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We present a theoretical study of the influence of dephasing on shot noise in an electronic Mach-Zehnder
interferometer. In contrast to phenomenological approaches, we employ a microscopic model where dephasing
is induced by the fluctuations of a classical potential. This enables us to treat the influence of the environment’s
fluctuation spectrum on the shot noise. We compare against the results obtained from a simple classical model
of incoherent transport, as well as those derived from the phenomenological dephasing terminal approach,
arguing that the latter runs into a problem when applied to shot-noise calculations for interferometer geom-
etries. From our model, we find two different limiting regimes: If the fluctuations are slow as compared to the
time scales set by voltage and temperature, the usual partition noise expressionTs1−T d is averaged over the
fluctuating phase difference. For the case of “fast” fluctuations, it is replaced by a more complicated expression
involving an average over transmission amplitudes. The full current noise also contains other contributions,
and we provide a general formula, as well as explicit expressions and plots for specific examples.
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I. INTRODUCTION

A large part of mesoscopic physics is concerned with ex-
ploiting and analyzing quantum interference effects in
micrometer-size electronic circuits. Therefore, it is important
to understand how these interference effects are diminished
by the action of a fluctuating environment(such as phonons
or other electrons), both in order to estimate the possibilities
for applications of these effects as well as for learning more
about the environment itself. This holds for “bulk” effects,
such as universal conductance fluctuations and weak local-
ization, but also for interference in microfabricated electronic
interference setups, such as various versions of “double-slit”
or “Mach-Zehnder” interferometers, often employing the
Aharonov-Bohm phase due to a magnetic flux penetrating
the interior of the interferometer. In recent years, many
studies1–7 have been performed to learn more about the
mechanisms of dephasing and the dependence of the dephas-
ing rate on parameters, such as temperature. One very deli-
cate issue in the analysis of these experiments is the fact that
the “visibility” of the interference pattern can also be dimin-
ished by thermal averaging, when electrons with a spread of
wavelengths(determined by voltage or temperature) contrib-
ute to the current. Recently, an ideal single-channel elec-
tronic Mach-Zehnder interferometer has been realized ex-
perimentally for the first time.8 The arms of the
interferometer have been implemented as edge channels of a
two-dimensional electron gas in the integer quantum Hall-
Effect regime. Besides measuring the current as a function of
voltage, temperature, and phase difference between the
paths, the authors also measured the shot noise to be able to
distinguish between mere “phase averaging” and genuine
dephasing. Although the interpretation of the experimental
results still remains unclear to some extent, the idea of using
shot noise to learn more about dephasing is a very promising
one, as it connects two fundamental topics in mesoscopic
physics.

Most theoretical works on dephasing in mesoscopic inter-
ference setups are concerned with its influence on the aver-
age current only(see Refs. 9–14) and references therein).
Nevertheless, in some works,15 the effects of dephasing on
shot noise have been studied, employing the phenomenologi-
cal “dephasing terminal” approach,15–19 where an additional
artificial electron reservoir randomizes the phase of electrons
going through the setup. However, this approach does not
include any information about the power spectrum of the
fluctuations in the environment, which, from other studies, is
known to play an important role in discussions of dephasing.
Therefore, in the present work, we have set ourselves the
task to analyze the effects of dephasing on the shot noise in
a model that incorporates the fluctuation spectrum.

Apart from that, the model is deliberately chosen as
simple as possible: The case of a true “quantum bath” will
not be treated here. It is the case relevant for lower tempera-
tures and higher voltages, when dephasing is produced pri-
marily by spontaneous emission of energy into the bath. This
case immediately leads to a many-body problem where the
Pauli principle plays an important role. Instead, we will con-
sider a Mach-Zehnder setup(Fig. 1) where the electrons are
subject to the fluctuations of a classical noise field11 (trans-
mission phases become a Gaussian random process in time).
This describes the case of noisy nonequilibrium radiation
impinging on the system, as well as the effects of the classi-
cal part of the noise spectrum of a quantum-mechanical en-
vironment, which should dominate at higher temperatures.
The advantage of a classical noise field is that we still can
use a single-particle picture. We will also compare and con-
trast our results with those obtained either from a very
simple classical model of dephasing or the dephasing termi-
nal. Regarding the dephasing terminal, we will argue that its
application to shot noise in interferometer geometries is most
likely plagued with a certain problem that artificially changes
the shot-noise result. The work presented here is a micro-
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scopic analysis dealing with the effects of dephasing on shot
noise in any electronic two-way interferometer geometry.
This study provides the basis for dealing with the influence
of time-varying potentials on the shot noise in other two-way
interferometer geometries, as well as for extensions to the
case of a true quantum-mechanical environment.

We will demonstrate that the results depend strongly on
whether the environmental fluctuations are fast or slow with
respect to the time scales set by voltage and temperature. In
the “slow” case, the shot noise merely becomes equal to the
phase average of the usual partition noise expression,20 while
the expression for the other limit is more complicated than
that. A brief discussion of a part of the results has already
been presented elsewhere.21 Recently, an analysis of dephas-
ing in a mesoscopic resonant-level detector has been carried
out along similar lines, including the effects on shot noise.22

Our work is organized as follows: After discussing the
reduction in visibility of the current interference pattern(Sec.
II ), we explain the basic idea behind using shot noise as a
tool to distinguish genuine dephasing from mere phase aver-
aging(Sec. III). The influence of dephasing on shot noise is
then derived both for a simple classical model(Sec. IV) and
from the dephasing terminal approach(Sec. V). Both of
these models are phenomenological, and we explain why we
believe there is a problem with the dephasing terminal ap-
proach, as applied to shot-noise calculations in interferom-
eter geometries(Sec. VI). Then we turn to the model of
dephasing by a classical fluctuating potential(Sec. VII),
which permits one to take into account the power spectrum
of the environment, in contrast to the other approaches. We
will discuss the general current noise formula[Eqs.(40) and
(41)], as well as limiting cases(Sec. VII D) and plots for
special examples(Sec. VII F). Finally, we will compare the
results of the various different models and regimes(Sec.
VIII ).

II. VISIBILITY

The transmission probability(and thus the current) is de-
termined by squaring the sum of transmission amplitudes
related to the two arms of the interferometer

I ~ uALu2 + uARu2 + AL
* ARkeidwlw + c.c. s1d

The termAL
* AR may contain a fixed Aharonov-Bohm phase

factor, as well as a phase factor expsikdxd related to a pos-
sible path-length difference between the two arms. In addi-
tion, there may be an extra fluctuating phase differencedw,
due to the action of an environment. The average over the
phase factor expsidwd results in a decrease of the interference
term. Thus, the visibility of the interference pattern,

sImax− Imind/sImax+ Imind, s2d

is reduced from its optimal value of 1, which it can reach for
symmetric beam splitters withuALu= uARu [here Imax
=maxfIsfd].

However, a finite path-length differencedx can have the
same effect: It gives rise to an additional factor expsikdxd in
the interference term, which has to be averaged over a range

of k-values determined by voltage and temperature(we will
call this “thermal averaging,” for brevity). This also de-
creases the visibility upon increasing voltage or temperature.

Therefore on the level of the average current, dephasing
cannot be distinguished easily from thermal averaging, and
the qualitative dependence of these two effects on voltageV
or temperatureT is generally similar. Nevertheless, a striking
difference appears in a more detailed analysis of the depen-
dence onV. The average of expsikdxd does not simply de-
crease with increasing bias voltage, but shows an oscillatory
behavior. Let us illustrate this briefly in the special case of
T=0, when the electrons contributing to the current are in-
jected from the input reservoir in a voltage window corre-

sponding to a box distribution ofk-valuesskP fk̄−dk/2 ,k̄
+dk/2gd. Then we get

kexpsikdxdlk = eik̄dxsinsdkdx/2d
dkdx/2

, s3d

which is an oscillatory function that yields zero visibility at
all bias voltages wheredkdx is an integer multiple of 2p.
Finite temperatures will diminish the average further without
destroying the oscillations. Such an effect, if present, should
be easily confirmed in an experiment. In addition, both the

voltage-dependent phase-shiftk̄dx of the interference pattern
[cf. Eq. (3)] and the period of the oscillation in the visibility
are determined bydx, which could be used as a consistency
check.

No such oscillations in visibility have been reported in the
Mach-Zehnder experiment.8 This could be taken as a strong
hint for the importance of genuine dephasing, provided our
idealized model applies. Note that the voltage-dependence of
the visibility plotted in Ref. 8 was not obtained by simply
measuring at different bias voltages. Instead, a dc voltage
was increased while measuring the ac current flowing due to
a small ac-modulated voltage on top of the dc bias. Ideally,
the visibility of the ac signal should not decrease with dc
voltage, if the supression of the interference term was not
affected by dephasing but only by thermal averaging. The
actual observation of a decrease in visibility could therefore
be interpreted as another sign ruling out thermal averaging.
Unfortunately, one cannot be sure that the change of bias
voltage does not affect the transmission amplitudes
themselves,23 and this in turn could mean that the ac visibil-
ity is affected by electron transmission in a wider range of
wavelengths. Thus no firm conclusions can be drawn from
the reported measurements of the voltage dependent visibil-
ity.

