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The authors suggest an approximative solution of the two-dimensional Hubbard model close to half-filling.
It is based on partial bosonization, supplemented by an investigation of the functional renormalization group
flow. The inclusion of the fermionic and bosonic fluctuations leads in lowest order to agreement with Hartree-
Fock result or Schwinger-Dyson equation and cures the mean field ambiguity. We compute the temperature
dependence of the antiferromagnetic order parameter and the gap below the critical temperature. We argue that
the Mermin-Wagner theorem is not practically applicable for the spontaneous breaking of the continuous spin
symmetry in the antiferromagnetic state of the Hubbard model. The long distance behavior close to and below
the critical temperature is governed by the renormalization flow for the effective interactions of composite
Goldstone bosons and deviates strongly from the Hartree-Fock result.
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[. INTRODUCTION the two-dimensional Hubbard model corresponds precisely

The rich behavior of strongly coupled electron systemd© the spontaneous breaking of the global spin rotation sym-
has attracted the attention of physicists for many decade§?etry- Antiferromagnetic order at nonzero temperature there-
One of the most popular models, which is believed to contairior® seems to contradict the exact theorem. The present paper
the most relevant features to explain as different phenomen#ill resolve this discrepancy and presents a computation of
as metal-insulator transitions, ferromagnetism, antiferromagthe antiferromagnetic order parameter for temperatures be-
netism and, more recently, the behavior of high temperaturéw the critical temperature. A summary of our results can be
superconductors, is the Hubbard motiél combines formal ~ found in Ref. 8.
simplicity with a rich and complex spectrum of its implica- ~ Our method is based on partial bosonization, whereby the
tions that—even after nearly 40 years—are not fully underfermion bilinear ~ s is treated as gcompositg¢ bosonic
stood. Analytical results are scarcely available. Only in on€field ¢. For the Hubbard model, partial bosonization replaces
dimension or in higher dimensjons for very special choicese four fermion interactiowu(%//)z by a Yukawa coupling
of the parameters exact analytical solutions of the model are — )
known? Besides many other attempts the last years witi® the boson~h(yy)¢ and a boson mass termy e ¢?,
nessed strong efforts to investigate the properties of thwherebyU ~h?/m?. The renormalization flow describes how
model by means of renormalization group equatibi<ur-  the mass ternm?(k) depends on the renormalization sckle
rently, although far from being able to fully and uniquely The onset of spontaneous symmetry breaking=aitssg is
describe the properties of the Hubbard model, renormalizasignalled by the vanishing af?(k). This indeed corresponds
tion group approaches are widely believed to be a promisingp a divergent four fermion coupling). However, in the
method to further investigate its interesting phase diagram.partially bosonized formulation it is comparatively easy to

Most of the renormalization group approaches have studinclude into the truncation also the bosonic interactions gen-

dence on a renormalization scate Phase transitions and the fermionic language this corresponds to an eight fermion

spontaneous symmetry breaking are regarded to be encodgfleraction which is quite difficult to compujeFor positive

in the momentum structure of this vertex. More precisely_, a . vanishing mass terii?=0, or even a negative mass term

phase_ transition is mferred_fr(_)m a divergence O.f the runnlnqﬁz<0, still lead to a well behaved effective scalar potential
coupling at some characteristic sckigg The particular mo-

mentum structure of the divergent part of the vertex indicate§0r free energy den5|)y_lJeﬁ=ﬁ12¢2/2+_)\¢4/8. The mini-
the relevant order parameter for the phase transition. Evefium of the potential shifts fom?<0 simply to a nonvan-
though the detection of a transition by this method looksishing value¢§=—2ﬁ12/7\. The value of¢, can be associated
rather convincing, the appearance of a divergencksgs  with the order parameter responsible for spontaneous sym-
forbids a continuation of the flow fok<kgsgg In conse- metry breaking. For temperatur@sbelow the critical tem-
guence, it is not possible to penetrate the low temperaturperatureT, one finds thats(k) starts being different from
phase with nonvanishing order parameter by a straightforzero precisely folkk=ksgg>0. It becomes obvious that the
ward study of the four fermion interaction. partially bosonized version of the renormalization group
For the two-dimensional model this shortcoming is par-equation has no problem to describe the flow also for
ticularly annoying since an exact theorem by Mermin andk<kgsgand therefore to penetrate the low temperature phase
Wagnef forbids the spontaneous breaking of a continuouswith spontaneous symmetry breaking.
symmetry at non-zero temperature. However, the widely be- This allows us to study explicitly the issue of the Mermin-
lieved antiferromagnetism in the low temperature phase o¥Wagner theorem. Our findings are indeed consistent with the
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formal correctness of this theorem. In an infinitely extendedSchwinger-Dyson result. The “Fierz ambiguity” arising in
space all fluctuations are included only if the effective infra-this approach is described in Sec. VII. In Sec. VIIl we turn to
red cutoffk is sent to zero. Indeed, we observe tlfigtk  the momentum dependence of the effective bosonic propaga-
—0)=0 such that in the formal limik— O the order param- tors which is first computed in the mean field approximation.
eter vanishes and the Mermin-Wagner theorem is obeyedhe one loop corrections to the bosonic propagators show
However, in the low temperature phase below the criticathat indeed antiferromagnetism is the dominant way of
temperatureT, the “running” of thek dependent order pa- breaking the S(2)-spin symmetry of the model. The last
rameter towards zero is extremely slow—it is only logarith-part contains our renormalization group approach to the
mic. As a consequence we find antiferromagnetic order at aHubbard model in its partially bosonized version and par-
realistic macroscopic scales. We conclude that the Merminticularly a discussion of the behavior of the flow in the phase
Wagner theorem is not practically applicable here, despite itef broken symmetry. We review the exact functional renor-
formal correctness. malization group equation for the effective average action in
We demonstrate this explicitly by computing the antifer- Sec. IX and the rebosonization of fermionic interactions in
romagnetic order parameterand gapA, at a macroscopic Sec. X. Section XI| sets up our truncation and choice of cut-
scalek*=1 cm. The gap is directly connected to a nonvan-off functions for the Hubbard model. In Sec. XII we derive
ishing antiferromagnetic order parameteg~ 3 by A,  the nonperturbative flow equations at half-filling.=0).
:(zﬁgao)lﬂz(zhg,()lﬂt_ Here k is the dimensionless renor- Their solution in Sec. Xlll leads to an understanding of the

malized order paramef&rand h, the dimensionless renor- appearance of antiferromagnetic order despite the Mermin-
malized Yukawa Coup”ng such that the gap is proportiona' thagner theorem and is the basis for our main result shown in
the hopping parameter of the Hubbard model. Figure 1 Fig. 1. The critical behavior is discussed in_ more dgtail in
shows the temperature dependence of the antiferromagnet®€c. XIV. In Sec. XV we turn to nonzero doping and discuss
order parametek at half-filling (vanishing chemical poten- the phase diagram of the Hubbard model for small values of
tial x=0). This figure may be regarded as a central result ofhe chemical potential. Section XVI finally discusses how the
our paper. We clearly observe the onset of spontaneous syrfii€rz ambiguity is substantially reduced if the effects of
metry breaking fofl < T,. We find that the phase transition is bosonic fluc_tuations are inclqded .beyond mean field theory.
continuous. For this plot we have concentrated only on théur conclusions are summarized in Sec. XVII. In the appen-
simplest version of the Hubbard model which includes onlydixes we give explicit formulas for the flow of the couplings
next neighbor hopp|ng W|th Coup“ng StrengthFor a rea|_ in diﬂ:erent truncations and ShOW hOW I’l0n|00a| OperatorS
istic valuet=0.3 eV the critical temperature corresponds tocorresponding to a-wave superconducting state may be in-
T.=400 K. corporated into the formalism.

An investigation of the antiferromagnetic phase within the
partially bosonized formulation of the Hubbard model has
already been performed in Ref. 9 where we used mean field IIl. THE HUBBARD MODEL
theory(MFT). Unfortunately, we have found thatin the MFT e partition function of the Hubbard model is given by
approximation the results far, or the antiferromagnetic or-
der parameter depend strongly on unphysical parameters Al
which describe the precise choice of the mean field. Since Z[nl= ] s s, “ D (7),447)
this ambiguity is closely related to the possibility of the Fierz A0 (B=-v (O)
reordering of the local fourfermion interaction it is dubbed B ~4 d N
“Fierz ambiguity.” In the present paper we show that the xexp - o dr| 2 y5(7) a7 M Yx(7)
inclusion of the bosonic fluctuations in the renormalization X
flow (beyond MFT) greatly reduces this Fierz ambiguity. ~t - 1 At A 2

In our present truncation the resolution of the momentum * ; (1) Tty (7) + EUEX () (7)
dependence of the effective four fermion vertex depends on Y
the choice of composite bosons included explicitly. More TN T, A
precisely, the effective vertex arises from the exchange of the N EX (D) l7) + (7) ¢X(T)))' 1)
bosons and therefore inherits its momentum structure from
the momentum dependence of the bosonic propagators. ere
this paper we concentrate on the antiferromagnetic order and

small doping. We only take into account bosons describing - _ lAﬁXT(T) oS TP ~x

spin densities and charge densities. We emphasize, however, () = lAﬂ (7 v 1) = (W (1), 5 (7)) (2)

that our formalism is quite general. It is also well adapted to x|

include the interesting superconducting channel. are Grassmann fields describing electrons on a quadratic lat-

This paper is organized as follows: In Sec. Il we reviewtice with lattice sites ak € Z X Z. (We restrict our attention
the functional integral description of the Hubbard model ando the two-dimensional cageThe Euclidean timer param-
set up our notation. We proceed in Secs. Il and IV to deriveetrizes a torus with circumferengg=T ~. The functional
and solve the Schwinger-Dyson gap equation. In Sec. V wéntegral is constrained by antiperiodic boundary conditions
introduce our partial bosonization. We carry out a mean fieldlue to the fermionic character of the fields. The kinetic term
calculation in Sec. V that can be directly compared to thecontains the chemical potentiad as well as the so-called
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P(Q) =iwg — p = 2t(cosqy + €osQy), (7)

such that the Fermi surface is located att(e@sq;
+C0SQp) = .

Another convenient notation that we will adopt is to in-
troduce a collective index denoting spinX or Q, and the
label for the two complex conjugated fermionic fields. Cor-
respondingly,a=1,...,4 is the collective index associated
with the discrete “internal” indices only. Explicitly, we have

kappa

8.05 o.bs 0.67 0..08 o.‘og 011 0.'11 0.12 ';bT
T
- . . 0= | . ®
. 1. Temperature dependence of the antiferromagnetic order

parameter. We plot the renormalized expectation vatuef the
antiferromagnetic condensate in the low temperature phase for b/ a
U/t=3. The scalé&/t=10"° corresponds to a probe of macroscopic
size of roughly 1 cm. The gap for the fermionic excitations is re-
lated tox by A,/t=v2hik.

In this notation, the partition function reads

Hﬂ=fD%em%H@+m%) 9)

hopping matrixZ, which describes the possibility of electron )
hopping between different lattice sites. For simplicity, we With the action

assume S:‘}/] == %jaﬁ;ka&lﬁ + ikaﬂy(sl’;\bal}ﬁ;r}lyl}& (10)

(3) In momentum spacg,z=jan(P,Q) is defined by the Fourier

S {—t, if x andy are nearest neighbors,
Y0, else. transforms(4), implying

The quartic term reflects the local Coulomb repulsion of jan(P,Q) = 1, (Q8(P-Q),
electrons at the same lattice site. Additionally we include
fermionic sourcesy, (1), 7(7).

