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The paper presents asymptotic analysis of an eigenvalue problem for the Helmholtz operator in a periodic
structure involving split-ring resonators[originally proposed in J. B. Pendryet al., IEEE Trans. Microwave
Theory Tech.47, 2075(1999)]. The eigensolutions are sought in the form of Bloch waves. The main emphasis
is given to the study of localized modes within such a structure and to the control of low-frequency bandgaps
on the corresponding dispersion diagram. Asymptotic results are explicit and are in good agreement with
numerical simulations.
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I. INTRODUCTION

During recent years the models involving split-ring reso-
nators (SRRs) and their applications in the design of left-
handed materials(LHM ) were the subjects of publications
and intensive discussions in Physical Review Letters.1–4 The
original concept was proposed by Pendry and his colleagues
in Ref. 5. In the electromagnetic theory, materials with opti-
cal resonances are interpreted in the sense of negative effec-
tive dielectric permittivity for certain frequency intervals
(photonic bandgap frequencies), as described in the classical
work.6 The paper5 presents analysis of a crystal consisting of
SRRs, also referred to as “double C” resonators because of
their shape. An effective medium, associated with an array of
such resonators, shows a negative effective permeability re-
gion (photonic bandgap region) in a neighborhood of the
resonance frequency. In models of electromagnetism, com-
posite structures that possess simultaneously effective nega-
tive electric permittivity and effective negative magnetic per-
meability are studied in Refs. 7–9.

Homogenization theory for arrays of infinitely conducting
parallel fibers was first proposed in Ref. 10 and subsequently
extended in Refs. 11 and 12. The SRRs were used further in
the homogenization analysis in Ref. 13 and LHM simula-
tions in Ref. 2. This last paper generated interesting
discussion3,4 involving analysis of anisotropy of the compos-
ite structure with SRRs. Experimentally, it was confirmed1

that SRR composite structures possessing negative effective
refractive index can be successfully used for focusing a sig-
nal generated by a point source. Most recently, SSRs were
shown to possess high-frequency magnetic response, provid-
ing an artificial magnetic device composed of nonmagnetic
conductive resonant elements.14 Also of interest is the ana-
lytic model based on Bessel expansions proposed in Ref. 15
for infinitely thin, infinitely conducting circular split rings
with ad libitum number of cuts.

One of important issues consists of analysis of localized
eigenmodes existing within SRRs, and the present article
shows that such analysis allows for an explicit analytical
treatment by an asymptotic method. It is also possible to
introduce a new physical interpretation associated with prob-
lems of continuum mechanics for sonic crystals that exhibit
spectral gaps within a certain range of frequencies. For those
familiar with the terminology of elasticity theory it will also

be clear that our formulation is equivalent to a scalar anti-
plane shear problem. The composite structures considered
here include locally resonant elements, and corresponding
effective dynamic media may possess complex effective
elastic moduli within a certain frequency range(stop band
frequencies), as outlined in Ref. 16. In terms of mathematical
modeling, this work is also related to a rigorous analysis17 of
boundary value problems in disintegrating domains.

By varying the size, material parameters, and geometry of
structural elements, including SRRs, we can control the val-
ues of stop band frequencies. This enables us to design mi-
crostructured materials shielding acoustic signals and anti-
plane shear waves. Further extension to full vector problems
provides applications in the design of seismic wave filters.

II. SPECTRAL PROPERTIES OF A DOUBLY PERIODIC
ARRAY OF SRRs

First, we present illustrative numerical results for a spec-
tral problem for the Helmholtz operator within a doubly pe-
riodic square array of SRRs. Homogeneous Neumann
boundary conditions are prescribed on the contour of each
resonator and the standard Floquet-Bloch conditions are set
on the boundary of an elementary cell of the periodic struc-
ture. The full mathematical formulation is given in Sec. III,
and the composite structure is shown in Fig. 3.

