The width of the QW region and the height of the QD region
whueer —(—) (—) f dklklf dkikif do are 50 and 100 A, respectively. The radius of the QD is
€&/ Jo pky)

weNe 20 \ At - 100 A, which will give rise to an energy difference of one
N2 | i phonon energy between the QW subband edge and QD state
X {<|F(kq = kiDI* > [Wim(ky = k)| if there is no bias electric field. The LO phonon energy is
XL = (L = i) F e s fi 35.9 meV. The QD density is set as'#@m™ unless other-
L wise mentioned. Only the ground state of the QD in conduc-
_(1_f,8(ki,kl))(1_fkl)fﬁfki]}a (31 tion band will be considered. The occupation of this state

R will be assumed to be empty initially.

wherep(ky, ki) andp(ky) are functions resulting from energy  Figure 2a) shows the net capture rate of the QD ground
conservation and will be defined in Appendix C. state as a function of the QD ground-state energy. The QD
ground energy is shifted by the bias electric field and is ref-
erenced from the bottom of the unperturbed QD potential.
Figures 2b) and Zc) are the corresponding average tunnel-
ing time constantshio™" 749" and Auger coefficients. The

Equationg11) and(21) are aimed at the occupation of the quasi Fermi level in the QW is set at 25 meV above the QW
QD state|N, o). For the carriers in the QW, we are more Subband edge energy. The temperature and the surface QW
interested in the average time constant for them to tunnefarrier densityn, are 300 K and 7.810' cm?, respec-

surface density of carriers in QW is given explicitly as fol- €nergy of the LO phonon, if the energy difference between
lows: the QW subband edge and QD state is larger than one LO

phonon energy, there will be niirst-order phonon-assisted
nﬁ,y*kBT tunneling process. The QD energy has to be high enough so
h2 that the difference between the subband edge energy of the
QW and the QD energy is within one phonon energy. On the
whereEg, is the quasi-Fermi level of the carriers in the QW. other hand, Auger-assisted tunneling does not have this re-
If the initial occupation of the QD state is zero, the conser-striction because the conservation of energy can easily be
vation of particle numbers for these tunneling processes ersatisfied by the two-particle process.
ables us to define the net capture rat@aCmo \WAU9ET o s well When the QD energy is low, the large difference between
w—N w—N .
as the average tunneling time Constadﬂ;gmor} Tﬁlnger of the the QW subband edge and the QD sta_te m_akes the effeptwe
two mechanisms and Auger coefficie®U9¢" which all de- momentum transfe( between two carriers in the QW high.
pend on the surface carrier density in the QW: The Coulomb matrix element decreases as the transferred
momentum increases. The net capture rate due to Auger-
wpremen_ § yyphonon (33)  assisted tunneling thus becomes higher as the QD energy

w—N W~>N,(r’

o increases, which is also pointed out in the paper by Magnus-

V. THEORETICAL RESULTS FOR PHONON- AND
AUGER-ASSISTED CAPTURE RATES

2
ny = 2 = In[1 +eErwElkeT] (32
k
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This, however, does not apply to the Auger process. It is
always the low-energy carrier that is most probable to tunnel
into the QD no matter how close are the QW subband edge
energy and QD energy. Second, high-energy states in the
QW have higher momentum and thus smaller form factor
with the ground state of the QD. The smaller form factor
causes the decrease of the matrix element. Both conditions
result in the decrease of the net capture rate as the QD energy
gets higher. In addition, there is a cross-over of the tunneling
rates from two different mechanisms where the Auger-
assisted process gradually takes over. This cross-over de-
pends on the carrier density in the QW. For lower carrier
density, cross-over will happen at a higher QD-energy level
since the Auger-assisted tunneling will be weaker.
From Fig. 2b), the average tunneling lifetime constants

\ —— Phonon also reflect the trend from Fig.(&. The Auger assisted-
400} - - - -Auger process is usually not as efficient as the phonon-assisted pro-
\\ QW Ed cess. If the energy difference is large or the carrier density is
~ ge

300 |

200+

100 |

not high enough in the QW, the Auger process is usually too
slow to be used for the injection of the carriers into the QD.
Figure Zc) shows the calculated Auger coefficient. Due to
the presence of the barrier, the calculated Auger coefficient is
much smaller than that calculated by Usketval 24 because
the relaxation from the wetting layer to the QD is faster

O 60 70 80 90 100 110 without the barrier. Our calculation shows the same trend as
Dot Energy Level (meV) that by Magnusdottiet al?? The increase of the Auger co-
(b) efficient can be explained as the result of the decrease of the
transferred momentum in the matrix element.