Calculations are conveniently carried out in momentum JQ) :<
space. We define the Fourier transforms

0 —W@b) 11

P(-Q)l, 0

- - ox  ~s . ox The quartic coupling\ .z, is most easily given in position
P(X) =EQ PQEY, ¥ (X) :EQ ¥ (Qe, (4 space. By comparing) with (1) we get

where we use the short-hand notations, Nagys =~ U€apcdd(X = X) A(X = Xg) 8(X =Xy (12
Q:(wFaq)y X:(Tyx)7 QX: (DF7'+Xq (5) Wlth a:(xla)' B:(Xz,b), y:(XS’C)’ and&:(x41d)

in position and momentum space and define sums and delta lIl. SCHWINGER-DYSON EQUATION

functions accordingly Starting from the partition functioril), we derive the
g © noo Schwinger-Dyson equatiéh for the fermionic two-point

s :J S, =13 dq function. The_ Iovv_est order approximation to the Schwinger-
X Jo 9 =)o em¥ Dyson equation is the Hartree-Fock equatibri? We start

by defining theeffective actiorby the Legendre transform of
the logarithm of the partition function in the standard way,

Iyl ==In Z 7 ]]+ n L] (13

SX=X') = 81— 1) & ®  Here W, =(hy=dldn, In Z[n] denotes the “expectation
Here wg=(2n+1)#T is calledMatsubara frequencgnd the ~ Vvalue” of the corresponding fermionic field in presence of
corresponding surMatsubara sumwith inverse temperature fermionic sources. It is possible to rewrite the effective ac-
B=T"1. All components ofQ or X aquire the same canonical tion as an implicit functional integral
dimension ifg and x are measured in units of the lattice - - -
distance, i.e.x—ax, q—q/a. Here we sea=1. Note that Ilyl=- |nf Dyrexp—- Sy + 1+ nap) (14
all functions in momentum space arer-periodic in spatial
momentum. In particular, the kinetic term in momentumwith »,=-dI'/ d¢,. We will use this as the starting point for
space takes the form the derivation of the Schwinger-Dyson equatiéror van-

5(Q - Q,) = ﬂ5n'n,(2'n')25(q - q'),

125111-3



BAIER, BICK, AND WETTERICH

ishing sources one finds the derivative of Et4),

Iy
O')—l//(, Joa wa a'aﬁy< wa lpﬁ ¢y>
Ju’alpuz u’aﬁy(‘v[’a'pﬁwy-'-(r(a) 'Bwy
= T2+ (TP g,
&r
—(roy?t r@ rey+t — -~-
e T (T awﬁuwy)
(15)
where
#T
@y —__°21
= (16

is the inverse fermionic propagator. Equati@tb) can be
read as an identity relating various fermiomepoint func-
tions. Differentiating(15) once more and setting=0, we
find the Schwinger-Dyson equation

I‘(Z) -

1 1
i (2)
poc =" Jplr 2 p(ra/i‘(r )aﬁ 6 (mz,By

7T
8 élvbp(?l//a a¢ﬁ’ (9!,&.),
(17)

relating the fermionic two- and four-point functions. The last
term in this equation represents a two loop expression of th
orderA? (Ref. 15 and will be neglected in this and the next

X(I@) 2 (r@) 5, (@)~

)BB’
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value® of the antiferromagnetic condens#te

&),

0

9%

0
(X) = exp(|HX)< (20
with I1=(0,, 7). Here the factor expllX) ensures the al-
ternating sign of the spin density between neighboring lattice
sites. We therefore investigate the possible solutions of Eq.

(18) for Green functions obeying
Gab(X.X) = gip (X) + g (X), (21)

where the symmetry conserving part can be parametrized as

Eﬁ( - 12)
U 0/
Since the second term on the right-hand sitie) of Eq. (18)

is local [due to Eg.(12)] it only involves G,,(X,X) and
therefore induces a “local gap,”

0
Iz

(h)

Qap (X) = - (22

section. The lowest order Schwinger-Dyson equation results

in a closed equation

G;J,é_ _jaB+ %)\aﬁyéeyﬁ (18)
for the two-point functionG,,,
Gp=(T?) 5. (19)

It can be integrated in order to obtain the two particle irre-
ducible effective action or bosonic effective actirtéand a
corresponding expression for the free energy.

IV. ANTIFERROMAGNETIC GAP EQUATION

The Hubbard model(1) is symmetric under global
SU(2)-spin and UW1)-charge transformations. However, for
small T and smallu (corresponding to small dopiigt is
well known that the Hubbard model exhibits antiferromag-
netic behavior. A nonvanishing expectation value of the op-
erator W(X mp(X in macroscopically large regions can be
associated with spontaneous breaking of ®€(2)-spin
symmetry. Even though spontaneous symmetry breaking of
continuous symmetry is forbidden in a strict sense by th
Mermin-Wagner theorefwe will see in Sec. Xl that the

main physical features are correctly described by such a “na-

ive spontaneous symmetry breaking.” The leading orde

U J—
Bab(X) = = = €aped Ged (X) + G4 (X)=(8 Jap + (A)an(X),
(23
with charge density shift
A,=-h (0 _b) (24)
p= " P I, 0
and antiferromagnetic spin density gap
e - .
(A2)ap(X) = (Ag)ap EXAILIX),
0 -¢o'a
Ag=-hyl .. ) (25)
ca O

For nonvanishingA, the fermionic propagator indeed ac-
quires a mass gap according to
- jab(X,Y) + Aab(x) 5()( - Y)-

Ga(X.Y) = (26)

On the other hand, we will see below that the charge density
shift only shifts the effective value of the chemical potential,
Mesi==hyp(u) with p(u=0)=0.

In order to determiné,a andh,p as functions ofl and u
we must solve the “gap equation” which obtains by evaluat-
ing the inverse of Eq(26) at equal argument¥=Y, i.e.,

9(X) = G(X,X) = (= j + A)HX,X). (27
In momentum space this becomes

9(Q =2 G(K,Q+K) =X (-] +A)™(K,Q+K) (29
K K

a.

éNIth gap function

A(P,Q) =A,8P-Q)+A,8(P-Q+II). (29

The solution 0f{28) needs the inversion of the inverse propa-

Schwinger-Dyson equation exhibits a nonzero expectatiogator(26) in momentum space,
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(=j+A0)(P,Q) =(-J(P)+A,)8P-Q)+A8P-Q+II). the “renormalized gap equation” proposed in Ref. 15. For
nonlocal four fermion interactions even the lowest order
(30 . . L .
Schwinger-Dyson equation can have nontrivial solutions for
By use of the identity nonlocal gaps.
. . We will go beyond the leading order Schwinger-Dyson
A(-JQ) +4y) =(=IQ) +4y)A, (31) equation by using renormalization group equations from Sec.
we find IX on. Before, it will be instructive to understand the con-
nection between the Schwinger-Dyson equation and mean
(=i+A™P,Q =-NPH{I(P+I)-A,) 8P-Q) field theory based on partial bosonization. This will provide
* _ us with an appropriate setting for the renormalization group
AP+ -Q)} (32) equation by which we can explore the region of spontaneous
with symmetry breaking.

N(P) = ((P+T1) - A,) (I(P) - A,) - AzA,

. . V. PARTIAL BOSONISATION OF THE HUBBARD MODEL
= A(P) + 2iwpuei diag1,1,-1,- 2,
Among the most promising approaches to investigate the
A(P) = wf + h3a? - iy + 4t%(cosp; + cosp,)?, properties of the Hubbard model are renormalization group
studies. So far, these calculations have been mainly carried
- out in a purely fermionic formulatiofr® The onset of spon-
Meft=p+hyp. (33 , : .
taneous symmetry breaking then shows up in the divergence
Inserting Eq.(32) into Eqg. (28) and performing the Fourier of the quartic coupling in certain momentum channels, if one

transform of Eq(20) [with g(X)=2q €9%g(Q)] we arrive at  follows the renormalization group flow to larger length

the gap equation foh,a, scales. This approach has the limitation that one is not able to
follow the flow into the region of broken symmetry. This
1=U> & (34) would need the inclusion of higher multifermion interactions

0 A%(Q) + Awiuly and therefore become extremely complex. We adopt here an

) ) ) . alternative approach, where symmetry breaking is encoded
Equation(34) admits a solution witla# 0 for low enough nonvanishing expectation values ofbosonic fields. Each
T and . This nontrivial solution has indeed a lower value posonic field corresponds to one possible symmetry breaking
of the relevant free energyas compared to the solution with  channel, This allows us to keep a simple overview in the
a=0. Itis therefore a good candidate for the thermal equilib-ggisiic case of competing channels. In this work we will
rium state at lowT. [We will argue in more detail below ok with a bosonic field reflecting antiferromagnetic behav-
(Sec. V) that this state indeed minimizes the appropriate;q,. Similarly, bosons corresponding #, p- or d-wave su-

free energy in the approximation of the lowest orderperconducting behavior could be defined for an extended
Schwinger-Dyson equatignThe onset of spontaneous sym- jiscussior?.

metry breaking@+ 0)—as the temperature is lowered from  The main idea is to rewrite the original Hubbard model
high values wherea=0—can be associated with a phaseyth a quartic fermionic interaction as an equivalent Yukawa
transition. We have solved Eq34) numerically and the  theory, where the quartic fermionic interaction is replaced by
result for the critical line in the plan€T, uer) is shown in fermion bilinears coupled to the bosolfsAs mentioned
Fig. 2 (upper curvg: above,symmetry breaking shows up as nonvanishing expec-
We can extend the analysis for other possible forms of thgation values of some bosonic fields. These order parameters
local gap[or g(X)]. For example, ferromagnetis(imstead of  can be computed by following the renormalization group
antiferromagnetismcan be described by replacing in EQ. flow for the bosonic effective potentiéiree energy densily
(20) h,a explilIX) — hm. We have found that the solutions into the broken symmetry region. In particular, it is now
with m# 0 have a higher free energy as compared 0 straightforward to investigate the role of bosonic self-
and that antiferromagnetism is indeed favored. Charge dennteractions which correspond to higher multifermion inter-
sity waves[with an additional factor expIIX) in Eq. (22)] actions in the purely fermionic language. Furthermore, the
do not allow for nontrivial solutions. The same is true for identification of symmetry breaking channels with bosonic
local Cooper pairs witts, p or d symmetry. Nonlocal sym- excitations(particley enhances our intuitive understanding
metry breaking expectation valu€g,(X,Y # X) do not con-  of what happens during the flow.
tribute to the lowest order Schwinger-Dyson equation due to However, this approach, as advantageous it may seem at
the locality of the four fermion interaction. Within the first sight, is plagued by a coupling ambiguity problem. In
Schwinger-Dyson approach an investigation of realistic nonthe fermionic theory, we face one single quartic couplihg
local Cooper pairs which could be responsible for superconwhereas in the partially bosonized theory, we introduce as
ductivity therefore requires the inclusion of the higher ordermany Yukawa couplings as we introduce bosonic fields.
terms.(See Ref. 15 for an explicit formula of the next order These Yukawa couplings are not uniquely determined by the
term) As an alternative, one may realize that the renormalequivalence to the original fermionic model—different
ization flow of the four fermion interaction introduces non- choices of these couplings lead to precisely the same fermi-
localities in the effective four fermion interactiband use onic model if we integrate out the bosons. This coupling
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ambiguity would not give rise to any problems were we able J ~
to solve the flow equations exactly. But for many approxi- p=p+—L£, m=
mations the results will unphysically depend on the choice of U,

the couplings. At this point, the Schwinger-Dyson approac _ . . :
presented in the last sections comes in handy. We will se e now demand that inserting the bosonic equations of mo-

that at least for a given channel the gap equation Correspon&'gn’ Sshould reduce & up tO.er|(.Zi mdepgndent terms. It 'S
to the mean field equation with a definite choice of thethen easy to check by Gaussian integration that the partition

Yukawa couplings. This determines at least the rough rangp}JnCtion (39) is equal to(38) up to the logarithm of a field

for the Yukawa couplings which can serve as a reasonabl@dependent quadratic function of the sourt&guivalence

starting point for approximations beyond the mean field ap_between the bosonic and fermionic formulation is therefore

proximation. We will discuss in Sec. XV how the inclusion achieved for
of the bosonic fluctuation effects by the use of the partially
bosonized flow equations reduces drastically the dependence

f physical ntiti n the preci hoi f the Yukaw _ _ - . —
gofpl?/:g(;a quantities on the precise choice of the Yuka aAt this point we explicitly see that different combinations of

In this section we will show how to partially bosonize the the couplingsU, and U, in the partially bosonized theory

Hubbard model for the case where we only take into accouHPaId to the samt?] fefrmlo'mc Lheory. tion takes the followi
acharge density bosop(X) and aspin density boson (X). ‘ rnr: isnurrrr:mriryﬁt r?1 ermlor.1- 0Son action takes the following
These are the same degrees of freedom we used in the ansaty omentum space-

(24) and(25) for the gap function. Our bosonization proce- _

dure preserves explicitly the continuous @WJspin symme- S=SintStS+ S,

try while it is consistent with the Hartree-Fock result. This

settles a widely discuss€dapparent conflict between these =S BV iwe - u - 2t(cosas + cosa.)) Y
two aims. We begin by defining the fermion bilinears, S in EQ Y(Qliwr — - 2t(cosqy ®@Q.