A finite element program was written to compute the ei-
genvalues and to generate the corresponding eigenfields. In
Fig. 1 we present the dispersion diagrams for eigenfrequen-
ciesv as functions of the Floquet-Bloch parameterk. Along
the horizontal axis we have the values of modulus ofk,
wherek stands for the position vector of a point on a trian-
gular contourGMK within the irreducible Brillouin zone.
The negative values on the horizontal axis correspond to −uk u
as we approach the origin along theKG direction. Figure 1(a)
is constructed for a doubly periodic array of circular voids,
whereas Fig. 1(b) displays a dispersion diagram for a doubly
periodic array of SRRs. Deliberately in Fig. 1(b), we con-
sider the range of frequencies that covers the first bandgap of
the dispersion diagram of Fig. 1(a). We show that the pres-
ence of SRRs gives additional low-frequency bandgaps and
additional eigenmodes associated with the localized standing
waves. These eigenmodes will be described in the frame of
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the asymptotic model of the text below. The numerical val-
ues for the frequencies of the localized standing waves are
v1

* =0.806 andv2
* =1.817 and these values are consistent

with those predicted by the asymptotic model of Sec. V.
The eigenfunctions corresponding to these eigenfrequen-

cies are shown in Fig. 2: Fig. 2(a) contains the contour line
diagram corresponding to the eigenfunction associated tov1

* ,
whereas Fig. 2(b) shows the eigenfunction corresponding to
v2

* . As shown in Fig. 2, the interior of the SRR consists of a
ring and a disk-shaped body connected together by a thin
ligament. As predicted by the asymptotic model[Sec. V
(iii )], the first eigenfunction[Fig. 2(a)] describes a vibration
of the whole set(the ring plus the disk-shaped body in the
middle), as a rigid solid, connected by a thin ligament to a
fixed rigid foundation. The second eigenfunction[Fig. 2(b)],
corresponding tov2

* , describes vibration of the central disk
as a rigid solid connected by a thin ligament to a fixed rigid
foundation.

III. FORMULATION OF THE SPECTRAL PROBLEM

We consider a doubly periodic array of “defects” repre-
sented by a cloud of voids(see Fig. 3) V1,V2, . . . ,Vn em-
bedded in an elementary cellY=g0;1f3g0;1f. Let usx,yd
satisfy the Helmholtz equation

Du +
rv2

m
u = 0 s1d

in Y\ø jV j. Here, u represents an amplitude of an out-of-
plane time-harmonic displacement within an elastic medium
with the mass densityr and the shear modulusm; v stands
for the radian frequency of vibration. We also assume thatu
satisfies homogeneous Neumann boundary conditions on the
contours of voids

]u

]n
= 0, on]V j, j = 1, . . . ,n s2d

and the Floquet-Bloch condition

usx + me1 + ne2d = usxdeisk1m+k2nd s3d

within the doubly periodic array. Herem andn are integers
andk1, k2 represent components of the Floquet-Bloch vector
k; ej are the unit basis vectors of the Cartesian coordinate
system inR2.

In the sequel, we normalize the wave velocityv=Îm /r to
1. This leads to a dimensionless normalized radian frequency
vd/v, whered=1 denotes the pitch of the array. In the same
spirit, we normalize the Bloch vector tokd.

We would like to consider a particular important case
when the voidsV1, . . . ,VN are of the shape of the letter C
and they are located with respect to each other, as shown in
Fig. 3. Formally,

V j = haj , uxu , bjj \ P«
s jd, s4d

whereaj and bj are given constants andP«
s jd is a thin liga-

ment between the “ends of the letter C”[see formula(7)].

IV. A MULTISTRUCTURE

Let M be a multistructure defined as follows:

M = ø
j=1

N

hRj ø P«
s jdj ø DN, s5d

whereRj are concentric rings

FIG. 1. Bandgap diagram for a doubly peri-
odic array representing the normalized radian fre-
quencyv versusuk u: (a) The case of an array of
circular voids.(b) The case of an array of double
C defects.

FIG. 2. (a) The eigenfunction corresponding to the eigenfre-
quency v1

* =0.806. (b) The eigenfunction corresponding to the
eigenfrequencyv2

* =1.817.
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Rj = hx:bj , uxu , aj−1j s6d

andDN is the interior of a “ring” formed byVNøP«
sNd.

For certain range of frequencies, this multistructure will
behave in a way similar to a set of masses connected by soft
elastic springs, as shown in Fig. 3(c).

V. ASYMPTOTIC APPROXIMATION

Here we show that the multistructureM can be described
within the discrete lattice approximation where evaluation of
eigenvalues is a straightforward task.

(i) Discrete lattice. This approximation allows us to gain a
physical insight on vibration modes for low frequencies. We
know that the multistructure introduced here consists of sev-
eral bodiesRj connected by thin ligamentsP«

s jd. As shown in
Ref. 18 for sufficiently thinP«

s jd, the low eigenfrequencies
are close to those associated with the set of masses connected
by harmonic springs(see Fig. 3).

The frequencies corresponding to standing modes of such
a discrete structure can be evaluated as solutions of a certain
polynomial equation. In particular, for a double C device
proposed by Pendry,5 the discrete analogue of the multistruc-
ture consists of two rigid bodies separated by a “thin neck.”