III. SHOT NOISE AS A MEASURE OF DEPHASING:
BASIC IDEA

Shot noise represents another potentially more powerful
way to distinguish simple thermal averaging from dephasing,
as pointed out in Ref. 8. The basic idea is that the partition
noise~T s1−T d is nonlinear in the transmission probability
T such that results depend on whether averaging is per-
formed before or after calculating this expression. Thermal
averaging of the independent shot-noise contributions from
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different k amounts to an expression of the form

kT s1 −T dlk. s4d

An analogous expression is expected to hold if some param-
eter fluctuates slowly from run to run of the experiment, with
averaging over this parameter. In contrast, the interpretation
of Ref. 8 assumed that dephasing leads to partition noise of
the form

kT lws1 − kT lwd, s5d

where kT lw denotes the transmission probability whose in-
terference term is already suppressed(partially) due to
dephasing.

In the special case of zero visibility and 50% transmission
of the first beam splittersTA=1/2d, the shot noise depends on
the transmission of the second beam splitterTB, only in the
case of thermal averaging,8 Eq. (4), whereas the dephasing
expression, Eq.(5), becomes independent ofTB. In Sec. V,
we will show that Eq.(5) can be obtained by generalizing the
result of a phenomenological classical model for shot noise
of incoherent electrons.

On the other hand, it is clear that the ansatz(5) cannot
hold in all parameter regimes. In particular, if the
environment-induced fluctuations of the phase are suffi-
ciently slow, we would expect that their effect will be just the
same as that of thermal averaging(or that of slowly fluctu-
ating parameters), leading to a formula similar to Eq.(4). We
may view the current as being composed of a stream of wave
packets entering the interferometer, each of them of a tem-
poral width equal to the correlation length, i.e.,
mins1/kBT,1 /eVd. After the final beam splitter, the probabil-
ity weights of the two parts of the wave packet are deter-
mined by the phase difference between the two interfering
pathsL and R. If the fluctuations of this phase happen on
times much shorter than the temporal extent of the packet,
the probability of detecting the particle in either output port
will be 50/50, foreachpacket that enters the interferometer
(in a symmetric setup, with large fluctuations of the phase,
leading to zero visibility). This situation is depicted in Fig. 5.
On the other hand, if the fluctuations are slow compared to
this time scale, then each packet sent through the setup will
feel a fixed(but random) phase, such that the effects(also in
terms of shot noise) are indistinguishable from thermal aver-
aging. This will be confirmed by the microscopic model of
Sec. VII.

IV. PHENOMENOLOGICAL CLASSICAL MODEL

We start from a classical model for shot noise in a com-
pletely incoherent electronic Mach-Zehnder interferometer
setup(see Fig. 1) because this is related to the interpretation
provided in Ref. 8.

For simplicity, we consider a Mach-Zehnder setup atT
=0, with a voltageV applied between the source 1 and the
other terminals. A heuristic model24 for shot-noise calcula-
tions consists of assuming the source-emitting electrons in
regular intervals of frequencyeV/h. It is well known that
this model yields the correct quantum-mechanical result for

the partition noise of a single barrier when the variance of
the number of transmission events is calculated. We now
extend this to the case of full decoherence by using classical
probability theory to describe the stochastic choices the elec-
tron makes at each of the two beam splitters(instead of
squaring the complex transmission amplitudes through the
full device).

We consider the currentI3 at the ouput terminal to be a
dichotomous random number(0 or 1), whose value depends
on whether the given electron reaches the output port 3. We
obtain

kI3l = TATB + RARB ; kT lw,kdI3
2l = kT lws1 − kT lwd, s6d

wheredI3= I3−kI3l, denoting the fully incoherent transmis-
sion probability by kT lw. This simple model, therefore,
agrees with the ansatz considered in Eq.(5), in the fully
incoherent limit. Unfortunately, the generalization to arbi-
trary partial coherence cannot be made within the present
classical model.

V. DEPHASING TERMINAL APPROACH

In this section, we analyze shot noise for a one-channel
Mach-Zehnder setup, employing the dephasing terminal
approach.15–19 This will enable us to treat the case of arbi-
trary visibility, although it is still not possible to incorporate
the spectrum of environmental fluctuations(see Sec. VII). As
we will see, the dephasing terminal model leads to a shot-
noise expression that, in general, differs both fromkT s1
−T dl and kT ls1−kT ld.

Our aim is to calculate the noise of the output current at
terminal 3 of the interferometer shown in Fig. 2. The basic
idea behind the dephasing terminal is to mimick the effects
of dephasing on transport in a mesoscopic conductor by at-
taching a fictitious extra reservoir to the setup.15–19 In order
to correctly describe pure dephasing, it is essential to force
the current into this dephasing terminal to vanish at each

FIG. 1. (Color online) A simple classical model for the fully
incoherent case: Electrons impinging regularly onto the Mach-
Zehnder interferometer and making classical stochastic choices at
both beam splitters.
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energy and instant of time. Both the average electron distri-
bution in the terminal as well as its fluctuations have to be
chosen appropriately to fulfill this condition.

We assume the dephasing terminalw to be attached to the
left interferometer arm(without loss of generality, see be-
low). The arms are treated as chiral-edge channels(see Fig.
2). The amplitude for an electron to move on coherently,
without entering the reservoir, is assumed to bezP f0,1g.
When an electron enters the reservoir with probability 1
−z2, it “loses its phase” and is reemitted afterwards. In this
way, z describes the coherence, withz=1 corresponding to
fully coherent transport andz=0 to the completely incoher-
ent case. The amplitude for an electron to go from reservoir
b into reservoira is denoted by the scattering matrix ampli-
tudesab. Assuming backscattering to be absent at the beam
splitters, the setup of Fig. 2 yields the followingS-matrix
amplitudes:

s3w = ir BeifÎ1 − z2,

s31 = tAtB + zrArBeif, sw1 = ir A
Î1 − z2,

s32 = rAtB + ztArBeif, sw2 = itA
Î1 − z2, s7d

and sww=z, s33=sw3=s2w=s1w=0. Here tA,rA and tB,rB are
transmission and reflection amplitudes at the beam splittersA
and B (with ur ju2+ utju2=1 and r j

* tj =−r jtj
*). The total phase

differencef between the two paths is assumed to include
both a possible Aharanov-Bohm phasefAB, as well as the
effect of unequal path lengthskdx (which makesf energy
dependent). Note that, within this model, there is no extra
“fluctuating phase difference”dw because dephasing is al-
ready included phenomenologically by the presence of the
dephasing terminal.

The current flowingout of reservoira at energyE and
time t is given by(note";1)

IasE,td =
e

2pS fa − o
b

usabu2fbD + dIa, s8d

wheredIa denotes the original current fluctuations(at E,t)
calculated in the absence of any additional fluctuations of the
distribution functionsfa (see below).

Following the calculation of Ref. 19, we demand the cur-
rent flowing into the dephasing terminalw to be zero at each
energy and point in time, including its fluctuations. By solv-
ing the equationIwsE,td;0 for fw, we obtain

fw = F−
2p

e
dIw + o

bÞw

uswbu2fbGf1 − uswwu2g−1. s9d

The current fluctuationsdIw on the right-hand side determine

the required fluctuationsdfw of fwsE,td=dfwsE,td+ f̄wsEd.
Insertingf̄w=RAf1+TAf2 with TA= utAu2, RA=1−TA into the

averaged Eq.(8), we obtain the energy-integrated average
current at the output porta=3,

Ī3 =
e

2p
E dEff3 − f1kT1l − f2kT2lg, s10d

where the probabilities of transmission from terminals 1 and
2 to terminal 3 are denoted bykT1l and kT2l. The notation
kTjl is chosen to signal that these transmission probabilities
are already affected by dephasing: They contain an interfer-
ence term that is multiplied by the amplitudez of coherent
transmission

kT1l = TATB + RARB + 2zstA
* rAdstB

* rBdcosf, s11d

and kT2l=1−kT1l. For the purposes of calculating the cur-
rent, the effect of dephasing may be thought of as an average
of the fully coherent expressionsz=1d over a fluctuating ex-
tra contributiondw to the phase differencef. This average
leads to the suppression of the interference termkcossf
+dwdl=z cosf. Thus, no simple distinction between genu-
ine dephasing and phase averaging is possible at this level.
The energy integration in(10) may result in an additional
suppression, if there is a difference in the path lengths of the
two interferometer arms(such thatf is energy dependent).

As the phase difference between the two arms is varied

(through a magnetic flux), the currentĪ3 displays sinusoidal
oscillations. The visibility of this interference pattern,sImax

− Imind / sImax+ Imind, is proportional toz. If energy averaging
is not effective(dkdx!1 with dk=maxskBT,eVd /"vF), the
visibility is equal to 2zÎTARATBRB/ sTATB+RARBd.

