PHYSICAL REVIEW B 70, 125311(2004

Dynamic localization and quasi-Bloch oscillations in general periodic ac-dc electric fields
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We examine the conditions for dynamic localization in general applied periodic ac-dc electric fields. We find
that in the presence of both ac and dc components to the field, in addition to traditional dynamic localization,
a different type of dynamic localization can occur irrespective of the shape and amplitude of the ac part of the
field. These “quasi-Bloch oscillations” take place if the ratio of the Bloch frequency to the ac frequency is a
noninteger rational number. Quasi-Bloch oscillations occur only within the tight-binding approximation, but
are not restricted to the nearest-neighbor tight-binding limit. This type of dynamic localization provides a more
experimentally accessible way to observe dynamic localization in an electronic system than conventional
dynamic localization.
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I. INTRODUCTION with specific amplitudes for any arbitrary band dispersion.

Since the development of semiconductor superlattices if/€ réfer to this type of DL, which occurs for arbitrary band
recent decades, the study of electrons in a periodic potentigfructures beyond the NNTB approximation, @sact dy-
in the presence of an electric field has attracted increasing®Mic localization(EDL). More recently, Dignam and de

attention. The history of these investigations can be trace@!€'ke derived a set of conditions for which a general ac

H 7 H 10
back to early in the last century when Bloch discussed th&!€ctic field can yield EDL” The theory was developed
electron behavior in a dc electric fidldnd Zener predicted diréctly from the solution of the Schrodinger equation in a
JQeneral electric field. They noted thBDL can only occur

for fields with discontinuities that occur whenever the elec-
tric field changes signin that letter they also showed how to
construct a general discontinuous field leading to EDL. Al-

=edF,/%, whereF, is the amplitude of the dc field antlis though the requirement for discontinuities to obtain EDL

. i ; makes it impossible to obtain these fielelgactlyin experi-
the period of the potential. In bulk materials, however,_BOsmentS on arelectronicsystem, it has been shown that elec-

S T #lic fields with somewhat smoothed discontinuities can still
tered before its first return to its initial state. BOs were NOtiead to good dynamic localizatidh.

experimentally observédintil the development of semicon-  pynamic localization is often discussed within the frame-
ductor superlattices, which have Brillouin zones smallyork of Floquet theory when the applied electric field is
enough to allow for a few complete transversals of the zongeriodic. In this approach, Floquet-Bloch states, eigenstates
before scattering. of the discrete spatial translation operativanslation by the

Dynamic localization(DL) is similar to BOs but the pe- periodd, of the latticg and the discrete temporal translation
riodic return of the electron to its initial state occurs with the operator(translation in time by the period of the field, are
application of a periodic, purely ac field. Unlike BOs, which constructed. The eigenvalues of the temporal translation de-
occur for any dc field amplitude, DL only occurs if the ac fine thequasienergy banaf the system in the presence of
field has a particular shape and an amplitude that is one of the ac field. In this approach, DL is considered to have oc-
discrete seE,. This phenomenon was initially addressed bycurred if the quasienergy miniband reduces to a single level,
a number of author&:® They found that in a sinusoidal ac i.e., the quasienergy miniband collap8és.
field of period = with the amplitudeE,, an electron periodi- One can also achieve DL in general periodic electric
cally returns to its initial quantum state with periedf the  field in which there is a dc component in addition to the
field amplitude satisfies the conditiody(edg,7/h)=0*®  purely ac part of the field. Floquet-Bloch the&tgan also be
wheree and h are the modulus of the electron charge andapplied in this situation, provided we consider the period of
Planck’s constant, respectively. However, DL in a continuoughe field T to be not simply equal to the ac peried 27/ w,
field, such as a sinusoidal field, occurs only in a one-bandput rather, to be an integer multiple of this periodnd also
nearest-neighbor tight-bindingNNTB) model and disap- an integer multiple of the Bloch perioth=27/wg, associ-
pears beyond the NNTB approximatiéri® We refer to this  ated with the dc component of the field. This indicates that
form of DL asapproximate dynamic localizatiaqiADL). We  for DL to occur in a combined ac-dc field, the ratio of the
recently showed that for most symmetric ac fields, it is guarBloch frequencywg to the ac frequency must be a rational
anteed that field amplitudes exist for which ADL occlirs.  number, which can be expressed @s/ ©=Q/N (where N