(ii ) Thin ligaments. In this section we derive an
asymptotic approximation of the field within thin ligaments
P«

s jd. For the sake of simplicity we omit the superscriptj . Let

P« = hsx,yd:a , x , b,kyl , «h/2j, s7d

where« is a small nondimensional parameter, anda, b, andh
are given constants. Assume that the functionvsx,y,td satis-
fies the wave equation withinP«

m¹2vsx,yd − r
]2

]t2
vsx,yd = 0 s8d

together with the homogeneous Neumann boundary condi-
tions

U ]v
]y
U

y=±«h/2
= 0. s9d

This system can be supplied with appropriate boundary con-
ditions at the endsx=a andx=b (for the moment these con-
ditions are not important). Let us introduce the scaled vari-
able

j =
y

«
, s10d

so that jP s−h/2 ,h/2d within P«, and ]2v /]y2=s1/«2d
3s]2v/]j2d. The rescaled wave equation inP1 is

HmS 1

«2

]2

]j2 +
]2

]x2D − r
]2

]t2
Jv = 0. s11d

The fieldv is approximated in the form

v , vs0dsx,y,td + «2vs1dsx,y,td. s12d

To leading order we obtain[see(9) and (11)]

]2vs0d

]j2 = 0, uju , h/2, s13d

U ]vs0d

]j
U

j=±h/2
= 0. s14d

Hence, vs0d=vs0dsx,td (it is j-independent). Assuming that
vs0d is given, we derive that the functionvs1d satisfies the
following model problem on the scaled cross section ofP1

m
]2vs1d

]j2 = − m
]2vs0d

]x2 + r
]2vs0d

]t2
, uju , h/2,

FIG. 3. The microstructure.(a) An elementary
cell containing a SRR.(b) A doubly periodic ar-
ray of defects.(c) A SRR is equivalent to a me-
chanical system of masses connected by soft elas-
tic springs.
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U ]vs1d

]j
U

j=±h/2
= 0. s15d

The condition of solvability for the problem(15) has the
form

m
]2vs0d

]x2 − r
]2vs0d

]t2
= 0, a , x , b. s16d

Hence, we have shown that to the leading order we can ap-
proximate the fieldv within the thin bridgeP« by the func-
tion vs0d, which satisfies the wave equation in one-space di-
mension. In particular ifvs0d is time-harmonicfvs0d=us0d

3sxdeivtg then the amplitudeus0d satisfies the ordinary differ-
ential equation

m
d2us0d

dx2 + v2rus0d = 0, a , x , b, s17d

and therefore

us0dsxd = A1 cosSv

c
xD + A2 sinSv

c
xD , s18d

wherec=Îm /r.
(iii ) Double C. We would like to consider a particular

example when the multistructure is associated to the set of
just two voidsV1 andV2 as shown in Fig. 3(a). This geom-
etry is described in the earlier work by Pendryet al.5 In
accordance with the asymptotic algorithm presented in Ref.
18, we propose an approximation for eigenfrequencies of
two standing modes within the doubly periodic array de-
scribed above. These eigenmodes correspond to the first
eigenfrequencies of the following structures:

(1) The thin ligamentP«
s1d connected to a rigid bodyJ1

=D2øP«
s2døR1 at one end; the other end of the thin liga-

ment is fixed.
(2) The thin ligamentP«

s2d connected to a rigid bodyJ2
=D2 at one end; the other end of the thin ligament is fixed.

The eigensolutionsVj corresponding to the vibrations of
the model domains described above satisfy the following
problems:

mVj9sxd + rv2Vjsxd = 0,0, x , l j , s19d

Vs0d = 0, s20d

m«hjVux=l j u
8 = Mjv

2Vsl jd, s21d

where«hj and l j are the thickness and the length of the thin
ligamentP«

s jd, andMj is the mass of the bodyJ j. The solu-
tion of the problem(19)–(21) has the form

Vjsxd = Aj sinSv

c
xD , s22d

wherec=Îm /r and the frequencyv is given as the solution
of the following equation:

«hj cotSvl j

c
D =

Mjc

m
v. s23d

Looking at a first low frequency

v j = Î«L j , s24d

we deduce an explicit asymptotic approximation

L j
2 =

hjm

l jMj
, s25d

and hence

v j ,Î«hj

l j

Î m

Mj
. s26d

(iv) A numerical estimate for the eigenfrequencies associ-
ated with the localized modes. In the numerical example dis-
cussed in the sequel«h1=0.012 953 4,«h2=0.010 375 2,l1
= l2=0.1, M2=pr2