PO = $T OO UX),

+

34
3C-|3 v

(41)

U=-U,+3U,, (42)

$=23 (UHQp(- Q) + UpfiQIH-Q),
Q

m(X) = X)X, (35)

With these bilinears the fermionic coupling term of the origi-
nal Hubbard model can be written as S,=- > 8Q-Q'+ Q”)(Upf)(Q);bT(Q’)fﬂ(Q”)

(BOHX0)2 =BX)? = - 302, (36) we

= i n = "

Suppressing the explicit notation f&fthe fermionic action *+UnM(Q)¥1(Q)ae(Q"),
in the presence of sources for the bilinears is given by

S = ey + JUGT 2= 35 - o, (37) =2 G- QRQ+In(=QMQ). (43

with & i, the fermion kinetic term(7). The partition func- . )
tion reads Here the bosonic moment@=(wg,q;,q,) involve Matsub-

ara frequenciesg=2m7mT with integerm.

z= f D(J , hexp— (S +S,)),
VI. MEAN FIELD CALCULATION

Sy=- n'y-n'y. (39 In this section we will explicitly calculate the effective
We define the partially bosonized partition function by action in an approximation that sets the_ bosonic f_lelds to
constant background fields. Only the fermion fluctuations are
« . 7o R _ included in the functional integraB9). In this “mean field
ZLn.7 1350 Jm] _fDW P MEXH= (S+S,+ ) theory” (MFT) the fermionic integration can be carried out
analytically. In particular, constant bosonic “background

B9 fields” p anda,
with
~ = A 373 p(Q) — pdQ),
S=S yin+ 3U,0% + 3U P = U, pp — Upymim,
S=-3,p-J,m. (40) m(Q) — asQ -1, (44)
The functional integral now also involves the bosonic fieldscorrespond to homogeneous charge dengityand antifer-
p andm. The equations of motion for the bosons yield romagnetisni(d). The mean field partition function reads
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o n T d%q )‘( 1
Z=| Dy, - , AU =- — I —
J (¢, Prexp(— Sup) i (277)255{2-1,1} n cosH ——(uen
Sur =2 #(Q)(iwp — i - 2t(cos g, + cOSA)) Q) + eV4t?(cosqy + cosdp)® + U$52)> ' (53
Q
_ 7 TP -t - In order to establish the connection between the mean
EQ: (Uppt (QAQ) + Undy/ (Q + I 7A Q) field approach and the lowest order Schwinger-Dyson equa-

v tion we take a closer look at E¢62). The value ofa? mini-

Y2 2 22\ _ _3 A mizing the effective potential is zero for the symmetric
+ =(U p+ U @) - J,(0p - I (- I)a, 45 . ;

2T( P n@) = 3,(0)p = In(= 11 (45) phase, but differs from zero in the case that the the symmetry
is spontaneously broken, which in our case means that the
system shows antiferromagnetic behavior. The necessary
condition for this isgU/da?=0, which can be brought into

ye==InZye + 3,0p+Jn(- 1D, (46 e form

with V, the two-dimensional volume of the lattice. From the
effective action,

we can derive theffective potentidt 1=20,3 AK) —. (54)

k AXK) + Aot ugg

T 1 5 —
U(p,a) = 72 = E(Upp + U, @) +AU(p,a), (47) This is the same as E(4), if we identify the gaph,p in the
gap equatiorgSec. 1) with U ,p here so thaj. used in the
gap equation and the mean field calculation coinciaied
T . similarly U2&%=h2a2. We also have to sdf,,=U/2, which
AU(p,é):—V—InfD(w Jhexp-Sy), implies U,=U/2 by Eq. (43). The Schwinger-Dyson ap-
2 proach therefore does not have the coupling ambiguity intro-
. . . . duced in the partial bosonization procedure. As mentioned
Sy =2 (F(QPQQ) - U (Q + IMG(Q)), before, it corresponds to a special choice of the couplings in
Q mean field theory.

with the fermionic one loop contribution

(48)
and P(Q) now given by VII. MEAN FIELD AMBIGUITY
P(Q) =i — pesr — 2t(cOSy + €OST), For high enough temperature and small enough coupling
an expansion in the small dimensionless quandifyl’ is ex-
M=+ U pp. (49)  pected to be valid. In this limit the lowest order Schwinger-

Dyson equation becomes the lowest order in a systematic
expansion where higher orders are suppressed by higher or-
IAﬂ(Q) ) ders of U/T. (This is not a simple expansion in powers of
- (50 U/T like perturbation theory but rather corresponds to a re-
HQ+11) summed expansionFor smallU/T mean field theory there-
we can cashU into the form fore gi_ves_ an incorrect res_ult unless we cho_ose the particular
bosonization procedure with,,=U,=U/2. Since the func-
T ~ o~ -~ ~ o~ tional integral transformations leading to partial bosonization
AU(p.a) =~ V—Zln f D@y h)exp = EE ‘ﬂT(Q)P(Q)‘MQ)) ' are exact the failure of mean field theory for other choices of
© Uy, and U, must be due to the bosonic fluctuations which
have not yet been included. If we were able to compute the
)' (51)  effects of the bosonic fluctuations exactly the final results
would have to be completely independent of the choice of
U,, provided Eq.(36) is obeyed. In general, the inclusion of
the bosonic fluctuations is therefore crucial for a reliable pic-

By defining

h@=(

P(Q -Ujaoc

PQ= (— U.d6 P(Q+TI)

The integral is Gaussian and can be carried out

1 ~ ture. This issue has been systematically studied in Ref. 19.
AU(p,a) =~ EE In(= de(Q)) For smallU/T it just happens that the sign of the effect of
Q the bosonic fluctuations may be positive or negative, depend-
= - > In(w? — 24 + 4t3(cos, + cosap)? ing on.the value o, In particulqr, we infer that to lowest
Q order inU/T the bosonic correction to th@ntiferromag-
N U2m 52+ g ). (52) BetE:Uc/ozrrelatlon functiogm(X)m(Y)) precisely vanishes for
m_ .

The Matsubara sum iAU can be analytically performed, so ~ Near the phase transition an expansion in srials no
that we finally find(apart from a temperature dependent con-longer reliable, the characteristic quantity|T-T,| even di-
stany verges for T—T.. The corrections to the lowest order
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05 ' ' ' ' gator according to the lowest order Schwinger-Dyson equa-
045 [T — 8 tion if we chooseU,,=U/2. There are two reasons why we
oal T e i are interested in the result. In the derivation of the gap equa-
tion and the mean field approximation, we hassumedhat
0851 i antiferromagnetism is the dominating mechanism by which
031 1 the SU2) symmetry is spontaneously broken. By inspection
— 025k Vo of the bosonic propagator as a function of momentum we
ozl | will see that indeed antiferromagnetigin contrast to, e.g.,
| ferromagnetismis the favored mode of symmetry breaking.
0.15 \ ] The second reason is that—as we will see in the subsequent
01l § sections—our renormalization group equations take the form
of one loop equations. The calculation in this section there-
0.05 1 . . . . .
fore can be immediately used as a technical ingredient for the
%0 o 02 03 oa 05 derivation of the renormalization group equations. Further-

mu more, the general features of the momentum dependence of
, _ the bosonic propagators found in this section will be useful
FIG. 2. Phase boundary for low temperature antiferromagnetisng, order to device truncations for the flow equations.
in the lowest order Schwinger-Dyson and mean field approxima- The bosonic propagators are propagators for fermion bi-
tions. We show the critical temperature as a function of the chemiy, o5 and therefore correspond to particular combinations
cal potentialu. We choose coupling®y=U/3, U,=0 (lower line) of four fermion correlation functions in the original fermi-

andU,,=U/2,U,=U/2 (upper ling. The upper line corresponds to . L : . o
the the solution of the Schwinger-Dyson equation. Both curves cor2nic description. They are particularly simple to describe in

respond to thesamevalue U/t=3 and their difference reflects the the partlallyfbosrclmlzed language of Sec. V. For example, the
Fierz ambiguity discussed in Sec. VII. propagator for the spin wave boson,

_ _ _ (MOOM(V))e = (G (X,Y), (55)
Schwinger-Dyson equation become important. In conse- . ) ) L
quence, there is no reason to believe that the bosonic fludS 9IVen by the inverse of the second functional derivative of
tuations beyond mean field theory are a small effectfgr the effective action with respect to the scalar fields in the
=U/2. We conclude that for the range of largé|T—-T,| the appropriate channel. Here the effective action in the partially
“gap equation” valueJ,,=U/2 is at best a good educated bosonized language obtains from the partition functi@®)

guess. We feel that it is much safer to study a whole réhge PY the usual Legendre transform,
of choices forUJ,,. The dependence on the choicelyf/U in S ' _ SN *
mean field theory may then be turned into an advantage Clp, /1= =1 Z+ Jpp + I+ 7'yt 77y (56)
when fluctuations beyond mean field theory are included: ifAs usual the second functional derivative Ibfwith respect

an approximation beyond mean field theory is valid the deto p andm is directly related to the second functional deriva-
pendence on the unphysical paraméigy U should get con-  tive of In Z with respect to the sourcely andJ,, (by inver-
siderably reduced as compared to mean field theory. Thision). Applying this to Egs.(38) and (37) and settingJ,
becomes a demanding check for the validity of approxima=J_ =0 we see indeed how particular combinations of fermi-
tions. We will see in Sec. XVI that our renormalization group onic four-point functions can directly be read off from the
approach indeed has this important property. For the mobosonic inverse propagatbf.

ment, we illustrate the mean field ambiguity by the lower |n absence of spontaneous spin-symmetry breaking the
curve in the phase diagram in Fig. 2 which corresponds ténverse bosonic propagator far obtains by expanding in

the choiceU,=U/3, U,=0. In the language of the present second order imn for fixed constanp and =y =0,

section this figure shows the mean field results for the onset .

of spontaneous symmetry breaking towards the antiferro- _= i @) N (A 4

magnetic state for two choices of the Yukawa couplings I'= ZQEQ,m'( Qm)i(QQIMQ) + -, (57
U,,Up, namelyU,=U/3, U,=0 (lower line) and for U,
=U/2, U,=U/2 (upper ling. The lines indicate a second @ -
order phase transition and stop where the phase transition I'7(Q,Q") =I'%(QaQ-Q") (58)
becomes of first order. We observe that without the inclusion .
of the bosonic fluctuations the “mean field ambiguity” for the [Vt Gg"=(I';)™]. In Sec. VI we have already computed
phase diagram is considerable. Depending on the choice i (Q=II) in Egs.(48) and(52). It corresponds to the anti-
Un/U the critical temperature varies by more than a factor offerromagnetic susceptibility or inverse correlation length,
2, limiting severely the reliability of mean field theory. 5
9(8%)

The critical line for the phase transition shown in Fig. 2

In this section we will calculate the bosonic propagatorcorresponds tonZ(T=T,)=0. If we re-express this in the fer-

for min mean field theory. This also gives the bosonic propamionic language the four fermion interaction in the antifer-

(C@);(I) =mM2s;, M2=Upy+2—— AU|p. (59)

VIIl. MEAN FIELD CALCULATION OF THE BOSONIC
PROPAGATOR
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romagnetic channel diverges for— T, proportional toﬁ;z.

In this section we want to compuféf)(Q) for arbitrary
Q. Antiferromagnetism is the preferred condensatdth -

lowest free energyif Fg)(Q) has its minimum foiQ=I1. (A 0.6
minimum atQ=0 would favor a ferromagnetic condensate. oss
We start from the actio43) and treat the bosonic fields as ©°5
background fields according to 0043

pQ) —p, MQ) —mMQ). 60)  °*

Note that we now keep the momentum dependenc@ td

be able to distinguish between ferromagnetic, antiferromag-
netic, etc. behavior. For émean field computation of the
fermionic fluctuation effects we need the expansion of the,
action(43) in second order in the fermion fields

$=2 ¥(Q(PYQ.Q) +APQ.QNHQ)  (61) P Zem
AT 7 TSR
1 0.7 SN 77 ALY 72
with 0.6 \\‘\\QQ\V"”””"""".!,
o4 N,

Po(Q.Q") =P(Q)aQ-Q"),

AP(Q,Q") =-UyMQ~-Q')a, (62)

and P(Q) given by Eq.(43) in second order in the fermion
fields. The fermionic functional integral can be carried out
and we get

Al =~ Inf D, hexp— S)

=—In de(Py+ AP) .FIG. 3. Mean field _approximation for the inverse prppagator of
spin waves as a function of momenta. We show two different tem-
=Alg+ Al + A+ - peraturesT=0.5 (upper partandT=0.1% (lower par} for =0,

1 wg=0 and choos&J,=t.
==TrIn Py— Tr(P,*AP) + ETr(PalAPPalAP).
ab-(2n+1)(2(n+m)+1)
63 ;a,b) =
©3  Smab) = o DRI + 2+ m + 1)

The first term is independent @i, the second vanishes, and
AT, is the m-propagator correction we are looking for. Its (a- b)(tanha—w —tanhb—77>
T 2

second derivative is given by 2
5 T2 amP+@-b? (66)
(AT)(Q) = APH(Q) 4,
which has the following limits:
APR(Q =2Uf X PHKPHK+Q).  (64) o
K S0;a,a) = - Zcosh‘27,
If we set Q=II, we reproduce the term in the mean field
result of quadratic order ia.
The inverse propagator for the spin wave bosons can now tanha—w
be computed numerically after adding the classical piece S0 ) T 2 67)
_ A a-a)=- -
(40) SO! 1.e., Pm(wBleaqz):I‘g)(Q):Um+APm(‘UBanyq2)- 2 a

For vanishing Matsubara frequenfiye., Q=(0,q;,9,)] and
for ©=0 the Matsubara sums {i®4) can be performed ana-
lytically

We show the momentum dependencePgfin Fig. 3 and
observe a pronounced minimum fQ=II. This clearly es-
tablishes that antiferromagnetism is the preferred condensate

