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Effects of dephasing on shot noise in an electronic Mach-Zehnder interferometer
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We present a theoretical study of the influence of dephasing on shot noise in an electronic Mach-Zehnder
interferometer. In contrast to phenomenological approaches, we employ a microscopic model where dephasing
is induced by the fluctuations of a classical potential. This enables us to treat the influence of the environment’s
fluctuation spectrum on the shot noise. We compare against the results obtained from a simple classical model
of incoherent transport, as well as those derived from the phenomenological dephasing terminal approach,
arguing that the latter runs into a problem when applied to shot-noise calculations for interferometer geom-
etries. From our model, we find two different limiting regimes: If the fluctuations are slow as compared to the
time scales set by voltage and temperature, the usual partition noise exprBdsidh) is averaged over the
fluctuating phase difference. For the case of “fast” fluctuations, it is replaced by a more complicated expression
involving an average over transmission amplitudes. The full current noise also contains other contributions,
and we provide a general formula, as well as explicit expressions and plots for specific examples.
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I. INTRODUCTION Most theoretical works on dephasing in mesoscopic inter-

A large part of mesoscopic physics is concerned with exference setups are concerned with its influence on the aver-
ploiting and analyzing quantum interference effects in29€ current onlysee Refs. 9-J4and references thergin

micrometer-size electronic circuits. Therefore, it is importantNeVertheless, in some workSthe effects of dephasing on
inishegot noise have been studied, employing the phenomenologi-

by the action of a fluctuating environmegstich as phonons Ccal “dephasing terminal” approachs'®where an additional
or other electrons both in order to estimate the possibilities artificial electron reservoir randomizes the phase of electrons

for applications of these effects as well as for learning mored©iNg through the setup. However, this approach does not
about the environment itself. This holds for “bulk” effects, mclude' any |nf0rmat|9n about the. power spectrum Qf th'e
luctuations in the environment, which, from other studies, is

such as universal conductance fluctuations and weak Iocaﬁ(I o ol . tant role in di . f dephas:
ization, but also for interference in microfabricated electronickNOWnN 10 play an important role in discussions ot dephasing.

interference setups, such as various versions of “double-slit! N€réfore, in the present work, we have set ourselves the
or “Mach-Zehnder’ interferometers, often employing the task to analyz_e the effects of dephasmg on the shot noise in
Aharonov-Bohm phase due to a magnetic flux penetratinGg M0del that incorporates the fluctuation spectrum.

the interior of the interferometer. In recent years, many . ~Part from that, the model is deliberately chosen as

studied~” have been performed to learn more about thesimple as possible: The case of a true “quantum bath” will

mechanisms of dephasing and the dependence of the dethQ—t be treated here. It is the case relevant for lower tempera-

ing rate on parameters, such as temperature. One very dell'€S and higher voltages, when dephasing is produced pri-
cate issue in the analysis of these experiments is the fact thgtar1ly by spontaneous emission of energy into the bath. This
the “visibility” of the interference pattern can also be dimin- ¢@5€ immediately leads to a many-body problem where the
ished by thermal averaging, when electrons with a spread cﬁ’_aull principle plays an important role. Instead, we will con-
wavelengthgdetermined by voltage or temperatugentrib- ~ Sider & Mach-Zehnder setypig. 1) where the electrons are
ute to the current. Recently, an ideal single-channel elecSubject to the fluctuations of a classical noise fieltrans-
tronic Mach-Zehnder interferometer has been realized exlission phases become a Gaussian random process in time
perimentally for the first tim& The arms of the This describes the case of noisy nonequilibrium radiation
interferometer have been implemented as edge channels offapinging on the system, as well as the effects of the classi-
two-dimensional electron gas in the integer quantum Hall-cal part of the noise spectrum of a quantum-mechanical en-
Effect regime. Besides measuring the current as a function ofironment, which should dominate at higher temperatures.
voltage, temperature, and phase difference between thEhe advantage of a classical noise field is that we still can
paths, the authors also measured the shot noise to be ableuse a single-particle picture. We will also compare and con-
distinguish between mere “phase averaging” and genuingast our results with those obtained either from a very
dephasing. Although the interpretation of the experimentakimple classical model of dephasing or the dephasing termi-
results still remains unclear to some extent, the idea of usingal. Regarding the dephasing terminal, we will argue that its
shot noise to learn more about dephasing is a very promisingpplication to shot noise in interferometer geometries is most
one, as it connects two fundamental topics in mesoscopitikely plagued with a certain problem that artificially changes
physics. the shot-noise result. The work presented here is a micro-

1098-0121/2004/10.2)/12530%16)/$22.50 70125305-1 ©2004 The American Physical Society



F. MARQUARDT AND C. BRUDER PHYSICAL REVIEW B70, 125305(2004)

scopic analysis dealing with the effects of dephasing on shaif k-values determined by voltage and temperatwe will
noise in any electronic two-way interferometer geometry.call this “thermal averaging,” for brevijy This also de-
This study provides the basis for dealing with the influencecreases the visibility upon increasing voltage or temperature.
of time-varying potentials on the shot noise in other two-way Therefore on the level of the average current, dephasing
interferometer geometries, as well as for extensions to theannot be distinguished easily from thermal averaging, and
case of a true quantum-mechanical environment. the qualitative dependence of these two effects on voltage

We will demonstrate that the results depend strongly oror temperaturd is generally similar. Nevertheless, a striking
whether the environmental fluctuations are fast or slow withdifference appears in a more detailed analysis of the depen-
respect to the time scales set by voltage and temperature. fence onV. The average of eXfkdox) does not simply de-
the “slow” case, the shot noise merely becomes equal to therease with increasing bias voltage, but shows an oscillatory
phase average of the usual partition noise expreg8ishile  behavior. Let us illustrate this briefly in the special case of
the expression for the other limit is more complicated thanT=0, when the electrons contributing to the current are in-
that. A brief discussion of a part of the results has alreadyected from the input reservoir in a voltage window corre-
been presented elsewhéteRecently, an analysis of dephas- sponding to a box distribution df-values (k e [k—ok/2,k
ing in a mesoscopic resonant-level detector has been carriqpléklz])_ Then we get
out along similar lines, including the effects on shot néike.

Our work is organized as follows: After discussing the _ ke SIN(Skox/2)
reduction in visibility of the current interference patt¢8ec. (explikax)), = € o2
II), we explain the basic idea behind using shot noise as a
tool to distinguish genuine dephasing from mere phase avewhich is an oscillatory function that yields zero visibility at
aging(Sec. Ill). The influence of dephasing on shot noise isall bias voltages wherékdx is an integer multiple of 2.
then derived both for a simple classical mo@®éc. IV) and  Finite temperatures will diminish the average further without
from the dephasing terminal approa¢Bec. \j. Both of  destroying the oscillations. Such an effect, if present, should
these models are phenomenological, and we explain why wee easily confirmed in an experiment. In addition, both the
believe there is a problem with the dephasing terminal apvoltage-dependent phase-shifix of the interference pattern
proach, as applied to shot-noise calculations in interferomgcf. Eq.(3)] and the period of the oscillation in the visibility
eter geometriegSec. V). Then we turn to the model of are determined byx, which could be used as a consistency
dephasing by a classical fluctuating potentiSec. VII), check.
which permits one to take into account the power spectrum No such oscillations in visibility have been reported in the
of the environment, in contrast to the other approaches. Wilach-Zehnder experimeftThis could be taken as a strong
will discuss the general current noise form{iigs.(40) and  hint for the importance of genuine dephasing, provided our
(41)], as well as limiting casesSec. VII D) and plots for idealized model applies. Note that the voltage-dependence of
special example¢Sec. VII F). Finally, we will compare the the visibility plotted in Ref. 8 was not obtained by simply
results of the various different models and regini8&c. measuring at different bias voltages. Instead, a dc voltage
VIIL). was increased while measuring the ac current flowing due to

a small ac-modulated voltage on top of the dc bias. Ideally,
the visibility of the ac signal should not decrease with dc
Il VISIBILITY voltage, if the supression of the interference term was not
affected by dephasing but only by thermal averaging. The
ctual observation of a decrease in visibility could therefore
e interpreted as another sign ruling out thermal averaging.
Unfortunately, one cannot be sure that the change of bias
o |A 2+ |AR|2+A*LAR<ei5‘P>‘P+ C.C. (1) voltage does not affect the transmission amplitudes
. ] . themselveg? and this in turn could mean that the ac visibil-
The termA Az may contain a fixed Aharonov-Bohm phase jty js affected by electron transmission in a wider range of
factor, as well as a phase factor €k@Xx) related to a pos-  \avelengths. Thus no firm conclusions can be drawn from
sible path-length difference between the two arms. In addithe reported measurements of the voltage dependent visibil-
tion, there may be an extra fluctuating phase differefige ity.
due to the action of an environment. The average over the
phase factor expde) results in a decrease of the interference
term. Thus, the visibility of the interference pattern,