The full current fluctuationsDIa at aÞw contain both the
usual fluctuationsdIa, as well as those induced by the addi-
tional fluctuationsdfw of the distribution function in terminal
w:

DIa = dIa −
e

2p
usawu2dfw = dIa +

usawu2dIw

1 − uswwu2
. s12d

In particular, in our model we obtain

FIG. 2. (Color online) The Mach-Zehnder interferometer setup
considered in the text: At beam splittersA andB the electrons are
transmitted with amplitudestA,B. The fictitious reservoirw serves as
a “dephasing terminal.” The coherence parameterz denotes the am-
plitude for an electron to be reflected at the beam splitter connecting
the left arm of the interferometer to the reservoirw (thus z=1 for
fully coherent transport).
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DI3 = dI3 + RBdIw s13d

for the full current fluctuations at the output port(terminal
3). In order to calculate the correlator ofDI3, we have to
know the correlators ofdI3 and dIw (derived for dfw=0).
According to the scattering theory of shot noise,17,18,24,25we
have in general,

Pab ; 2E dtdIast + t0ddIbst0d = 2
e2

2p
E dEo

g,d
fgs1 − fdd

3 sdagdad − sag
* saddsdbgdbd − sbd

* sbgd. s14d

The overbar denotes a time average overt0, and the sums run
over all terminals, including the dephasing terminal, where

one has to putfw= f̄w for the purposes of this equation. Given
these correlators, we can calculate the noise power at the
output port of the interferometer as follows:

2S33 ; 2E dtDI3st + t0dDI3st0d = P33 + 2RBP3w + RB
2Pww.

s15d

For simplicity, we first focus on the special case of zero
temperature and no path-length difference(f energy inde-
pendent). A bias voltageV is applied between terminal 1 and
the other terminals: f1sEd=useF+eV−Ed, f2sEd= f3sEd
=useF−Ed. From(14) and(15) and the scattering matrix am-
plitudes, we find

Se3V

2p
D−1

S33 = kT1lkT2l − 2s1 − z2dRARBTATB. s16d

Apparently, even for the fully incoherent casez=0 the
shot noise isnot given by the simple expressionkT1lkT2l
=kT1ls1−kT1ld, involving the product of averaged transmis-
sion probabilities(contrary to the result of the simple classi-
cal model in the previous section). However, it is interesting
to note that this expression would indeed be found if one
were to demand only theaveragecurrent into the dephasing
terminal to vanish at each energy, while we have also taken
into account the restriction for the current fluctuations them-
selves. We will comment further on this difference between
the two models in Sec. VI. For the remainder of this section,
we will just discuss the consequences of Eqs.(15) and(16).

We note that the result is independent of the location of
the dephasing terminal. Indeed, placing the terminal into
the right arm amounts to the replacementsf°
−f ,tA↔ rA,tB↔ rB, which leave Eq.(16) invariant. More
generally, repeating the analysis with a dephasing terminal in
each arm gives exactly the same results as before, withz
=zLzR the product of the amplitudes for coherent transmis-
sion in each arm. Physically this is to be expected, since the
effect of dephasing is only to scramble therelative phase
between the two paths.

In order to compare expression(16) to the result of a
phase-averaged partition noise expression,kT1T2l, we have
to evaluatekcos2sf+dfdl=f1+kcoss2sf+dfddlg /2. This is
not simply related toz [which has been defined via the av-

erage of cossf+dfd]. However, if we assume the phase fluc-
tuations df to be Gaussian distributed, thenkcosf2sf
+dfdgl=z4coss2fd. In that case we obtain

kT1T2l − kT1lkT2l = kT1l2 − kT1
2l = 4RARBTATBskcosfl2

− kcos2fld = − 2RARBTATBs1 − z2df1

− z2coss2fdg. s17d

We conclude that for zero visibilitysz=0d the shot-noise ex-
pression(16) is equal tokT1T2l, i.e., it has the form expected
from a simple phase average! Therefore according to the
dephasing terminal approach in this particular limit, a shot-
noise measurement could not be used to distinguish phase
averaging and genuine dephasing.

The coincidence between phase averaging and dephasing
holds only atz=0 (and, trivially, at z=1). The difference
betweenkT1T2l and the expression given in Eq.(16) is maxi-
mized if TA=TB=1/2,f=0,p ,2p , . . ., andz2=1/2. At these
parameter values, the shot-noise expression is 30% below the
value of kT1T2l, see Fig. 3.

If phase averaging(against which the pure dephasing case
is to be compared) is actually due to energy integration over
a phase factor expsikdxd, then the distribution ofdf is not
Gaussian but determined by voltage and temperature. In that
case, we define a parameterz4 by kcosf2sf+dfdgl
=z4coss2fd. Here it is understood thatkdfl=0 (so f corre-
sponds to the average phase), and we havez4=z4 for the

FIG. 3. Normalized noise powerS33/ se3V/2pd vs. transmission
probability TB of second beam splitter: Pure dephasing[Eq. (16),
thick line] compared with the phase-averaged partition noise ex-
pressionkT1T2lsT2=1−T1d, the product of phase averaged prob-
abilities,kT1lkT2l, and inelastic scattering[Eq. (18), symmetric case
l=1/2]. Different panels show various values of the coherence
parameterz, with a maximum deviation between pure dephasing
and the phase-averaged result atz=1/Î2<0.7. Other parameters:
TA=1/2,f=0.
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Gaussian case. In Eq.(17) the factorz2 in front of coss2fd
changes to sz4−z2d / sz2−1d. For example, atT=0 we
have to average over a box distribution of widthdk
=eV/ s"vFd, which yields z=sinsdkdxd / sdkdxd and z4

=2 sinsdkdx/2d / sdkdxd (compare the discussion in Sec. II).
Hence the phase-averaged shot noisekT1T2l can still depend
on the average phasef even when the visibility is zero[z
=0,z4Þ0 for dkdx=s2n+1dp], in marked contrast to
dephasing or Gaussian phase fluctuations.

If we use the extra terminalw to model inelastic
relaxation16 instead of pure dephasing, its distribution func-
tion fw is given by an equilibrium Fermi function of appro-
priate chemical potential, and the only condition is that the
energy-integrated current must vanish at each instant of time
(voltage probe). This implies that the chemical potential at
this reservoir fluctuates. It turns out that in the inelastic case
it does matter whether relaxation is ascribed fully to one arm
or to both arms. Therefore, we set up a model with reservoirs
L ,R with associated amplitudeszL ,zR. As the current only
depends onzLzR;z, we writezL=zl andzR=z1−l, where the
parameterl quantifies the asymmetry(l=1 or 0 for relax-
ation in the left or right arm, respectively, andl=1/2 for the
symmetric case). In evaluating the shot noise at terminal 3
we have to take into account the current correlations between
terminals 3,L, and R, along the same lines as before. The
expression in Eq.(16) is replaced by

kT1lkT2l − 2RATBRBf1 + s1 − 2TAdz2 − RAsz2s1−ld + z2ldg,

s18d

for RA,TA (otherwise interchangeRA,TA). In the fully
asymmetric casesl=0,1d, we recover the result(16) ob-
tained for pure dephasing. However, in general the shot noise
may be reduced. For example, atl=1/2 andTA=1/2, Eq.
(18) turns intokT1lkT2l−RBTBs1−zd, which can become zero
even in the limit of full relaxation(z=0), at TB=1/2 (see
Fig. 3).

For reference purposes, we also list the generalization of
the pure dephasing result, Eq.(16), to the case of finite tem-
peratures and energy-dependent transmission probabilities,

2pS33

e2 =E dEsdfkT1l + fdf1 − sdfkT1l + fdg + fs1 − fd

− 2s1 − z2dRARBTATBdf2. s19d

Here f = f2= f3 is a thermally smeared Fermi function, and
dfsEd= fsE−eVd− fsEd is the difference of distributions in
reservoirs 1 and 2.

We emphasize that the dephasing strength only enters as a
phenomenological parameterszd into this model. Further-
more, the model does not account for the spectrum of envi-
ronmental fluctuations, which is important to describe the
cross-over between dephasing and phase averaging(see Sec.
VII ).

In this section, we have used the scattering theory of shot
noise and the dephasing terminal approach to derive the shot
noise for partially coherent transport in the interferometer.
The result is, in general, different from a phase average of
the usual partition noise formula as well as from the result of

the simple classical model. Dephasing and phase averaging
become indistinguishable in the limit of zero visibility
(within this model), but a strong difference may be observed
for other parameter values.

VI. POSSIBLE SHORTCOMING OF THE DEPHASING
TERMINAL

In this section, we reexamine the difference between the
shot-noise results obtained from the simple classical model
of Sec. IV and the dephasing terminal of Sec. V. We will take
the classical model as our starting point and investigate how
the dephasing terminal approach would be implemented
within the context of this model. As we will see, the extra
suppression of shot noise in the dephasing terminal turns out
to be artificial.

We specialize to the case of a symmetric first beam split-
ter,TA=1/2. Wefocus on beam splitterB, asking for the shot
noise at output port 3. The initial classical model(see Fig.
4(a)) leads to perfectly anticorrelated streams of electrons in
the left and right arm, entering beam splitterB [see Fig.
4(b)]. Thus we can obtain the correct result by treating the
inputs as two incoherent, but completely anticorrelated
sources. We have

sIL,IRd = s1,0d or s0,1d, s20d

each with probability 1/2(in every “elementary timestep”).
kI3l and kdI3

2l give the same result as before, Eq.(6).
We will now apply the dephasing terminal calculation to

this simplified model, see Fig. 4(d). As before, we will first
calculate the “intrinsic” current fluctuationsdI, without tak-
ing into account the fluctuations of the distribution function
in the dephasing terminal. This will be done on the basis of
classical probability theory in this section(in contrast to the
full scattering theory). Thus, the two inputs to beam splitter
B are treated as uncorrelated sources of electrons[see Fig.
4(c)]. At first sight we expect this to give different results
than before, possibly with an increased shot noise, as the
shot-noise supression due to anticorrelations is lifted. Ac-
cording to this expectation, reintroducing the anticorrelations
would subsequently yield the “correct” answer, obtained in
the previous paragraph. Nevertheless, this will turn outnot to
be the case.

