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We examine the conditions for dynamic localization in general applied periodic ac-dc electric fields. We find
that in the presence of both ac and dc components to the field, in addition to traditional dynamic localization,
a different type of dynamic localization can occur irrespective of the shape and amplitude of the ac part of the
field. These “quasi-Bloch oscillations” take place if the ratio of the Bloch frequency to the ac frequency is a
noninteger rational number. Quasi-Bloch oscillations occur only within the tight-binding approximation, but
are not restricted to the nearest-neighbor tight-binding limit. This type of dynamic localization provides a more
experimentally accessible way to observe dynamic localization in an electronic system than conventional
dynamic localization.
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I. INTRODUCTION

Since the development of semiconductor superlattices in
recent decades, the study of electrons in a periodic potential
in the presence of an electric field has attracted increasing
attention. The history of these investigations can be traced
back to early in the last century when Bloch discussed the
electron behavior in a dc electric field1 and Zener predicted
that an electronic wave packet in a periodic potential would
exhibit periodic oscillations under the application of a dc
field, the so-called Bloch oscillations(BOs).2 The frequency
of these periodic oscillations is the Bloch frequencyvB
=edFo/", whereFo is the amplitude of the dc field andd is
the period of the potential. In bulk materials, however, BOs
are almost impossible to observe because the electron is scat-
tered before its first return to its initial state. BOs were not
experimentally observed3 until the development of semicon-
ductor superlattices, which have Brillouin zones small
enough to allow for a few complete transversals of the zone
before scattering.

Dynamic localization(DL) is similar to BOs but the pe-
riodic return of the electron to its initial state occurs with the
application of a periodic, purely ac field. Unlike BOs, which
occur for any dc field amplitude, DL only occurs if the ac
field has a particular shape and an amplitude that is one of a
discrete setEn. This phenomenon was initially addressed by
a number of authors.4–6 They found that in a sinusoidal ac
field of periodt with the amplitudeEn, an electron periodi-
cally returns to its initial quantum state with periodt if the
field amplitude satisfies the conditionJ0sedEnt /hd=0,4–6

wheree and h are the modulus of the electron charge and
Planck’s constant, respectively. However, DL in a continuous
field, such as a sinusoidal field, occurs only in a one-band,
nearest-neighbor tight-binding(NNTB) model and disap-
pears beyond the NNTB approximation.7–10 We refer to this
form of DL asapproximate dynamic localization(ADL ). We
recently showed that for most symmetric ac fields, it is guar-
anteed that field amplitudes exist for which ADL occurs.9

A number of authors10–12 have shown that within a one-
band model, DL can occur for periodic square-wave ac fields

with specific amplitudes for any arbitrary band dispersion.
We refer to this type of DL, which occurs for arbitrary band
structures beyond the NNTB approximation, asexact dy-
namic localization(EDL). More recently, Dignam and de
Sterke derived a set of conditions for which a general ac
electric field can yield EDL.10 The theory was developed
directly from the solution of the Schrödinger equation in a
general electric field. They noted thatEDL can only occur
for fields with discontinuities that occur whenever the elec-
tric field changes sign. In that letter they also showed how to
construct a general discontinuous field leading to EDL. Al-
though the requirement for discontinuities to obtain EDL
makes it impossible to obtain these fieldsexactly in experi-
ments on anelectronicsystem, it has been shown that elec-
tric fields with somewhat smoothed discontinuities can still
lead to good dynamic localization.9

Dynamic localization is often discussed within the frame-
work of Floquet theory when the applied electric field is
periodic. In this approach, Floquet-Bloch states, eigenstates
of the discrete spatial translation operator(translation by the
periodd, of the lattice) and the discrete temporal translation
operator(translation in time by the periodt, of the field), are
constructed. The eigenvalues of the temporal translation de-
fine thequasienergy bandof the system in the presence of
the ac field. In this approach, DL is considered to have oc-
curred if the quasienergy miniband reduces to a single level,
i.e., the quasienergy miniband collapses.5,13

One can also achieve DL in ageneral periodic electric
field in which there is a dc component in addition to the
purely ac part of the field. Floquet-Bloch theory14 can also be
applied in this situation, provided we consider the period of
the fieldT to be not simply equal to the ac periodt=2p /v,
but rather, to be an integer multiple of this periodt and also
an integer multiple of the Bloch periodtB=2p /vB, associ-
ated with the dc component of the field. This indicates that
for DL to occur in a combined ac-dc field, the ratio of the
Bloch frequencyvB to the ac frequencyv must be a rational
number, which can be expressed asvB/v=Q/N (where N
andQ are positive integers with no common factor). A num-
ber of authors have studied this system for sinusoidal15 and
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square-wave fields11 using Floquet-Bloch theory. However,
the conditions for DL have not been examined forgeneral
combined ac-dc fields.