Imin) @ Shot noise represents another potentially more powerful
is reduced from its optimal value of 1, which it can reach forway to distinguish simple thermal averaging from dephasing,
symmetric beam splitters with|A_|=|Ag| [here l,.c as pointed out in Ref. 8. The basic idea is that the partition
=maxl (¢)]. noisex7(1-T7) is nonlinear in the transmission probability
However, a finite path-length differene® can have the 7 such that results depend on whether averaging is per-
same effect: It gives rise to an additional factor @kpx) in formed before or after calculating this expression. Thermal
the interference term, which has to be averaged over a rangeeraging of the independent shot-noise contributions from

3

The transmission probabilitgand thus the currents de-
termined by squaring the sum of transmission amplitude
related to the two arms of the interferometer

Ill. SHOT NOISE AS A MEASURE OF DEPHASING:
BASIC IDEA

(Imax_ Imin)/(lmax+
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differentk amounts to an expression of the form
(T(A-T)k. (4)

An analogous expression is expected to hold if some param-
eter fluctuates slowly from run to run of the experiment, with
averaging over this parameter. In contrast, the interpretation
of Ref. 8 assumed that dephasing leads to partition noise of
the form

(T)e(1=(T),), (5

where(T), denotes the transmission probability whose in-
terference term is already suppressghrtially) due to
dephasing.

In the special case of zero visibility and 50% transmission
of the first beam splittefT,=1/2), the shot noise depends on

the transmission of the second beam spliftgy only in the FIG. 1. (Color onling A simple classical model for the fully
case of thermal averagirigiq. (4), whereas the dephasing incoherent case: Electrons impinging regularly onto the Mach-
expression, Eq(5), becomes independent @g. In Sec. V,  Zehnder interferometer and making classical stochastic choices at
we will show that Eq(5) can be obtained by generalizing the both beam spilitters.

result of a phenomenological classical model for shot noise

of incoherent electrons. the partition noise of a single barrier when the variance of
On the other hand, it is clear that the ans@ig cannot  he number of transmission events is calculated. We now
hold in all parameter regimes. In particular, if the extend this to the case of full decoherence by using classical
environment-induced fluctuations of the phase are suffipropapility theory to describe the stochastic choices the elec-
ciently slow, we would expect that their effect will be just the {yon makes at each of the two beam splittéirstead of

same as that of thermal averagi(@ that of slowly fluctu- gqyaring the complex transmission amplitudes through the
ating parametepsleading to a formula similar to Eg4). We ¢ device).

may view the current as being composed of a stream of wave \ne consider the current, at the ouput terminal to be a

packets entering the interferometer, each of them of a temgichotomous random numbéd or 1), whose value depends

poral width equal to the correlation length, i.€., on \whether the given electron reaches the output port 3. We
min(1/kgT,1/eV). After the final beam splitter, the probabil- pt5in

ity weights of the two parts of the wave packet are deter-

mined by the phase difference between the two interfering  (I3) = TaTg+ R\Rg = <T>¢,,<5I§>:<T>¢,(1 -(T),), (6)
pathsL and R. If the fluctuations of this phase happen on _ . . .
times much shorter than the temporal extent of the packewherea3_l3___<l3>’ denoting t_he f_uIIy incoherent transmis-
the probability of detecting the particle in either output portSion Probability by (7),. This simple model, therefore,
will be 50/50, foreachpacket that enters the interferometer 29rees with the ansatz considered in E8), in the fully
(in a symmetric setup, with large fluctuations of the phase!ncohererw_t limit. Unfortunately, the general_lza_ltlon to arbi-
leading to zero visibility. This situation is depicted in Fig. 5. trary partial coherence cannot be made within the present
On the other hand, if the fluctuations are slow compared t&'assical model.

this time scale, then each packet sent through the setup will

feel a fixed(but random phase, such that the effe¢tso in

terms of shot noigeare indistinguishable from thermal aver- V. DEPHASING TERMINAL APPROACH

aging. This will be confirmed by the microscopic model of
Sec. VII.

In this section, we analyze shot noise for a one-channel
Mach-Zehnder setup, employing the dephasing terminal
approachi>1° This will enable us to treat the case of arbi-
trary visibility, although it is still not possible to incorporate
the spectrum of environmental fluctuatiaisge Sec. V. As

We start from a classical model for shot noise in a com-We Wwill see, the dephasing terminal model leads to a shot-
pletely incoherent electronic Mach-Zehnder interferometefoise expression that, in general, differs both fro(1
setup(see Fig. ] because this is related to the interpretation—7)) and(7 )(1—(T)).
provided in Ref. 8. Our aim is to calculate the noise of the output current at

For simplicity, we consider a Mach-Zehnder setupTat terminal 3 of the interferometer shown in Fig. 2. The basic
=0, with a voltageV applied between the source 1 and theidea behind the dephasing terminal is to mimick the effects
other terminals. A heuristic modélfor shot-noise calcula- of dephasing on transport in a mesoscopic conductor by at-
tions consists of assuming the source-emitting electrons itaching a fictitious extra reservoir to the setdp'®In order
regular intervals of frequencgV/h. It is well known that to correctly describe pure dephasing, it is essential to force
this model yields the correct quantum-mechanical result fothe current into this dephasing terminal to vanish at each

IV. PHENOMENOLOGICAL CLASSICAL MODEL
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dephasing terminal

_© 2
v’ 3 Ia(E’t) 27T(fa 2[3 |Saﬁ| fﬁ) + 5'0(! (8)
A~ > 4 B where 41, denotes the original current fluctuatio(et E, t)
left arm calculated in the absence of any additional fluctuations of the
1 2 distribution functionsf,, (see below
Following the calculation of Ref. 19, we demand the cur-
A 4 rent flowing into the dephasing terminalto be zero at each

energy and point in time, including its fluctuations. By solv-
ing the equatior ,(E,t)=0 for f,, we obtain

right arm
. : _|_27 2 21-1
FIG. 2. (Color onling The Mach-Zehnder interferometer setup fo=|- ?5% + 2 I5,4%f 5 |[1 = I8,/ 2T7% 9
considered in the text: At beam splittehsand B the electrons are B#e

transmitted with amplitudets, g. The fictitious reservoitp serves as . . . .
a “dephasing terminal.” The coherence parametznotes the am- The current fluctuationsl , on the right-hand side determine

plitude for an electron to be reflected at the beam splitter connectinthe required fluctuationsf , of f(E,t)=5f ,(E,t)+f (E).
the left arm of the interferometer to the reservgi(thusz=1 for Insertingf ,=Raf1+ Taf, with TA:|tA|2a Ra=1-T,into the
fully coherent transpoyt averaged Eq(8), we obtain the energy-integrated average
current at the output pod=3,
energy and instant of time. Both the average electron distri-
bution in the terminal as well as its fluctuations have to be — e
chosen appropriately to fulfill this condition. ls=5 f dE[f3 = f(Ty) = f(T2], (10
We assume the dephasing termipatio be attached to the
left interferometer armwithout loss of generality, see be- \yhere the probabilities of transmission from terminals 1 and
low). The arms are treated as chiral-edge chanfeele Fig. 2 to terminal 3 are denoted biT;) and(T,). The notation
2). The amplitude for an electron to move on coherently,<-|-j> is chosen to signal that these transmission probabilities
without entering the reservoir, is assumed toZe[0, 1]. are already affected by dephasing: They contain an interfer-

Whe_n an eIe'ctron enters the reseryoir with probability _1ence term that is multiplied by the amplitudeof coherent
-7°, it “loses its phase” and is reemitted afterwards. In thisiransmission

way, z describes the coherence, witk1 corresponding to

fully coherent transport ang=0 to the completely incoher- (T)) = TaTg + RaRg + 22(t;rA)(t*BrB)cosd>, (11)

ent case. The amplitude for an electron to go from reservoir

B into reservoira is denoted by the scattering matrix ampli- and (T,)=1-(T,). For the purposes of calculating the cur-
tudes, ;. Assuming backscattering to be absent at the bearmuny, the effect of dephasing may be thought of as an average
splitters, the setup of Fig. 2 yields the followir§matrix  of the fully coherent expressidiz=1) over a fluctuating ex-

amplitudes: tra contributionde to the phase differencé. This average
leads to the suppression of the interference téomd ¢
Sz, = iIrg€ V1 -2, +8¢))=z cos ¢. Thus, no simple distinction between genu-

ine dephasing and phase averaging is possible at this level.
The energy integration iil0) may result in an additional
Sg1 = tatg + zrarg€?, Sp1 = iraW1-22, suppression, if there is a difference in the path lengths of the
two interferometer armésuch thate is energy dependent
As the phase difference between the two arms is varied

Sgp= I atg + ZtArg€'?, Sp2 = itavl — 22, (7) (through a magnetic flyxthe currenﬂ_3 displays sinusoidal
oscillations. The visibility of this interference pattet(i,,.
and's,, =z, $33=5,5=5,,=51,=0. Heret,r, andtg,rg are =l min)/ (Imax* I min), IS proportional toz. If energy averaging

transmission and reflection amplitudes at the beam splitters iS not effective(skox<1 with sk=maxksT,eV)/%vg), the
and B (with |rj2+[tj/?=1 andrt;=-r;t). The total phase Visibility is equal to ZVT,\RxTeRg/(TaTe+RaRs).
difference ¢ between the two paths is assumed to include Thefull current fluctuationdl, at a # ¢ contain both the
both a possible Aharanov-Bohm phaggs, as well as the usual fluctuationsil ,, as well as those induced by the addi-
effect of unequal path lengthesx (which makes¢ energy  tional fluctuationssf, of the distribution function in terminal
dependent Note that, within this model, there is no extra ¢:
“fluctuating phase differencede because dephasing is al-
ready included phenomenologically by the presence of the
dephasing terminal.