A number of author$-12 have shown that within a one- andQ are positive integers with no common fagtok num-
band model, DL can occur for periodic square-wave ac fieldder of authors have studied this system for sinusidaid

exhibit periodic oscillations under the application of a dc
field, the so-called Bloch oscillation®0s).2 The frequency
of these periodic oscillations is the Bloch frequeney
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square-wave field$ using Floquet-Bloch theory. However, electric field. In Sec. 1l B we review Floquet-Bloch theory
the conditions for DL have not been examined fmmeral  for this system when the electric field applied to the system
combined ac-dc fields. . _ . is periodic. In Sec. Il C, we derive the conditions for EDL
There are a number of potential systems in which DLand ADL in a general periodic field. In Sec. Ill we examine
could be seen experimentally. These include essentially angDL occurring with periodT=r, while in Sec. IV A we de-
systems where BOs have been observed: optically-exciteflye the conditions for which conventional EDL occurs with
semiconductor superlatticé%;'® atoms in periodic optical period T=N7 (N>1). In Sec. IV B we demonstrate the ex-
20 21 ! _ . :
traps (where both BOS'2?and DL*! have been observed igience of QBOS occurring with perigB=N7, regardless of
and light propagation in coupled optical waveguié@S'itis amplitude and shape of the ac part of the field, and ex-

easy to show that in al] these systems a o_ne—band modgl Ymine the conditions under which QBOs occur. Finally, in
valid as long as care is taken in the choice of the IattlceSec V We summarize our results

potential, the “electric fields” are not too high, and the time
over which experiments are conducted is much less than the
Zener tunneling timé%2425|n addition, in all systems, the Il. GENERAL THEORY OF ELECTRON DYNAMICS
experiments can be performed such that carrier-carrier inter- AND DYNAMIC LOCALIZATION
action effects and dephasing have a minimal impact on the ) ] . o
qualitative dynamic behavior over the first few periods of the ~Here we examine the dynamics and dynamic localization
ac field. In the atomic and the optical systems, the carrierof €lectrons in periodic electric fields. As is commonly
carrier interactions are intrinsically small or nonexistent. Indone?=° and as motivated in Sec. |, we treat the system in a
superlattices, electronic wave packets are excited by femta@ne-band model and neglect scattering. We begin by present-
second optical pulses. If the carrier densities are kept loving the solution of the Schrédinger equation in the presence
and the excitation conditions are such that excitonic effectef a general electric field. We then review the Floquet-Bloch
are minimizecf® then again carrier-carrier interaction doestheory and quasienergy bands that results with the applica-
not play a crucial role over the time of the experimefds tion of a periodic electric field. We show that using either of
few ps. Decoherence and dephasing in these systems resulese two approaches, we obtain the same two necessary and
in the loss of DL with time. However, as with BOs, the clear syfficient conditions for DL of the electrons.
signatures of DL should be observable for the first few peri-
ods of the ac field. In superlattices, for example, typical de-
coherence times are roughly 1-2 ps. Since the period of the
ac_field in BOs experiments is typically 200_—3001?5?8the The Hamiltonian of an electron in a one-dimensional, pe-
evidence of DL should be observable. This has been COModic potentia| of periodd, in the presence of a genera|
firmed theoretically in models that include carrier-carrier in-glectric fieldE(t), can be written in the form
teractions and dephasiif;?° where it has been predicted
that the signature of DL should be seen in the optical absorp- H=H,+eHt)z, (2.1
tion spectra, degenerate four-wave mixing spectra, and emit-
ted Terahertz radiation. Therefore, in this work, we neglecivhereH, is the Hamiltonian without the electric field. Using
the effects of Zener tunneling, carrier-carrier interactionsa one-band model, the wave function can be expanded in the
and decoherence so as to allow us to focus on the basisasis of single-band Wannier functiona,), ag*
physics of DL in general dc-ac fields.

In this paper, we examine electron dynamics in a one- W)= Byb)ay), (2.2)
dimensional periodic potential in the presenceeheralpe- n
riodic electric fields. We find thatwo distinct types of DL
can occur in the presence of combined ac and dc fields. Thehere labeln represents the localization site of Wannier
first type of DL is similar to conventional EDL or ADL in a functions. Using this in the Schrodinger equation, we
pure ac field, and occurs if the ratigs/ w is a rational num-  obtair®3!
ber and the total field meets the conditions for DL, this, _
therefore, requires that thee part of the field has a particu- inB,= E B(en-m+ €Et)W,,-,) + nedE1)B,, (2.3
lar shape and amplitudeThe second type of DL can occur m
with the periodT=N7=Q7g (whereN>1) if the ratio wg/ . . ,
is a noninteger rational numbefThis type of DL can occur Wheree, are the Fourier coefficients of the band's energy
for any shape and amplitude of the ac part of the figlast ~ dispersion in reciprocal spage,= Xe(kjexlikd]) and W,
as for BOs, the occurrence of this type of DL only depends'® the matrix elements af in the basis of the Wannier
on the dc component of the field. We, therefore, refer to thifunctions, such that
form of DL asquasi-Bloch oscillationsQBQOs. We note that o
QBOs only occur within the tight-binding approximation. WP:<a0|Z|aP>'
However, it is more rob_ust than ADL i_n thz_:\t Q_BOS can occurThe solution to Eq(2.3) is®
beyond the nearest-neighbor approximation in most cglses
N>2) and in fact is valid up to theN-1)th nearest-
neighbor approximation.