2T (™ d? €, € as compared to other spin waves wigh# I1. We also note
APH(Q) = Umﬁf (2732 mﬁﬁ) (65 that the minimum ofP,, gets more pronounced as the tem-
o perature is lowered, reachirfg,(I1)=0 for T=T.. (For our
For this purpose we use the identity exampleT,~0.2.) Also notice the development of sharp
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1.05 ' ' ' mean field theory. Our tool will be nonperturbative flow
16 © e 0o s s 0000 o000 000000 equations for the scale dependence of the effective average
095} 1 action? The flow equations are obtained from a truncation
09| | of the exact functional renormalization group equation
05| (ERGB).2%22 Within the fermionic language a truncation to
momentum dependent four fermion interactions for the
. 0BT l ERGE of Ref. 21 has been performih Ref. 5. This analy-
0751 1 sis shows forT— T, and =0 a leading divergence of the
07} . four fermion interaction in the antiferromagnetic channel. It
0.65 | i also covers the issue of superconductivity for large enough
06| || and the analysis has been extended beyond next neighbor
coupling.
0.6 . The limitation of the fermionic language concerns the re-
055 " o . o gion when some of the couplings grow very large. One ex-
@ m pects that large quartic fermion couplings also induce large
eight fermion couplings and so on. In particular, it seems
¢ e o R ' ' ' . st very difficult to explore the low temperature phase with
0.9 e, . * 1 spontaneous symmetry breaking in this way. For this reason
08} . . 1 we explore here the formulation in the partially bosonized
07l o . | language of Sec. V. As we have argued, the divergence of a
06 | four fermion coupling just corresponds to the vanishing of
' * o the mass of the bosonic field. If higher order bosonic inter-
. 5T il actions are included in the effective bosonic poteritiadne
04r 1 can easily explore the region where the curvaturtl ait the
03} 1 origin gets negativémg< 0). This region is characterized by
ool _ “spontaneous symmetry breaking.”
o1l Let us consider a theory containing complexA bpsonic
ol . fields @, 0", real bosonic fieldsv and fermionic fieldsy, ¢ .
. . . We collect the fields into generalized fields and define gen-
05 -5 0 5 10 eralized sources for thelithe indicesa run over field type,
() m momentum, internal indices, elc.
FIG. 4. Inverse propagator for the bosgnas a function of the Yo = (0,07, W, &,’ '://*)w

Matsubara frequencyg=27mT at T=0.2 for U,=t. We show
=0,=0 (upper pant andq,;=0g,=1 (lower parj. x

0:=02=0 (upper part 01=0p=7 ( pary 3= 07 D

crests at low temperatuwer figure due to the singulari- L S Y

ties in the fermionic propagators at the Fermi surface. SIX1==JdaXo == (U0 + W+ 7 g+ 7y). (68)
Figure 4 shows the dependenceRyf(Q) on the Matsu- Now we regularize the theory by adding an infrared cutoff

bara frequencywg=27mT for two values of the external ~R, to the original action

momenta. Note that theg=0 mode is the one that is A

changed most by fluctuation effects. Fgy=q,=0 this is ASIX] = 5XaRuapxs= U R+ 5W R + o RUy. (69)

even the only mode that is changed at all, whilg,,, van- it will h he off ¢ . & ith? < k2

ishes in the other cases. We observe ats even inwg as |t Will have the effect of cutting off momenta with”<

he di : | f th (bosonic fields or in a shell of sizek around the Fermi
Lefﬁfjrtgdm%;_e discretéime reversal symmetry of the surface(fermionic fields. In presence of the cutoff the gen-

A main reason for calculating the one loop corrections toerating functional for the connected Green functions depends

the bosonic propagators was to get a feeling for the momer2" the scale,
tum dependence the propagators are likely to obtain under a
renormalization group flow. In Sec. VI we will make use of Wi[J]=1In J Dy exp— (Sx]+AS{xD) +3Ix). (70
these observations in order to formulate suitable truncations
for the bosonic propagators. A more detailed discussion oflore precisely, the functiomRY(Q) is tailored in order to
the propagators of the other bosonic fieldharge density regularize the fermionic zero modes of the propagator. For
waves, Cooper paiysan be found in Ref. 17. momenta far from the Fermi surfaggompared t&) R is to
vanish rapidly so that the behavior of these modes is essen-
tially unaltered. A similar task is assigned to the bosonic
cutoff functions. Here the zero modes can occur@&0 on

In the remainder of this paper we want to extend ourthe critical line andR{(Q), RY(Q) act essentially as addi-
analysis of the Hubbard model beyond the approximation ofional mass terms-k? for the low momentum region. This is

IX. EXACT RENORMALIZATION GROUP EQUATION
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easily generalized to the case when the zero mode occurs farthere we used the fact tha,[J] is the generating func-
some other momentum, e.d=II. In the limit k—0 we tional of connected Green functions. With the aid67) we
demand that the regulators vanish whereasfer= we as-  immediately obtain a flow equation for the effective average

sume them to diverge action,
i N — i = - _
im R{=0, fim RY=cc. TV a0 = 30Read T2 + RgIM,, = 5STHARIT? + R

Our specific choice of the cutoff functions will be given in (79)
Sec. XI. _ _ Here the “supertrace” runs over field type, momentum, inter-
~ We may now proceed to define the effective average acha| indices, etc., and has an additional minus sign for fermi-
tion I'y in analogy to the definition(13). By a Legendre gnic entries.

transform with respect to the classical fields This equation is exact—we have only performed well-
5 defined formal manipulatiorf§. However, it is an equation
X =0 = = W(J], (72)  for an infinite number of couplings and hence by nomeans
o] accessible to an exact solution. The usefulness of(E9).
we obtain the functional will only show up if we are able to make sensible approxi-
~ mations to the flow equation. We will come back to this later.
N x] = Ix - WilJ], (73} Here we note that in the flow equatiai@9) the regulator

functionR, appears in the effective propagator as an infrared
(or Fermi surfacgregulator whereas the factggR, reflects
the fact that the onlk dependence arises through the regu-
lator. For an appropriate choice & with R, decreasing
Tlx]1=Ix-WJJI]-ASx]. (74)  rapidly for large momenta the momentum integrals are ultra-

. L _ i violet finite. This means that effectively only a small interval
The effective average action is the effective action of ay¢ 1omenta contributes to the integrals.

theory containing an extra regulator or “mass” term as de- | ¢ ys rewrite the flow equation in a very useful way
scribed by the actio] y] + AS[x]. Since the effective action 54ing contact to perturbation theory. Define the derivative
respects alllinearly realized symmetries of the original ac- (ihe indexi counts the field typgs
tion, this also applies td"\[x] for all k, if the regulator
ASJx] respects the symmetries. It is thus possible to expand ~ i d
the effective average action in invariants with respect to ak:(akRk)é,?'
these symmetries. K
The limits (71) lead to corresponding limité for the ef-  With the aid of this derivative the flow equation can be cast
fective average actioft, into the form

whereJ=J][ x] is a solution of Eq(72). As will become clear
in a moment it is favorable to subtract the cutoff action from
this functional and define theffective average actioas

(80)

iy Tdx]=Ild, - m Tl =Sd- (79 A= STHE [T + R}, (8D

This is why we choose to subtract the regulator in the defiThis can to be compared with the regularized perturbative
nition of I'[ x]: for large “cutoff” k this functional is nothing one loop resuff
but the original action. The effective average action therefore

interpolates smoothly between the classical acBand the T x]=T\[x]+3STrIn[S? + R] - In[S? + R, ]).
effective actionI’ as k changes from very large values to (82
zero. The quantitative change B§ with k will be described
by the ERGE derived below. Performing thek derivative of Eq.(82) leads to a one loop
We specify the second functional derivative in a symmetflow equation. A “renormalization group improvemerg®
ric form containing both left and right derivatives, —T'? promotes this equation to a nonperturbative exact
> - flow equatior?® This comparison with perturbation theory
F(Z;);[X] - iF[X]i (76) allows us to identify the right-hand side 1) as a sum of
@ OXa OXp one particle irreducible one loop diagrams, where all cou-

plings have been replaced by their renormalized counter-
parts. Momentum integrations, sums over internal indices,

'f@ﬁv\/@ =M,,, M=diag1,1,1,-1,-1. (77) etc,are performed after thig derivative.
’ Y Obtaining the flow equation for some coupling thus

and notice the identity

For thek derivative offk one now obtairi-2? amounts to summing all one loop diagrams for this coupling,
~ B B 3 evaluating thed, derivative and then calculating the trace.
I x]y = =~ AWLI]; = (GASO=2 R apXaXp) However, we may be able to perform parts of the trace first if
-1 2) thecutoff does not depend on it. For example, we will later
== @ VV( + w p p ’
i Rt :)"8“ X)) be able to first sum over Matsubara indices before perform-
=5 R apWMhe + AASIX], (78)  ing the, derivative. Technically, this is a very useful prop-
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i i NI they are calculated by the flow equatiof9) for the trunca-
| | W tion (84). As can be seen from the diagrams in Fig. 5, the
', ', AR four fermion coupling\ ,, will in general be different from

zero, sayA\,, at the new scalé.
FIG. 5. Box diagrams for four fermion interactions. Solid lines ~ We will use our freedom in the definition of the bosonic

denote fermions, dashed lines bosons. fields to consider a field redefinition at the sckle

erty since it allows us to use directly the one loop computa- H(Q) = Q) + A Q h(Q), (85
tions (e.g., Sec. VIIJ for a derivation of the appropriate . . .
renormalization flow equations. where Aqy is an up to now arbitrary functionWe set ¢,

On the level of the exact flow equation we have, of=¢ at the initial scale. For infinitesimally small shifts this
course, to remember that the one loop diagrams have to H&sults in a flow equation for kedependent field variable,
evaluated for field dependent propagators as givelﬁl'l{f;} ~
+Ry) L. Therefore the flow equatiof79) is a complex differ- HP(Q) = = dar(Q) Q). (86)
ential equation for functionals. In this paper we tackle it by

: . S X Let us see how we can implement the field redefinition into
expanding the effective action in powers of the fields, b

the renormalization group formalism. In the exact renormal-

* ization group equatioki79) the change of scalgI'[x]|, is
D)= 202 Xay X iy (83)  calculated at fixed fields. Hence, if in addition we perform a
n=0 M g " shift in the fields as above and consider the flow for fixgd

The flow equations of the-point functionsl“l((”) can easily be the flow equation becomes

derived from Eq(79) by appropriate functional derivatives. AL ]

However, the flow of some-point function will in general ~ “© K77 * 7k

contain highemn-point functions. This is a general feature: if _ x o .

we perform a systematic expansion of the effective average 'L ’d)k]|‘/’k+2 S Tl o, did |
. ) . Q K

action, the set of flow equations will not be closed. We have

to truncate the expansion at some point. = [0 ol ot > (- akak(Q)P¢,yk(Q)¢k(Q)<~j>(— Q)
Q
X. REBOSONIZATION OF FOUR FERMION +h(Q)dka(Q HQ) h(- Q). (87)
INTERACTIONS

It is appropriate to define the couplingg etc., as the coef-
Any partially bosonized theory will generate four fermion ficients of polynomials ing,. The second term in Eq87)
interaction terms under a renormalization group step correehanges the flow equations fbg and\ ; to
sponding to the diagrams in Fig. 5. However, we wanted to

capture the complicated behavior of higher fermion vertices i (Q)] gk + Aka(Q)IP 4 (Q),
in the bosonic language—this is what the bosonization pro-
cedure is all about. One might suspect that it should be pos- N Q) = G g Q)]s+ Qe Q). (89)

sible to rebosonize the fermionic coupling obtained after

some renormalization group step by a suitable field redefiniwe may now demand that the purely fermionic coupling
tion of the bosonic fields. This is indeed the case as waganishes for all scalels, i.e., d\,K(Q)=0. This determines

shown in Ref. 23see also Ref. 19 Q) and leads to a modified flow equation for the
Consider a theory witlteffective averageaction, Yukawa coupling,
1
D', dl=2, 4 (QP = -QP Psx(Q)
k[l//,lﬁ ad’] EQ lﬁ (Q) w,k'wb(Q)"' ZEQ ¢( Q) ¢,k(Q) d)(Q) &khk(Q) = &khk (Q)|¢k_ _ﬁ%&k)\%k (Q)|q5k (89)
-2 h(QAQ¢(-Q) As a net result, we have traded the “regeneration” of a four
Q fermion coupling against a modification of a running Yukawa
+ 2 M QBQé(-Q), (84)  coupling. . _ .
Q Even though nodirect four fermion coupling is now

~ o ] present in the truncatio84) (\,,=0), the effective four

where ¢ is the fermionic bilinear corresponding to the fermion coupling can always be reconstructed from the par-
bosonic field¢, e.g., ¢(Q) =2k ¢ (K)o'y{Q+K), and the tially bosonized effective action. For this purpose one solves
initial condition for the purely fermionic coupling is,,=0 the field equation for, as a functional off and reinserts the
at some initial scalé. solution ¢<k°>[¢] into the effective action. For the truncation