The complete model is now described by

sIL,IRd = s1,0d or s0,1d, s21d

each with probability 1/2 in every time step and,indepen-
dently,

Iw,out= 1 or 0, s22d

with probability 1/2 for the current entering the second beam
splitter from the left arm(i.e., after the dephasing terminal).

The average current is 1/2, as before. However, we have
to be careful when calculating the shot noise, as two elec-
trons might impinge simultaneously ontoB [ellipse in Fig.
4(c)], in which case a classical treatment would permit both
to go into the same output port(with probabilityTBRB in the
present model), while in reality the Pauli principle prevents
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them from doing so. We find the following table of probabili-
ties, each line occuring with probability 1/4:

Iw,out IR PsI3=0d PsI3=1d PsI3=2d

0 0 1 0 0

1 0 TB RB 0

0 1 RB TB 0

1 1 0 1 0

From this, we obtain

kdI3
2l = 1

4 , s23d

which happens to be identical to the result calculated for
anticorrelated inputs. If, however, we had neglected the Pauli
principle, we would have obtained a larger shot noise,

kdI3
2l = 1

4 + 1
2RBTB sno Pauli principled. s24d

Therefore, the inclusion of the Pauli principle effects at the
second beam splitter has suppressed the shot noise by
RBTB/2.

However, according to the logic of the dephasing terminal
approach, we still have to ensure the total current into the
dephasing terminal to vanish at each point in time. We will
proceed as for the full dephasing terminal calculation of Sec.
V, i.e., by postulating a fluctuating distribution function at
the terminal that is chosen to compensate the fluctuationsdIw

that would be present otherwise. Although this will effec-
tively (and correctly) reintroduce some anticorrelations be-

tween the two input currents to the beam splitterB, the pos-
tulated relation between “intrinsic” current fluctuationsdIw

and corresponding distribution function fluctuationsdfw [Eq.
(9)] constitutes anad hoc semiclassical ansatz. This is in
contrast to the rest of the dephasing terminal approach,
which just represents a valid model of a particular scattering
geometry, designed to mimick some aspects of dephasing.

As a consequence, the full current fluctuations in the out-
put port are changed(see Sec. V):

DI3 = dI3 + RBdIw. s25d

We will now calculate kDI3
2l by taking the correlators

kdI3dIwl, kdI3
2l, and kdIw

2l from the underlying classical
model, instead of the quantum-mechanical scattering theory
of shot noise. SincekdI3

2l=1/4 alone would give the correct
result for the noise of the output current(see above), it is
already clear at this point that any further contributions must
lead to an artificial deviation from the correct value.

The total current into the dephasing terminal is

Iw = IL − Iw,out, s26d

which is forced to be zero at all times. Using this relation, as
well as the probabilities prescribed above, we find

kdIw
2l = 1

2 s27d

and

kdI3dIwl = − 1
4 . s28d

This finally gives

FIG. 4. (Color online) Inter-
pretation of the dephasing termi-
nal within the context of the
simple classical model(a): The
shot-noise reduction due to anti-
correlations(b) and the Pauli prin-
ciple (c) are kept at the same time
in the dephasing terminal ap-
proach(d).
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kDI3
2l = 1

4 − 1
2RBTB. s29d

Therefore, the shot noise calculated with the help of the
dephasing terminal ansatz is reduced(at TBÞ0,1) as com-
pared to what is found for the original model: The ansatz
(25) serves to(correctly) take into account anticorrelations
between the two inputs to beam splitterB, but it doesnot
throw out the Pauli principle effects that determine the shot-
noise result for two uncorrelated sources. In reality, only one
effect or the other is present, while the dephasing terminal
approach keeps both of them, thereby artificially reducing
the shot noise. In the full calculation of Section V, the prob-
lem can be traced to the ansatz describing the fluctuations
dfw of the distribution function as a fluctuatingc-number
function of time. In that way, the dephasing terminal ap-
proach is no longer fully quantum mechanical(in contrast to
the calculation of the current itself, wheredfw is not needed).

Note that there is no problem if we assume the path-
length difference to be largeseVvFdx@1d. We can incorpo-
rate this within the simple classical model by assuming there
to be a time lag between the anticorrelated input streams to
the second beam splitter. Going through steps similar to
those above, we find a shot-noise reduction even in the initial
classical model, to a value given by Eq.(29), which is also
the value found from the full dephasing terminal calculation
for that limit: In this case, the anticorrelations and the effects
due to the Pauli principle are indeed present at the same
time.

In this section we have demonstrated that the dephasing
terminal ansatz fails to give the correct shot-noise result
when applied to a model of classical, fully incoherent trans-
mission through the interferometer. Moreover, the(artifi-
cially reduced) shot-noise result coincides with the scattering
theory calculation(Sec. V). Thus it is likely that this calcu-
lation is affected by the same problem.

Strictly speaking, we have not proved the failure of the
dephasing terminal in shot-noise calculations, as our analysis
rests on the heuristic classical model. This has been neces-
sary because we lack any simple quantum-mechanical ver-
sion of the fully incoherent case, against which we could
compare the results of the dephasing terminal. Although we
do consider a microscopic model in Sec. VII(and the results
are compared in Sec. VIII), it does not yield any further
insight into the dephasing terminal ansatz, since it is unclear
to which miscroscopic models the latter should correspond to
(if any). Nevertheless, the arguments of this section strongly
suggest that the results of the dephasing terminal approach to
shot noise should be treated with caution, at least for geom-
etries similar to the two-way interferometer considered in
this paper.

VII. DEPHASING BY CLASSICAL NOISE

In this section, we will introduce a microscopic model of
dephasing and derive the resulting current noise. Its major
advantages are that it displays the dependence of the results
on the power spectrum of the environmental fluctuations
(which cannot be done in any of the phenomenological mod-
els discussed above), that it may be related directly to micro-

scopic fluctuations acting on the electrons, and that it prop-
erly treats all quantum-mechanical effects regarding the
motion of electrons. A brief discussion of the model and
some of the most important results has already been pre-
sented in Ref. 21.

The major simplification of the present model consists of
the assumption that dephasing is induced by the fluctuations
of a classical potential Vsx,td, acting on the electrons tra-
versing the interferometer(see Fig. 5). This may be used as
an approximation to the effects of a truly quantum-
mechanical environment(e.g., phonons, Nyquist noise from
nearby gates). This approximation has been employed in the
past, e.g., in the theory of dephasing in weak localization.26

The idea is to use a classical fluctuating potential whose
correlator is set equal to the symmetrized part of the
quantum-mechanical correlation function. The zero-point
fluctuations are omitted, since Golden-Rule-type calculations
suggest that their effect is canceled by Pauli blocking in scat-
tering. This approximation can only be good as long aseV
!T. Otherwise, the scattering phase space will be deter-
mined by the nonequilibrium Fermi functions in the arms of
the interferometer, and thus this simple prescription fails.

Our model may also describe nonequilibrium(classical)
microwave noise impinging onto the interferometer setup or
some thermal noise source behaving classically(i.e., where
v,T for the relevant frequencies). Then the treatment be-
comes exact, even foreV@T.

As the noise is classical, we face a single-particle prob-
lem, i.e., we can solve for the motion of individual electrons.
The Fermi function will enter only in the end, when expec-
tation values(such as current correlators) are calculated. The
Pauli principle does not enter the calculation(except for,
possibly, the potential correlator, as explained above). In
contrast, for the case of a fully quantum-mechanical environ-
ment, we would end up with a complicated many-body prob-
lem because, in any case, the electrons would feel an effec-
tive interaction induced by the coupling to the bath — even
if we were to neglect their intrinsic interaction. This problem
is deferred to a future analysis.

FIG. 5. (Color online) The Mach-Zehnder interferometer setup
analyzed in the text. In the case shown here, the fluctuations of the
environment are fast compared with the temporal extent of the wave
packet(determined by temperature or voltage, see text). The prob-
ability density of the incoming wave packet and its two outgoing
parts is shown.
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A. Electron field at output port

As the electrons travel along the interferometer arms, they
will accumulate a random phase due to the fluctuating poten-
tial. We neglect the additional effects of the potential(accel-
eration and decceleration), by assuming the electron’s veloc-
ity to remain constant(linearized dispersion relation). This
should be a good approximation for sufficiently large Fermi
energy. The effects of a nonconstant velocity have been ana-
lyzed in more detail in Ref. 11, where Nyquist-noise-induced
dephasing of the current in a Mach-Zehnder setup has been
studied using the WKB approximation(see also Ref. 14).
There, the main contribution to the end result for the dephas-
ing rate did not depend on these extra effects. We will also
assume backscattering to be absent(i.e., the electrons are
traveling along chiral edge channels, or the potential is suf-
ficiently smooth to prevent 2kF momentum transfers). Fi-
nally, as we are taking a model of non interacting electrons
as our starting point, the electrons’ spin does not play any
important role(except for trivial factors), and we assume the
electrons to be spin-polarized in the following.