0.014 From Figs. 3—6, we consider the dependence of the tun-
0012 e neling rates on the QW surface carrier density. The bias elec-
& i tric field is set to zero. Figure(8) shows the net capture rate
§ 0010 7 of the QD ground state as a function of the surface carrier
£ 0.008 I density in the QW. Figures(B) and 3c) are the correspond-

u;: 0.006 ,/’ ing average tunneling time constants and Auger coefficient.
3 L The barrier width is the same as that in the previous calcu-
g 0004 -7 lation (25 A). As the QW carrier density increases, the
2 0.002 phonon-assisted process gradually saturates due to the satu-
0.000 . . . . ration of the state occupation participating in the process
50 60 70 80 90 100

Dot Energy Level (meV)

()

constrained by energy conservation. At low carrier density,
the net capture rate of the Auger-assisted process shows qua-
dratic dependence of the QW surface carrier density. How-
ever, at high carrier density, it also saturates because the

FIG. 2. (@) The net capture rate due to phonon- and Auger-
assisted processe er%on and V\/:vlf%r using Eqgs.(33) and (34),

respectively, as a function of the QD energy leyb). The average
tunneling time constantsh'°"1n,,) and %9%(n,,) using Eqs(35)

and (36), respectively.(c) The Auger coefficientCA"%(n,,). The

parameters used ad=50 A; h=100 A; barrier width=25 A:p,

=100 A; Np=10" cm™%; n,,=7.3x 10" cm™%;, and T=300 K.

filling of high-energy QW states prevents the carriers at low
energy states from being excited, as predicted by Pauli’s ex-
clusion principle.

From Fig. 3b), the average tunneling time constant for
the phonon process gradually increases while that of the Au-
ger assisted-process gradually stops decreasing. Because the
number of QDs is fixed, only a limited number of carriers in

dottir et al?2 On the other hand, for the phonon case, it hagdhe QW can tunnel into them. If the number of carriers in the
the maximum capture rate when the energy difference beQW keeps on increasing, more and more electrons will just
tween the QW subband edge and the QD state is exactgccumulate in the QW without tunneling into QDs. Effec-
one-phonon energy. The decrease of the net capture rate fively, the average tunneling lifetime of the carriers in the
the phonon-assisted process results from two contribution§W will be longer at the high-density limit. The saturation at
First, the phonon-assisted process actually senses the carribe high carrier-density limit for the Auger process due to
distribution in the QW. As the QD energy increases, it sensePauli’s exclusion principle results in the decrease of Auger
the carrier occupation of the high-energy states. The carriecoefficients at high QW carrier density, as shown in Fig.
distribution in the QW is modeled as a Fermi-Dirac distribu- 3(c).

tion with a 25 meV-quasi-Fermi level above the QW sub- Figure 4a) shows the phonon-assisted net capture rate of
band edge energy, and thus reflects the decreasing trerithe QD ground state as a function of the surface carrier den-
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S b Sa o density for different barrier widthgb) The net capture rate due to
"GC'; 0.0051 R . the Auger-assisted proceek:s/(;uj’;z‘;*r using Eq.(34), as a function of
E 0.004 - Tl the QW surface carrier density for different barrier widths. The
2 0.003L Tl parameters used are=50 A; h=100 A; py=100 A; E,—Ey
© - ~35.9 meV;Np=10'"° cm™2 and T=300 K.
g 0.002-
2 0001} sity in the QW for different barrier widths. Figur€k) shows
0.000 the net capture rate due to Auger-assisted tunneling. All the