There are a number of potential systems in which DL
could be seen experimentally. These include essentially any
systems where BOs have been observed: optically-excited
semiconductor superlattices,16–18 atoms in periodic optical
traps (where both BOs19,20 and DL21 have been observed),
and light propagation in coupled optical waveguides.22,23It is
easy to show that in all these systems a one-band model is
valid as long as care is taken in the choice of the lattice
potential, the “electric fields” are not too high, and the time
over which experiments are conducted is much less than the
Zener tunneling time.10,24,25 In addition, in all systems, the
experiments can be performed such that carrier-carrier inter-
action effects and dephasing have a minimal impact on the
qualitative dynamic behavior over the first few periods of the
ac field. In the atomic and the optical systems, the carrier-
carrier interactions are intrinsically small or nonexistent. In
superlattices, electronic wave packets are excited by femto-
second optical pulses. If the carrier densities are kept low
and the excitation conditions are such that excitonic effects
are minimized,26 then again carrier-carrier interaction does
not play a crucial role over the time of the experiments(a
few ps). Decoherence and dephasing in these systems result
in the loss of DL with time. However, as with BOs, the clear
signatures of DL should be observable for the first few peri-
ods of the ac field. In superlattices, for example, typical de-
coherence times are roughly 1–2 ps. Since the period of the
ac field in BOs experiments is typically 200–300 fs,16–18the
evidence of DL should be observable. This has been con-
firmed theoretically in models that include carrier-carrier in-
teractions and dephasing,26–29 where it has been predicted
that the signature of DL should be seen in the optical absorp-
tion spectra, degenerate four-wave mixing spectra, and emit-
ted Terahertz radiation. Therefore, in this work, we neglect
the effects of Zener tunneling, carrier-carrier interactions,
and decoherence so as to allow us to focus on the basic
physics of DL in general dc-ac fields.

In this paper, we examine electron dynamics in a one-
dimensional periodic potential in the presence ofgeneralpe-
riodic electric fields. We find thattwo distinct types of DL
can occur in the presence of combined ac and dc fields. The
first type of DL is similar to conventional EDL or ADL in a
pure ac field, and occurs if the ratiovB/v is a rational num-
ber and the total field meets the conditions for DL; this,
therefore, requires that theac part of the field has a particu-
lar shape and amplitude. The second type of DL can occur
with the periodT=Nt=QtB (whereN.1d if the ratio vB/v
is a noninteger rational number. This type of DL can occur
for any shape and amplitude of the ac part of the field. Just
as for BOs, the occurrence of this type of DL only depends
on the dc component of the field. We, therefore, refer to this
form of DL asquasi-Bloch oscillations(QBOs). We note that
QBOs only occur within the tight-binding approximation.
However, it is more robust than ADL in that QBOs can occur
beyond the nearest-neighbor approximation in most cases(if
N.2) and in fact is valid up to thesN−1dth nearest-
neighbor approximation.

The paper is organized as follows. In Sec. II A we present
the general solution of the Schrödinger equation in a general

electric field. In Sec. II B we review Floquet-Bloch theory
for this system when the electric field applied to the system
is periodic. In Sec. II C, we derive the conditions for EDL
and ADL in a general periodic field. In Sec. III we examine
EDL occurring with periodT=t, while in Sec. IV A we de-
rive the conditions for which conventional EDL occurs with
period T=Nt sN.1d. In Sec. IV B we demonstrate the ex-
istence of QBOs occurring with periodT=Nt, regardless of
the amplitude and shape of the ac part of the field, and ex-
amine the conditions under which QBOs occur. Finally, in
Sec. V we summarize our results.

II. GENERAL THEORY OF ELECTRON DYNAMICS
AND DYNAMIC LOCALIZATION

Here we examine the dynamics and dynamic localization
of electrons in periodic electric fields. As is commonly
done,4–6 and as motivated in Sec. I, we treat the system in a
one-band model and neglect scattering. We begin by present-
ing the solution of the Schrödinger equation in the presence
of a general electric field. We then review the Floquet-Bloch
theory and quasienergy bands that results with the applica-
tion of a periodic electric field. We show that using either of
these two approaches, we obtain the same two necessary and
sufficient conditions for DL of the electrons.

A. General solution of the Schrödinger equation

The Hamiltonian of an electron in a one-dimensional, pe-
riodic potential of periodd, in the presence of a general
electric fieldEstd, can be written in the form

H = Ho + eEstdz, s2.1d

whereHo is the Hamiltonian without the electric field. Using
a one-band model, the wave function can be expanded in the
basis of single-band Wannier functions,uanl, as11

uCstdl = o
n

Bnstduanl, s2.2d

where labeln represents the localization site of Wannier
functions. Using this in the Schrödinger equation, we
obtain30,31

i"Ḃn = o
m

Bm„«n−m + eEstdWm−n… + nedEstdBn, s2.3d

where «n are the Fourier coefficients of the band’s energy
dispersion in reciprocal space(«n;okeskdexpfikdg) andWp

are the matrix elements ofz in the basis of the Wannier
functions, such that

Wp ; ka0uzuapl. s2.4d

The solution to Eq.(2.3) is30

Bnstd = e−if«0t/"+sn+W0/ddgstdgo
m

An−mstdBms0d, s2.5d

where
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gstd ;
ed

"
E

0

t

Estddt s2.6d

is the dimensionless area under the curve of the electric field
with respect to timet. Also