The current flowingout of reservoira at energyE and
timet is given by(note#=1) In particular, in our model we obtain

|Sa<p|26|go

. (12
1-[s,/?

e
Al = aa—z\sw|25r¢=51a+
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Al3=68l3+Rgdl, (13) 0.3
. . 025 ————————mmmm e

for the full current fluctuations at the output pgterminal N SN T
3). In order to calculate the correlator &fl;, we have to 0.2 S .
know the correlators obl; and 1, (derived for 6f,=0). 015 - L - , i
According to the scattering theory of shot notéé82425we Lo 2 SN P R
have in general, 01~ Lo R
005 M ! - N _
e e? T N z=0 ,-/ L z=0.3 J

Paﬁ’E Zfdtﬁla(t+to)5|'8(t0):22—fdEE f‘y(l_fﬁ) 0l— I PRI A YN I NI T
7" %8 0250 - | == dephasing| -
* * : . <T.T> r
X (551/)/6&5 - Saysaﬁ)(aﬁy5ﬁ5 - Sﬁbsﬁy) . (14) 0.2 <T1>2T >

“<l - 1 2 i
The overbar denotes a time average dyeand the sums run 0.15 .= inelastic |
over all terminals, including the dephasing terminal, where - .
one has to put,=f for the purposes of this equation. Given 0.1 B - / ]
these correlators, we can calculate the noise power at the 0.05- \z'—’o"71 2=1 —
output port of the interferometer as follows: o | L]

0

0 I 0.2 04 I 06 08 0 I 0.2 I 04 . 0.6 I 08 1
_— T T
2S3;=2 f dtAl5(t + to) Als(to) = Pag+ 2RgP3, + RGP, B B
FIG. 3. Normalized noise powes,/ (e3V/2m7) vs. transmission
(15) probability Tg of second beam splitter: Pure dephasjig. (16),

For simplicity, we first focus on the special case of zerothick line] compared with the phase-averaged partition noise ex-
temperature and no path-length differer(@e energy inde-  Pression(TiTo)(T,=1-Ty), the product of phase averaged prob-
pendent. A bias voltageV is applied between terminal 1 and abilities,(T1)(T,), and inelastic scatteringq. (18), symmetric case
the other terminals: fy(E)=6(e+eV—E), f,(E)=f4(E) A=1/2]. Different panels show various values of the coherence

- _ : : _ Pparameterz, with a maximum deviation between pure dephasing
;IiO;(uEgesE)\}er:i)rr:j(lél) and(15) and the scattering matrix am and the phase-averaged resulizatl/y2~0.7. Other parameters:

Ta=1/2,$=0.

3 -1
(27) S3=(TI(Tp) — 21 -P)RaReTaTs.  (16)  erage of co&p+ 5¢)]. However, if we assume the phase fluc-
tuations 8¢ to be Gaussian distributed, theftog?2(¢
Apparently, even for the fully incoherent cage0 the +38¢)])=2'cog2¢). In that case we obtain
shot noise isnot given by the simple expressiofT;){T,)
=(T,)(1~(Ty)), involving the product of averaged transmis-  (T1T2) = (Ti(T2) = (T)? = (T} = 4RARsTAT((COS ¢)?

sion probabilitiegcontrary to the result of the simple classi- —(co2e)) = - 2R\RTATa(1 - )1
cal model in the previous sectiprHowever, it is interesting
to note that this expression would indeed be found if one - Zcod24)]. 17)

were to demand only thaveragecurrent into the dephasing lude that isibilittz=0) the sh .
terminal to vanish at each energy, while we have also takel/® conclude that for zero visibilityz=0) the shot-noise ex-

into account the restriction for the current fluctuations themPression(16) is equal to(T, T), i.e., it has the form expected
selves. We will comment further on this difference betweenffom a simple phase average! Therefore according to the
the two models in Sec. VI. For the remainder of this sectiondephasing terminal approach in this particular limit, a shot-
we will just discuss the consequences of Ed§) and(16). noise measurement could not .be used to distinguish phase
We note that the result is independent of the location ofiveraging and genuine dephasing. . _
the dephasing terminal. Indeed, placing the terminal into The coincidence between phase averaging and dephasing
the right arm amounts to the replacements— holds only atz=0 (and, trivially, atz=1). The difference
~¢,ta>a tg> g, Which leave Eq.(16) invariant. More between(T,T,) and the expression given in Ed.6) is maxi-
generally, repeating the analysis with a dephasing terminal ifnized if T\=Tg=1/2, $=0,7,2m7,..., andz?=1/2. Atthese
each arm gives exactly the same results as before, avith parameter values, the shot-noise expression is 30% below the
=2 75 the product of the amplitudes for coherent transmis-value of(T,T,), see Fig. 3.
sion in each arm. Physically this is to be expected, since the If phase averagingagainst which the pure dephasing case
effect of dephasing is only to scramble thelative phase s to be compareds actually due to energy integration over
between the two paths. a phase factor exjkdx), then the distribution of¢ is not
In order to compare expressidi6) to the result of a Gaussian but determined by voltage and temperature. In that
phase-averaged partition noise expressidnT,), we have case, we define a parametar; by (co§2(¢+359)])
to evaluate(coS(¢p+ 5¢))=[1+(cog2(p+¢)))]/2. This is  =z,c092¢). Here it is understood thgBp)=0 (so ¢ corre-
not simply related t@ [which has been defined via the av- sponds to the average phasand we havez,=7* for the
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Gaussian case. In E@L7) the factorz? in front of co$2¢) the simple classical model. Dephasing and phase averaging
changes to(z,—-79)/(z%-1). For example, atT=0 we become indistinguishable in the limit of zero visibility
have to average over a box distribution of widisk (within this mode}, but a strong difference may be observed
=eV/(fivg), which yields z=sin(skox)/(skéx) and z,  for other parameter values.

=2 sin(okox/2) 1 (skox) (compare the discussion in Sec). I

Hence the phase-averaged shot ngi&d,) can still depend

on the average phasg even when the visibility is zerfz V1. POSSIBLE SHORTCOMING OF THE DEPHASING
=0,2,#0 for Skéx=(2n+1)w], in marked contrast to TERMINAL

dephasing or Gaussian phase fluctuations. In this section, we reexamine the difference between the
If we use the extra terminalp to model inelastic shot-noise results obtained from the simple classical model
relaxatiort® instead of pure dephasing, its distribution func- of Sec. IV and the dephasing terminal of Sec. V. We will take
tion f, is given by an equilibrium Fermi function of appro- the classical model as our starting point and investigate how
priate chemical potential, and the only condition is that thethe dephasing terminal approach would be implemented
energy-integrated current must vanish at each instant of timgjithin the context of this model. As we will see, the extra
(voltage probg This implies that the chemical potential at syppression of shot noise in the dephasing terminal turns out
this reservoir fluctuates. It turns out that in the inelastic casgg pe artificial.
it does matter whether relaxation is ascribed fully to one arm  \ve specialize to the case of a symmetric first beam split-
or to both arms. Therefore, we set up a model with reservoirgey, Ta=1/2. Wefocus on beam splitteB, asking for the shot
L,R with associated amplitudes ,zz. As the current only  nojse at output port 3. The initial classical modsée Fig.
depends o, zz=z, we writez =Z* andzz=2'", where the  4(a)) leads to perfectly anticorrelated streams of electrons in
parameten. quantifies the asymmetrgA=1 or O for relax-  the |eft and right arm, entering beam splittBr[see Fig.
ation in the left or right arm, respectively, anek1/2 for the  4(b)]. Thus we can obtain the correct result by treating the

symmetric case In evaluating the shot noise at terminal 3 jnputs as two incoherent, but completely anticorrelated
we have to take into account the current correlations betweeggrces. We have

terminals 3,L, andR, along the same lines as before. The
expression in Eq(16) is replaced by (I.,1r) =(1,0 or (0,1, (20)

(TN(To) = 2RATRA[1 + (1 = 2T 22 = Ry(Z23™N + 2M)], each with probability 1/Zin every “elementary timestep”
(18) (I3 and(él§> give the same result as before, E6).