0.0 5.0)('1011 1.0)('1012 1.5x10" parameters are the same as those used in the simulations for
Fig. 3 except the barrier widths. The increase of barrier width
decreases the overlap of the QW states and QD states, and
(c) thus the matrix elements in all the processes. For both
phonon- and Auger-assisted processes, the net capture rates
decrease as the barrier width increases.
FIG. 3. (a) The net capture rate due to phonon- and Figures %a) and $b) show the average phonon- and
Auger-assisted processé&ﬂfﬁ)” and V\/@‘fﬁr using Eqs(33) and  Auger-assisted tunneling rates of the carriers in the QW for
(34), as a function of QW surface carrier densitp) The different surface QD densities. The inverse of these quanti-
average tunneling time constan&®™1n,) and 7449°(n,) using  ties are the average life constants of the QW carriers due to
Egs. (35) and (36), respectively, andc) the Auger coefficient these two mechanisms. All the parameters are the same as
CAugel(n ). The parameters used ace=50 A; h=100 A; barrier ~ those used in the simulations for Fig. 3 except the QD sur-
width=25 A: po=100 A; E,~Ex~35.9 meV:Np=10°cm2 and  face density. The QD surface densities are set &tl6,
T=300 K. 10'° and 5x 10 cm™. If the number of the QDs is in-

Surface Carrier Density (1/cm?)
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Surface Carrier Density (1/cm?) % ’,-'/_/' ----100K
O 02r . =200 K
© e ————
) g oql s 300K
; ; 0.0 < L L
FIG. 5. (a) Th_e average tunnenI:Jng rate pf the QW carriers due to 0.0 5.0x10"" 1.0x10™ 15x10™
the phonon-assisted proces&ﬂ‘}’ Tn,,) using Eq.(35), as a func- . . 2
tion of the QW surface carrier density for different QD densitibs. Surface Carrier Density (1/cm’)
The average tunneling rate of the QW carriers due to the Auger-
assisted process #'%n,,) using Eq.(36), as a function of the
QW surface carrier density for different QD densities. The param- (b)
eters used ard=50 A; h=100 A; barrier width=25 Ap,=100 A;
E,,—En=35.9 meV;Np=10'"" cm™2; and T=300 K. FIG. 6. (a) The net capture rate due to the phonon-assisted pro-

cess\/\&fnﬁonusing Eq.(33), as a function of the QW surface carrier

creased, there will be more QD states for the QW carriers t@ensity for different temperaturego) The net capture rate due to

tunnel into. Thus, the tunneling of the QW carriers will be- the Auger-assisted procewxf‘%’ using Eq.(34), as a function of

come faster. the QW surface carrier density for different temperatures. The pa-
Figure Ga) shows the phonon-assisted net capture rate ofameters used are=50 A; h=100 A; barrier width=25 A;p,

the QD ground state as a function of the surface carrier ders100 A; E,~Ey=~35.9 meV; andNp =10 cm™.

sity in the QW under different temperatures. Figur@)6

shows the net capture rate due to Auger-assisted tunnelin

The temperature will affect the carrier distribution due to the” - - ! )
critical density, the phonon-assisted capture rate at room

thermal Fermi-Dirac distribution. The energy difference be'temperature exceeds that at low temperature. For the Auger-

tween the QW subband edge energy and the energy of th(fSSisted process, a similar argument of carrier occupations

QD ground state is still about one phonon energy. Foi s, annjies when the QW density is low. However, when the

phonon-assisted processes, under the condition of the sampgrier density is increased, the occupations of the higher-
carrier density, carriers tend to occupy lower-energy states @nergy states below the quasi-Fermi level also become
low temperature. Therefore, at the low carrier-density limit,genser for the low-temperature case. From Pauli's exclusion
the dense carrier occupations at lower-energy states of QWrinciple, the occupations of high-energy states will not fa-
guarantee that the net tunneling rate is higher than that alor the Auger-assisted tunneling processes. Thus, the net
high temperature. However, as the density increases, the digapture rate due to Auger-assisted process at low temperature
ferences between these occupations at low temperature amgll saturate and decrease faster than that at higher tempera-
room temperature become smaller. The emission process tire in the high-density limit.