Amstd ; E
−p

p dx

2p
expHimx− io

pÞ0

«−p

"
b̃pstdeipxJ , s2.7d

where

b̃pstd ; bpstd + i
"Wp

pd«−p
fe−ipgstd − 1g, s2.8d

and

bpstd ; E
0

t

e−ipgst8ddt8. s2.9d

This is the general solution of the Schrödinger equation in
the presence of anarbitrary electric field. We now consider
this same problem using Floquet-Bloch theory for the special
case of a periodic electric field.

B. Bloch-Floquet theory and quasienergy bands

If a purely ac electric fieldEstd, which is periodic with
time periodt such thatEst+td=Estd is applied to the system,
then the HamiltonianHstd is also periodic in time. This situ-
ation has been examined by a number of authors.5,7,8,13,15We
summarize the key results of this research here to allow for
comparison with the direct Schrödinger approach presented
in Sec. II A.

Floquet’s theorem states that the time-dependent state of
the Hamiltonian for the electron in this periodic field can be
written as a linear combination of the Floquet statesufkstdl,

uCstdl = o
k

Ckufkstdl. s2.10d

The ufkstdl can be written as

ufkstdl = e−i êkt/"uuêk
stdl, s2.11d

where theêk are thequasienergies13 and theuuêk
stdl are time-

periodic energies such thatuuêk
st+tdl= uuêk

stdl. From the
Schrödinger equation, we see that we must have

SH − i"
d

dt
Duuêk

stdl = êkuuêk
stdl. s2.12d

It can be shown that for a pure ac field, the Floquet states can
also be chosen to be eigenstates of the translation operator
for the lattice.5,8,13 The crystal momentumk is then a good
quantum number and is used to label the quasienergies and
the Floquet-Bloch states. After solving(2.12), Zhao7 and
Zhaoet al.15 showed that the quasienergies can be written as

êk = o
pÞ0

«−p

t
bpstdeipk + ec, s2.13d

whereec is a constant, independent ofk.

We now consider the case where the field period is stillt,
but we are looking for Floquet states withuuêk

stdl that are
periodic not with time t, but rather with timeT=Nt.
Floquet-Bloch theory14 requires that the periodT is an inte-
ger multipleQ of the Bloch periodtB. Thus, we have

T = Nt = QtB, s2.14d

where N and Q are integers. Under these conditions, the
quasienergy dispersion is written as follows:

êk = o
pÞ0

«−p

T
bpsTdeipk + ec8, s2.15d

whereec8 is a constant that is independent ofk.
One could, in principle, use the above theory to calculate

the Floquet-Bloch statesufkstdl, however, for our purposes
we only need consider the quasienergy bands given in Eqs.
(2.13) and (2.15). We now turn to the application of these
results and the results of the Sec. II A to the problem of
dynamic localization.

C. General dynamic localization

Here we consider the issue of DL when the electric field is
periodic with periodt. For DL to occur, we require that the
electron return to within a constant overall phasewc, to its
initial state after some timeT=Nt (whereN is an integer),
and such

uCst + Tdl = eiwcuCstdl. s2.16d

Using the Schrödinger approach from Sec. II A, we see from
Eqs. (2.2) and (2.5) that first, DL only occurs with period
T=Nt if

gsTd = 2pQ. s2.17d

The second condition for DL requires thatAnsTd=dn,0. From
Eq. (2.7), we see that this second condition is satisfied iff

b̃psTd = 0 for all p Þ 0. s2.18d

From Eqs.(2.8) and(2.17) we can see thatb̃psTd=bpsTd, and
thus, Eq.(2.18) is equivalent to

bpsTd = 0 for all p Þ 0. s2.19d

Now, turning to the Floquet-Bloch theory of Sec. II B, we
see from Eq.(2.14) that the theory is only valid ifT=Nt
=QtB. If we write the electric fieldEstd as the sum of a dc
componentFo and a purely ac componentFstd from Eq.
(2.6), we see that

gsTd = 2pN
t

tB
, s2.20d

wheretB=2p" / seFodd. Thus, we obtain the requirement

gsTd = 2pQ, s2.21d

which is identical to requirement(2.17) obtained directly
from the Schrödinger solution. Furthermore, we see from Eq.
(2.11) that DL only occurs in Floquet-Bloch theory ifêk is a
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constant independent ofk, where we have used the fact the
the quasienergies are only defined to modulo 2p" /T. Using
Eq. (2.15) we see that this is equivalent to the requirement

bpsTd = 0 for all p Þ 0. s2.22d

This is the same condition that we obtained in Eq.(2.19)
using the direct Schrödinger solution. Thus, using either ap-
proach, the two necessary and sufficient conditions for EDL
are Eqs.(2.17) and (2.19). We finally note that if gsTd
=2pQ but only b1sTd=0, then DL occurs within the NNTB
approximation(ADL )9 since the higher Fourier coefficients
«p supu.1d are neglected. We now employ the conditions of
Eqs. (2.17) and (2.19) to investigate DL in the presence of
combined general periodic ac-dc fields.