The paper is organized as follows. In Sec. Il A we present
the general solution of the Schrédinger equation in a generalhere

A. General solution of the Schrédinger equation

(2.4

By(t) = € leah WS A (©B(0),  (2.5)
m
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ed ! We now consider the case where the field period is still
Y = " f E(dt (2.6 but we are looking for Floquet states wit (1)) that are
0 periodic not with time 7, but rather with timeT=Nr.

is the dimensionless area under the curve of the electric fielfloquet-Bloch theord# requires that the period is an inte-
with respect to time. Also ger multipleQ of the Bloch periodrg. Thus, we have

" B~ T=Nr=Qrg, 2.14
Am(t)zf s—;exp{imx—ig—hgﬁp(t)e'px}, 2.7 Q7 (219

p#0 where N and Q are integers. Under these conditions, the

uasienergy dispersion is written as follows:
where q gy disp

~ AW, &= ZPB(T)EPk+ e, (2.15

Bo(t) = By(t) + 'pEp‘[e ro - 1], (2.9 “ 50 TP ¢

-p
wheree is a constant that is independentlof

One could, in principle, use the above theory to calculate

b Ao the Floguet-Bloch statelsp,(t)), however, for our purposes

Bp(t) Ef e”Prdt. 29 e only need consider the quasienergy bands given in Egs.
(2.13 and (2.15. We now turn to the application of these

This is the general solution of the Schrodinger equation irresults and the results of the Sec. Il A to the problem of
the presence of aarbitrary electric field. We now consider dynamic localization.
this same problem using Floquet-Bloch theory for the special
case of a periodic electric field.

and

0

C. General dynamic localization

Here we consider the issue of DL when the electric field is
periodic with periodr. For DL to occur, we require that the
If a purely ac electric fieldE(t), which is periodic with  electron return to within a constant overall phage to its
time periodr such thaE(t+7)=E(t) is applied to the system, initial state after some tim&=N7 (whereN is an integey,
then the Hamiltoniam(t) is also periodic in time. This situ- and such
ation has been examined by a number of authéfs'35we — dive
summarize the key results of this research here to allow for [Y(t+T)) =¥ (D). (2.19
comparison with the direct Schrédinger approach presentedsing the Schrédinger approach from Sec. Il A, we see from
in Sec. Il A. Egs. (2.2 and (2.5) that first, DL only occurs with period
Floguet’s theorem states that the time-dependent state Gi=Nr if
the Hamiltonian for the electron in this periodic field can be

B. Bloch-Floquet theory and quasienergy bands

written as a linear combination of the Floquet stdiggt)), AT =27Q. (2.17)
B The second condition for DL requires th&{(T) =&, . From

W) _213 Cl ). (2.10 Eq. (2.7), we see that this second condition is satisfied iff
The | (1)) can be written as By(T) =0 for all p # 0. (2.18
| (1)) = e“%k”ﬁ|u%k(t)>, (2.11)  From Eqs(2.8) and(2.17) we can see thak,(T)=B,(T), and

. ) ) ) thus, Eq.(2.18) is equivalent to
where theg, are thequasienergie'$ and the| u;k(t)> are time-

periodic energies such thdtr, (t+7)=|u (). From the Bp(T) =0 for all p # 0. (2.19
Schrédinger equation, we see that we must have Now, turning to the Floquet-Bloch theory of Sec. Il B, we
d see from Eq.2.14) that the theory is only valid ifT=N~
(H - iﬁd—t>|u;k(t)> = %k|Uek(t)>- (2.12  =Qmg. If we write the electric fieldE(t) as the sum of a dc

componentF, and a purely ac componefi(t) from Eq.
It can be shown that for a pure ac field, the Floquet states cai2.6), we see that
also be chosen to be eigenstates of the translation operator
for the lattice>®13 The crystal momenturk is then a good YT) = 27N— (2.20
quantum number and is used to label the quasienergies and B

the FloquleSt-BIoch states. After solvin@.12, Zhad and where rg=27#i/ (eF,d). Thus, we obtain the requirement
Zhaoet al*> showed that the quasienergies can be written as

. NT) =27Q, (2.2
o Z=p ipk
fk‘go 7- Bp(neP + e, (213 \hich is identical to requirement2.17) obtained directly
P from the Schrédinger solution. Furthermore, we see from Eq.
wheree, is a constant, independent lof (2.1)) that DL only occurs in Floquet-Bloch theory &, is a
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constant independent & where we have used the fact the mon factor. Equationi4.1) shows that the ratio of the Bloch
the quasienergies are only defined to modulg 2T. Using  frequency to the ac frequency must be a noninteger rational
Eq. (2.15 we see that this is equivalent to the requirement number for DL to be observed with perio=N7 (N> 1).
Considering the discussion in previous sections where DL

Bp(T) =0 for all p # 0. (2.2 occurs with periodr, we reach the general conclusion that
This is the same condition that we obtained in E2.19 the ratio of the Bloch frequency to the ac frequency must be
using the direct Schrédinger solution. Thus, using either apa rational number if DL is to occurWe stress that for an
proach, the two necessary and sufficient conditions for EDLirrational ratio of the frequencies, true DL cannot take place.
are Egs.(2.17) and (2.19. We finally note that if(T)  However under the special initial conditionB,(0)=dy
=27Q but only 8,(T)=0, then DL occurs within the NNTB something that resembles DL may occur; this, however, is
approximation(ADL )? since the higher Fourier coefficients nottrue DL in that it relies on these particular initial condi-
ep ([p|>1) are neglected. We now employ the conditions oftions. We discuss this in detail in the Appendix.