gigh temperature is also more efficient at room temperature

ue to the spontaneous emission of an LO phonon. Over a

125312-8
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Bhattacharyaet al® measured a 1.7-ps phonon-assistedexpressions of the growth-direction component of the wave
capture time for the occupation of the conduction-bandfunctions for QW and QD states, we can carry out the inte-
ground state. They designed the QW and QD sizes so that thgations in different regions explicitly as
QD ground state in the conduction band is about one phonon
energy below the QW subband edge energy. Although their .
structure is not identical to ours, the corresponding net cap- f dzg,(2)€97D,,(2) =
ture rates extracted from the experimental results, which cor- ~1
respond to one half of the quantity defined in E83), are X @bt g vnZa~(nyt ) di2giadi2.
within the same order of magnitude as our theoretical results.

B} BL,

vyt v tiQ,

VI. CONCLUSION

* Iq
We have calculated the phonon-assisted and AugerLdZ‘P”(z)e “Pu(2)
assisted tunneling rates. The typical capture times from "
phonon-assisted tunneling, depending on the barrier width BL AL —iﬁne—ynzd{e—iawl

Zéi(qz+kvv)+vn]d/2_ i (o) +opldi2
between the QD and barrier, range from less than a picosec- 2 €

i(g,+ky) + vy

ond to a few hundred picoseconds. For laser or detector ap- . .
plications, a thin barrier between the QD and QW can assist /€ w2 - gl Gk vald2
the efficient capture of the carriers into QD states. Under the i(g,— Ky) + v '
low-density limit, the Auger-assisted process is usually much
weaker than the phonon-assisted one. However, unlike »

n

V4
phonon-assisted tunneling, it does not have the restriction off i * ;) dazgp. (7) = oN oW gitng vz
the energy difference between the QW subband edge ener 26n(2) w2 2

and QD energy. At the high-density limit, the Auger-assisted e (et ot (s Td)
tunneling will dominate the tunneling process. X{e['qz+( e 2}

e (o
ACKNOWLEDGMENTS 19+ (v = 1)
One of the authoréN. H.) wishes to thank the Sony Cor-
poration for the support of the John Bardeen Chair. We thankf dze, (209D, (2)
the support of DARPA Grant No. AFSA3631-22549, /4

DARPA No. MDA972-00-1-0020, and U.S. Army Research AZR? (k) =12 _ [0k v lV2
Office Grant No. DAAD19-01-1-0951. = %Ve(iqz_”n)zd eian/2 ( kw)
10z~ ~Vn
APPENDIX A: FORM FACTOR BETWEEN QW AND QD itk V2 _ it 2
STATES IN PHONON-ASSISTED TUNNELING e 2T M TE R }
- o . i(g,+ky) — ’
For the numerical integration in E¢20), the numerical 10+ ko) = 7y
values of two function¥(g,) andU(q, ) for arbitraryq have S
to be known first. From Eq.16), we can divide the evalua- o B, BZ, _ .
. . . ! . qz — N =W oz — (vt Ha,l(zg+hi2)
tion of the functionY(q,) into five regions: J dzey(2)€%Dy(2) o —iac" ¢ ! '
5 Dyt vp— 10,

? (A2)

Y(q) =

f dze,(2)€97D,(2)

- The functionY(q,) is then obtained by squaring the magni-
tude of the sum of the above equations.