III. DL WITH PERIOD T=t IN AC-DC FIELDS

We consider here the special case in whichN=1 sT=td
and the field is again given byEstd=Fstd+Fo. We see from
Eq. (2.17) via Eq. (2.20) that for DL to occur, we must have
t=QtB or equivalently,

vB

v
= Q. s3.1d

Thus, the Bloch frequency must be an integral multiple of
the ac frequency if DL is to occur with periodt. In other
words, there must be an integer number of BOs in each ac
period if DL is to occur with the same period as the ac part of
the field. Furthermore, EDL only occurs for special com-
bined ac-dc fields that satisfy Eq.(2.19), just as when a pure
ac field is applied. As we showed previously,10 this is equiva-
lent to the condition on the electric field that

o
m,j

1

uġstjmdu
=

"

edom,j

1

uFstjmd + Fou
=

t

2p
, s3.2d

where, as discussed previously,9,10,30 the summation is over
all times within a periodt at which gstjmd=x+2pm s−p
øx,pd, and thej ’s count the roots of this equation for fixed
m for one value ofx. The physical interpretation of Eq.(3.2)
was addressed more recently.30 Requirement(3.2) also leads
to the condition that the ac part of the field must be discon-
tinuous at times when the total combined field changes sign.
Thus, just as for pure ac fields,10 to achieve EDL, one must
carefully construct discontinuous electric fields that satisfy
Eq. (3.2).

IV. DL WITH PERIOD T=Nt „N.1… IN AC-DC FIELDS

In Sec. III, we discussed DL at time,T=t. To be more
general, we now consider the case where DL occurs only
with period, T=Nt, where N is an integer greater than 1.
From Eq. (2.17), for DL to occur we require thatgsTd
=2pQ. This yields the condition

vB

v
=

Q

N
, s4.1d

whereQ andN have no common factor, since otherwise DL
may occur with periodT8=sN/ jdt=T/ j , wherej is the com-

mon factor. Equation(4.1) shows that the ratio of the Bloch
frequency to the ac frequency must be a noninteger rational
number for DL to be observed with periodT=Nt sN.1d.
Considering the discussion in previous sections where DL
occurs with periodt, we reach the general conclusion that
the ratio of the Bloch frequency to the ac frequency must be
a rational number if DL is to occur. We stress that for an
irrational ratio of the frequencies, true DL cannot take place.
However under the special initial conditions,Bns0d=dn,no
something that resembles DL may occur; this, however, is
not true DL in that it relies on these particular initial condi-
tions. We discuss this in detail in the Appendix.

Equation(4.1) is one necessary and sufficient condition
for DL in combined ac-dc electric fields, while Eq.(2.19) is
the other one. Now, at timeT=Nt, we have

bpsTd =E
0

Nt

e−ipfvBt+sed/ "de0
t Fst8ddt8gdt = CpsNdbpstd,

s4.2d

where thebpstd express the effect of the field over a single
period, whereas theCp gives the effect of havingN such
identical periods. Here,

CpsNd = o
m=0

N−1

e−ipvBtm = e−ippsN−1dvB/vsinsNppvB/vd
sinsppvB/vd

.

s4.3d

If either bpstd=0 or CpsNd=0 for some or allpÞ0, then
bpsTd=0 and we have DL. However, these two requirements
lead to different types of DL, as is discussed in Secs. IV A
and IV B.

A. Conventional DL in special ac-dc fields

Obviously, ifbpstd=0, we recover something very similar
to the conventional DL discussed in Sec. III in that DL re-
quires that the ac part of the field have a specific shape and
correct amplitudes. Here, we provide some numerical simu-
lations to illustrate electron dynamics in a realistic structure,
a GaAs/GaxAl1−xAs superlattice. We choose a structure for
which Zener tunneling is negligible over the timet so that
the single-band approximation is fulfilled. The superlattice
has a periodd=10 nm, where the well and barrier width are
dw=9.0 nm anddb=1.0 nm, respectively; the barrier height
is V0=250 meV; and the electron effective mass is 0.067 that
of free electron mass. For this structure, the wells are
strongly coupled, with u«1u=8.9 meV, u«2/«1u=0.1676,
u«3/«1u=0.0472, andu«4/«1u=0.0164. An electric field is ap-
plied to the superlattice. As shown in Fig. 1(a), the field is
comprised of a rectangular ac component with periodt
=825 fs and a dc componentFo=1.67 kV/cm, such that
vB=v /3 sN=3,Q=1d andbpsTd=0 for all pÞ0. We choose
the rectangular-wave ac field for simplicity, but more general
fields can be constructed using an equation similar to Eq.
(3.2).10