We will now apply the dephasing terminal calculation to
for Ry<T, (otherwise interchangér,,T,). In the fully  this simplified model, see Fig.(d). As before, we will first
asymmetric casér=0,1), we recover the resulgl6) ob-  calculate the “intrinsic” current fluctuations, without tak-
tained for pure dephasing. However, in general the shot nois@g into account the fluctuations of the distribution function
may be reduced. For example, Xt 1/2 andT,=1/2, Eq. in the dephasing terminal. This will be done on the basis of
(18) turns into(T,){T,)—RgTg(1-2), which can become zero classical probability theory in this sectigm contrast to the
even in the limit of full relaxation(z=0), at Tg=1/2 (see full scattering theory Thus, the two inputs to beam splitter
Fig. 3. B are treated as uncorrelated sources of electfses Fig.

For reference purposes, we also list the generalization of(€)]. At first sight we expect this to give different results
the pure dephasing result, Ed6), to the case of finite tem- than before, possibly with an increased shot noise, as the
peratures and energy-dependent transmission probabilities Shot-noise supression due to anticorrelations is lifted. Ac-

cording to this expectation, reintroducing the anticorrelations
27Ss3 would subsequently yield the “correct” answer, obtained in
e f dE((Ty) + HI1 = (KT + D]+ (1 =) the previous paragraph. Nevertheless, this will turnraito
) be the case.
~ 2(1 - Z)RaRgTaTgof. (19) The complete model is now described by

Here f=f,=f; is a thermally smeared Fermi function, and -

Sf(E)=f(E-eV)—f(E) is the difference of distributions in (Iulg =(1,0 0r (0,2, (2Y)

reservoirs 1 and 2. each with probability 1/2 in every time step anddepen-
We emphasize that the dephasing strength only enters agigntly,

phenomenological parameté€z) into this model. Further-

more, the model does not account for the spectrum of envi-

ronmental fluctuations, which is important to describe thewith probability 1/2 for the current entering the second beam

cross-over between dephasing and phase avergsgegSec. splitter from the left arngi.e., after the dephasing terminal

VIl). The average current is 1/2, as before. However, we have
In this section, we have used the scattering theory of shab be careful when calculating the shot noise, as two elec-

noise and the dephasing terminal approach to derive the shttbns might impinge simultaneously on® [ellipse in Fig.

noise for partially coherent transport in the interferometer4(c)], in which case a classical treatment would permit both

The result is, in general, different from a phase average offo go into the same output pawith probability TzRg in the

the usual partition noise formula as well as from the result oforesent modg] while in reality the Pauli principle prevents

lpout=10r0, (22
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FIG. 4. (Color onling Inter-
pretation of the dephasing termi-
nal within the context of the
simple classical mode(a): The
shot-noise reduction due to anti-
correlationgb) and the Pauli prin-
ciple (c) are kept at the same time
in the dephasing terminal ap-
proach(d).

them from doing so. We find the following table of probabili- tween the two input currents to the beam spliethe pos-

ties, each line occuring with probability 1/4: tulated relation between “intrinsic” current fluctuatiod,
and corresponding distribution function fluctuatiasfg [Eq.
lg0ut Ir P(13=0) P(I3=1) P(I3=2) (9] constitutes arad hoc semiclassical ansatz. This is in

contrast to the rest of the dephasing terminal approach,

0 0 1 0 0 which just represents a valid model of a particular scattering
1 0 Ts Rs 0 geometry, designed to mimick some aspects.of dgphasing.
0 1 R T 0 As a consequence, the full current fluctuations in the out-
X L (;‘ f 0 put port are changegsee Sec. Y.

From this, we obtain Al3= 613+ Rgdl,. (25)

<5]2>:; (293 We will now calculate (AI%) by taking the correlators
¥4 (l381,), (8%, and (8l2) from the underlying classical

which happens to be identical to the result calculated formodel, instead of the quantum -mechanical scattering theory

anticorrelated inputs. If, however, we had neglected the Paulif shot noise. Sincédl3)=1/4 alone would give the correct

principle, we would have obtained a larger shot noise, result for the noise of the output currefgee abovg it is
already clear at this point that any further contributions must
(813) = 3 + 3RgTg (no Pauli principle. (24)  lead to an artificial deviation from the correct value.

Therefore, the inclusion of the Pauli principle effects at the The total current into the dephasing terminal is

second beam splitter has suppressed the shot noise by lo=1L =g oun (26)
RgTg/2.

However, according to the logic of the dephasing termina
approach, we still have to ensure the total current into th
dephasing terminal to vanish at each point in time. We will (812 = 5 (27)
proceed as for the full dephasing terminal calculation of Sec. ¢
V, i.e., by postulating a fluctuating distribution function at and
the terminal that is chosen to compensate the fluctuatns (81381 ,) = - 1 (28)
that would be present otherwise. Although this will effec- 3 4
tively (and correctly reintroduce some anticorrelations be- This finally gives

PNhICh is forced to be zero at all times. Using this relation, as
é(vell as the probabilities prescribed above, we find
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(A9 =75~ ;ReTe. (29) 0
Therefore, the shot noise calculated with the help of the 3
dephasing terminal ansatz is redudeti Tg#0,1) as com- L
pared to what is found for the original model: The ansatz ‘
(25) serves to(correctly) take into account anticorrelations v > )
|B 4

between the two inputs to beam splitt®r but it doesnot

throw out the Pauli principle effects that determine the shot-
noise result for two uncorrelated sources. In reality, only one
effect or the other is present, while the dephasing terminal
approach keeps both of them, thereby artificially reducing

R:pp(T)
N

)

the shot noise. In the full calculation of Section V, the prob- ~N

lem can be traced to the ansatz describing the fluctuations

of, of the distribution function as a fluctuatinggsnumber I O

function of time. In that way, the dephasing terminal ap-

proach is no longer fully quantum mechani¢al contrast to FIG. 5. (Color onling@ The Mach-Zehnder interferometer setup

the calculation of the current itself, whedg, is not needeld  analyzed in the text. In the case shown here, the fluctuations of the
Note that there is no problem if we assume the pathenvironment are fast compared with the temporal extent of the wave

length difference to be largeVogdx>1). We can incorpo-  packet(determined by temperature or voltage, see)teie prob-

rate this within the simple classical model by assuming therability density of the incoming wave packet and its two outgoing

to be a time lag between the anticorrelated input streams tparts is shown.

the second beam splitter. Going through steps similar to . . . .

those above, we find a shot-noise reduction even in the initiafcOPIC fluctuations acting on the electrons, and that it prop-

classical model, to a value given by E&9), which is also erly_ treats all quantum-mech_anlcal_ effects regarding the

the value found from the full dephasing terminal calculationmOtlon of electrons_. A brief discussion of the model and

some of the most important results has already been pre-

for that limit: In this case, the anticorrelations and the ef'fectsSenteol in Ref. 21.

d_ue to the Pauli principle are indeed present at the same The major simplification of the present model consists of
time. , _the assumption that dephasing is induced by the fluctuations
In this section we have demonstrated that the dephasing; 5 classical potential V(x,t), acting on the electrons tra-
terminal a_nsatz fails to give the_ correct _shot-n0|se res“'(lersing the interferometdsee Fig. 5. This may be used as
when applied to a model of classical, fully incoherent trans-, approximation to the effects of a truly quantum-
mission through the interferometer. Moreover, tetifi-  mechanical environmerge.g., phonons, Nyquist noise from
cially reduced shot-noise result coincides with the scatteringnearby gates This approximation has been employed in the
theory calculation(Sec. ). Thus it is likely that this calcu- past, e.g., in the theory of dephasing in weak localizatfon.
lation is affected by the same problem. The idea is to use a classical fluctuating potential whose
Strictly speaking, we have not proved the failure of thecorrelator is set equal to the symmetrized part of the
dephasing terminal in shot-noise calculations, as our analysiguantum-mechanical correlation function. The zero-point
rests on the heuristic classical model. This has been neceBuctuations are omitted, since Golden-Rule-type calculations
sary because we lack any simple quantum-mechanical vesuggest that their effect is canceled by Pauli blocking in scat-
sion of the fully incoherent case, against which we couldtering. This approximation can only be good as longe¥s
compare the results of the dephasing terminal. Although we<T. Otherwise, the scattering phase space will be deter-
do consider a microscopic model in Sec. Yahd the results Mined by the nonequilibrium Fermi functions in the arms of
are compared in Sec. VIIl it does not yield any further the interferometer, and thus th_|s simple prescription _falls.
insight into the dephasing terminal ansatz, since it is unclear OUr model may also describe nonequilibriylassica)

to which miscroscopic models the latter should correspond tglicrowave noise impinging onto the interferometer setup or