Now perform a renormalization group step from the scaleg(84) this yields
k to the scal&k=k—Ak. The change in scal&k, is supposed © o~
to be so small that the changes in couplings are also small; K (Q) =h(QP Q) &(K),
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)\(;ff,fk(Q):_%hi(Q)P;b,lk(Q)- (90) tum dgpendenqe of the.four fgrmioq vertex, the parti_ally
bosonized version permits the inclusion of higher vertices
Adding the various bosonic channels which have been takeand the investigation of spontaneous symmetry breaking.
into account in the bosonization procedure a suitable renor-
malized local quartic fermion coupling, can be defined as XI. RENORMALIZATION FLOW OF THE HUBBARD
a linear combination ok (Q=0). Once the flow ohy and MODEL

P4« is computed one can compare the flowlgf with the We now want to apply the renormalization group formal-
flow computed directly in a purely fermionic fprmulat|8'n_5. _ ism summarized in the preceding sections to the Hubbard
We have checked that with our rebosonization prescriptionnogel. We will concentrate on the region close to half-filling
the “fermionic” and “boson|c"2ﬂow ofU, agree in lowest anq jow temperatures where the system is dominated by the
nontrivial order(e.g., gUy=cUj). We emphasize that this antiferromagnetic spin density. In this section we will there-
“one loop accuracy” of the flow dfl, would nothold had we  fore leave aside all bosons apart from the spin denitg).
omitted the “rebosonization correctiot89). ) _ There is then no ambiguity how the paramegy is related
Beyond one loop order the *fermionic” and "bosonic” {4 the original fermionic coupling), namelyU,,=U/3. We
flow of Uy shows differences that depend on the precise trunaytenq this truncation by including other bosonic degrees of
cation. (Without truncations the two versions of the flow freedom in Sec. XVI. We recall in this setting the mean field
have, of course, to coincide precisglyhey reflect the em- 555 oximation is not consistent with Hartree-Fock or lowest
phasis on different aspects of the model. The bosonic flowy ey perturbation theorfU,,# U/2). The consistency will

investi.gated her_e takes also intq account the effect.of thBe established only by the inclusion of the bosonic fluctua-
bosonic fluctuations. They contribute to the generation o, affects.

quartic bosonic couplings which would correspond to eight

fermion vertices in a purely fermionic language. These quar- A. Truncation
tic bosonic interactions are crucial for our ability to explore Let us now try to define a suitable truncation for the ef-
spontaneous symmetry breaking by the renormalizatiorf

. fective action. The initial conditioiiat very largek) for the
group flow. Indeed, they guarantee that the bosonic eﬁeCt'Vﬁow equation(79) is the classical action. In the course of the

potentlalt r“ejmams tb ounded ftr_omfbelow even if tk:ceF boson"?Iow towards lower scales the effective average action will in
propagator,,(Q) trns nega Ve Tor some ra.”ge@ FOM  general pick up all possible couplings that are compatible
Eq.(90) we learn that the effective four fermion couplibg  ith the symmetries of the theory. In order to make progress

will diverge precisely wherP, vanishes. This divergence o haye to truncate this set of infinitely many couplings. We
limits the effective fourfermion coupling of the purely fermi- |\ i make an ansatz containing a fermionic kinetic tefigy,

onic flow to the symmetric phase. Going beyond, and iny torm containing a Yukawa-type interaction between fermi-
particular exploring the ordered phase, would require to tak

- X X . X ®ns and bosond’y, and a bosonic action to be specified
at least eight fermion vertices into account, rendering g|qy (A term containing a four fermion interaction is to be

purely fermionic description complicated. These difﬁc“|tiesrebosonized as sketched in the preceding segtkswe are
are overcome by the bosonic flow equations which can easily,5inly interested in antiferromagnetic behavior we define
follow the flow of a four boson vertex. the boson

On the other hand, we observe that the four fermion
vertex multiplied by )\ﬁfk [Eq. (90)] shows a particular a(Q)=m(Q+1I), (91
structure in momentum space: from the combination

~ o~ i whose zero momentum modé0) corresponds to a homoge-

2o Ay Q) HQ(-Q) the mo“me.ntum of a pair of ‘VXO fer- heous antiferromagnetic spin density.
mions sum up to a common pair momentu@” This “fac- For the fermionic kinetic term we adopt the classical part
torized structure” does not exhibit the most general MOMeNynchanged
tum dependence of the effective four fermion vertex
permitted by the symmetries. It is therefore not possibleto Lyl ] => J(QPQWQ),
rebosonize the most general momentum dependent four fer- Q
mion interaction generated by the flow. As long as one uses
only local bosonic fields only the “dominant part” of the four Pe(Q) =iwg+e—-pu, €(q)=-2t(cosqy+cosqy),
fermion interaction—precisely the one that can be described (92)
by bosonexchange in several channels—can be made to van-
ish for all k with the help of field redefinitions. In our ap- where we restrict ourselves to nearest neighbor hopping. In
proximation, we simply omit the “subdominant part” that contrast, the Yukawa couplink,  is taken to be scale de-
does not take a factorized form. This contrasts with the workgendent, ’
on the fermionic renormalization flowf where, in principle, _
the full momentum dependence of the four fermion interac- Lyl W al=- hax > aK)y (Q o (Q")
tion is taken into accoun{Of course, one could combine the KQQ'
advantages of both approaches by extending the truncation, _ ,
keeping explicitly the influence of the “subdominant” four X AK=Q+Q +1I). (93)
fermion interactiong.In short, whereas the fermionic formu- For the purely bosonic part we investigate a kinetic term plus
lation typically allows for a higher resolution of the momen- a local effective potential,
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1w . . . erty of suppressing the effect of the high frequency modes.
I'ydal= 52 a(- QP(QAE(Q) + X U[AX)].  (99) One would suspect a similar behavior for the quartic bo-
Q X . L .
son couplingh, which is generated by the fermion loop: the
Due to SU2) symmetry the potential can only depend on thelow frequency modes are supposedly changed most, imply-

rotation invariant combinatiom(X)=3a(X)(X) or, in Mo-  ing that\, depends substantially on the frequenay. [For
mentum space example, we could replace,— NI, f,(wp) with f,(0)=1
a(K,K') = %é(K)é(K’). (95)  While fy=0 for largew, wherei labels the external legs of

. L the diagram contributing to the flow &] We neglect this
Furthermore we will make an expansion in powers of the

s I . ! effect here since the contribution of modes with latgeis
field @ up to a quartic interaction. We take a different eXpan'suppressed anyhow by the terrZ,w? in the inverse propa-
sion point in the symmetric regim&YM) and in the regime gator a’B

with spontaneous symmetry breakif@SB) as it is prefer- '

bl | d dth o= fth . In addition to the truncation we still have to specify the
able to always expand around the minimum of the potentiaj gy, jator functions for the renormalization group equations.
SYM: X U[d] = X mia(- K,K)
X K

B. Fermionic regulator

+ 1 > ré(Kl + Ky + Kg + K,y) The fermionic cutoff function is inspired by the fact that
2K, é at nonvanishing temperature the propag®p(Q)=iwg+e€
- has no zero modes. This means that the temperature itself
X Ky, Kp)a(Kg,Ky), acts as a regulator. We therefore choose

1 J—
SSB:}; Ula] = §K§K4)\a5(K1+ Ko+ Ks+Ky) RAQ) = in<% - 1) = 2wi<n,: + %)(Tk— T, (99

>< —
(@K1, Ka) = apdlKy) oK) which has the effect of replacing the temperatlirey some
X ((Kg,Ky) — ap8(K3)8(K4)).  (96)  function T, in the fermionic propagator. We specify this

The parameters in the potential are the scale dependent mz{ggctlon to be(p=2)

m,(K) or the minimumay(k), as well as the coupling,(K).
For largek we start in the SYM regime and switch to the
flow equations for the SSB regime at the sdalgg defined
by m2(kssp =0. kK\Pt )1 if k>T,

The bosonic propagator on the classical level is simply a ATk = (ﬂ) - (KIT)PL if k<T, (100
mass term in our case, i.d2,=0, \,=0. We let us guide by
the one loop results of the preceding section for the momensuch that for largé the flow mimics a change in temperature

TP=TP+kP, (99)

tum dependence and take whereas fok<T the modification of the fermion propagator
-, 2 o becomes ineffective. For fermionic modes for which the dis-
Pa(Q) = Z,Q° = Zy(wg + tq]9), (97)  tance of the momentum to the Fermi surface is smaller than

whereZ, is a scale dependent wave function renormalizatior” | N© @dditional regularization IS ngeded "?‘”yhOW-
In short, we want a cutoff that is ineffective fer< T and

(with the dimension of mas$ and the functiorq]* is de- allows us to approach the Fermi surface continuously for
; 2_ 242 T . gy
fined as{q]*=q,+qj for g e [, 7] and continued periodi- | - We will see in the next section that this requipes 2

cally otherwise. and we will choosgp=4
The ansatfq]? for the spatial part is to mimic the mo- P=2.

mentum dependence of Fig. 3. It is not very accurateqfor
in the vicinity of 2. Fork<< A this region gives only a small C. Bosonic regulator
contribution, however, whereas férnear A the whole ki-

netic term is small as compared to the mass teffhe clas- For k<T possible infrared problems may arise from the

sical approximation iZ,=0) The dependence on the Mat- fluctuations of long range bosonic modes. Thi_s_is particularly
subara frequency is more difficult. A look at Fig. 4 Showsreleva_nt near a second or_der phase transition where the
that the bosonic propagator is changed only for the Sma"eé{osonlc_correlat|on length d!verges. Such potential prot_)lems
frequencies, while the higher frequency modes retain th&'® avoided by the bosonic regulator. We take a *linear

classical mass ternfwithout sizeable kinetic terjn This cutoff"®

could be reflected by theg-dependent parK,(wg) in Py . .

obeying X,(0)=0, X,~mZ-ma(k) for large wg. Lowering RK(Q) = Zy(K* - Q9O (K - Q?), (109
the scale, theyg=0 mode will then dominate the propagation R

more and more. Our approximatiog(ws)zzawé is chosen whereQ? is defined in Eq(97). This leads to a full propa-
for the sake of simplicity: it has the correct qualitative prop-gator of the form
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PR(Q) = P4(Q) + Ri(Q) Here the boson mass ternw? are different for the “radial
No Ao o5 A, 5 mode” (in the direction ofa) and the “Goldstone modes”
=Z,(Q° 0(Q7- k) + k™ Ok~ Q) = Z.Qi, (perpendicular ta),
(102 - - B

where I\A/Ii L {)= (Tfl + 3)\aa,mé+ )\aa,mi:)\aa) SYM

Q7 if 2> K2 - (Na(3a = ag), Ny(@ = ag) No(a = ag)) SSB.
Q= NS (103 (106)

K2 if Q2 < k2.

: _Inthe SSB regime we recognize the two massless Goldstone
The regulator functiorg101) thus only hampers the propaga bosons fora=ap. The squared fermion magmass gap

tion of modes with small momenta and Matsubara frequen-— i

cies wherefg2< k2. Therefore, by lowerinds, we effectively 2hyr enters the function

average over larger and larger regions in position space. We 1 _

may therefore relate properties of the effective average ac- y(a) = —VéX(q) + 2hZa. (107
tion 'y at a given scal& to properties of size K/in position 2Ty

space. Since the fermionic modes are effectively integrated ) )

out fork<T we can associate in this range" with a typical ~ The flow of the mass term and quartic coupling follow from
(linean size of the experimental probe. Indeed, fluctuationsSimple differentiation of Eq(105):

with size larger than the experimental probe should not be
included in a “physical” definition of the relevant effective
action. For practical purposes one is therefore interested in
macroscopically large but not infinite valueslof.