The Heisenberg equation of motion for the electron field

Ĉ moving at constant velocityvF, under the action of a
fluctuating potentialVsx,td, reads

i]tĈsx,td = feF + vFs− i]x − kFd + Vsx,tdgĈsx,td. s30d

Herex denotes the coordinate along the respective arm of the
interferometer. Note that the linear dispersion relation im-
plies ek8−ek=vFsk8−kd in the following. By solving this
equation of motion and taking into account the action of the
beam splitters, we arrive at the following expression for the
electron field at some point in the outgoing lead 3:

Ĉsx,td =E dk
Î2p

e−iekto
a=1

3

task,tdâaskdesaikFx. s31d

The fieldĈ is a linear superposition of the electron fieldsâa

emitted at the reservoirsa=1, 2, 3. Note that for the special
case of chiral edge channels, we may choose to concentrate
only on the outgoing current, such thata=3 would be absent
from Eq. (31), and the corresponding trivial contributions to
subsequent equations would drop out as well. We have
t3=1, s1,2=1,s3=−1, the reservoir operators obey
kâ†

askdâbsk8dl=dabdsk−k8dfaskd with fa the distribution
function in reservoira, and the integration is overk.0 only.

In contrast to the usual case, the transmission amplitudes
ta have become time dependent. The amplitudest1,t2 for an
electron to go from terminal 1 or 2 to the output terminal 3
depend on fluctuating time-dependent phaseswL,R:

t1sk,td = tAtBeiwRstd + rArBeiwLstdeisf+kdxd, s32d

t2sk,td = tArBeiwLstdeisf+kdxd + rAtBeiwRstd. s33d

Here tA/B and rA/B are energy-independent transmission and
reflection amplitudes at the two beam splitters(with tj

*r j =
−tjr j

*), dx accounts for a possible path-length difference be-
tween the interferometer arms, andf denotes the Aharonov-
Bohm phase due to the flux through the interferometer. The

electron accumulates fluctuating phases while moving along
the left or right arm

wL,Rstd = −E
−tL,R

0

dt8 VsxL,Rst8d,t + t8d, s34d

wheret is the time when the electron leaves the second beam
splitter after traveling for a timetL,R along the interferometer
arms, the trajectories being described byxL,Rstd.

In our model, the total traversal timestL,R enter only at
this point, determining the relation between the phase cor-
relator and the potential correlator. Note that we have as-
sumed the interaction to be confined to the interferometer
region. This assumption is natural if the fluctuations are due
to gates or other localized disturbances. It is also sufficient
for short-wavelength fluctuations. However, in the case of
long-wavelength fluctuations, it means that the effect of
these fluctuations on the phase differencewL−wR will cancel
out only in the case of vanishing path-length difference. Oth-
erwise, cutting off the potentialV at the entry and exit beam
splitter automatically introduces some remaining fluctuations
in wL−wR.

In general, the form of the phase correlator can be related
to the potential correlatorkVVl, using Eq.(34). For abbre-
viation, we setVLst1,td;VfxLst1d ,t+ t1gus−t1dust1+tLd and
likewise for VR. Then we havewLstd=−edt8VLst8 ,t+ t8d and
thus,

kdwstddws0dl =E dt1dt2kfVLst1,td − VRst1,tdg

3 fVLst2,0d − VRst2,0dgl. s35d

The terms of the typekVLVLl and kVRVRl describe phase
fluctuations within the two arms separately, while the cross
termskVLVRl will serve to suppress dephasing in the case of
long-wavelength fluctuations. In a diagrammatic treatment of
dephasing(e.g., in weak localization), the cross terms would
correspond to “vertex contributions,” whereas the former re-
late to “self-energy terms.”

In general, the potential correlatorkVVlqv and the corre-
sponding phase correlator[Eq. (35)] depend on the micro-
scopic environment under consideration(cf. Ref. 11 for a
calculation of spatially homogeneous potential fluctuations
in the interferometer arms, due to Nyquist noise), as well as
the geometry. A discussion of the potential and phase fluc-
tuations for realistic microscopic dephasing mechanisms will
be provided in a future work. Here we take the position that
the phase correlator is given, and we want to obtain the con-
sequences for the current noise.

B. Current

In calculating the current(and its correlators), we have to
take both a quantum-mechanical expectation value, as well
as an average over the random processVsx,td, or ratherwL,R.
This average will be denoted byk·lw in the following. The
output current,
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Îstd = eĈ†sx,td
− i]x

2m
Ĉsx,td + H.c., s36d

follows from (31). We will setx=0

Îstd =
evF

4p
E dkdk8 eisek−ek8dtFo

a

task,tdâaskdG†

3 o
b

sbtbsk8,tdâbsk8d + H.c. s37d

Therefore, we have

I = kŠÎl‹w =
evF

2p
E dk H− f3skd + o

a=1,2
faskdkTaskdlwJ .

s38d

The current depends on the phase averages of transmission
probabilitiesT1= ut1u2 andT2=1−T1,

kT1lw = TATB + RARB + 2zsrArBd* tAtBcossf + kdxd. s39d

The interference term is suppressed by the factorz;keidwlw,
wheredw=wL−wR. In writing down this expression, we have
assumedVsx,td and thusdw to be distributed symmetrically
around 0, such thatksinsdwdlw=0. For the special case of
Gaussian statistics(which we will assume below), we have
z=exps−kdw2l /2d. The factorz decreases the visibility of the
interference pattern observed inIsfd, and it has been defined
to correspond precisely to the phenomenologicalz intro-
duced for the dephasing terminal model[see Eq.(7)]. An
additional suppression of the interference term may be
brought about by thek-integration in Eq.(38), if Tdx/vF.1
or eVdx/vF.1. With respect to the current, it is indistin-
guishable from dephasing, which provides the motivation of
looking at shot noise in this context(see Sec. III).

We note that the current itself is independent of the spec-
trum of environmental fluctuations, as it only depends on the
probability distribution ofdw at any given moment(and not
its time-dependent correlator). This will change when we
look at shot noise. It would also be different for the case of a
quantum-mechanical environment, where the “effective”
spread ofdw would depend on the part of the bath spectrum
that is still active in dephasing, despite Pauli blocking.

C. Noise power: General formula

Before we turn to the calculation of the(zero-frequency)
current noise powerS, we briefly list the main ingredients
that we will find below:

(i) A “classical current noise”Scl, which is due to the
time-dependent fluctuations of the interferometer’s conduc-
tance. The resulting current fluctuations are linear in the ap-
plied voltage, such that the corresponding noise power is
quadratic inV.

(ii ) For any fixed external noise power, there is a finite
current noise contributionSV=0 even atV=0 andT=0, due to
the nonequilibrium radiation impinging on the system.

(iii ) The remainder of the full current noise contains the
usual quantum-mechanical partition noiseT s1−T d, which
will be modified due to the presence of the dephasing poten-

tial. The form of this modification depends on whether the
fluctuations of the environment are “fast” or “slow” as com-
pared to the time scales set by voltage and temperature.

The full current noise powerS can be split into two parts
by rewriting the irreducible current correlator

S=E dt ŠkÎstdÎs0dl‹w − ŠkÎs0dl‹w
2=E dt ŠkÎstdl kÎs0dl‹w

− ŠkÎs0dl‹w
2 +E dt ŠkÎstdÎs0dl − kÎstdlkÎs0dl‹w. s40d

The first integral on the right-hand side describes shot noise
due to the temporal fluctuations of the conductance, i.e., fluc-

tuations of a classical currentIstd=kÎstdl depending on time-
dependent transmission probabilities. We denote its noise
power asScl. It rises quadratically with the total current, as is
known from 1/f-noise in mesoscopic conductors.27

We now focus on the second integral, which will contain
the modified partition noise(among other contributions, such
as a finite “Nyquist noise”SV=0). It is evaluated by inserting
(31) and applying Wick’s theorem28 (similar formulas appear
in Ref. 29)

ŠkÎstdÎs0dl − kÎstdlkÎs0dl‹w = SevF

2p
D2E dkdk8 o

a,b=1,2,3
faskdf1

− fbsk8dgKabstdeis«k−«k8dt. s41d

HereKab is a correlator of four transmission amplitudes. We
haveK33=1, K3a=Ka3=0, and

Kabstd ; kta
* sk,tdtbsk8,tdtask,0dtb

* sk8,0dlw, s42d

for a ,b=1,2.

D. Limiting cases

In order to understand the resulting expressions, we will
now derive two limiting forms, for a “fast” and a “slow”
environment. We will assume that the phase correlator
kdwstddws0dl decays on some time scaletc, the correlation
time of the environment. Note that even for a non exponen-
tial decay we can still define a typical scaletc, e.g., by de-
mandingkdwstcddws0dl=kdw2l /2. Now this time has to be
compared against the other time scales,seVd−1 and T −1.
These scales enter the current noise formula(41) in the form
of the Fermi functions, and they determine thet-range of the
oscillating exponential factor, after integration overk andk8.
We will assume for the moment that thek-dependence of
Kab itself is unimportant(i.e., dx is sufficiently small). See
below for a discussion of other cases.