Egs.(2.17 and(2.19 to investigate DL in the presence of  Equation(4.1) is one necessary and sufficient condition
combined general periodic ac-dc fields. for DL in combined ac-dc electric fields, while E@®.19) is
the other one. Now, at tim&=Nr, we have

Ill. DL WITH PERIOD T=7IN AC-DC FIELDS

N7
_ -ip| wgt+(ed/#) LR )dt | 44 —
We consider here the special case in whithl (T=7) Bpl(T) = fo grploat+(e0/i)is ]dt—Cp(N)ﬁp(r),

and the field is again given bi(t)=F(t)+F,. We see from

Eq. (2.17) via Eq.(2.20 that for DL to occur, we must have (4.2
7=Q7g Or equivalently, where theg,(7) express the effect of the field over a single
® period, whereas th€, gives the effect of havindgN such
—2£-0Q. (3.1 identical periods. Here,
w
N-1 .
Thus, the Bloch frequency must be an integral multiple of Cy(N) = > e—iprmze—ipw(N—l)wB/ww_
the ac frequency if DL is to occur with periodl In other m=0 sin(prwg/w)

words, there must be an integer number of BOs in each ac 4.3
period if DL is to occur with the same period as the ac part of '

the field. Furthermore, EDL only occurs for special com-If either 8,(7)=0 or C,(N)=0 for some or allp+0, then
bined ac-dc fields that satisfy E@®.19), just as when a pure  3,(T)=0 and we have DL. However, these two requirements

ac field is applied. As we showed previoulyhis is equiva-  |ead to different types of DL, as is discussed in Secs. IV A
lent to the condition on the electric field that and IV B.

E : 1 = i ; = l, (3.2 A. Conventional DL in special ac-dc fields
m,j |'Y(tjm)| ed m,j |F(tjm) + Fo| 2m . . . -
Obviously, if B,(7)=0, we recover something very similar
where, as discussed previouf*the summation is over to the conventional DL discussed in Sec. lIl in that DL re-
all times within a periodr at which y(tj;)=x+27m (-7  quires that the ac part of the field have a specific shape and
<x< ), and thej’s count the roots of this equation for fixed correct amplitudes. Here, we provide some numerical simu-
m for one value o. The physical interpretation of E¢.2)  lations to illustrate electron dynamics in a realistic structure,
was addressed more recerifhRequirement3.2) also leads a GaAs/GgAl,_,As superlattice. We choose a structure for
to the condition that the ac part of the field must be disconwhich Zener tunneling is negligible over the timeso that
tinuous at times when the total combined field changes sigrihe single-band approximation is fulfilled. The superlattice
Thus, just as for pure ac field8to achieve EDL, one must has a periodi=10 nm, where the well and barrier width are
carefully construct discontinuous electric fields that satisfyd,,=9.0 nm andd,=1.0 nm, respectively; the barrier height

Eq. (3.2. is Vo=250 meV; and the electron effective mass is 0.067 that
of free electron mass. For this structure, the wells are
IV. DL WITH PERIOD T=N7(N>1) IN AC-DC FIELDS strongly coupled, with |e;/=8.9 meV, |e,/g4|=0.1676,

|es/ £4|=0.0472, ande,/e,/=0.0164. An electric field is ap-
plied to the superlattice. As shown in Figal, the field is
: . . X }éomprised of a rectangular ac component with period
with period, T=N7, whereN is an integer greater than 1. =825 fs and a dc componerit,=1.67 kV/cm, such that
From Eq..(2.;7), for DL t0. occur we require thaty(T) ws=w/3 (N=3,Q=1) and8,(T)=0 for all p+ 0. We choose
=27Q. This yields the condition the rectangular-wave ac field for simplicity, but more general
wg Q fields can be constructed using an equation similar to Eq.
=== 4.1 (3.2
@ N Now, we know that EDL occurs if the two conditions,
whereQ andN have no common factor, since otherwise DL Egs. (2.17) and (2.19, on the electric field are satisfied.
may occur with period” =(N/j)r=T/j, wherej is the com- However, it is instructive to also examine DL by looking at

In Sec. lll, we discussed DL at tim§,=7. To be more
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. 2mh
Ge=iny 1=0£L%2,., (4.6)

and are thus equally spaced, comprising a fractional Stark
ladder!® Using Eq.(2.11), we have

[W(N7)) = €W (0)), 4.7

X W ,/\/j\\\ due to the rephasing of the different Floquet states at time

P ()