2, M1=pfr2
2+sb1

2−a1
2dg+«h2l2, where r2 is

the radius of the diskD2, and a1, b1 are the interior and
exterior radii, respectively, of the ringR1. In our case,r2
=0.1, a1=0.2, andb1=0.3, and henceM1,0.189 533 1 and
M2,0.031 415 9. The formula(26) gives the following val-
ues for the first eigenfrequencies of the multistructures
P«

s1døJ1 andP«
s2døJ2:

v1 , 0.826 702 7,v2 , 1.817 2861. s27d

The corresponding frequencies associated with the standing
waves in the doubly periodic structure[see Fig. 3(b)] were
obtained numerically, and they arev1

* =0.806 and v2
*

=1.817. Formulas(26) and (27) give an excellent estimate
for the eigenfrequencyv2

* . However, we observe a discrep-
ancy in the approximation ofv1

* . The estimate for the eigen-
frequencyv1

* can be improved if the multistructureP«
s1døJ1

(where J1 is regarded as a rigid body) is replaced by the
multistructureP«

s1døR1øP«
s2døD2 (where R1 and D2 are

treated as rigid bodies connected by a thin ligamentP«
s2d). In

this case the eigenfrequencyv1 is approximated by the first
positive eigenvalue of the problem

mV19sxd + rv2V1sxd = 0,0, x , l1, s28d

V1s0d = 0, s29d

m«h1V18sl1d − m«h2V28s0d = m1v2V1sl1d, s30d

mV29sxd + rv2V2sxd = 0,0, x , l2, s31d

m«h2V28sl2d = m2v2V2sl2d, s32d

V2s0d = V1sl1d, s33d

whereV1sxd, V2sxd are the eigenfunctions defined ons0,l1d
and s0,l2d, respectively, and the massesm1, m2 are defined
by

m1 = psb1
2 − a1

2d = 0.157 079 6,

m2 = M2 = pr2
2 = 0.031 415 9. s34d

Taking into account thatv1=Os«d we deduce that it can be
approximated as the first positive solution of the following
algebraic equation:
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m1m2l1l2v4 − «mv2hl1h2m2 + h1l2m2 + h2m1l1j + «2m2h1h2

= 0, s35d

so thatv1,0.812 249 4, which provides a reasonably accu-
rate approximation ofv1

* .

VI. CONCLUSIONS

Our paper addresses the issue of design of photonic band-
gap structures. It is known in the literature19 that periodic
arrays of inclusions may be used to create filters, polarizers
of electromagnetic(elastic) waves. Our paper outlines a
method that can be used to control the stop bands in two-
dimensional photonic/phononic bandgap structures.

Experimental observations reported in Ref. 16 show the
presence of localized eigenstates for a composite elastic
structure involving an array of spherical coated inclusions;
the coating layers were sufficiently thin and the elastic ma-
terial of the coating was much softer compared to the mate-
rial of the host medium. As discussed in Ref. 16, the built-in
localized resonances due to “defects” like coated spheres
give rise to flat dispersion curves that are nearly
k-independent. Analytical study of low frequency bandgaps
and localized modes for arrays of coated inclusions is pre-
sented in Ref. 20.

In our paper we propose a more general multiscale con-
figuration. It has been shown that one can use our method to
“tune” the existing bandgaps on the dispersion diagram as

well as to create new low-frequency bandgaps. The band
diagram in Fig. 1(b) shows that some partial bandgaps(see
the intervalsMK on the horizontal axis) are fairly wide,
which implies that such a microstructure can be used effi-
ciently for the design of low-frequency photonic/phononic
crystal waveguides.

As an example, we have presented the asymptotic esti-
mates and numerical simulations for a microstructure involv-
ing a doubly periodic square array of SRRs.

Finally, we note that formula(26) brings the cornerstone
towards a possible realization of acoustic subwavelength im-
aging via a heterogeneous slab consisting of Helmholtz reso-
nators shaped as SSR. Focusing of elastic waves might be
achieved through a slab of such a composite material in a
way similar to the one discussed by Pendry.21 This elastic
composite would convey not only the propagating part of the
acoustic signal, but also its evanescent part thanks to ampli-
fication that occurs through a resonant process. Indeed, an
eigenmode will be excited at frequency given by(26) on the
side of the slab remote from an object, and it is this reso-
nance which provides the necessary amplification to the eva-
nescent field to refocus it onto a perfect image.
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