For eVtc!1 andTtc!1 (“fast environment”), the major
contribution of the integration comes fromut u@tc, where
Kab factorizes into

Kabstd < Kabs`d ; ukta
* sk,0dtbsk8,0dlwu2. s43d

Adopting this limiting value forKab at all timest yields the
noise power
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Sfast

e2vF/2p
=E dk o

a,b=1,2
fas1 − fbdukta

* tblwu2 + f3s1 − f3d,

s44d

where we have setfa,b= fa,bskd andta,b= ta,bsk,0d. Note that
this form of the shot noise for a fast environment is not
equivalent to an expression of the kindkT lws1−kT lwd, which
we have obtained from a simple classical model(see the
discussion in Sec. IV). The difference between those two
formulas can be evaluated in general, and we find

ukt1
* t2lwu2 − kT1lws1 − kT1lwd = sz2 − 1dRBTB. s45d

This means the partition noise for the fast case is usually
reduced below the value found from the simple expression.
Nevertheless, we will discuss a certain special case where the
simple formula is indeed recovered(see below).

We can always write the full noise power as

S= Sfast+ Sfluct + Scl, s46d

whereSfluct denotes the remainder besidesSfast and Scl [i.e.,
Sfluct is given by Eq.(41)], with Kabstd−Kabs`d inserted in
place ofKabstd. It yields a contribution to the Nyquist noise
SV=0 (see below), but apart from that it becomes important
only at largerV,T, where it will serve to produce the cross-
over to the case of the slow environment, which we discuss
now.

In the other limiting case thet-integration is dominated
by utu!tc (“slow environment”), and we can useKabstd
<Kabs0d, which yields

Sslow

e2vF/2p
=E dkksf1T1 + f2T2df1 − sf1T1 + f2T2dglw

+ f3s1 − f3d, s47d

i.e., the phase average of the usual shot-noise expression[at
T=0 the expression in brackets reduces tokT1s1−T1dlw].

E. Evaluation of shot noise contributions in general

For a phase differencedw described by a Gaussian ran-
dom process of zero mean and prescribed correlator
kdwstddws0dl, the correlatorsKab of transmission amplitudes
[Eq. (42)] can be evaluated in general. This is done by in-
serting the transmission amplitudes given above and evalu-
ating the average of the exponential phase factors. We thus
obtain an exact expression that contains arbitrary orders of
interaction with the field(i.e., arbitrary powers of the phase
correlator).

The following expressions describe the time-dependent
deviation of the transmission amplitude correlatorsKabstd
from their large-time limiting valuesKab

` [enteringSfast, Eq.
(44)]. They follow directly from the definition ofKabstd, Eq.
(42), using the transmission amplitudes in Eqs.(32) and(33),
as well as the abbreviationsgstd=exp kdwstddws0dl and z
=exps−kdw2l /2d:

K12std − K12
` = K21std − K21

` = − 2RATARBTBcosf2f + dxsk

+ k8dgz2fg−1std − 1g + RBTBsRA
2 + TA

2dz2fgstd

− 1g, s48d

K11std − K11
` = K22std − K22

` = 2RATARBTBz2 3 hcosf2f

+ dxsk + k8dgfg−1std − 1g + fgstd − 1gj.

s49d

HereRA=1−TA, and we have repeatedly used the fact that
there is a phase shift of ±p /2 between transmission and re-
flection amplitudes at each beam splittersrAtA

* =−rA
* tAd.

Both Sfluct and Scl depend on the frequency spectrum of
the environment via the exponentialgstd of the phase cor-
relator appearing inKab (in contrast,Sfast and Sslow are ex-
pressed in terms ofz=exps−kdw2l /2d only). The resulting
noise power can be written in terms of the following Fourier
transforms(with n= ±1):

ĝnsvd ; E dt eivt fenkdwstddws0dl − 1g. s50d

Note that the first term in brackets approaches 1 forut u
→`, as the phase correlations decay. These functions are
similar to those appearing in the so-called P(E)-theory of
tunneling in a dissipative environment30,31 as well as in the
“independent boson model.”

Using the explicit forms of the correlatorsKab, we find
Sfluct to be equal to

Sfluct = SevF

2p
D2E dkdk8 ff1s1 − f28d + f2s1 − f18dg 3 RBTBhsRA

2

+ TA
2dz2ĝ+fvFsk8 − kdg − 2 cosf2f + dxsk

+ k8dgRATAz2ĝ−fvFsk8 − kdgj + ff1s1 − f18d + f2s1 − f28dg

3 2z2RATARBTBhĝ+fvFsk8 − kdg+cosf2f + dxsk

+ k8dgĝ−fvFsk8 − kdgj. s51d

In a similar fashion, we can evaluateScl. This term does
not display two different limiting regimes. The reason is that
it involves only correlators of time-dependent transmission
probabilities, but no oscillating factor depending on the en-
ergy difference. Therefore, the result does not depend on the
relation betweentc andeV,T. In general, this term is deter-
mined by the zero-frequency correlators of the exponential
phase factors contained in the transmission probabilities. We
find (with df ; f1− f2)

Scl = 2z2RARBTATBS e

2p
D2

vF
2 E dkdk8dfdf8 3 hĝ−s0dcosf2f

+ dxsk + k8dg + ĝ+s0dcosfdxsk − k8dgj. s52d

F. Current noise at T=0

Thek-integrals contained in the expressions(51) and(52)
for Sfluct andScl still remain to be evaluated. In this section,
we will present and discuss explicit expressions for the case
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T=0, dxeV/vF!1, i.e., the case of pure dephasing without
any thermal smearing. According to the discussion at the
beginning of the present section, analyzing the zero-
temperature limit invariably means we adopt the picture of
real classical noise impinging onto the system(as opposed to
classical noise being an approximation for a quantum bath,
which would requireeV!T for self-consistency).

We assume the electrons to be injected from reservoir 1,
i.e., f2skd= f3skd= fskd=uskF−kd and f1skd=uskF+Dk−kd
; fskd+dfskd, with Dk=eV/vF.

As we are interested in theshot noise, we subtract the
equilibrium partSfluctsV=0d;SV=0 from Sfluct [Eq. (51)]. In
the remainder, the term stemming fromf1s1− f18d is seen not
to contribute(employing symmetry ink and k8), and the
terms fromf1s1− f28d and f2s1− f18d lead to the integral

E dkdk8fdfs1 − f8d − fdf8dĝnsvFsk8 − kdg =
2eV

vF
2 InsVd,

s53d

whereInsVd also depends on temperatureT. In particular, at
T=0, we findIn to be

InsVd ; E
0

eV

dvS1 −
v

eV
Dĝlsvd. s54d

Collecting the contributions fromS=Scl+Sfast+Sfluct, the shot
noise is then given by

S− SV=0

e3V/2p
=

eV

p
z2RARBTATBfcoss2f̃dĝ−s0d + ĝ+s0dg + ukt1

* t2lwu2

+
1

p
z2RBTBh− 2 coss2f̃dRATAI−sVd+ sRA

2

+ T A
2dI+sVdj. s55d

Here we have defined the average phase asf̃=f+kFdx. The
first line of Eq. (55) corresponds toScl, the second toSfast,
and the rest toSfluct−SV=0. The current noise displayed in Eq.
(55) is a function ofeVtc, z, TA, TB, f, and of the detailed
shape of the environment correlator contained inInsVd and
ĝns0d. The dependence ofS−SV=0 on voltage is explicit in the
first two lines, stemming fromScl and Sfast (quadratic and
linear, respectively). Only the contribution fromSfluct (last
two lines) depends on voltage in a more complicated way,
via the environment spectrum.

We can introduce the dependence on the environment cor-
relation timetc by assuming the phase correlator to be given
as kdwstddws0dl=Cst /tcd. Then InsVd is a function ofeVtc

only.
We may confirm directly thatSfast dominates at low volt-

ages, sinceScl is quadratic in voltage and the integralsI±sVd
in Sfluct vanish. At largeeVtc@1 we can use the sum rule

InsVd → pfz−2n − 1g s56d

to combine the shot-noise contributions in the last three lines
of Eq. (55), i.e., Sfast+Sfluct−SV=0, yielding

ukt1
* t2lwu2 − 2 coss2f̃dRATARBTB z2sz2 − 1d + RBTBsRA

2 + TA
2ds1

− z2d = kT1s1 − T1dlw. s57d

This is precisely the result expected from the limit of a slow
bath, i.e., fromSslow, compare Eq.(47). At intermediate volt-
ages, the shot noise interpolates smoothly between the ex-
tremes described bySfast andSslow.

To produce the plots discussed in the following, we have
assumed 50% transparency of the first beam splittersTA

=1/2d and a simple Gaussian form for the phase correlator,

kdwstddws0dl = kdw2le−st/tcd2. s58d

In the case ofTA=1/2, thenormalized shot noise is given
explicitly as a function of the parametersz,eVtc,TB,f̃ by
the following formula:

S− SV=0

e3V/2p
=

z2

4p
seVtcdRBTBscoss2f̃dĝ̃−s0d + ĝ̃+s0dd +

1

4
fsTB

− RBd2 + 4z2RBTBsin2f̃g +
z2

2p
RBTBfĨ+sVtcd

− coss2f̃dĨ−sVtcdg. s59d

Here the functionsĝ̃n and Ĩn are evaluated by settingtc=1 in
the phase correlatorCst /tcd. They have to be evaluated by
numerical integration[for a given shapeCst /tcd of the phase
correlator]. This equation has been derived for the case
eV.0, but it may be verified thatS is symmetric inV.