Now, we know that EDL occurs if the two conditions,
Eqs. (2.17) and (2.19), on the electric field are satisfied.
However, it is instructive to also examine DL by looking at
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some characteristics of the wave function. Thus, we consider
the time evolution of two parameters to describe the electron
dynamics:Pstd andDkz2lstd. Pstd is the probability of finding
the electron at timet in its initial state(return probability)
and is given by

Pstd ; ukCstduCs0dlu2. s4.4d

The other parameter is

Dkz2lstd ; kCstduz2uCstdl − kCs0duz2uCs0dl, s4.5d

the mean-square displacement of the electron at timet rela-
tive to the same quantity att=0. As expected, if DL occurs at
time T, PsTd=1, andDkz2lsTd=0. We note that one must be
somewhat careful with these measures of DL as it does not
follow that if PsTd=1 andDkz2lsTd=0 then DL has occurred.
As discussed in the Appendix, for certain initial conditions,
one can obtain a periodic return to the initial state at times at
which DL does not occur. However, this is nottrue DL in
that it does not occur for every initial state.

In Figs. 1(b) and 1(c), we plot Pstd and Dkz2lstd as a
function of time t for the Full-Band(FB) calculation with
initial conditionsBns0d= sdn,0+dn,1d/Î2. These initial con-
ditions have no special properties and are used in all numeri-
cal simulations except in the Appendix. We can see that EDL
occurs atT=3t ,6t , . . . for arbitrary band dispersion in the
presence of this combined ac-dc field. This is similar to EDL
in a purely ac field as we have discussed before10 except that
EDL occurs with a different time period.

This DL can be seen in a different way by using Floquet
theory. Zhaoet al.15 showed that if we taket to be the period
and choose the fields such thatbpstd=0 for all pÞ0, then
the quasienergies become

ê jk = j
2p"

Nt
, j = 0, ± 1, ± 2, . . . , s4.6d

and are thus equally spaced, comprising a fractional Stark
ladder.15 Using Eq.(2.11), we have

uCsNtdl = eiwcuCs0dl, s4.7d

due to the rephasing of the different Floquet states at time
T=Nt. This shows that in the presence of such a combined
ac-dc field, EDL occurs with periodNt rather thant.

B. QBOs in general ac-dc fields

It is experimentally not easy to achieve the specific large-
amplitude ac fields required to makebpstd=0, even just for
upu=1. Thus, we now consider a form of DL that occurs even
if bpstdÞ0 whenN.1. From Eqs.(4.2) and (4.3), we see
our second necessary and sufficient condition for DL,
bpsTd=0 is satisfied if

CpsNd = 0. s4.8d

From Eq.(4.1) we know thatvB/v=Q/N. Using this in Eq.
(4.3), we see thatCpsNdÞ0 for any p if Q/N is an integer.
However, ifQ/N is not an integer then

CpsNd = 0 for all p Þ mN, s4.9d

and thus

bpsTd = 0 for all p Þ mN, s4.10d

wherem is an integer. Thus, a new type of DL can be always
achieved by a dc field combined with an arbitrary ac field if
the ratio of the Bloch frequency to the ac frequency is a
noninteger rational number. We refer to this as quasi-Bloch
oscillations(QBOs) since this form of DL occurs regardless
of the shape and the amplitude of the ac field. Here we note
that QBOs only occur within the tight-binding approxima-
tion, sincebpsTd=0 only for a limited range ofp, 0, upu,N,
rather than for allpÞ0 as is required for EDL. Whenupu
=N, from Eq.(4.3) we can see thatCN=N andbpsTdÞ0 for
general ac fields, i.e., for fields for whichbpstdÞ0. There-
fore, we have the conclusion that QBOsonly occur within
the tight-binding (TB) approximation to order of N−1. For
example, if vB/v=1/2,3/2,5/2, . . .(where N=2), QBOs
only occur within the NNTB limit. If vB/v
=1/3,2/3,4/3, . . .(whereN=3), QBOs can occur within the
next NNTB limit. To our knowledge, this has never been
addressed in previous reports. One interesting case occurs
whenQ=1 such that

vB

v
=

1

N
=

t

tB
. s4.11d

Then QBOs occur with periodtB that is quite similar to true
BOs, but QBOs occur only within thesN−1dth NNTB limit.