(if any). Nevertheless, the arguments of this section strongl;?ome thermal noise source behaving classioaléy, where

suggest that the results of the dephasing terminal approach f’6<T for the relevant frequencigsThen the treatment be-

shot noise should be treated with caution, at least for geom(Eomes exact, even fav>T. . .
As the noise is classical, we face a single-particle prob-

etries similar to the two-way interferometer considered mlem, i.e., we can solve for the motion of individual electrons.

this paper. The Fermi function will enter only in the end, when expec-
tation valuegsuch as current correlatgrare calculated. The
VII. DEPHASING BY CLASSICAL NOISE Pauli. principle does_ not enter the calculati_oﬂ»(cept for,
possibly, the potential correlator, as explained above
In this section, we will introduce a microscopic model of contrast, for the case of a fully quantum-mechanical environ-
dephasing and derive the resulting current noise. Its majoment, we would end up with a complicated many-body prob-
advantages are that it displays the dependence of the resulésn because, in any case, the electrons would feel an effec-
on the power spectrum of the environmental fluctuationgive interaction induced by the coupling to the bath — even
(which cannot be done in any of the phenomenological modif we were to neglect their intrinsic interaction. This problem
els discussed aboyghat it may be related directly to micro- is deferred to a future analysis.
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A. Electron field at output port electron accumulates fluctuating phases while moving along

As the electrons travel along the interferometer arms, theje lft or right arm

will accumulate a random phase due to the fluctuating poten- 0

tial. We neglect the additional effects of the potentadcel- __ / / /

eration anc?decceleratimrby assuming the elzctron's veloc- oLR(7) = f dt Vi gt'), 7+ 1), (34

ity to remain constanglinearized dispersion relatipnThis

should be a good approximation for sufficiently large Fermiwhereris the time when the electron leaves the second beam

energy. The effects of a nonconstant velocity have been angpjitter after traveling for a time,_ g along the interferometer

lyzed in more detail in Ref. 11, where Nyquist-noise-inducedarms, the trajectories being degcribed)@ﬁ(o_

dephasing of the current in a Mach-Zehnder setup has been |, gur model, the total traversal times , enter only at

studied using the WKB approximatiofsee also Ref. J4  this point, determining the relation between the phase cor-

There, the main contribution to the end result for the dephasre|ator and the potential correlator. Note that we have as-

ing rate did not depend on these extra effects. We will alsqmed the interaction to be confined to the interferometer

assume backscattering to be absgre., the electrons are regjon. This assumption is natural if the fluctuations are due

traveling along chiral edge channels, or the potential is suftg gates or other localized disturbances. It is also sufficient

ficiently smooth to preventk2 momentum transfeys Fi-  for short-wavelength fluctuations. However, in the case of

nally, as we are taking a model of non interacting electrongong.wavelength fluctuations, it means that the effect of

as our starting point, the electrons’ spin does not play anyhese fluctuations on the phase differeqge @ will cancel

important role(except for trivial factors and we assume the oyt only in the case of vanishing path-length difference. Oth-

electrons to be spin-polarized in the following. _erwise, cutting off the potential at the entry and exit beam

_ The Heisenberg equation of motion for the electron fieldsp|itter automatically introduces some remaining fluctuations

¥ moving at constant velocityg, under the action of a in ¢ —¢g.

fluctuating potentiaM(x,t), reads In general, the form of the phase correlator can be related

~ . to the potential correlatofVV), using Eq.(34). For abbre-

iV (x,t) = [er + ve(—idy—ke) + VX, DIW(X,1). (30)  viation, we setV, (t;,7) =V[x_(ty), 7+t,]6(-t) 6(t; + ) and

ikewise for Vg. Then we havep, (7)=-/dt'V, (t’,7+t’) and

“TLR

Herex denotes the coordinate along the respective arm of th

interferometer. Note that the linear dispersion relation im-INus,

plies .- ¢=ve(k’=k) in the following. By solving this

equation of motion and taking into account the action of the (60(7) 50(0)) = f dt,dtx[V, (ty, ) - Va(ty, D]

beam splitters, we arrive at the following expression for the

electron field at some point in the outgoing lead 3: % [V, (t,0) = Vi(tn, O)]). (35)

3
W(x,7) = ,d—_ke“fkTE t (k,Da,kexk*  (31) The terms of the typ&V,V,) and (VgVg) describe phase
2w a=1 fluctuations within the two arms separately, while the cross
s ) " ) terms(V, Vg will serve to suppress dephasing in the case of
The field¥ is a linear superposition of the electron fielis long-wavelength fluctuations. In a diagrammatic treatment of

emitted at Fhe reservoirs=1, 2, 3. Note that for the special agephasing{e.g., in weak localization the cross terms would
case of chiral edge channels, we may choose to concentr Brrespond to “vertex contributions,” whereas the former re-
only on the outgoing current, such that 3 would be absent late to “self-energy terms.”

from Eg.(31), and the corresponding trivial contributions to In general, the potential correlatévV),, and the corre-

subsequent equations would drop out as well. We have . .
t,=1, s,=1,5=-1, the reservoir operators obey Sponding phase correlatfEg. (35)] depend on the micro

2 aan e T i S scopic environment under considerati¢sf. Ref. 11 for a
<aT(k?aﬂ(.k )>_6“E5(.k K)Ta(k) .W'th f.“ t'he distribution calculation of spatially homogeneous potential fluctuations
function in reservoik, and the integration is 9V¢_¢>0 only_. in the interferometer arms, due to Nyquist nojses well as

In contrast to the usual case, the transmission amplitudeg geometry. A discussion of the potential and phase fluc-
t, have become time dependent. The amplituets for an - tuations for realistic microscopic dephasing mechanisms will
electron to go from terminal 1 or 2 to the output terminal 3

d don f ing time-d d h i be provided in a future work. Here we take the position that
epend on fluctuating time-dependent phageg the phase correlator is given, and we want to obtain the con-

t,(k, 7) :tAtBei(,DR(T) + rArBeupL(T)ei(wkaxo, (32) sequences for the current noise.

to(K, 7) = targe PN (#+k) 4 ol er(7) (33) B. Current
Heretyg andr g are energy-independent transmission and  In calculating the currentand its correlatons we have to
reflection amplitudes at the two beam splittgvsith t;rj: take both a quantum-mechanical expectation value, as well

~tjr}), & accounts for a possible path-length difference be&s an average over the random prodésst), or rathere, .
tween the interferometer arms, agicenotes the Aharonov- This average will be denoted Hy),, in the following. The
Bohm phase due to the flux through the interferometer. Theutput current,
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“ - —idy tial. The form of this modification depends on whether the
I(7) =e¥'(x,7) om W(x,7)+H.c., (36)  fluctuations of the environment are “fast” or “slow” as com-
pared to the time scales set by voltage and temperature.
follows from (31). We will setx=0 The full current noise powes can be split into two parts

by rewriting the irreducible current correlator
fw:%ffdMK&TW{E%wﬁ%ﬂﬂT o ) o
“ S=J dr<<l(r)l(0)>)¢—<<I(0)>)i=f dr ({I(7)) 1(0))),,

X 2 sgta(k’, DagK) + H.c. (37
o — 102+ f dr ((1(D10) = A (DX1(0)),.  (40)

Therefore, we have

- evr The first integral on the right-hand side describes shot noise
=)= o dk {‘ fak)+ 2 fa(k)<Ta(k))¢}. due to the temporal fluctuations of the conductance, i.e., fluc-

i tuations of a classical currer(tr):d(r)) depending on time-
(38) dependent transmission probabilities. We denote its noise
The current depends on the phase averages of transmissipawer asS. It rises quadratically with the total current, as is
probabilitiesT1:|t1|2 andT,=1-Ty, known from 1f-noise in mesoscopic conductdrs.
. We now focus on the second integral, which will contain
(T =TaTg + RaRg + 22(rarp) tatgCodp + kox). (39)  the modified partition noiseamong other contributions, such
The interference term is suppressed by the faztg(ei&p>w as a finite “Ny_quist noi§eS,:0). Itis _ev_aluated by inserting
wherese= ¢, — ¢r. In writing down this expression, we have _(31) and applying Wick’s theoreffi (similar formulas appear

assumed/(x,t) and thusée to be distributed symmetrically in Ref. 29
around 0, such thafsin(d¢)),=0. For the special case of A A eve\2
Gaussian statisticgvhich we will assume beloy we have  ((I(7)1(0)) = {I(n))1(0))), = (—F) Jdkdl( > fuK[L
z=exp(—(8¢?)/2). The factorz decreases the visibility of the 2m a,p=1,2,3
interference pattern .observedlinb), and it has bee_n 'defined - fB(k’)]KaB(T)ei(Ek_gk’)T_ (41)
to correspond precisely to the phenomenologizahtro-
duced for the dephasing terminal modske Eq.(7)]. An  HereK,z is a correlator of four transmission amplitudes. We
additional suppression of the interference term may bédaveKs3=1, K3,=K,3=0, and
brought about by th&-integration in Eq(38), if Tox/vg>1 . .
or eVéx/vg>1. With respect to the current, it is indistin- Kap(7) = (K, Dtg(K', Dt (K O)tg(K',0)),,  (42)
guishable from dephasing, which provides the motivation of
looking at shot noise in this contetgee Sec. I\, for a,p=1,2.