The full current noiseS also contains the Nyquist noise
SV=0, which is independent off̃ andTA

SV=0 =
e2

2p 2z2RBTBE
0

`

dv vĝ+svd. s60d

The Nyquist noise scales like 1/tc. The dependence onz is
not explicit, as the integral depends onz itself (scaling like
1/z2 for small but not ultrasmallz). In deriving the Nyquist
noise fromSfluct, we have only kept the contribution from
states near the Fermi edge, assuming all states for
kP s−` ,kFd to be filled.

Figure 6 shows the evolution ofSsVd with increasing
dephasing strength(i.e., increasingkdw2l, decreasingz).
Note that the shot noise itself(i.e., the deviation fromV=0)
may even vanish due to the presence of the fluctuating po-
tential, in the limit of a fast environment,Vtc→0: According
to Eq. (44), Sfast is determined byukt1

* t2lwu2 at T=0. In the
limit of vanishing visibility, z→0, this expression is zero for
TB=1/2, independent of the value ofTA. That may be veri-
fied explicitly, but it can also be deduced from Eq.(45) by
noting thatkT1lws1−kT1lwd=1/4 forz=0, TB=1/2.However,
althoughSfast can become zero, the total current noiseSdoes
not vanish, due to the Nyquist contribution(and the classical
term Scl at higher voltages). Indeed the figure illustrates that
the fluctuating potentialVsx,td always leads to an increase in
current noise(as expected). Nevertheless, the dependence on
dephasing strength may be nonmonotonic, as seen in Fig. 6,
at large voltagesV.
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The dependence oneVtc is also illustrated in Fig. 7,
where the dependence of the shot noise on the parametersTB
andf is displayed for different values ofeVtc (see also the
figures in Ref. 21 showing the crossover betweenSfast and
Sslow).

Note that the behavior ofSfast, given byukt1
* t2lwu2, is quite

different from that ofkT1lws1−kT1lwd, which is the form de-
rived from the simple classical model of Sec. IV. Indeed, the
latter expression does not vanish at intermediate values of
TA,TBsÞ0,1d, and forz=0 it becomes independent ofTB if
TA=1/2 (while the first expression becomes independent of
TA if TB=1/2).

G. Other cases: Finite temperatures and finite
path-length difference

The results of the previous section have been derived for
the caseT=0,dx=0. We will now discuss the changes intro-
duced by relaxing these assumptions.

1. Finite temperatures

If we calculate the current noise for a finite temperatureT,
but still at dx=0, the different components ofS=Scl+Sfast
+Sfluct show the following behavior: The contrast of the cur-
rent Isfd is unaffected by the thermal smearing of the Fermi
surfaces(sincedx=0) and, for the same reason, the “classi-
cal” part Scl remains the same(apart from possible changes
related to a temperature dependence of the environmental
power spectrum). In Sfast from Eq. (44), the finite-
temperature Fermi functions lead to Nyquist noise contribu-
tions (which have been absent inSfast for T=0):

Sfast

e2/2p
= ThukT1lwu2 + ukT2lwu2 + 1j + eVukt1

* t2lwu2cothSbeV

2
D .

s61d

In Sfluct of Eq. (51) the k,k8-integral over products of
Fermi functions and environment power spectraĝl are al-
tered as well. In the particular limit ofTtc→` (regardless of
V), the Fermi functions can be approximated by a constant
on the scale over which the power spectrumĝl changes.
Then the integrals overk8−k can be carried out easily, lead-
ing to sum rules. Combining the terms fromSfast andSfluct in
this limit leads to the expressionSslow [Eq. (47)]. We con-
clude that Sslow is indeed the appropriate expression for
1/tc!maxsT,eVd.

2. Finite path-length difference

If a finite path-length differencedx is introduced, we have
to consider four time scales altogether:tc, seVd−1, T −1, and
the new time scaledx/vF. We will not give an exhaustive
discussion of all possible cases for the order of these times.
In the limiting case of very smalldx, i.e., dx/vF
!tc,seVd−1,T −1, the previous expressions remain un-
changed. Even ifdx/vF becomes larger thantc [but remains
much smaller thanseVd−1,T −1], it may still be shown that
this does not affect the results for the current noise.

We now consider the more interesting opposite limit,
where the averaging over wave numberk is so important that
it destroys completely the interference pattern, i.e.,dx/vF
@ seVd−1 or dx/vF@T−1. In that case, the interference term in
the average current is completely suppressed such that the
additional dephasing effect of the environment is unimpor-
tant for the current. In addition, the “classical” current noise
part Scl now vanishes because it depends on the temporal
fluctuation of the interference term in the average current

kÎstdl, which is already absent due to thermal averaging. The
other two parts —Sfast andSfluct of the current noiseS— are
changed as well, but they do not become equal to the results
obtained without dephasing.

We illustrate those changes in the zero-temperature case
analyzed in Sec. VII F. The shot noise in Eq.(59) is changed
in the following ways. The first line(due toScl) is absent,
and the second and third lines(due to Sfast and Sfluct) are
averaged over the phasef such that the average of coss2fd
vanishes and that of sin2f is equal to 1/2. However, the shot
noise still depends onz and on the bath spectrum(via I+)

S− SV=0

e3V/2p
= TARAsTB − RBd2 + z2TBRBsTA

2 + RA
2dF1 +

I+sVd
p

G .

s62d

For a “fast” environment, we haveI+sVd→0 such that Eq.
(62) becomesTARAsTB−RBd2 in the fully incoherent case,z
→0. In the opposite limit of large voltages(“slow environ-
ment,” eVtc@1), we haveI+sVd→pfz−2−1g, which makes
Eq. (62) independent ofz. The resulting expression is then
equivalent to the one obtained by purek-averaging, in the
absence of dephasing. In conclusion, shot noise may indeed
help to reveal the presence or absence of dephasing even
when thermal averaging is so strong that interference is al-
ready completely suppressed, but not in the limit of a “slow”
bath. The Nyquist noise is not affected bydx, as it results

FIG. 6. (Color online) Full current noiseSas a function ofeVtc,
for increasing strength of dephasingsz=1. . .0.05d, according to Eq.
(55). Dephasing always increases the current noise beyond the
value obtained for the ideal casez=1. The offsetSV=0 is given in
Eq. (60), the slope nearV=0 is described bySfast, Eq. (44), and at
higher voltages the dependence onV is quadratic, due toScl. When
Scl is subtracted, the slope at largeeVtc is determined bySslow [i.e.,
kT1s1−T1dlw]. Parameters:T=0, dx=0, f=p /2, TA=1/2, TB=0.3.
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from settingf1= f2 in Eq. (51), whence the cos terms depend-
ing on dx combine to zero.

3. Beam of electrons

It is instructive to note that even the dephasing model
considered here can lead to the simple formkT1lws1−kT1lwd
of the shot noise(which holds for a classical model in the
fully incoherent limit, see Sec. IV). This is true provided the
transport situation is different from the usual one treated
above. Instead of having all the reservoirs filled up to some
Fermi level and then applying a voltage between them, we
consider a situation where a(nearly mono energetic) beam of
electrons is injected from reservoir 1, with wave numbers in
an intervalDk, and all the other reservoirs areempty: f1skd
=uskP fkF ,kF+Dkg and f2= f3=0. In this situation, there is
no “Nyquist noise”(S vanishes forDk=0, when there are no
electrons at all). In the limit of smallDk (“fast environment,”
with DkvFtc!1), we obtain for the shot noise(at T=0)

S− Scl <
e2vF

2p
DkkT1lws1 − kT1lwd. s63d

Here we assumeddx=0 as above. This formula follows by
evaluatingSfast+Sfluct in the limit of smallDk and using the
sum rule(56). In contrast to the evaluation ofSfluct in the
transport situation considered above, the integral overk8 now
runs over all states and is not restricted to a small transport
window, which is essential to obtain(63). We conclude that
this is yet another example32 of a situation where the correct
result for the shot noise cannot be obtained by taking into
account only the “surplus” electrons in the transport window
of sizeeV, even though this approachdoesyield the correct
current. The presence of the filled Fermi seas is not merely
important for the Nyquist noise contribution, but for the shot
noise as well. In the other limiting case,DkvFtc@1, we ob-
tain the result expected fromSslow, i.e., with kT1s1−T1dlw in
Eq. (63), in addition to the “classical” contributionScl with
its quadratic dependence onDk.

FIG. 7. (Color online) Normalized shot noisesS−SV=0d / se3V/2pd of the Mach-Zehnder interferometer, as a function of the transmission
of the second beam splitter,TB (horizontal axis), and the phase differencef (into the plane), for the case of small but finite visibility,z
=1/e, atT=dx=0 andTA=1/2. The different plots show the succession from a “fast” environment to a “slow” one, by increasing the voltage
or the correlation time(top left to bottom right:eVtc=0,5,7,10). Note the change of plot range on the vertical axis. AtTB=0,1, the
normalized shot noise remains fixed at 1/4.
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VIII. COMPARISON OF DIFFERENT MODELS AND
REGIMES

In this section, we compare the results obtained for the
different models and regimes. We restrict ourselves to the
fully incoherent limit sz=0d, at T=0 andTA=1/2. We em-
phasize that we do not want to imply that one should expect
them to agree in any limit. The phenomenological classical
model is a heuristic construction that is known to give the
correct result for a single barrier, and even for the dephasing
terminal it is not completely clear to which microscopic
model it is to correspond. In addition, we remind the reader
that the results obtained for dephasing by classical noise are
not expected to coincide with those obtained for a quantum-
mechanical bath in the limiteV@T considered here.