Condition (4.1) can be understood in a semiclassical
model. We previously showed thatkstd=ko+gstd /d.30 From
Eq. (2.17), DL requires thatgsTd be an integer multiple of
2p. This then results inkstd being periodic with periodT.
The other semiclassical equation then tells us that the aver-

FIG. 1. (a) Combined ac-dc field for whichbpstd=0 for all p
Þ0 andvB/v=1/3; (b) time evolution of the return probability;(c)
time evolution of the mean-square displacement. For this field, EDL
occurs with periodT=3t. At t=t ,2t ,4t ,5t , . . ., Dkz2lsTd is close
to, but not equal to zero.
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age velocity is also periodic and that it has a periodT. The
average position of the wave packet is given by

kzlstd = zo + ido
pÞ0

p«−p

"
bpstdeipkod. s4.12d

Thus kzlstd is periodic with timeT, if the field satisfies Eq.
(2.19). Alternatively, using Eq.(2.15), we obtain for the av-
erage position at timeT

kzlsTd = zo +
T

"
U] êk

] k
U

k=ko

. s4.13d

So when the quasienergy band collapses, the average particle
position is periodic inT. Although these results show the
agreement of the full quantum theory with the semiclassical
result, they only add limited physical insight into the condi-
tions for DL or QBOs.

We presented previously30 a simple physical interpretation
of Eq. (2.19) for EDL: the electron must spend the same
amount of time at all points in the first Brillouin zone over
the timet. Such a simple physical interpretation of QBOs,
where Eq.(2.19) is only satisfied for a limited set ofp, does
not seem possible. In the special case,N=2, Q=1, however,
a simple semiclassical picture can help explain QBOs. After
a time,T/2s=td, the electron wave vector has traversed ex-
actly half the first Brillouin Zone, i.e.,kstd=ko+p /d. In the
NNTB approximation,e8sk+p /dd=−e8skd, wheree8skd de-
notes the derivative of the band energy with respect tok.
Thus using the semiclassical equation of motion, we see that
vst+td=−vstd. Therefore, the velocity of the electron over
the first half of the period 0, t,T/2 is reversed over the
second half,T/2, t,T, and the electron returns to its initial
position at timet=T. For largerN, the picture is more com-
plicated, but the basic principle is the same: if the frequency
ratio is chosen correctly the effect of the ac portion of the
field averages to zero over the timeT, and the electron re-
turns to its initial state.

We now examine QBOs via numerical simulations. We
consider the GaAs/GaxAl1−xAs superlattice structure dis-
cussed in Sec. IV A, but now apply anarbitrary ac field[see
Fig. 2(a)] and a dc fieldFo=1.67 kV/cm, for whichvB/v
=1/3 for thechosen ac period. The form of this general ac
field is also used in Figs. 3–5. Fig. 2(b) showsgstd of the ac
part of the field(solid line) and of the total field(dashed line)
in one periodt. The only feature of the field is that the ratio
of the Bloch frequency to the ac frequency is 1/3[hence
gstd=2pvB/v=2p /3 as can be seen from dashed line in
Fig. 2(b)]. In Figs. 3 and 4 we plotPstd andDkz2lstd, respec-
tively, for different approximations to the band structure
eskd, when the ac field has an amplitude of 4.36 kV/cm.
Figures 3(a) and 4(a) present the results in the NNTB ap-
proximation supu=1d. They show thatPsTd=1 andDkz2lsTd
=0 at timesT=3t,6t. The fact that, apart from a constant
phase, the electron wave function at those times returns to its
initial distribution shows that QBOs occur within the NNTB
approximation. We also can see similar results in Figs. 3(b)
and 4(b) within the next NNTB limit s0, upuø2d. But in
Figs. 3(c) and 4(c), when we take the TB approximation up

to the order of upuøN=3 (solid lines), even at T=3t,
Ps3td<16%, andDkz2lsTd is substantial. Thus, the electron
is delocalized strongly when we take into account the long-
range coupling up toupu=N. The dotted lines in Figs. 3(c)
and 4(c) are calculated for the full-band dispersion. Due to
the small contributions from higher orderssupu.3d of «p, the
results of the FB calculation are almost identical to theupu
ø3 result (solid lines). Therefore, like ADL, QBOs cannot
be obtained for an arbitrary band structure. However, the
conditions for QBOs are much less restrictive than for tradi-
tional ADL in that they occur for bands that are well de-
scribed by a TB structure of orderN−1.

We now choose a structure similar to the previous one but
with dw=7.0 nm anddb=3.0 nm. It is a good next NNTB

FIG. 2. (a) Ac component of the electric field in Figs. 3–5(b)
(solid line) associated dimensionless areagstd of the ac component
of the field in (a), and (dashed line) gstd for the combined ac-dc
field wherevB/v=1/3.

FIG. 3. Return probabilityPstd versus timet in the presence of
the combined ac-dc field of Fig. 2,(a) within the NNTB approxi-
mation supu=1d; (b) within the next NNTB approximations0, upu
ø2d; (c) within the TB approximation to third orders0, upuø3d
(solid line) and for the FB calculation(dotted line).
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structure where only relatively weak coupling effects exist
between wells beyond next-nearest neighbor(u«1u=4.8 meV,
u«2/«1u=0.0733, u«3/«1u=0.0087). Figure 5 shows the time
evolution of the return probability and the mean-square dis-
placement by the FB calculation for this structure in the pres-
ence of same strong combined ac-dc field in Figs. 3 and 4.
We can see that QBOs do occur and even at timest=6t the
deviation from exact DL is very small. Of course, the larger
we makeN, the closer the QBOs resemble exact DL. How-
ever, since QBOs occur with periodNt, and in any real sys-
tem there is some decay of the oscillations due to decoher-
ence and dephasing, we have to compromise on the QBOs
periodT. One should therefore choose an appropriate super-
lattice structure so as to keep the higher-order dispersion
contributions to a minimum if QBOs are to be observed.