' (A1) For the functionU(q,), from Eg. (4), we can get the
explicit expressions of the analytical wave functions for this

where regions 1-5 are defined in Fig. 1. Using the explicitwo-dimensional quantum disk model:

2

5
> | dze(2€97D,(2)
=17

o . Axy*p
f AopR(PIIn(G: ) = 5™ 0 In(im0) 10,0 = K- imP) ()]
0 Im 1
Xy

Bim P
+ ’yzlm—_'_oz[QLKm(')’lmpO)Jm—l(qLPO) + '}’Ime—l('yImpO)Jm(qLPO)]- (A3)
Im

1

If the magnitude of the wave vector, happens to be identical tq,,, the following alternative equation can be used:

125312-9
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) * . AYp
. lim f dppRim(p)In(dLp) = Z'mTIO{— 2MJ-1(KimPpo) I KimPo) + Kimpol Jo1(Kimpo) + Ja( Kimpo) 1}
1~ KimJ0 m

len)wlk Po

+ —z[KIme(')’ImPO)\]m—l(KImPO) + YmKm-1(YimPo) Im( Kimpo) ] -
ylzm + Kim

(A4)

Equation(A3) or (A4) is then substituted into Eq17) to

s e2 2 aJr ’ ’
give the numerical values of the functidh(q, ). AIM e P = (Z |Wim(kz + kg = k)|F(lky = kD[
S

kg Niky .k,
(C2
APPENDIX B: FORM FACTORS BETWEEN WELL STATES

N The matrix element with identical initial spins has an inter-
The form factor of the growth-direction component of the ) T~
QW states is relatively easy to carry out. In this paper, omyfer(,ance term. If both the Fou/rler transformatidfy,, (k+k,
one QW quantized band is considered. Similar to @d), ~K1) and the functiorF(|k;-k3|) have to be significant, the

we divide the integration into different parts corresponding@rguments of these functions have to be small. The interfer-
to regions 1-5: ence term will be significant only when all the three wave

vectors are small. However, energy conservation will not al-

5

(D69 D) = X (D% D). (B1)
=1

low this if Eyis much below the subband edge energy of the
QW. We can safely neglect the interference term. Equation
(30) is rewritten as follows:

The individual integrations in different regions are as fol- \y/Au9er

lows:
(e g = 5 sz
W Wit 2y, tiq '
: |AW?] o sinl(q—2k,)d/2] 2 sinqd/2)
() 9P = I Oy
< W|eI | w>2 2 € q_2kw + q
N e_i,ngir[(q + 2Kk,)d/2]
q+ 2k, ’
. BZ? .
(D€ D)z 5= ———e @dd2, (B2)
T 2y, —iq

APPENDIX C: FORMULATION OF AUGER-ASSISTED
TUNNELING

Consider the following matrix elements:
o,0 e2 2 ~ %
A3|Mki,ﬁ;k1,k2|2 = (4_63> [Wim(ka + ky = kp?

X{IF(lkq = kiDIZ+ [F(lka = kiD[?
- 2Re[F(lky = ki) * F(lkp— ki)
(C1)

e (i) o
WHN,U—;L<2W> 1e) | Hidkadks

X{|Wim(k + kg = kD[AIF(ky = ki)
XA =)@ = fi)fi fi, = (L= i) (X = fi ) b ]
X 8En+Eg ~ By, ~ B} (C3

Equation(C3) is still too complicated to be used for a nu-
merical analysis. To proceed, we will detin the expression
as zero since the relaxation of a QW electron with wave
vectork, into the QD state usually occurs near the subband
edge of the QW, wherk,=0.

Define a functiond(k,k;):

ki?- k2 - 2mY' (E,, - En)
B(ki.k1)=\/l L =

72 (CH

In this way, the delta function due to energy conservation can
be rewritten in terms of the magnitudes of the wave vectors
ki, kg, andky:

Y 8k, - B(K,, K
5(EN+Eki_Ek1_Ek2):rT;,§£ ke 'i(l 1))- (CH
2

With the aid of Eqs(C4) and (C5) and that the integration
over the azimuthal angle of the vectoy only gives rise to a
factor of 2, the net capture rate is rewritten as

125312-10



PHONON- AND AUGER-ASSISTED TUNNELING FROM A..

uger _ 3MY
% (L) o

PHYSICAL REVIEW B 70, 125312(2004)

(ks kgD = o 3§d¢|F<|k1 W (o)

This approximation will be valid if either the function

Xf(k : dkik{[Wim(ka = kDIPIF (ke = kDI F(lk,—kj|) or the Fourier transformatiow,,(k, —k k;) varies
Pk