We note that the current itself is independent of the spec-
trum of environmental fluctuations, as it only depends on the D. Limiting cases
probability distribution ofde at any given momentand not
its time-dependent correlajorThis will change when we
look at shot noise. It would also be different for the case of
quantum-mechanical environment, where the “effective
spread ofé¢ would depend on the part of the bath spectrum
that is still active in dephasing, despite Pauli blocking.

In order to understand the resulting expressions, we will
now derive two limiting forms, for a “fast” and a “slow”
f?environment. We will assume that the phase correlator
(8¢(7) 8¢(0)) decays on some time scadg the correlation
time of the environment. Note that even for a non exponen-
tial decay we can still define a typical scalg e.g., by de-
manding(de(7,) 5¢(0))=(5¢? /2. Now this time has to be
compared against the other time scalésy)™ and T L.

Before we turn to the calculation of theero-frequency  These scales enter the current noise forngdla in the form
current noise powes, we briefly list the main ingredients of the Fermi functions, and they determine thenge of the
that we will find below: oscillating exponential factor, after integration okeaindk’.

(i) A “classical current noise’S;, which is due to the e will assume for the moment that ttkedependence of
time-dependent fluctuations of the interferometer’s CondUCKaﬁ itself is unimportan](i_e_, SX is Sufﬁcienﬂy Smau_ See
tance. The resulting current fluctuations are linear in the appejow for a discussion of other cases.
plied voltage, such that the corresponding noise power is Eqr eVr,<1 andTr,<1 (“fast environmentj, the major

quadratic inV. . ~ contribution of the integration comes fropa|> 7., where
(i) For any fixed external noise power, there is a flnlteKaﬁ factorizes into

current noise contributioB,-o even atv=0 andT=0, due to

the nonequilibrium radiation impinging on the system. Kap(7) = Kop(0) =
(iii) The remainder of the full current noise contains the

usual quantum-mechanical partition noig¢l1-7), which  Adopting this limiting value forK,,; at all timesr yields the

will be modified due to the presence of the dephasing poternoise power

C. Noise power: General formula

(t,(k,0)t4(k',0)), . (43)
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Sast  _ J * 2 Kio(7) = KT = Kpy(7) = K33 = = 2RATARgTgcod 26 + Sx(k
ST — | dk > f (L= f[ti g2+ fa(1—f3),
evp/ 2 a%m (=T 1) +K)IZg™(7) - 1] + ReTo(RE + T)Z[g(7)
(44) -1], (48)

where we have sdt, ;=f, 5(k) andt, s=t, z(k,0). Note that

this form of the shot noise for a fast environment is not K1a(7) = K31 = Kool 7) = K3, = 2RaTaRgTeZ” X {C0$2¢)

equivalent to an expression of the ki(ifl) ,(1-(7),), which + ox(k+Kk)[g X7 - 1] +[g(7) - 1]}.

we have obtained from a simple classical mo@sde the (49)
discussion in Sec. )Y The difference between those two

formulas can be evaluated in general, and we find HereR,=1-T,, and we have repeatedly used the fact that

there is a phase shift of/2 between tran*smiss‘,ion and re-
<t*1t2>¢|2 (TP (1 =(Ty),) = (ZZ-1)RgTs. (45) flection amplitudes at each beam splittet,=—rata).
Both S, and S, depend on the frequency spectrum of
This means the partition noise for the fast case is usuallyhe environment via the exponentig{r) of the phase cor-
reduced below the value found from the simple expressiontelator appearing ifK,; (in contrast,S, and S, are ex-
Nevertheless, we will discuss a certain special case where thgessed in terms of=exp—(5¢?)/2) only). The resulting

simple formula is indeed recoverésee below:. noise power can be written in terms of the following Fourier
We can always write the full noise power as transforms(with n=+1):
S=Saatt St + S (46) gn(w) = f dr ger [en<5tp(T)5(p(O)> -1]. (50)

where Sy, denotes the remainder besidgg; and S, [i.e.,
Siuct is given by Eq.(41)], with K, 4(7) —K,4() inserted in

place ofK,4(7). It yields a contribution to the Nyquist noise similar to those appearing in the so-calle(EPtheory of

Sy=o (see below, but apart from that it becomes important tunneling in a dissipative environméhé! as well as in the
only at largerV, T, where it will serve to produce the cross- ... ,,
independent boson model.

over to the case of the slow environment, which we discuss Using the explicit forms of the correlatot, 5, we find

Note that the first term in brackets approaches 1 |fdr
—oo, as the phase correlations decay. These functions are

now. Siuct to be equal to
In the other limiting case the-integration is dominated ~Muct q
by |r1< (“slow environment), and we can usé,,(7) evg |2 ) )
~K,5(0), which yields et =\ 5 f dkdK [f;(1~f5) +f,(1-f)] X ReTe{(RY
+T2)Z20.[ve(k’ = K)] -2 co$2¢ + x(k
efsﬁ = j dk((fyTy + FT[L = (£ Ty + £,To)), . o , ,
vel2m + K IRATAZG [vp(k' — KT} + [f1(1 = ) + (1 - f5)]
+f3(1 -1y, (47 X 22RaTARs Te{@.[vr(k' — k) ]+cog2¢ + ox(k
i.e., the phase average of the usual shot-noise exprefgion +K)19-[ve(k" =K} (51)

T=0 the expression in brackets reducesTo(1-7y)),]. In a similar fashion, we can evaluaBy. This term does

not display two different limiting regimes. The reason is that

E. Evaluation of shot noise contributions in general it involves only correlators of time-dependent transmission
probabilities, but no oscillating factor depending on the en-
X ergy difference. Therefore, the result does not depend on the
dom process of zero mean and prescribed correlaiqig|aion hetweenr, andeV,T. In general, this term is deter-
(8¢(7)9¢(0)), the correlatorK,,; of transmission amplitudes  ined by the zero-frequency correlators of the exponential
[Eq. (42)] can be evaluated in general. This is done by in-phase factors contained in the transmission probabilities. We
serting the transmission amplitudes given above and evalyj,q (with 8f=f,—f,)
ating the average of the exponential phase factors. We thus
obtain an exact expression that contains arbitrary orders of
interaction with the fieldi.e., arbitrary powers of the phase S
correlatoy. R

The following expressions describe the time-dependent  + &X(k+k')]+g.(0)cod ox(k-Kk')]}. (52
deviation of the transmission amplitude correlatég;(7)
from their large-time limiting valueK‘zB [enteringS,s, EQ.

For a phase differencée described by a Gaussian ran-

2
:2z2RARBTATB(23) v2 f dkdK 8f8f’ X {§_(0)cog2¢
a

(44)]. They follow directly from the definition oK ,4(7), Eq. F. Current noise at T=0

(42), using the transmission amplitudes in E(R) and(33), Thek-integrals contained in the expressigb4) and(52)

as well as the abbreviations 7) =exp(d¢(7)dp(0)) andz  for S, and S, still remain to be evaluated. In this section,
=exp(—(5¢?)/2): we will present and discuss explicit expressions for the case
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T=0, &eVIvg<1, i.e., the case of pure dephasing without
any thermal smearing. According to the discussion at th

PHYSICAL REVIEW B70, 125305(2004)

(titp)|? - 2 c0$2¢)RaTAR:Tg Z2(Z2 - 1) + ReTe(RA + TA)(1
- 22) =(Ty(1 _T1)>(p' (57)

beginning of the present section, analyzing the zero-

temperature limit invariably means we adopt the picture o

real classical noise impinging onto the systérs opposed to

classical noise being an approximation for a quantum bat

which would requireeV<T for self-consistency

We assume the electrons to be injected from reservoir 1

i.e., fo(k)=fz(k)=f(k)=6(ke=k) and f;(k)=6(ke+Ak-k)
=f(k) + 5f(k), with Ak=eV/vE.