We finish this section by comparing BOs, ADL, and
QBOs so as to show the advantages of QBOs over DL in the
ease with which it may be experimentally achieved. We

know that an arbitrary dc field always leads to BOs, but the
addition of an ac field generally destroys BOs. In Fig. 6(a)
we plot Pstd when a pure dc field ofFo=5.01 kV/cm is
applied to the same tight-binding structure as in Fig. 5. As
expected, we see BOs. We now add to the dc field a sinu-
soidal ac field of the formFstd=E cossvtd. Although such a
field can never yield EDL(as it is not discontinuous), it is
probably the easiest field to achieve experimentally. We first
chooseE=2.51 kV/cm andv=vB. This field does not match
any of the conditions for DL, ADL, or QBOs. In Fig. 6(b),
we plot Pstd for this field, and see that the electron relocal-
izations are essentially completely destroyed even by this
relatively weak ac field. To obtain ADL using this sinusoidal
field with the dc field of 5.01 kV/cm, we require
J1sedE/vBd=0,31 which requires a minimum ac amplitude of
E=19.20 kV/cm. In Fig. 6(c) we plot Pstd for this field and
see that we obtain something that is close to DL with
PsmtBd.1 for m,3. However, even for this weak-coupling
structure, in the sinusoidal field, the deviation from exact DL
is very evident, and fort*3tB the return to the initial state is
rather poor. We now decrease the ac amplitude back to the
value in Fig. 6(b), E=2.51 kV/cm, but change the ac fre-
quency fromv=vB to v=3vB/2 sN=3,Q=2d. For this field,
we expect QBOs with period ofT=2tB. In Fig. 6(d), we plot
Pstd for this field. We see that the return of the electron to its
initial state is much better than it was for ADL in Fig. 6(c).
We also see that the field is strong enough that it has strongly
modified the electron dynamics from the pure BOs case of
Fig. 6(a).

From Fig. 6 we see that QBOs are, in general, much
easier to achieve experimentally than EDL or ADL. Tradi-
tional DL is difficult to achieve because one needs to apply
specific fields with specific shapes and amplitudes. It is par-
ticularly difficult to achieve EDL because the electric fields
must be discontinuous, or nearly discontinuous, which neces-

FIG. 4. Same as Fig. 3, but for the mean-square displacement
Dkz2lstd.

FIG. 5. (a) Evolution of the return probabilityPstd, and(b) the
mean-square displacement using a FB calculation for a relatively
weak coupling structure(see text). The applied field is that shown
in Fig. 2.

FIG. 6. Evolution of the return probabilityPstd for a dc field
Fo=5.02 kV/cm and a sinusoidal field,Fstd=E cossvtd, with dif-
ferent amplitudes and frequencies:(a) E=0 (BOs), (b) E
=2.51 kV/cm and v=vB (destruction of BOs), (c) E
=19.20 kV/cm andv=vB (ADL ), and (d) E=2.51 kV/cm andv
=3vB/2 (QBOs).
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sitates very high-frequency field components. Even ADL is
difficult to achieve because it requires large-amplitude ac
fields and only results in good DL on very weakly-coupled
structures. In contrast:(i) QBOs occur for any ac field that
has the required period.(ii ) The ac-field amplitude required
to clearly achieve QBOs is relatively weak. And(iii ) good
QBOs occur even for non-NNTB structures. In almost any
structure in which BOs can be observed—say from current
or THz radiation measurements—QBOs can also be ob-
served. One need only tune the ac frequency or dc field am-
plitude so thatvB/v is a noninteger rational number and
then increase the amplitude of the ac field. As the amplitude
is increased, the period of the wave packet oscillations
changes, as is clearly seen in Fig. 6. Further proof of the
existence of the QBOs can be provided by then detuning the
ac field, which results in the subsequent destruction of QBOs
and BOs. The frequencies and amplitudes of currently avail-
able THz radiation sources are well within the range needed
to observe QBOs in undoped semiconductor superlattices ex-
cited by ultrashort optical pulses.