J
SYM: &kmg= ZY (&ku(a))|a=07

D. Initial values — 9?2
L . dNa = 2 ((9kU(a/))|a=0,
For k—oo both the fermionic and bosonic propagators Jda

vanish. Therefore the loop contributions vanish dnd,..

indeed equals the classical action. The initial conditions for 1 9

the parameters occurring in the truncation can therefore be SSB: dag=——=— (3U(@))] pmae.
read off from the classical actioi@3). For very largek one Ja 0
starts in the SYM regime with

— — 2
mg: Un MN=0h,=U,, Z,=0. (109 INg = % (&ku(a))b:%' (108
Xll. FLOW EQUATIONS AT HALF FILLING Here the flow of the minimum is inferred from the fact that
In this and the following section we study the HubbardU’(ap)=0 and henceld/dk)U’ (ag) = U’ (ap) +U" (ap) dero
model at half-filling, i.e., for vanishing chemical potential =0.
n=0. As a test of the reliability of our approach we extend  With the aid of(108) we may now derive the flow equa-
the truncation in Sec. XVI and check the influence of thetions for the parameters in the effective potential. However,

Fierz ambiguity. first we introduce rescaled and renormalized quantities
A. Bosonic potential U2 7 a
_ = ~ _ 4a
The flow equation for the effective potentidl«) obtains U=Ter ¢~ ¢ (109
by evaluating the ERGIE79) for a homogeneous antiferro-
magnetic order parametafQ)=as(Q), a:%g@_ The contri-  such that
bution of the fermionic fluctuations can be found by replac-
ing in the mean field theory result53) T—T, in the mg Ju Z.t2
fermionic propagator and applying thg derivative. The mﬁzz kzzﬁ' Ka= T %
bosonic contribution is the same as for tB¢3) linear o a
model20:22
T — Fu T
— B F — - 2 _ ' K2
(?kU(a) =g\ (a) + g U (a) Ng= thzkz)\a_ 552" ha— ZatAha (110)

AN 02
- 2% 7 In[Pa(Q) + Mi(@) + R(Q] are all dimensionless.
™ 2

g The flow equation foru can be expressed in terms of
q

-2T| ——5d,In coshy(a). (105  “threshold functionsTé(w) which express the decoupling of
. (2m particles with mass much larger thar(large w)
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400 : : o : : . /"\“
L . _ !
350 '=.\l Tt T ___\>_’_,__
300 | o 1
250 . FIG. 7. Diagrams for the running of the scalar two-point
; ; function.
200 .
150 | . — 1-nl4
| 3(W, 70, T) — 15(wW, 7,) = ————. 114
oW, 72, T) — (W, 72) = =7 (114

100

80
In the long wavelength limit we therefore recover the well

studied flow equations for the scal&@(3) model in two

dimensiong?® The flow equations fomZ, \, and « involve

the « derivatives ofl5 ands, and can be found in the Ap-
FIG. 6. Flow of the renormalized and unrenormalized masspendix. We note that all these equations have a simple dia-

1(Tlm§ (solid), 1OZE§/t (long dashepand the quartic bosonic cou- grammatic representation. For example, the mass contribu-

pling A, (short dashegsin the symmetric regimgSYM) at half-  tions in the symmetric regime are shown in Fig. 7.
filling. We have chosetJ/t=3 andT/t=0.15.

0

-5

t2 B. Anomalous dimension
Kdjlz = — 2u+ mpau’ + e kaUl,
T The anomalous dimensiop,=—kd In Z, is a measure for
5 1o s the change of the wave function renormalizatigp with
== 2u+ puau’ + 4—2 I 5(Wi, 72, T)+ Sp (Mg, T). scale. Therefore we can extract it from the momentum de-
T pendence of the bosonic two-point function,
(112
This usesdulz=dul,+ n,au’, u'=dul/da and is the -
anomalous I((Jli|men;i(|)n 6 7 Tekin= 2 Pa(K)a(=KK) = 2,2 KPa(= K,K).
K K
7a=—kd In Z,. (112 (115
The dimensionless threshold functiofts=tq),
— 20 %G A o As we are mainly interested in the spatial momentum depen-
| 5(W, 75, T) = ?E (2—2(9k In(P +M?), dence we define
n -t 77)
k p-2 t 3rm d2q t 1 9 S
Fre2 ~ ~
Sp(M ,T)=(—) (—) f ytanh ——V/, Z,=5 r :
U A\ )L em? T, T2 00910 [ 0a-KK) ] m0ma
= (4(cosq; + cosy)? + E) Y2 (113

decay rapidly for large values of the argumenis K=(wg=0k=ley), (116
=M?/(Z,k?), ME=2h%a. Their explicit form is given in the

Appendix. The characteristic scale dependence of the mas . - . .
term and quartic coupling is shown in Fig. 6. The running forwshereao is the minimum of the effective potential. We ob-

k>t has not much physical meaning and rather sets the sta $rve thatZ, is closely related to the momentum dependence

for the correct translation between the classical action ann.,[.tct'ne 'ﬂ/ er:?] dprlolpagc?)tr?;;h(;)r\:\(ljg Itr; er?sa. Sr%nqmtt'zzengz];l-
I'i~t. The physical fluctuation effects become important fortr:é m'(n'mS) m (he?e the cgnstant tﬁg m)qn'm : is
k<t as seen in the running ofZ. inimum, w paat inimun i

i . . . bstracted.
It is instructive to consider the long wavelength lirk#t su . . .
<T2 For p>2 the fermionic contr?bution$ \9/]anishes In the symmetric phas€SYM) the bosonic propagator is

~KkP2, As argued in the preceding section the fermionic in_af'fected by the two diagrams in Fig. 7. However, the bosonic

frared cutoff should be ineffective fade<<T. This means that :;)c?gsIrsloltn25Eﬁ?bduigttgftﬁgeaigﬁggh?girr?fe?]t;oinql':]r(]ae]{(ee:r?]ri?
the change inl, becomes irrelevant. In turn, this requires :

sufficiently largep and we choos@=4. On the other hand, onic loop is well known from our loop calculation by the
the bosonic threshold function approachesketT the one  replacements — Ty, Up—h, for Po(K)=Pr(K+I) in Eq.
for the two-dimensional linea®(3) o modef?24.25 (64), and performing the), derivative. We obtain
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]
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1
1 | N\ /
1 | N/
08 | ' ! S
1 | Y
0.6 1 1 Z A
04 | FIG. 9. Diagrams for the running Yukawa coupling.
%27 / More details on the extraction of the rebosonized flow equa-
0 . = . tions can be found in Appendix A.
s 4 s 2 : 8 In the symmetric phase we get for the runninghgf
-t
2_ 12 (d , b
FIG. 8. Flow of the wave function renormalizatiaf (solid) kahy = ha”7a+:8h§1 + Bhg ' (119

and the anomalous dimension 1§, (dashes in the symmetric
regime (SYM) at half-filling. We have chosetJ/t=3 and T/t  where the “direct” and “rebosonized” contributions to the
=0.15. beta functions reafior=(2n+1) 7 T,]

B =~ 2h“—kak2 (PYQPFAQPFAQ+1)}

ak2-|—
J Q
)= h2t(kaT| —
aTy a(lz) _ 2h4_ ki 1
GG IR C L) AT | (@ + ()2 Qa2+ m2
ij‘w dzq tan 2Tk +ta 2Tk 1 (2 B (1 B QZ/kZ))Q(kZ _ QZ)
L 2m? (e +eqrienn || — Ta L ,
=0 of + €4(q) (1+mg

(117

A characteristic evolution o, and #, is plotted in Fig. 8. by ~ _
In the SSB regime we also get a contribution from the ﬂr zhgszkﬁkz P2 (Qpa (11 - Qpr(- Q)
bosonic sector. The contribution comes from a bosonic loop

with four external legs, where two external legs are con- X [peHIT - Q) - pH(Q) 1}
nected to the condensate. As we will see later, the system
enters the broken phase at small values of the cutoff param- —4 mzh"'t—E kﬁk@g 1
eterk. At these values only the lowest Matsubara frequency a|(2-|- (@2 + €4(0))? QYK + m?
(wg=0) contributes in the bosonic propagatmf. (102)].
The bosonic contribution tay, is then the same as the cor- 1 (2-71-QU2))O(K2- Q)
responding one for a simpl®(3) model in two dimensions. + 2&)2 +&(q) (1 +m?)2
Here the anomalous dimension has been calculated’o be F L @
Nk, A2k, X . (120
77ng) NaKa m2 A2NaK5,0) = m, (118 (Q+ H)k/k2 + mg

where the functionm? ,(w;,w,) contains the momentum de- [N Eq. (120 we US@Qk QPO(Q2- 1) +K2O (K2~ QD), ki
pendence of the loop integral and depends on the regulaté(2n+1)7kPT, P, and
R:. For our choice of regulator it has been computed

explicitly?* as shown in118). In the SSB regime the contri- PR(Q) = (e + e(@)/t, Pa(Q) = QR/K2+m5.  (121)
bution from the fermionic loop is much smaller than the ) _
bosonic contribution and we will neglect it. We plot the flow of the renormalized and unrenormalized

Yukawa coupling in the symmetric regime in Fig. 10.
For the specific parameters used for this plot we observe

very little running of h,. The charge will be more pro-

In the symmetric phase the running of the Yukawa cou-nounced for other choices of the parameters, as discussed in
pling is generated by the diagrams in Fig. 9. Sec. XV. In the regime with spontaneously broken (83U

The first diagram is the direct contribution, while the lastsymmetry(SSB) the change in the Yukawa coupling is neg-
two contribute by rebosonization as prescribed in Sec. Xligible as we have checked numerically. We neglect the run-

C. Running Yukawa coupling
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FIG. 10. Flow of the renormalized 1%h, (solid) and unrenor- FIG. 11. Flow of the renormalized minimum of the potentgl
malized h, (dashes Yukawa couplings in the symmetric regime (solid), the quartic bosonic coupling 18, (long dashesand the
(SYM) at half-filling. We have chosebl/t=3 andT/t=0.15. wave function renormalization 187, (short dashesin the broken

(SSB regime at half-filling. We have choseb/t=3 and T/t
=0.15.

ning of the Yukawa couplingTa(k) in the SSB regime. For

k<kssg we therefore keep the unrenormalized Yukawa couwhat smaller tharksgg the fermionic fluctuations dominate
pling fixed h,(k<kgssp =ha(Kssp- the flow. They lead to increasing values of. However,
soon the fermionic contribution becomes smaller due to the
increasing masgap of the fermions. Then the bosonic loop
involving the massless Goldstone bosons dominates. This

We now turn to a numerical analysis of the above flowonly results in a slow logarithmic “running” ok,, but it
equations. For this we sét/t=3 and take a temperatufie  finally drives the minimum to zero and thus restores the sym-
=0.18. The initial scalek,=100 is chosen so large that the metry. When the fermionic part becomes negligible we ef-
final results do not depend on it and the one loop results artectively deal with a bosoni©(3) model in two dimensions
well produced in the beginning of the flow. The differential for which the symmetry restoration is a well known feature
equations were integrated by a standard Runge-Kutta likand has been extensively studied in our functional renormal-
routine?’ In Fig. 6 we plot the flow of the renormalized mass ization group formalisn3%22:26
mZ, the unrenormalized mass; and the quartic bosonic cou-  This picture reconciles the antiferromagnetic order with
pling \,. The values ok correspond to a flow in the sym- the Mermin-Wagner theorefhwhich states that a continuous
metric regime(SYM) where the minimum of the effective Symmetry cannot be broken at nonvanishing temperature in
potential occurs for a vanishing order parameter0. One two dimensions and below. We indeed lose the notion of
observes that the running af, sets in only fork<t. Then = symmetry breaking if we average over arbitrarily large vol-
both m, andm, decrease. At Irk/t~-2.2 the bosonic mass umes, i.e., lower the cutoff parameteto zero. Fok— 0 the
mZ vanishes and for smaller values lofwe enter the SSB  order parameterx(k) always vanishes, in accordance with
regime. We denote the corresponding scalédyg In Fig. 8  the Mermin-Wagner theorem. This is due to the presence of
we plot the flow of the wave function renormalizatidggand  Goldstone modes in the SSB regime. E§2) models in two
the corresponding anomalous dimensigp This explains dimensions there is another possibility to circumvent the
qualitatively the flow of the renormalized couplings in Fig. Mermin-Wagner theorem related to a Kosterlitz and Thouless
6: for scales above Ik/t=2.0 the running is mainly domi- phase transitiorfRef. 28. It is speculated that this kind of
nated by the simple scaling due to the respective dimensionsechanism may play a role in the superconducting region
of the couplings. In an intermediate range down tkih  (Refs. 9 and 2P Nevertheless, we find that for low tempera-
=~ -1 the large value of;, dominates the flow while for even tures the symmetry is restored only when averaging over
smaller values of Irk/t the fermionic part of the flow equa- extremely large samples unaccessible to any real experiment.
tions play an ever increasing role. For example, foif =0.0% the restoration of th®(3) sym-

In Fig. 11 we explore the SSB regime witl{k) #0 for ~ metry would require the effects of the Goldstone-boson fluc-
k<kgsg First, we observe that the quartic bosonic couplingtuations with characteristic length scgieverse momentuim
reaches a fixed point very soon. This is because the positivef 10° cm. For any realistic experimental length scale, how-
term ~\2 in Eq. (B4) just compensates the negative contri-ever, the order parameter(k) remains nonzero. This in-
butions from the fermions and dimension scaling. Two op-cludes macroscopic length scales. We conclude that it makes
posite effects govern the flow of the location of the minimumperfect sense to speak about long range antiferromagnetic
of the potential, as parameterized ky. For k only some-  order.

Xlll. SPONTANEOUS SYMMETRY BREAKING
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a(ksg)=0. Only “domains” with a size okg%{ become so
randomly oriented that no net order prevails on length scales
larger thankg%{. For an experimental setting with character-
istic scalek>kgg the formal “asymptotic symmetry restora-
tion” for k— 0 is without practical relevance. Thus, even
though formally correct, the Mermin-Wagner theorem fails
to be practically applicable in the case of the Hubbard model
at low temperature. In contrast, fer<kgy the precise value

of k is unimportant and we may take=0. In fact, this situ-
ation corresponds to the ordered phase with a renormalized
mass(or inverse correlation lengthmg~ ksp.?® The correla-

i tion length ¢ acts as an effective physical cutoff such that
fluctuations on length scales larger th@aare irrelelvant and

an additional “experimental cutofR<mg has no effect.