X[(l - fm(l - fki)fﬂ(ki'kl)fkl
= (1= 0,11 = i) Tfic 1,

where p(k;) = K2+ (2mY" /1%2)(E,,—Ey) is the lower bound

becaused(k;,k;) must be positive as indicated in EE4).
Let ¢ be the angle betweek; and ki. The integration 1
over the azimuthal angléki is the same as that integrated X 3@ d(}| 2 K
LS

over the angle}b and can be approximated by the product of

two integrations:

b T - KDPIF K, = i

slowly as the azimuthal angl¢kr changes. We can manipu-
late the integration of the functloﬁ(|k1 ki|) explicitly:

(€6 55 dalF (K, — ki) 2= f (|67 D, ) (Do D)

x f (D, D, ) Dyl g,

1
—ki?+ g
(C9)

In Eg. (C9), the integration over the angﬁé can be simpli-
fied as

fﬁdl 1 1
(7[} ! !
lkq— k1|2+cﬁ|k1_ kil?+ a3

~ 1
~ § aTin(ka- K5 b adF(k, ki) Lr l .

- 35 AT ks~ kDR (ks ~ KD,

T 2— 2 d¢ 2,12 2 -
ai—qz g5 + ki + k1“ = 2k1k; cos(¢p)

() .

- ~ } . (C10
o + ki + ki? = 2kiky cOS )

where(|F(|k;—kj[)|?) is the angular average of the function Equation(C10) can be evaluated by using the same proce-

[F(lky =k

dure as that for equatiofl19). The final result is

1

. 1
di
é; Vs = ki[2+ 2 [ky —k

202+ kD) + (g5 +q))

2+as

2“
Vg + k)2 + G310 (ky — k2 + 2] + V[ (ky + k)2 + B (ky — kD2 + 2]

1 1

X .
Vg + k)2 + G311 (kg — k)2 + 2] V[ (kg + k)2 + B[ (ky — kD)2 + 2]

(C1))

If we substitute Eq(C11) into (C9), the integration for the then the following approximation will be correct up to the

Auger-assisted tunneling rate is still hard to carry out due tdirst order in Taylor's expansion:

the dimension of integration.
There is a trick to further approximate H&11). Given a

nonsingular functiorf(x,y) around the origin, if the follow-

ing conditions are valid:

of

B
=

(xy)=(0,0

(x,

Y)=(0,0)

# 0,

#0,

f(x,y) = Vf(2x,0f(0,2y). (C19

(C12 Further, if f(x,y) has an asymptotic value when any of its

arguments tends to infinity, this approximation will result in
the same asymptotic value as both the arguments tend to
infinity.

(C13 Let x=0Z, y=q3. We identify the functiorf(g3,q3) as the
nonseparable part of EC1):

125312-11
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The angular average of the functiti(|k,—k;|)|? is

20k + ki) + (g + a)
f(qifﬁ):/ N2 o2 121 ; ,2 1,2 2 N2 21 (C19)
V(g + k)= + 03]l (kg = k)= + 03] + VI(ky + k) + gl (kg — k) * + 7]
With the aid of Eq.(C14), the nonseparable part can be approximated as
(o) ~ \/ ) \/ 20 + ki + )
1H2) — , ’ ’ ' ’ ’ '
K2 = ki) + [k + k)2 + 2081 (kg = kp)2+ 202] V [KE = ki + VL (kg + kD)2 + 2021 (K, — ;)2 + 203]
(C16)
=3 ) _ 2(k2 + k/2 + q2)
F(lky = kiD= f doK o €99 D ) Dy, €79 D \/ L1
<| (| 1 1| | > ‘ n q<(Pn| | W>< w| | W> |k§-k£2| + \/[(k1+k1)2+2q2][(k1—k1)2+ 2q2]
1 2
X . (C17
VI + k)2 + @ (ky ~ k)2 + 2]

In Eq. (C6), the integration over the azimuthal angi@l will only result in a factor of 2r. We substituted EqC17) into (C6)

and thus obtain Eq.31).
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