V. SUMMARY

We have investigated electronic dynamic localization in
the presence of general combined ac-dc fields. We examined
the conditions under which dynamic localization occurs for
times equal to an integer multiple of the period of the field.
Although an electron in a periodic potential in an arbitrary dc
field returns to its initial position with the period associated
with the field(Bloch oscillations), the addition of an ac com-
ponent to the field generally destroys the electron’s relocal-
ization. We showed how one can construct the ac component
so as to recover the relocalization in agreement with tradi-
tional dynamic localization, but for general fields rather than
just for sinusoidal or square-wave fields. Furthermore, we
showed that if the ratio ofvB/v is a noninteger rational
numberQ/N, a form of dynamic localization—quasi-Bloch
oscillations—occurs irrespective of the shape and amplitude
of the ac component of the field. These quasi-Bloch oscilla-
tions are somewhat similar to Bloch oscillations, but they
occur only in the tight-binding limit. However, we have dem-
onstrated that quasi-Bloch oscillations occur beyond the
common nearest-neighbor tight-binding approximation up to
sN−1dth tight-binding approximation, and occur to a very
good approximation in real structures.

The most promising systems in which to observe quasi-
Bloch oscillations are in the propagation of light in coupled
waveguide arrays,22–25 the dynamics of atoms in periodic
linear optical traps,19–21 and in the dynamics of electrons in
semiconductor superlattices excited by ultrashorts,100 fsd
optical pulses.16–18 Bloch oscillations have been seen in all
of these systems and methods for detecting dynamic local-
ization have also been proposed for all of these. The main
obstacle to the observation of dynamic localization in elec-
tronic systems is the generation of the required ac fields,
which must in general have a large amplitude and a specific
temporal shape. Thus, quasi-Bloch oscillations should be
considerably easier to observe experimentally than tradi-
tional dynamic localization: the structures can be more gen-

eral (beyond nearest-neighbor tight-binding limit), the field
shape is unimportant, and the required field amplitudes are
lower.
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APPENDIX A: INITIAL CONDITIONS

We have shown that there are two necessary and sufficient
conditions for DL. The first condition for DL requires that
the ratio of the Bloch frequency to the ac frequency be a
rational number. If the ratio is an irrational number then,
strictly speaking, no DL occurs. If we make theapproxima-
tion that the ratio can be replaced by a rational number then
a form of approximate DL can occur.15 To examine the na-
ture of the dynamics and DL we have plotted the two quan-
tities, Pstd and Dkz2lstd, versus time for some. However, as
we now show, for some specific initial conditions, one may
be led to the incorrect conclusion that DL occurs even when
gsTdÞ2pQ.

It has been shown that the first condition of Eq.(2.17)
guarantees that the phases of coefficientsBnstd at time t=T
are independent ofn, when the second condition(2.19) is
satisfied. However, for some special initial states, this condi-
tion is no longer required to obtainuCsTdl=eiwcuCs0dl. As an
example, consider the initial condition

Bns0d = dn,0, sA1d

such that

uCs0dl = ua0l, sA2d

then from Eq.(2.5) we have

FIG. 7. Evolution of the return probabilityPstd and the mean-
square displacementDkz2lstd for a FB calculation for the structure
and the combined ac-dc field in Fig. 1, but under the special initial
condition:Bns0d=dn,0. False DL occurs at timest=t ,2t ,4t ,5t , . . ..
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Bnstd = e−if«0t/"+sn+W0/ddgstdgAnstd. sA3d

If a particular electric field, for whichb̃psTd=0, is applied,
thenAnsTd=dn,0, and we obtain

BnsTd = e−if«0T/"+W0gsTd/dgdn,0, sA4d

such that

uCsTdl = e−if«0T/"+W0gsTd/dgua0l. sA5d

Thus, the electron returns periodically to its initial state apart
from a time-dependent overall phase. This shows that DL
appears to occur in a combined ac-dc field with the ac period
if bpstd=0, no matter what the ratio of these two frequen-
cies. But it is not correct! Figure 7 shows the time evolution
of the return probability and the mean-square displacement
in the same structure and in the presence of the same electric
field as those in Fig. 1, but with the initial conditionBns0d
=dn,0. Figure 7 shows that DL occurs with the periodT=t
rather than the periodT=3t found in Fig. 1. We refer to the
apparent DL at the times between the neighboring true DL

periods,t=t ,2t ,4t ,5t , . . . asfalse DL because it occursonly
for specific initial conditions. This false DL does not take
place for electrons with general initial states(as in Fig. 1).
Thus, for true DL, one cannot waive the first condition for
DL, gsTd=2pQ. However, we must note that no false QBOs
can exist because QBOs only occur at timesT=Nt where
gsTd=2pQ as discussed in Sec. IV.

We finally note that as Wannier functions are not uniquely
defined, then the initial condition required for false DL
would not seem to be unique. However, whengsTdÞ2pQ,

the conditionb̃psTd=0, in general, depends on the«p and is
extremely difficult, if not impossible, to achieve. However,
as we discussed previously,30 if the Wannier functions,ua0l,
are chosen to be the maximally-localized Wannier functions,

thenWp=0 andb̃pstd=bpstd. Then, the conditionbpsTd=0 is
independent of the band structure and can be achieved using
discontinuous fields. Thus the false DL only occurs in an
arbitrary field if the electron is initially placed in the unique
maximally-localized Wannier function.
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