Or P e ] T=Nr. This shows that in the presence of such a combined
T8 . ac-dc field, EDL occurs with perioblr rather thanr.
Z 6F g
A I
z 4r N B. QBOs in general ac-dc fields
210 It is experimentally not easy to achieve the specific large-
O 1 2 3 4 s ¢ 7 amplitude ac fields required to majd()=0, even just for
t/ |p|=1. Thus, we now consider a form of DL that occurs even

if Bp(7) #0 whenN>1. From Eqgs(4.2) and (4.3), we see
FIG. 1. (3 Combined ac-dc field for whictB,(7)=0 for all p oyr second necessary and sufficient condition for DL,
# 0 andwg/ w=1/3;(b) time evolution of the return probabilityg) ,Bp(T):O is satisfied if
time evolution of the mean-square displacement. For this field, EDL
occurs with periodT=37. At t=7,27,47,57,..., A(Z(T) is close Cp(N) =0. (4.9

to, but not equal to zero. . o
From Eq.(4.1) we know thatwg/ @=Q/N. Using this in Eq.

- . .. (4.3), we see thaC,(N)# 0 for anyp if Q/N is an integer.
some characteristics of the wave function. Thus, we Cons'dq(ﬁoviever ifQ/N is prgot) an integerytﬂenQ 9

the time evolution of two parameters to describe the electron
dynamics:P(t) andA{Z%)(t). P(t) is the probability of finding Cy(N) =0 for all p # mN, (4.9
the electron at time in its initial state(return probability
and is given by and thus

Bp(T) =0 for all p # mN, (4.10

P(t) = (W (t)|W(0))>. (4.9 wheremis an integer. Thus, a new type of DL can be always
achieved by a dc field combined with an arbitrary ac field if
the ratio of the Bloch frequency to the ac frequency is a
noninteger rational numbeMe refer to this as quasi-Bloch
oscillations(QBOs9 since this form of DL occurs regardless
A1) = (P(O)| 2P (1) - (¥(0)|Z[¥(0)), (4.5  of the shape and the amplitude of the ac field. Here we note
that QBOs only occur within the tight-binding approxima-

the mean-square displacement of the electron at tineéa- 10N SINCEB,(T)=0 only for a limited range of, 0<|p| <N,
tive to the same quantity & 0. As expected, if DL occurs at 'ather than for allp#0 as is required for EDL. Whetp|
time T, P(T)=1, andA(z2)(T)=0. We note that one must be =N from Eq.(4.3) we can see thaty=N and B(T) # 0 for
somewhat careful with these measures of DL as it does ngie€neral ac fields, i.e., for fields for whig,(r) # 0. There-

follow that if P(T)=1 andA(z2)(T)=0 then DL has occurred. 0ré, we have the conclusion that QB®@sly occur within
As discussed in the Appendix, for certain initial conditions,the tight-binding (TB) approximation to order of-. For

one can obtain a periodic return to the initial state at times atlexample, if wa/w=1/2,3/2,5/2,...(where N=2), QBOs

which DL does not occur. However, this is niste DL in Ol occur within the NNTB limit. If wp/ow
that it does not occur for every initial state. =1/3,2/3,4/3,..(whereN=3), QBOs can occur within the

In Figs. Xb) and 1c), we plot P(t) and A1) as a next NNTB limit. To our knowledge, this has never been
function of timet for the Full-Band(FB) calculation with addressed in previous reports. One interesting case occurs

initial conditions B,(0)= (&, o+ 5n’1)/ V2. These initial con- whenQ=1 such that

ditions have no special properties and are used in all numeri- wg 1 7

cal simulations except in the Appendix. We can see that EDL = N = (4.11

occurs atT=3r,67,... for arbitrary band dispersion in the

presence of this combined ac-dc field. This is similar to EDLThen QBOs occur with periods that is quite similar to true

in a purely ac field as we have discussed béfoegcept that  BOs, but QBOs occur only within théN—-1)th NNTB limit.

EDL occurs with a different time period. Condition (4.1) can be understood in a semiclassical
This DL can be seen in a different way by using Floquetmodel. We previously showed thht) =k,+ y(t)/d.*° From

theory. Zhacet al1® showed that if we take to be the period Eq. (2.17), DL requires thaty(T) be an integer multiple of

and choose the fields such thg§(7)=0 for all p#0, then 2. This then results irk(t) being periodic with periodr.

the quasienergies become The other semiclassical equation then tells us that the aver-

The other parameter is
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age velocity is also periodic and that it has a perlodrhe E
average position of the wave packet is given by

F(t)

@0 =2+id> g mers. (412
p#0 h
Thus(z)(t) is periodic with timeT, if the field satisfies Eq. ]
(2.19. Alternatively, using Eq(2.15, we obtain for the av- 2n/3
erage position at tim&