As we are interested in thehot noise we subtract the
equilibrium partS;,(V=0)=S,-o from St [EQ. (5D)]. In
the remainder, the term stemming frdgt1-f;) is seen not
to contribute (employing symmetry ink and k'), and the
terms fromf,(1-f5) and f,(1-f}) lead to the integral

2eV
—K]==21,),
UF

fdde[Ef(l—f’)—fﬁ’)gn(vF(k’
(53

wherel (V) also depends on temperatufeln particular, at
T=0, we findl, to be

eV
In(V)Ef0 dw(l—e—v)g)\(w).

Collecting the contributions frorB=S;+ Saet Siuer, the shot
noise is then given by

(54)

S-S, \Vj - i
e3V/Sé/7: - %Zz RaRsTAT[COS2¢)3_(0) + §.(0)] +

(titp),[?

1 -
+ =Z2RgTgl{~ 2 co$2¢)RaTal_(V)+ (R&
au

+TA)L(V)}. (55)
Here we have defined the average phaséagw keoX. The
first line of Eq.(55) corresponds t&;, the second t&,g,
and the rest t&;,:— Sy=o- The current noise displayed in Eq.
(55) is a function ofeVr,, z, Ta, Tg, ¢, and of the detailed
shape of the environment correlator contained tv) and
0,(0). The dependence &S, on voltage is explicit in the
first two lines, stemming frong, and S, (Quadratic and
linear, respectively Only the contribution fromS;,.; (last

two liney depends on voltage in a more complicated way,

via the environment spectrum.

We can introduce the dependence on the environment co

h

tI'his is precisely the result expected from the limit of a slow

bath, i.e., fromS;,,, compare Eq(47). At intermediate volt-
ages, the shot noise interpolates smoothly between the ex-
tremes described b$..; and S0y,

' To produce the plots discussed in the following, we have
assumed 50% transparency of the first beam spliffer
=1/2) and a simple Gaussian form for the phase correlator,

(8¢(7)5¢(0)) = (S?)e 7’ (58)

In the case off,=1/2, thenormalized shot noise is given

explicitly as a function of the parametezseVrc,TB,?ﬁ by
the following formula:

S-S 2 o
e3v2/: = 4 (eVrReTs(co42¢)5.(0) +3.(0)) + 7 [(Ts

- Rp)?+ 4Z2R5 Tgsirt ] + ;RBTB[L(VTC)
'

- cog2¢)_(V7o)]. (59
Here the functiong,, andl, are evaluated by setting=1 in
the phase correlatdZ(7/7,). They have to be evaluated by
numerical integratioifor a given shap€(/ 7.) of the phase
correlatof. This equation has been derived for the case
eV>0, but it may be verified tha® is symmetric inV.

The full current noises also contains the Nyquist noise

Sy=0, Which is independent of and T,

Sv=0= iQZZRBTBf dw ©g.(w). (60)
2

0

The Nyquist noise scales like 4/ The dependence anis

not explicit, as the integral depends piitself (scaling like
1/7? for small but not ultrasmalk). In deriving the Nyquist
noise fromS,, we have only kept the contribution from
states near the Fermi edge, assuming all states for
k e (—o0,kg) to be filled.

Figure 6 shows the evolution of(V) with increasing
dephasing strengtlii.e., increasing(d¢?), decreasingz).
Note that the shot noise itsdife., the deviation from/=0)
may even vanish due to the presence of the fluctuating po-
tential, in the limit of a fast environment,7.— 0: According
[0 Eq. (44), Sue is determined by(tit)),[* at T=0. In the

as (S¢(7) 8¢(0)y=C(7/ 7). Thenl,(V) is a function ofeVr,
only.

We may confirm directly tha%,.; dominates at low volt-
ages, sinc&, is quadratic in voltage and the integrdl$V)
in Sy Vanish. At largeeVr.>1 we can use the sum rule

In(V) = [z - 1] (56)

Tg=1/2,independent of the value dfy. That may be veri-
fied explicitly, but it can also be deduced from E¢5) by
noting that(T,),(1—(Ty),)=1/4 forz=0, Tg=1/2.However,
althoughS,,; can become zero, the total current nogsaoes
not vanish, due to the Nyquist contributi¢éend the classical
term &, at higher voltages Indeed the figure illustrates that
the fluctuating potentia¥/(x,t) always leads to an increase in
current noisé€as expected Nevertheless, the dependence on

to combine the shot-noise contributions in the last three lineglephasing strength may be nonmonotonic, as seen in Fig. 6,

of Eq. (59), i.e., Sastt Siuct— Sv=0, Yielding

at large voltage¥y.
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In St Of EQ. (51 the k,k’-integral over products of
Fermi functions and environment power spedjfaare al-
tered as well. In the particular limit &fr,— « (regardless of
V), the Fermi functions can be approximated by a constant
on the scale over which the power spectrgm changes.
Then the integrals oved —k can be carried out easily, lead-
ing to sum rules. Combining the terms frdBg; and Sy in
this limit leads to the expressio®., [EQ. (47)]. We con-
clude thatS,, is indeed the appropriate expression for
1/7.<maxT,eV).

s/(e’/(2n)

2. Finite path-length difference

If a finite path-length differencéx is introduced, we have
to consider four time scales altogethey; (eV)™, T, and
the new time scalex/ve. We will not give an exhaustive

FIG. 6. (Color online Full current noiseS as a function oeVr,,  discussion of all possible cases for the order of these times.
for increasing strength of dephasifi= 1. ..0.05, according to Eq.  In the Iimiting case of very smalléx, i.e., X/vg
(55). Dephasing always increases the current noise beyond th& Tc,(eV) ,T7%, the previous expressions remain un-
value obtained for the ideal cage 1. The offsetS,.q is given in ~ changed. Even ibx/ve becomes larger than, [but remains
Eq. (60), the slope neav=0 is described by,s, Eq.(44), and at much smaller tharfeV)™,T 1], it may still be shown that
higher voltages the dependence\bis quadratic, due t&;. When  this does not affect the results for the current noise.
Sy is subtracted, the slope at larg¥'r is determined by [i-€., We now consider the more interesting opposite limit,
(T1(1-Ty),). ParametersT=0, =0, ¢=7/2, TA=1/2,Tg=0.3.  where the averaging over wave numkes so important that

it destroys completely the interference pattern, id&/vr

The dependence omVr, is also illustrated in Fig. 7, >(eV)lor &/ve>TL In that case, the interference term in
where the dependence of the shot noise on the paranigters the average current is completely suppressed such that the
and ¢ is displayed for different values @&Vr, (see also the additional dephasing effect of the environment is unimpor-
figures in Ref. 21 showing the crossover betwé&gg and  tant for the current. In addition, the “classical” current noise
Siiow)- part S, now vanishes because it depends on the temporal

Note that the behavior d&,g, given by|<t1t2>‘p|2, is quite  fluctuation of the interference term in the average current

different from that ofT;),(1-(Ty),), which is the form de-  (i(7)), which is already absent due to thermal averaging. The
rived from the simple classical model of Sec. IV. Indeed, thepther two parts —S,;and Sy, of the current nois& — are
latter expression does not vanish at intermediate values @hanged as well, but they do not become equal to the results
Ta, Tg(#0,1), and forz=0 it becomes independent @ if  obtained without dephasing.
Ta=1/2 (while the first expression becomes independent of We illustrate those changes in the zero-temperature case
Taif Tg=1/2). analyzed in Sec. VII F. The shot noise in E§9) is changed
in the following ways. The first linddue t0S,) is absent,
and the second and third linédue to S, and S,1) are
averaged over the phagesuch that the average of ¢@g)

The results of the previous section have been derived fovanishes and that of Sigh is equal to 1/2. However, the shot
the caselr=0,6x=0. We will now discuss the changes intro- noise still depends om and on the bath spectrugaia I.,)
duced by relaxing these assumptions.