80

. . ) XIV. CRITICAL BEHAVIOR
FIG. 12. Flow of the renormalized minimum of the potentgl

in the broken(SSB) regime at half-filling for different temperatures. For T sufficiently large compared td. our analysis con-

We have choserlJ/t=3. The temperatures are in the sBtt  firms the statement of Refs. 30 and 31 that the long distance

={0.05,0.07,0.085,0.10,0.13,0}1{rom top to bottory. For T/t behavior of the Hubbard model can be described by a clas-

=0.05 the order persists up ke=10"*% corresponding to a sample sical nonlinearo-model. This holds fofT in the vicinity of

size of 16 cm. This clearly demonstrates that the Mermin-Wagnerand belowT,. We can use our findings in order to establish a

theorem is not practically applicable. guantitative description of the temperature dependence of the
correlation lengthé¢=mg*. For characteristic moment&T

Let us consider a probe with some finite macroscopic Sizethe fermion fluctuations are cut off by the temperature and

say 1 cm. Obviously, the fluctuations with momenta Smalle|;f)nly the bosonic flutuations remain relevant. Within the re-

than (1 cm)~! are absent in this setting and we should Stopmammg effective classicaD(3) linear o model the running

the renormalization flow at some nonzeto=(1 cm)~t  Of « obeys forx sufficiently largé®

~10°%t. For all observations with characteristic length scale 1 1

smaller than 1 cngin order to avoid boundary effects from Ko =—+ +0(k7?). (122
the particular geometry of the propene observes all fea- 4m 167«

tures of an effective antiferromagnetic state: For all temperaas a reasonable approximaticef. Fig. 11) we may employ
tures smalle_r tha}n a crlt|c§}l temperaturg'there will be an a “linear” behavior fork betweerk,, andkeg

average spin directio@, (“spontaneous symmetry break-

ing™). Furthermore, the fluctuations orthogonakgpwill be- 1 k(T

have as two Goldstone modes with effectively “infinite” w(k) = k(T) = 7 —In= =, (123
(= size of the samplecorrelation length for allf<T.. On

the other hand, the antiferromagnetic spin wave fluctuationwhere «,(T) corresponds to the maximum of the curves in
in the direction ofa, (radial modg will have a finite corre- Fig. 11. Withg—l:T(SR/cSR andx(T(SR)ZO one obtains for the
lation length¢ for T<T.. As T is approached from below correlation length

also the radial correlation length divergéglr — T,)— oo,

i.e., exceeds the size of the probe. The different behavior of _ Csr

the Goldstone and radial modes is a direct consequence of ¢€= Kr(T) expl4min(T). (124
the presence of a direction specified &y Another conse- ) o . .
quence of effective antiferromagnetic order is the presence dfSind the definition(110) for « this yields the characteristic

a mass gap for the electrons and holes. behavio?®
Let us next turn to the notion of a critical temperatige -
We will see that its precise value depends on the kizeof é=C exp(
the experimental probe. For this purpose we display in Fig.
12 the running ofx, for various temperatures. For a fixed with
value of k>0 (corresponding to the inverse of the sample R
size) we always observe a transition to an ordered phase if v = Amag(T)Zo(THE2. (126)
is low enough. This transition temperature is denoted by TST) )
To(k). In Fig. 1 it is directly visible as the temperature for Here &7z’ denotes the T-dependent maximum  of
which the order parametet, vanishes. In fact, Fig. 1 shows (agZ,)(k) and bothy and C=Cgr/k,,, depend smoothly off
ka(K) with k/t=10"° much smaller than all other character- (without particular features foF — 0).
istic scales of the model. For T<T, the correlation length according to E@.25
Inspecting Fig. 12 we may define a characteristic scale oéxceeds the size of the experimental probe and(E2p) is
symmetry restorationkgg by the vanishing ofk, i.e.,  nolonger applicable. The modifications of the results of Ref.

3
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30 for T< T, therefore concern the temperature region wherdities a detailed comparison of the results of our method with
the formal correlation lengtlifor k— 0) would become ex- the rich experimental information for many different materi-
tremely large and not practically meaningful anymore. Weals becomes feasible if the parameters of the microscopic
can actually use Eqc123) for an estimate of the critical action can be determined reliably. This would be a very re-
temperaturel o(k), warding task but is beyond the scope of this paper. The tem-
perature range for the universal behavior is limited by a char-
To(K) = & (127)  acterisitc temperaturg,. that we will discuss next.

IN(kn(Te)/K) Indeed, inspection of Fig. 12 reveals another characteris-
tic temperature, namely the minimal temperature for which
the flow enters the SSB regime. We will call this the pseud-
ocritical temperaturél,. and infer T,.=0.18& (for U/t=3).

For T>T,. the mass ternmZ(k) remains positive for alk.
_ T We note thafT,, is substantially abov& (T,./T.~1.6). In
&= c(T)exp{ZO.?ﬁ(T)?} (128 the temperatu?e range betwegpand T, wg may describe

. the physics by antiferromagnetic domains with fluctuating
with directions. The typical size of domains with local order ex-
tends up to the scal&k where x,(ksg)=0. On length scales

The k dependence of is only mild—typically a change in
k by a factor of 10 change§; by 10%. For a sample size
k=10"°%~ (1 cm)~! we may use a quantitative formula fér

B(T) = M, larger tharkgy, no long range order remains. It is obvious that
ao(T)Zy(Te) the critical behavior described by E{.23) loses its validity
for T above T, or in the vicinity of T,.. ThereforeT,.
k(To) [ k(To) |27 roughly describes the upper bound of the range of validity in
o(T) = CSRW Tt ' T for the critical behavior discussed above.

The positivity ofmﬁ for T>T,. implies that the effective
T four Fermion interaction mediated by the exchange ofdhe
AN =BM=-1, (129  boson remains finite. We conclude that the “critical tempera-
T ture” determined by the fermionic flow equatiérisactually

and B(T,)=1,c(T,) =Csg Despite the fact thal, is not a corresponds td . rather tharl.. Indeed, the approach based

sharp temperature the behavior fomearT, shares several ©" the fermionic flow equation precisgly I_ooks for the_“criti-
features of standard critical behavior. It is obvious that the=al témperature”where the four Fermion interaction diverges
correlation length increases very rapidly®is lowered from ~ fOF Somek or, in our language, where, reaches zero. The
say 1.9, to 1.IT.—still, it does not diverge fof —T,. On  Same holds for mean field theory or the Hartree-Fock ap-

the other hand, fof <T, the order parameter reaches zeroProximation. Again, these approaches determipgrather
for T—T, (fixed k) according to thanT,. The true critical behavior discussed in this section is

governed by the renormalization flow for the effective inter-
YT 1> T+ il kn(To) 130  actions of composite Goldstone bosons. It cannot be captured
T Km(To) A n k(T) (130 by the Hartree-Fock approximations or the fermionic flow
-~ ) equations. We emphasize that the influence of the Goldstone
The critical temperatur@:=0.114 can be directly read off p550n fluctuation on the value of the critical temperature is a
fron; Fig. 1. Furthermore, in the vicinity df; the propagator  |arge effect—we findr, almost a factor of two lowé? than
G(qg°) for the antiferromagnetic spin waves with momentass, the mean field theory.

g?>£72 is characterized by an anomalous dimensign
= 7,(k=V0?, T=T,), namely

Ka(T) = (

, St XV. RENORMALIZATION FLOW FOR NONZERO
G(0°) = (Zo(k=Na)Q) ™ ~ (q7) "7 (131 DOPING

We emphasize that all the critical features discussed in this In this section we want to compute parts of the phase
section extend beyond the particular approximations of thisdiagram for nonzero doping. For this purpose we study the
work and beyond the particular next-neighbor-coupling Hub- , equation for nonvanisﬁing chemical potential in the
bard model. Tth are universal a_nd hold whenever .the Iongymmetric phaséi.e., u#0, a=0). The bosonic part of the
g:ﬁgggﬁonbaelhri\c/)gerl :‘:c?rnabsepig?‘iseﬁgbvsi?@(b% s;m?nﬂe?[(r:)?ve tWOﬂOW of the effective_ potent_ial_ is not altered, while t_he fermi-
For T>T, the universal critical behavior observed in the onic part gets modified. Similar to EGLLL) we obtain
renormalization flow completely agrees with the results from
the ciritcal behavior of the classi¢8Heisenberg model ob-
tained by Refs. 30 and 31. In particular, this concerns the
successful comparison with experimental data for pure
La,CuQ,.%2 Sufficiently nearT, the deviations from the uni-
versal behavior are very small since the evolution proceeds _
in the “classical Heisenberg regime” for many orders ofwherel 3 is defined as in Eq(113), while s reflects the
magnitude(cf. Fig. 12. Concerning the nonuniversal quan- different location of the Fermi surface far+ 0,

- 1l «— ~
KdUz = — 2u+ gau’+ 4—2 | 5(Wi, 74, T) + (TR, T, ),
m

(132
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2 ([ qu - This can be very different for other choices of partial-
(T8, T, pw)=— —J 2 )2 bosonization, as visible in Fig. 14 for largk,/t whereT . is
lowered by almost a factor of 2.

In coshy— +1In coshy—
XVI. REMOVING THE MEAN FIELD AMBIGUITY

In this chapter we want to investigate how well the inclu-
V= (4(cosqy + cosqp)? + mz)l/2 (133 sion of running couplings is able to solve the ambiguity with
respect to the choice of Yukawa couplings in the bosoniza-
The flow equations for the couplingst and N, in the  tion procedure, which was so annoying in the mean field
bosonic potential can again be obtained by appropriate desalculation. For this purpose we add in our truncation ghe
rivatives with respect t@ [cf. Eq. (110)]. boson corresponding to fluctuations in the charge density. To
The equation for the anomalous dimension becomes  keep things simple, however, we reduce the bosonic effective
potential to a simple mass term for each boson and restrict
our discussion to the symmetric phase.

, PR For the full inverse propagatd?y(Q)=P,(Q)+R(Q) of
72 = hatk(dTy) 9T the & boson we choose
R me, +Ri=P3 for wg # 0
Dt p | oapedtIe) —p PRQ= (v q)){ I : =0,
N I T TR Z[q]+ W+ RE= Pi(a) for wg=0,
LM (do+dqrignt " (139

(139 and similarly forPi(Q) (however, we fixZ,=1). The func-
tion [q]? is defined as in Eq97). This choice reflects the
For the Yukawa coupling we obtain the same functional formfact that in the one loop calculation we found that thg
of the beta functions as in E¢L20). However, the fermionic =0 mode is changed most. Furthermore, if we make an
propagator is now replaced pg(Q)=(iwg+e(q)— )/t [cf. wg-independent choice of the bosonic regulator, we are able
Eqg. (92)]. to perform the Matsubara sums in the loops for the Yukawa

We have analyzed the phase diagram of the Hubbarduplings, which drastically speeds up the numerics. We
model for small values of the chemical potential The re- choose here a masslike cuttﬁf:k2 for both & and p. The
sults are plotted in Fig. 13, where again we have chasen fermionic kinetic part of the truncation is chosen as in Sec.
=3t. The upper line shows the temperatdig at which the  XI. Specifically, we restrict ourselves to nearest neighbor
bosonic mass vanishes in mean field thefafy Eq. (64) for ~ hopping. Furthermore we will only consider=0. Also the
Q=II]. For the bosonization we have chodgp=0. For the  Yukawa part is chosen as in Sec. XI. Details of the flow
small values ofu considered here the MFT approximation equations for this truncation can be found in Appendix B 3.
yields a second order phase transition such that the critical This truncation is a very primitive one. It was chosen in
line indeed corresponds to a vanishing bosonic mass ternerder to highlight the dominant factor for the cure of the
(In order to deal with first order phase transitions one wouldFierz ambiguity, namely the inclusion of the bosonic fluctua-
haveto treat the bosonic potential in a more complicatedions beyond mean field theory. The simple choice also
truncation. We therefore restrict ourselves to small values ofmakes the numerics relatively fast. We therefore do not ex-
w here) In the MFT approximationT,(u) therefore indi-  pect very precise results but one should be able to see the
cates the phase boundary ahg coincides withT.. general features of the flow.