T 9%
DM =z, +— —&| . 413 -
@M=z = - (413 o

So when the quasienergy band collapses, the average partic 3
position is periodic inT. Although these results show the
agreement of the full quantum theory with the semiclassical
result, they only add limited physical insight into the condi-
tions for DL or QBOs. FIG. 2. (a) Ac component of the electric field in Figs. 34B)

We presented previousRa simple physical interpretation (solid line) associated dimensionless arg#) of the ac component
of Eqg. (2.19 for EDL: the electron must spend the sameof the field in(a), and (dashed ling 1(t) for the combined ac-dc
amount of time at all points in the first Brillouin zone over field wherewg/ w=1/3.
the time 7. Such a simple physical interpretation of QBOs,
where Eq.(2.19 is only satisfied for a limited set qf, does to the order of |p|<N=3 (solid liney, even atT=3r,
not seem possible. In the special ca¥e,2, Q=1, however, P(37)~16%, andA(z2(T) is substantial. Thus, the electron
a simple semiclassical picture can help explain QBOs. Aftefs gelocalized strongly when we take into account the long-
a time, T/2(=7), the electron wave vector has traversed eX-ange coupling up tdp|=N. The dotted lines in Figs.(8)
actly half the first Brillouin Zone, i.ek(r)=k,+m/d. Inthe  and 4c) are calculated for the full-band dispersion. Due to
NNTB approximation,e’(k+/d)=~¢'(k), wheree'(k) de-  the small contributions from higher ordeftg| > 3) of &, the
notes the derivative of the band energy with respeck.to results of the FB calculation are almost identical to tple
Thus using the semiclassical equation of motion, we see that 3 result(solid lineg. Therefore, like ADL, QBOs cannot
v(t+7)=-v(t). Therefore, the velocity of the electron over pe obtained for an arbitrary band structure. However, the
the first half of the period &t<T/2 is reversed over the conditions for QBOs are much less restrictive than for tradi-
second halfT/2<t<T, and the electron returns to its initial tional ADL in that they occur for bands that are well de-
position at timet=T. For largerN, the picture is more com- scribed by a TB structure of ordét-1.
plicated, but the basic principle is the same: if the frequency We now choose a structure similar to the previous one but
ratio is chosen correctly the effect of the ac portion of thewith d,=7.0 nm andd,=3.0 nm. It is a good next NNTB
field averages to zero over the tinie and the electron re-

turns to its initial state. 1 ——— ——— :
We now examine QBOs via numerical simulations. We (@)
consider the GaAs/GAl,_,As superlattice structure dis-
JAVA'R AA Lt A VAVA'X! A,

0.0 0.2 0.4 0.6 0.8 1.0
t/1

cussed in Sec. IV A, but now apply ambitrary ac field[see
Fig. 2@)] and a dc field~,=1.67 kV/cm, for whichwg/ ®

=1/3 for thechosen ac period. The form of this general ac e ——— —
field is also used in Figs. 3-5. Fig(l8 showsy(t) of the ac (b)
part of the field(solid line) and of the total fielddashed ling

P ()

in one periodr. The only feature of the field is that the ratio
of the Bloch frequency to the ac frequency is 1f&nce o
Y(1)=27wg/ w=27/3 as can be seen from dashed line in 1 — T T
Fig. 2b)]. In Figs. 3 and 4 we ploP(t) and A(Z?)(t), respec- (©)
tively, for different approximations to the band structure
e(k), when the ac field has an amplitude of 4.36 kV/cm.
Figures 3a) and 4a) present the results in the NNTB ap- 0 PN ,;/\/\/\z\. oA~ N NN
proximation(|p|=1). They show thaP(T)=1 andA(z?)(T) 0 1 2 3 4 5 6 7
=0 at timesT=3r7,67. The fact that, apart from a constant vt

phase, the electron wave function at those times returns to its 1. 3. Return probabilityP(t) versus timet in the presence of
initial distribution shows that QBOs occur within the NNTB the combined ac-dc field of Fig. 2a) within the NNTB approxi-
approximation. We also can see similar results in Figb) 3 mation (Jp|=1); (b) within the next NNTB approximatiorfi0< |p]|
and 4b) within the next NNTB limit (0<[p|<2). But in  <2); (c) within the TB approximation to third ordef0< |p|<3)
Figs. 3¢) and 4c), when we take the TB approximation up (solid line) and for the FB calculatioxdotted ling.
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FIG. 4. Same as Fig. 3, but for the mean-square displacement ) - ]
A, FIG. 6. Evolution of the return probabiliti(t) for a dc field