G. Other cases: Finite temperatures and finite
path-length difference

1. Finite temperatures 53_ Sv=0 = TpR(Tg - RB)z + ZZTBRB(TZ + Ri)[l + (V)]
If we calculate the current noise for a finite temperaflire evizm ™
but still at 5x=0, the different components =S+ Sq (62)

+ St Show the following behavior: The contrast of the cur-

rentl(¢) is unaffected by the thermal smearing of the FermiFor a “fast” environment, we have(V)—0 such that Eq.
surfacegsince 8x=0) and, for the same reason, the “classi- (62) becomesT,RA(Tz—Rg)? in the fully incoherent case,
cal” part S, remains the sam@part from possible changes — 0. In the opposite limit of large voltag&sslow environ-
related to a temperature dependence of the environmentaient,” eVr,>1), we havel, (V) — #{z2-1], which makes
power spectrum In S, from Eqg. (44), the finite- Eq. (62) independent ofz. The resulting expression is then
temperature Fermi functions lead to Nyquist noise contribuequivalent to the one obtained by pukeveraging, in the

tions (which have been absent #,; for T=0): absence of dephasing. In conclusion, shot noise may indeed
s Be help to reveal the presence or absence of dephasing even
eZIZSt = T{(To 2+ (T 2+ 1} + e\4<t1t2>¢|2cot?'< ) when thermal averaging is so strong that interference is al-

ready completely suppressed, but not in the limit of a “slow”
(61) bath. The Nyquist noise is not affected by, as it results
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FIG. 7. (Color onling Normalized shot noiséS—S,-o)/(€3V/21r) of the Mach-Zehnder interferometer, as a function of the transmission
of the second beam splittefg (horizontal axi$, and the phase differencg (into the plang for the case of small but finite visibilityz
=1/e, atT=6x=0 andT,=1/2. The diferent plots show the succession from a “fast” environment to a “slow” one, by increasing the voltage
or the correlation timetop left to bottom right:eV7,=0,5,7,10. Note the change of plot range on the vertical axis. TAEO,1, the
normalized shot noise remains fixed at 1/4.

from settingf,=f, in Eq. (51), whence the cos terms depend- ve
ing on 8x combine to zero. S-&= o AK(T) (1 =(Ty)y). (63
3. Beam of electrons Here we assumedx=0 as above. This formula follows by

evaluatingS,sit Siuer in the limit of small Ak and using the

It is instructive to note that even the dephasing modekum rule(56). In contrast to the evaluation &, in the
considered here can lead to the simple fdfp,(1-(Ty),)  transport situation considered above, the integral kveow
of the shot noisgwhich holds for a classical model in the runs over all states and is not restricted to a small transport
fully incoherent limit, see Sec. IV This is true provided the window, which is essential to obtai®3). We conclude that
transport situation is different from the usual one treatechis is yet another exampteof a situation where the correct
above. Instead of having all the reservoirs filled up to someesult for the shot noise cannot be obtained by taking into
Fermi level and then applying a voltage between them, weccount only the “surplus” electrons in the transport window
consider a situation where(aearly mono energetieam of  of sizeeV, even though this approactoesyield the correct
electrons is injected from reservoir 1, with wave numbers incurrent. The presence of the filled Fermi seas is not merely
an intervalAk, and all the other reservoirs aempty f,(k) important for the Nyquist noise contribution, but for the shot
=0(k e [ke,ke+Ak] and f,=f;=0. In this situation, there is noise as well. In the other limiting cas&kvg7.>1, we ob-
no “Nyquist noise”(S vanishes fok=0, when there are no tain the result expected froq,, i.e., with(T,(1-T,)), in
electrons at aJl In the limit of smallAk (“fast environment,”  Eq. (63), in addition to the “classical” contributiof, with
with Akvg7.<1), we obtain for the shot nois@t T=0) its quadratic dependence ak.

125305-14



EFFECTS OF DEPHASING ON SHOT NOISE IN AN PHYSICAL REVIEW B 70, 125305(2004)

N? 1/4 any case, the results for the “slow classical noig&j. (47)]

N and the dephasing termingtq. (16)] both coincide with the
T result(b) (T,(1-T,)), obtained for complete thermal averag-
= (T3 + R%)/4 ing (which is also obtained from the simple classical model
A if thermal averaging is present on top of dephagitigmight

f’l’ 5 still be possible to deduce the presence of dephasing in the
= (Ip — Rp)°/4 case of classical noise, both from the presefgg and S,

0 1/'2 ’1= Tp although we have to note th&, vanishes if both dephasing

and thermal averaging are effective. The form of the shot
. . . .. hoise S () obtained in the limit of a “fast” environment
FIG. 8. (Color onling Shot noise as a function of the transmis [Eq. (44)] is not found in any of the other models. Finally,

sion of the second beam splitter, for the fully incoherent ¢asel . .
TA=1/2): Different models and parameter regimes lead to different€ result(@ (Ty,(1=(Ty,) conjectured from the simple

curves(see text classical modelin the absence of thermal averagingan
also be found for dephasing by classical noise, provided we
consider a special transport situation, with a “narrow beam of

VIll. COMPARISON OF DIFFERENT MODELS AND
electrons”[(Eq. (63)].

REGIMES

In this section, we compare the results obtained for the
different models and regimes. We restrict ourselves to the IX. CONCLUSIONS
fully incoherent limit(z=0), at T=0 andT,=1/2. We em- ) )
phasize that we do not want to imply that one should expect Ve have analyzed the effect of a fluctuating environment
them to agree in any limit. The phenomenological classicaP™ the shot noise in an electronic Mach-Zehnder interferom-
model is a heuristic construction that is known to give the€ter- The environment has been modeled as a classical noise

correct result for a single barrier, and even for the dephasingeld that leads to a fluctuating phase difference for electrons
terminal it is not completely clear to which microscopic raversing the interferometer _and, thereby, suppresses the in-
model it is to correspond. In addition, we remind the readef€rference term. For comparison, we have also discussed a
that the results obtained for dephasing by classical noise a@mple classial ansatz and the phenomenological dephasing
not expected to coincide with those obtained for a quantumt€rminal approach. _ _
mechanical bath in the limigV> T considered here. The effect of dephasing on the averagerentis always

We have to distinguish three possible results for the modithe same and qualitatively indistinguishable from “thermal

fied partition noise term, entering the shot NoBseS, ., (de- averaging”(averaging over wave number in the presence of
picted in Fig. 8: a path-length differengeHowever, important differences ap-

pear in the shot-noise results. While the power spectrum of
(@(Tp (1 -(Ty,) =1/4, the phase fluctuations does not enter the current for the case
of a classical fluctuating potential considered here, the cur-
(BT (1 -Ty)), = (Té + RZB)/4, rentnoisestrongly depends on the fluctuation spectrum, thus
offering more information on the environment. There are
© (t*lt2>¢|2: (Tg - Rg)%4. (64) thr?e main cor!tribyt!ons'to th2e current noise: some “classi-
cal” current noisgrising like V) due to the fluctuations of
The corresponding values for the different models andhe conductance, some “Nyquist noise” background; and fi-
regimes are indicated in the following table. Note that thesenally the usual partition noise, modified due to the presence
expressions only refer to the contribution$pwhich is lin-  of the environment. The partition noise contribution depends
ear in voltage. For the model of dephasing by classical noisen a two-time correlator of four transmission amplitudes and
(last three entrigs one still has to add the constant back- is sensitive to the power spectrum. We have distinguished the
groundS,-, as well asS; (growing quadratically with volt-  limits of a “slow” and a “fast” environment, depending on

age. whether the inverse correlation time of fluctuationsrlis

) much smaller or much larger than the maximum of voltage
Model/regime X<ve/eV x>veleV gy and temperatur@. We have found that the usual result

T,(1-T,) for the partition noisgat given transmission prob-

no dephasingz=1) To(A)(1-T1(9)) b ability T;) may be replaced by one of three limiting forms,
Simple classical model a b depending on the correlation time, the transport situation
Dephasing terminal b b and the deph_asing modél) For a “slow” environmgnt, the
e . usual result is averaged over the phase fluctuationg,l
fast” environment C c T .

} -T1)), Which is similar to the effect of thermal averaging
“slow” environment b b

and identical to the result provided by the dephasing terminal
“narrow electron beam” a a (although there may be problems with the dephasing termi-
For the parameters considered here, thermal averaginggl, see Sec. ) (ii) For a “fast” environment applied to a
(x>ve/eV) only affects the results obtained without nearly monoenergetic beam of electrons, we obtd@in,(1
dephasing or from the simple classical model of Sec. IV. In=(Ty),), which is also the result derived from a simple clas-
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sical model (i) For a fast environment applied to the usual noise, the derivation of realistic microscopic power spectra
transport situatiorfwith the chemical potential of one of the as input for this calculation, and, in particular, the inclusion
input reservoirs increased i®V), we obtain|(t;t,),|% where  of a truly quantum-mechanical environment that will be rel-
t, » are the amplitudes of reaching the output port from inputsevant, particularly, for the case of voltages larger than tem-
1 and 2(|ty?>=1-|t,>=Ty). In this case, the shot noise &t  perature.
=0 can even be suppressed to zero by the fluctuating envi-
ronment for appropriate parameter combinations while, on
the other hand, the Nyquist noise becomes nonzero. ACKNOWLEDGMENTS
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