We have to distinguish three possible results for the modi-
fied partition noise term, entering the shot noiseS−SV=0 (de-
picted in Fig. 8):

sadkT1lws1 − kT1lwd = 1/4,

sbdkT1s1 − T1dlw = sTB
2 + RB

2d/4,

scdukt1
* t2lwu2 = sTB − RBd2/4. s64d

The corresponding values for the different models and
regimes are indicated in the following table. Note that these
expressions only refer to the contribution toS, which is lin-
ear in voltage. For the model of dephasing by classical noise
(last three entries), one still has to add the constant back-
groundSV=0, as well asScl (growing quadratically with volt-
age).

Model/regime dx!vF /eV dx@vF /eV

no dephasingsz=1d T1sfds1−T1sfdd b

Simple classical model a b

Dephasing terminal b b

“fast” environment c c

“slow” environment b b

“narrow electron beam” a a

For the parameters considered here, thermal averaging
sdx@vF /eVd only affects the results obtained without
dephasing or from the simple classical model of Sec. IV. In

any case, the results for the “slow classical noise”[Eq. (47)]
and the dephasing terminal[Eq. (16)] both coincide with the
result(b) kT1s1−T1dlw obtained for complete thermal averag-
ing (which is also obtained from the simple classical model
if thermal averaging is present on top of dephasing). It might
still be possible to deduce the presence of dephasing in the
case of classical noise, both from the presenceSV=0 andScl,
although we have to note thatScl vanishes if both dephasing
and thermal averaging are effective. The form of the shot
noiseSfast (c) obtained in the limit of a “fast” environment
[Eq. (44)] is not found in any of the other models. Finally,
the result(a) kT1lws1−kT1lwd conjectured from the simple
classical model(in the absence of thermal averaging) can
also be found for dephasing by classical noise, provided we
consider a special transport situation, with a “narrow beam of
electrons”[(Eq. (63)].

IX. CONCLUSIONS

We have analyzed the effect of a fluctuating environment
on the shot noise in an electronic Mach-Zehnder interferom-
eter. The environment has been modeled as a classical noise
field that leads to a fluctuating phase difference for electrons
traversing the interferometer and, thereby, suppresses the in-
terference term. For comparison, we have also discussed a
simple classial ansatz and the phenomenological dephasing
terminal approach.

The effect of dephasing on the averagecurrent is always
the same and qualitatively indistinguishable from “thermal
averaging”(averaging over wave number in the presence of
a path-length difference). However, important differences ap-
pear in the shot-noise results. While the power spectrum of
the phase fluctuations does not enter the current for the case
of a classical fluctuating potential considered here, the cur-
rentnoisestrongly depends on the fluctuation spectrum, thus
offering more information on the environment. There are
three main contributions to the current noise: some “classi-
cal” current noise(rising like V2) due to the fluctuations of
the conductance, some “Nyquist noise” background; and fi-
nally the usual partition noise, modified due to the presence
of the environment. The partition noise contribution depends
on a two-time correlator of four transmission amplitudes and
is sensitive to the power spectrum. We have distinguished the
limits of a “slow” and a “fast” environment, depending on
whether the inverse correlation time of fluctuations 1/tc is
much smaller or much larger than the maximum of voltage
eV and temperatureT. We have found that the usual result
T1s1−T1d for the partition noise(at given transmission prob-
ability T1) may be replaced by one of three limiting forms,
depending on the correlation timetc, the transport situation
and the dephasing model:(i) For a “slow” environment, the
usual result is averaged over the phase fluctuations,kT1s1
−T1dlw, which is similar to the effect of thermal averaging
and identical to the result provided by the dephasing terminal
(although there may be problems with the dephasing termi-
nal, see Sec. V). (ii ) For a “fast” environment applied to a
nearly monoenergetic beam of electrons, we obtainkT1lws1
−kT1lwd, which is also the result derived from a simple clas-

FIG. 8. (Color online) Shot noise as a function of the transmis-
sion of the second beam splitter, for the fully incoherent case(and
TA=1/2): Different models and parameter regimes lead to different
curves(see text).
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sical model.(iii ) For a fast environment applied to the usual
transport situation(with the chemical potential of one of the
input reservoirs increased byeV), we obtainukt1

* t2lwu2, where
t1,2 are the amplitudes of reaching the output port from inputs
1 and 2sut1u2=1−ut2u2=T1d. In this case, the shot noise atT
=0 can even be suppressed to zero by the fluctuating envi-
ronment for appropriate parameter combinations while, on
the other hand, the Nyquist noise becomes nonzero.

We have discussed the crossover between slow and fast
environment, the dependence of the shot noise on the phase
difference between the paths and on the beam-splitter trans-
parency, and the influence of finite temperatures and the fi-
nite path-length difference(thermal averaging).

The most important tasks that remain to be tackled in
future works are the consideration of finite frequency shot

noise, the derivation of realistic microscopic power spectra
as input for this calculation, and, in particular, the inclusion
of a truly quantum-mechanical environment that will be rel-
evant, particularly, for the case of voltages larger than tem-
perature.

ACKNOWLEDGMENTS

We thank M. Heiblum for useful comments and informa-
tion. Useful discussions with W. Belzig, M. Büttiker, A. A.
Clerk, J. C. Egues, and E. V. Sukhorukov are gratefully ac-
knowledged. This work has been supported by the Swiss
NSF and the NCCR Nanoscience, as well as DFG Grant No.
MA 2611/1-1.

1P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett.
78, 3366(1997).

2E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and H. Shtrikman,
Nature(London) 391, 871 (1998).

3D. P. Pivin, A. Andresen, J. P. Bird, and D. K. Ferry, Phys. Rev.
Lett. 82, 4687(1999).

4A. E. Hansen, A. Kristensen, S. Pedersen, C. B. Srensen, and P. E.
Lindelof, Phys. Rev. B64, 045327(2001).

5D. Natelson, R. L. Willett, K. W. West, and L. N. Pfeiffer, Phys.
Rev. Lett. 86, 1821(2001).

6K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, J. Phys. Soc.
Jpn. 71, L2094 (2002).

7F. Pierre and N. O. Birge, Phys. Rev. Lett.89, 206804(2002).
8Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H.

Shtrikman, Nature(London) 422, 415 (2003).
9I. L. Aleiner, N. S. Wingreen, and Y. Meir, Phys. Rev. Lett.79,

3740 (1997).
10Y. Levinson, Europhys. Lett.39, 299 (1997).
11G. Seelig and M. Büttiker, Phys. Rev. B64, 245313(2001).
12F. Marquardt and C. Bruder, Phys. Rev. B65, 125315(2002).
13F. Marquardt and C. Bruder Phys. Rev. B68, 195305(2003).
14G. Seelig, S. Pilgram, A. N. Jordan, and M. Büttiker, Phys. Rev.

B 68, 161310(2003).
15J. H. Davies, J. C. Egues, and J. W. Wilkins, Phys. Rev. B52,

11 259(1995); C. Texier and M. Büttiker,ibid. 62, 7454(2000).
16M. Büttiker, Phys. Rev. B33, 3020(1986).
17M. J. M. de Jong and C. W. J. Beenakker, inMesoscopic Electron

Transport, edited by L. P. Kouwenhovenet al., NATO ASI Se-
ries Vol. 345(Kluwer, Dordrecht, 1997).

18M. J. M. de Jong and C. W. J. Beenakker Physica A230, 219
(1996).

19S. A. van Langen and M. Büttiker, Phys. Rev. B56, R1680
(1997).

20V. A. Khlus, Zh. Eksp. Teor. Fiz.93, 2179(1987); G. B. Lesovik,
JETP Lett. 49, 592 (1989).

21F. Marquardt and C. Bruder Phys. Rev. Lett.92, 056805(2004).
22A. A. Clerk and A. D. Stone, Phys. Rev. B69, 245303(2004).
23M. Heiblum, private communication.
24Ya. M. Blanter and M. Büttiker, Phys. Rep.336, 1 (2000).
25M. Büttiker, Phys. Rev. Lett.65, 2901(1990); Phys. Rev. B46,

12 485(1992).
26B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C

15, 7367 (1982); S. Chakravarty and A. Schmid, Phys. Rep.
140, 195 (1986); A. Stern, Y. Aharonov, and Y. Imry, Phys.
Rev. A 41, 3436(1990).

27Sh. Kogan,Electronic Noise and Fluctuations in Solids(Cam-
bridge Univ. Press, Cambridge, England, 1996).

28The sign ofek−ek8 in the exponent was flipped in Ref. 21. This is
without consequence for the zero-frequency noise power.

29G. B. Lesovik, JETP Lett.70, 208 (1999).
30G.-L. Ingold and Y. V. Nazarov, inSingle Charge Tunneling,

edited by H. Grabert and M. Devoret, NATO ASI Series B, Vol.
294 (Plenum, New York, 1992).

31G. Schön, inQuantum Transport and Dissipation, edited by T.
Dittrich et al. (Wiley-VCH, Weinheim, 1998).

32U. Gavish, Y. Levinson, and Y. Imry, Phys. Rev. Lett.87, 216807
(2001).

F. MARQUARDT AND C. BRUDER PHYSICAL REVIEW B70, 125305(2004)

125305-16