F,=5.02 kV/cm and a sinusoidal fieldr(t)=E coqwt), with dif-
ferent amplitudes and frequenciesa) E=0 (BOs), (b) E

structure where only relatively weak coupling effects EXISt:2.51 kviem and w=wg (destrucion of BOR (¢) E

between wells beyond next-nearest neighthey =4.8 meVv, _ ’ B
|eo/ £4|=0.0733, |e5/ £1)=0.0087. Figure 5 shows the time :ég'zlgl?égcéngand”_% (ADL), and(d) E=2.51 kv/cm ande
evolution of the return probability and the mean-square dis- “B '
placement by the FB calculation for this structure in the presknow that an arbitrary dc field always leads to BOs, but the
ence of same strong combined ac-dc field in Figs. 3 and 4addition of an ac field generally destroys BOs. In Figp)6
We can see that QBOs do occur and even at titrd-the  we plot P(t) when a pure dc field of,=5.01 kV/cm is
deviation from exact DL is very small. Of course, the largerapplied to the same tight-binding structure as in Fig. 5. As
we makeN, the closer the QBOs resemble exact DL. How-expected, we see BOs. We now add to the dc field a sinu-
ever, since QBOs occur with periddt, and in any real sys- soidal ac field of the forni(t)=E coq wt). Although such a
tem there is some decay of the oscillations due to decohefield can never yield EDl(as it is not discontinuougsit is
ence and dephasing, we have to compromise on the QBQwobably the easiest field to achieve experimentally. We first
period T. One should therefore choose an appropriate supechooseE=2.51 kV/cm andw=wg. This field does not match
lattice structure so as to keep the higher-order dispersioany of the conditions for DL, ADL, or QBOs. In Fig.(16),
contributions to a minimum if QBOs are to be observed. we plot P(t) for this field, and see that the electron relocal-
We finish this section by comparing BOs, ADL, and izations are essentially completely destroyed even by this
QBOs so as to show the advantages of QBOs over DL in theelatively weak ac field. To obtain ADL using this sinusoidal
ease with which it may be experimentally achieved. Wefield with the dc field of 5.01 kV/cm, we require
J,(edE/ wg) =03 which requires a minimum ac amplitude of
‘T ' ' ' E=19.20 kV/cm. In Fig. &) we plot P(t) for this field and
see that we obtain something that is close to DL with
P(mmg) =1 for m< 3. However, even for this weak-coupling
structure, in the sinusoidal field, the deviation from exact DL
is very evident, and for= 35 the return to the initial state is
rather poor. We now decrease the ac amplitude back to the
value in Fig. §b), E=2.51 kV/cm, but change the ac fre-

P (1)

‘8’ o A t——F quency fromw=wg to w=3wg/2 (N=3,Q=2). For this field,
we expect QBOs with period df=27g. In Fig. §d), we plot
o o6f 1 P(t) for this field. We see that the return of the electron to its
\f) I initial state is much better than it was for ADL in Fig(c}.
"y 4 [ )l We also see that the field is strong enough that it has strongly
< ,L i modified the electron dynamics from the pure BOs case of
. Fig. 6(a).
00 X 5 ; . 5 P S From Fig. 6 we see that QBOs are, in general, much

easier to achieve experimentally than EDL or ADL. Tradi-
FIG. 5. (a) Evolution of the return probabilit(t), and(b) the  tional DL is difficult to achieve because one needs to apply
mean-square displacement using a FB calculation for a relativelgpecific fields with specific shapes and amplitudes. It is par-
weak coupling structurésee text The applied field is that shown ticularly difficult to achieve EDL because the electric fields
in Fig. 2. must be discontinuous, or nearly discontinuous, which neces-
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sitates very high-frequency field components. Even ADL iseral (beyond nearest-neighbor tight-binding lipithe field
difficult to achieve because it requires large-amplitude ashape is unimportant, and the required field amplitudes are
fields and only results in good DL on very weakly-coupled lower.

structures. In contrasti) QBOs occur for any ac field that

has the required periodii) The ac-field amplitude required ACKNOWLEDGMENTS

to clearly achieve QBOs is relatively weak. Axiil ) good

QBOs oceur even for non-NNTB structures. In almost any, ions. This work was supported by the Natural Sciences and
structure in which BOs can be observed—say from curren

or THz radiation measurements—OBOSs can also be obs ngineering Research Council of Canada and PREA, and by
' the Australian Research Council under the ARC Centres of
served. One need only tune the ac frequency or dc field a

plitude so thatwg/w is a noninteger rational number and xcellence program.

then increase the amplitude of the ac field. As the amplitude APPENDIX A: INITIAL CONDITIONS

is increased, the period of the wave packet oscillations

changes, as is clearly seen in Fig. 6. Further proof of the We have shown that there are two necessary and sufficient

existence of the QBOs can be provided by then detuning theonditions for DL. The first condition for DL requires that

ac field, which results in the subsequent destruction of QBO#the ratio of the Bloch frequency to the ac frequency be a

and BOs. The frequencies and amplitudes of currently availrational number. If the ratio is an irrational number then,

able THz radiation sources are well within the range neededtrictly speaking, no DL occurs. If we make thpproxima-

to observe QBOs in undoped semiconductor superlattices egion that the ratio can be replaced by a rational number then

cited by ultrashort optical pulses. a form of approximate DL can occtit.To examine the na-
ture of the dynamics and DL we have plotted the two quan-
tities, P(t) and A(Z2)(t), versus time for some. However, as
we now show, for some specific initial conditions, one may

We have investigated electronic dynamic localization inbe led to the incorrect conclusion that DL occurs even when
the presence of general combined ac-dc fields. We examinegd T) # 2mQ.
the conditions under which dynamic localization occurs for It has been shown that the first condition of Eg8.17)
times equal to an integer multiple of the period of the field.guarantees that the phases of coeffici@)jd) at timet=T
Although an electron in a periodic potential in an arbitrary dcare independent af, when the second conditiof2.19) is
field returns to its initial position with the period associatedsatisfied. However, for some special initial states, this condi-
with the field(Bloch oscillations, the addition of an ac com- tion is no longer required to obtaji# (T))=€¢¥(0)). As an
ponent to the field generally destroys the electron’s relocalexample, consider the initial condition
ization. We showed how one can construct the ac component
s0 as to recover the relocalization in agreement with tradi- Bn(0) = 610, (A1)
tional dynamic localization, but for general fields rather thang,cn that
just for sinusoidal or square-wave fields. Furthermore, we
showed that if the ratio ofvg/w is a noninteger rational |¥(0)) = |ap), (A2)
numberQ/N, a form of dynamic localization—quasi-Bloch
oscillations—occurs irrespective of the shape and amplitud
of the ac component of the field. These quasi-Bloch oscilla-
tions are somewhat similar to Bloch oscillations, but they _
occur only in the tight-binding limit. However, we have dem- %
onstrated that quasi-Bloch oscillations occur beyond the
common nearest-neighbor tight-binding approximation up to
(N=1)th tight-binding approximation, and occur to a very
good approximation in real structures.

The most promising systems in which to observe quasi-
Bloch oscillations are in the propagation of light in coupled
waveguide array®25 the dynamics of atoms in periodic
linear optical trapsy—?*and in the dynamics of electrons in
semiconductor superlattices excited by ultrastierf00 fg
optical pulse$8-18 Bloch oscillations have been seen in all
of these systems and methods for detecting dynamic local
ization have also been proposed for all of these. The mair
obstacle to the observation of dynamic localization in elec-
tronic systems is the generation of the required ac fields,
which must in general have a large amplitude and a specific FIG. 7. Evolution of the return probabilitp(t) and the mean-
temporal shape. Thus, quasi-Bloch oscillations should bequare displacement(z2)(t) for a FB calculation for the structure
considerably easier to observe experimentally than tradiand the combined ac-dc field in Fig. 1, but under the special initial
tional dynamic localization: the structures can be more geneondition: B,(0)=48,. False DL occurs at timets= 7,27, 47,57, .. ..

J.W. is grateful to Dr. Aizhen Zhang for helpful discus-

V. SUMMARY

Ehen from Eq.(2.5 we have

(kV/em)

—_o O O

P (1)

>(tyd

A<z

S N RN e O
T
1

{c)

t/t

125311-8



DYNAMIC LOCALIZATION AND QUASI-BLOCH ... PHYSICAL REVIEW B 70, 125311(2004

B,(t) = e leal/ it Wo/dInDA (¢) (A3)  periodst=7,27,47,57,... asfalse DL because it occumly
_ o o~ _ _ for specific initial conditions This false DL does not take
If a particular electric field, for whictBy(T)=0, is applied, place for electrons with general initial statéss in Fig. 3.

thenAy(T)= 6,0, and we obtain Thus, for true DL, one cannot waive the first condition for
B,(T) = ilegT/H+Wo(T)/d] P (A4) DL, y(T)szQ. However, we must note thf':lt no false QBOs
' can exist because QBOs only occur at tinTesNT where
such that (T)=27Q as discussed in Sec. IV.
|W(T)) = e leaT i+ Wor(Midl gy (A5) We finally note that as Wannier functions are not uniquely

defined, then the initial condition required for false DL

Thus, the electron returns periodically to its initial state apart,,oyid not seem to be unique. However, whe(iT) # 27Q
from a time-dependent overall phase. This shows that DL

appears to occur in a combined ac-dc field with the ac periof'€ condition,(T)=0, in general, depends on tig and is

if B,(7)=0, no matter what the ratio of these two frequen_extreme_ly difficult, if not |mpossmle, to.achleve.. However,
cies. But it is not correct! Figure 7 shows the time evolution@S We discussed previousfif the Wannier functions|ag),

of the return probability and the mean-square displacemer'® chosen to kle the maximally-localized Wannier functions,
in the same structure and in the presence of the same electtitenW,=0 andg,(t)=g8,(t). Then, the conditiorB,(T)=0 is

field as those in Fig. 1, but with the initial conditids},(0) independent of the band structure and can be achieved using
=6, Figure 7 shows that DL occurs with the peridet+  discontinuous fields. Thus the false DL only occurs in an
rather than the periodi=37 found in Fig. 1. We refer to the arbitrary field if the electron is initially placed in the unique
apparent DL at the times between the neighboring true Dlmaximally-localized Wannier function.
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