The lower curve in Fig. 13 shows the pseudocritical tem- The first check was to see if the one loop corrections to
peratureT . for various values of the chemical potential de- the fermionic couplingJ are reproduced by the above flow
rived with the aid of the flow equations displayed aboveequations. For small, andT sufficiently aboveT,, the per-
(again withU=3t, U,=0). One observes that the pseudocriti- turbative expansion itJ is valid and one may compute the
cal temperature is Iowered as compared to the mean fieldorrectionAU=cU? in the purely fermionic language. Here
result. This is precisely the effect of the bosonic fluctuationswe compute the same quantity in the partially bosonized ver-
Indeed, the bosonic fluctuations have the tendency to stabsion. For this purpose we start at a large value of the cioff
lize the symmetric phase—they give a positive contributionfollow the flow for a while and “integrate out” the bosons
to themass term. This can explain why the pseudocriticawith their new couplings to obtain the new; As mentioned
temperature is lowered. Another effect is the influence of thédefore, this amounts to a solution of the scalar field equations
bosonic fluctuations on the running of the Yukawa coupling.in presence of fermionic “background fields.” As expected, it
The larger the Yukawa coupling the stronger is the destabiturns out that for large enough valueslothe flow indeed
lization of the symmetric phase by the fermion fluctuations.obeys the correct one loop equation. For sruka#ind largeT
This effect can lower or enhandg,, depending on the pre- we recover the perturbative result. This holds independently
cise choice of the bosonization. It will be discussed in moreof the choice of the bosonization parametdysThis is of no
detail in Sec. XVI. The effect of the bosonic corrections issurprise because of the one loop form of the flow equations
only moderate(~10%) for the parameters of our example. and the fact that our truncation and rebosonization system-
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FIG. 13. Pseudocritical temperatufg. versus chemical poten- FIG. 14. Pseudocritical temperatufg. for different choices of
tial » for U/t=3 in the mean field approximaticiabove and with  the parametet,,, calculated with flow equation@olid line) and in
flow equationgbelow). the mean field approximatiofotted ling. The fermionic coupling

is U=12t=3U,—U,. The Hartree-FocKor Schwinger-Dysonre-
sult corresponds to the mean field valudJgt=6t, i.e., Tpc~2.9.
atically includes all terms contributing in order. We em-
phasize, however, that the rebosonization of Sec. X is needed

in order to obtain one loop accuraty. P , L .
If we follow the flow towards smaller values of the h, is altered during the flow this will result in a change of the

S . . . final value of m, and hence the critical temperature. It is

purely fermionic coupling will not remain local but rather ) ) =
obtain a complicated momentum dependence. Furthermor@recisely the interplay of the running bf with other effects
the loop calculations are no longer adequate as a compariséigt leads to the robustness of the flow equation result. In a
for the quality of the flow. We therefore need another quansense, the flow finds the “correct value” lof independently
tity to investigate the invariance of the flow under differentof the initial value fork—ce. Indeed, the initial value de-
parametrizations of the bosonization. For this purpose wegends strongly on the choice bf, and this “memory” must
have chosen the pseudocritical temperatlige where the be lost for physical quantities to be independent of the choice
mass of the bosoa vanishes. of bosonization. We also observe that the “Schwinger-Dyson

In Fig. 14 we plot the pseudocritical temperatiig for ~ value” U,=Uy, is not the choice which minimizes the effect
the transition to the antiferromagnetic phase for different val-of the bosonic fluctuations. This rather happens Ehy't
ues of the parametetsd,, andU,. Thereby we keep a fixed =~2.5.
value of the four fermion couplingy=12=3U,~U,. This
graph has been calculated both with the flow equations and
in the “mean field approximation,” i.e., by searching for the XVII. CONCLUSIONS
zeroes of the bosonic mass in the fermionic one loop calcu-

lation of the two point functioR® The fermionic cutoff was shows many complicated features. At low doping and low
212412 H .

fchoshen tol bgk_Tf +hk 1;|or this pIoF. Onﬁ obser\ées th_at leven temperature these materials are antiferromagnetic insulators.
or the so uf[l'log oft 3 ow eﬂuatlr?n_t € gsehu obcrltlca_ te.m'lncreasing the concentration of electrons or holes turns them
perature still depends on the choice of the bosonizationy,, 5 gyperconductorwith exceptionally high transition tem-
However, this dependence is relatively mild as compared Qg 4t res as compared to “conventional” superconductors.
the mean field result and certainly due to our poor truncationy ot much is known about the mechanism for the binding of
Th'S. sho:/vs(;hat event;a\ cru<_:ie| !nclu5|on of the bosonic ﬂfl.Jcl' lectrons into Cooper pairs in these materials. Between dop-
tﬂanons e? sto ?]S“F_Stant'a lalmp_rO\r/lement fover' mean N€lfhq concentrations leading to antiferromagnetic or supercon-
theory as far as the Fierz amt guity oice o U is con- ducting behavior one suspects a region in which many dif-
cerned. The comparison in Fig. 14 with the Hartree-Fock, ant degrees of freedom seem to play a role. The
resultl(lcqrres;:;oEdm% thp‘_;Jm:jGt) als% dEmongtraflltes the qjarification of the basic degrees of freedom and their inter-
overall size of the change Ihyc due to the bosonic fluctua- 5y in this pseudogap region still needs a lot of experimen-
tions. . . tal and theoretical effort.

We mention that the scale independence of the unrenor- 1o common feature of all high temperature supercon-
malized Yukawa couplingy, seen in Fig. 10 is also found in ductors is their highly anisotropic structure composed of lay-
the present truncation fds,=0. For other values of the pa- ers of copper oxidéCu0;) planes. The interesting properties
rameters the unrenormalized Yukawa coupling indeedyf these materials and the mechanisms for generating them
changes more substantially. In the present truncation the floweem to be largely confined to these planes. The two-
of m, is influenced only through, [see(B12)]. Therefore, if dimensional Hubbard model is a simple attempt to capture

The phase diagram of a high temperature superconductor
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this microscopic structure. The model assumes electrons that lost only when averaging over extremely large spatial ex-
are able to tunnel from site to site on a lattice and feel aensions, much beyond any practical macroscopic s@ale.
mutual screened Coulomb repulsion. Whether such an ovestrict sense, observation of antiferromagnetism may be re-
simplified model is able to reproduce the complex phasgarded as a finite size effectVe emphasize that effective
structure of a real high temperature superconductor or parigng range order is a two-dimensional phenomenon which
of it still has to be clarified. A lot of theoretical work has goes not need the existence of a third dimension in realistic
been dedlcat_ed_ to this ta}sk over the last years but so farthgaterials? (with weak coupling between the plansor a
results are still inconclusive. low doping concentration we calculate a phase diagram that

The aim of this paper is a computation of the phase dia—acgrees well with other investigations.

gram, the temperature dependence of the antiferromagneti A necessary check of the consistency of our truncation

order parameter and the critical behavior of the correlation, ... .o concerns the question to which extend physical ob-

length for the two-dimensional Hubbard model with next : : .

neighbor coupling and small doping. Although the quantita-tsﬁévk?:;ii.de?end on tr:je unpi/r\}ysrl]cal patrag_]e(';etrﬁ, ”:jtmdu%ed n

tive results of this mainly theoretical investigation cannot be ISation procedure. Ve have studied the dependence
f the pseudocritical temperatufg, on the unphysical ratio

directly compared with experimental results we believe thaf’ . : :
severgl univgrsal featurespactually hold independently of th@f Yukawa couplingsUy,/U, (at fixedU=3Up—U,). Figure
details of the superconducting material. We attempt a solu}4 Shows that the Fierz ambiguity of mean field theory is
tion of the Hubbard model by means of renormalizationSubstantially reduced by the inclusion of the bosonic fluctua-
group (RG) equations. Earlier RG studies have already reﬂons, even in a very crgde_ truncation. This result is encour-
vealed the power of this technique in the context of the Hub29ing and tests along this line should be performed for future
bard modeF-6 The use of a purely fermionic language, how- Mmore elaborate truncations.
ever, renders an investigation of the low temperature phase OUr main result is the temperature dependence of the an-
extremely difficult. We believe that it is favorable to include tiferromagnetic order paramete(T) shown in Fig. 1. This
the interesting degrees of freedom more explicitly. This carfletermines the gap for the electrons according Ap
be achieved by rewriting the original action of the Hubbard=2h«.t. We also have given a detailed description of the
model in a partially bosonized form. universal critical behavior for temperatures near the critical
Already a simple mean field calculation in the partially temperaturél,, including the temperature dependence of the
bosonized Hubbard model leads to very encouraging result§orrelation length fof >T. and an estimate of the range of
We were able to reproduten phase diagram that closely validity of the universal behavioiT <0.8T,). In agreement
resembles the one of a real high temperature superconductavith other method$-3*we find thatT, is substantially lower
However, this simple approach also reveals an undesirabléan the Hartree-Fock result.
drawback of the bosonization procedure. The couplings are All our findings point to a simple Landau theory for the
not uniquely fixed by the reformulation procedure but thereantiferromagnetic spin waves in the low temperature phase,
is an arbitrariness connected to different parametrizations of

— 2
the coupling term. This “Fierz ambiguity” is also mirrored in S = }Za(T)O"ia-)‘aié:"' 1)\a(T)<512 - izKa(T)> :
the results. Even though the reformulation itself is exact, 2 8 Zy(Mt
approximations break this parametrization invariance and of- (136)
ten lead to a strong dependence of the computed phase dia- o ] . . . )
gram on unphysical parameters. By variation with respect ta(x) one finds the field equations

In the mean field approximation the fluctuations of thefor static spin wave configurations in thermal equilibrium,
bosonic fields are completely neglected. Taking the bosonic —
fields into account should dispose of or at least diminish the Ad= h( 22 _ EK )5 (137)
parametrization dependence of the results. An inclusion of 2Z, Zt2 )
the effective bosonic fluctuations may be performed usin ) —
renormalization group equations. We base our investigatiod e effective parameterz,, A, and x, depend orlT, the
on truncations of an exact functional renormalization groug=hemical potentiaj. (doping and the characteristic length
equation for the effective action. The partially bosonizedscale of the configuration or experimental prdveé. They
theory then serves as a starting point for the flow of cou<an be directly extracted from the solution of the flow equa-
plings. A one loop calculation serves as a guide for the fortion. SinceZ, and A, depend continuously op and are
mulation of suitable truncations schemes and also clarifiepositive for w=0 they will remain positive in a whole range
the relation between diagrams in the bosonized theory andf w. We see no sign of instability towards a spiral state for
the original fermionic formulation. small nonzero doping?3637

A first truncation deals with antiferromagnetic behavior at  In view of the self-consistency of our picture concerning
and close to half-filling. We are able to observe the breakinghe Mermin-Wagner theorem and the Fierz ambiguity we be-
of the spin rotation symmetry and may follow the flow fur- lieve that our exploration of the low temperature phase is
ther into the ordered phase. We obtain a plausible explanaeliable. The quantitative accuracy can be improved by fu-
tion of why antiferromagnetic behavior may be observed inture more extended truncations. This should confirm if all
the two-dimensional model despite of the Mermin-Wagneressential physical ingredients are indeed taken into account
theorem which forbids the breaking of a continuous symmein the present truncation. It will also permit a more detailed
try in two dimensions foif > 0. The antiferromagnetic order study of the universal critical behavior near the second order
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phase transition and an extension of the phase diagram to A= -2 L) PYIT = L) P2Y- L

larger doping. a aEL a (WP (II-L)PE(=L)
Already at the present stage our investigation goes sub- 1 .

stantially beyond the results of a Hartree-Fock or Schwinger- X[Pe(II-L) = P(L)]. (Ad)

Dyson calculation. The additional effects of the bosonic fluc-gq, the evaluation of this expression leading to E420)

tuations that we have included in the present work lowers th?BlO) (B17), and(B18) one employs the identities
critical temperature by roughly a factor of 2. This demon- ’ ’

strates the importance of these fluctuations even for the (00 p(00) 5= 38,58,5— 20% 0% 5,

rough features of the phase diagram. A robust picture of the

low temperature phase and the phase transition can only be (Ojo'j)aﬁ(o'jg'i)),&: 38,50,5+ 20‘;Bg‘;§_ (A5)

reached if the fluctuation effects of these collective bosonic

degrees of freedom are taken into.acqount propgrly. APPENDIX B: EXPLICIT FORM OF THE FLOW
Indeed, the functional renormalization group in the par- EQUATIONS

tially bosonized formulation presented here has interesting

prospects for understanding further features of the Hubbard 1. Antiferromagnetism at half-filling

model. It allows us to investigate directly the low tempera- \\e display here the explicit flow equations for the mass
ture phases with nonvanishing order parameters. Furtherm order parameter and quartic scalar couplingufe.
channels of possible spontaneous symmetry breaking can lqg,ey are obtained by taking appropriate derivatives of Eq.
described by additional bosonic degrees of freedom. Thi@lll)_ With the definitionsz,=-d, In Z, (anomalous dimen-

concerns, in particular, the boson responsibledfevave su- : - _ 2 Ao .
) ; o . : sion) and 25f(Q)=Zq O(k*-Q)f(Q) we get in the sym-
perconductivity for large dopirfgwhich is briefly discussed metric (SYM) regime

in Appendix D. Adding further bosonic channels also im-

proves the resolution of the momentum dependence of the 5hy = 2- 71 —Qzlkz) t4
four fermion vertex. It remains to be seen how these methodkg,mz = — = —2 > ﬁ+ (¢9ka)h§—3
can contribute to the fascinating theoretical challenge of es- 2T 5 (K)(1+my 2KTy
tablishing a quantitative phase diagram of the Hubbard ™ dq | tanhy(0) 1
model. X 5 - (2 - pyme,
_.(2m? y0)  coskf y(0)
APPENDIX A: FOUR FERMION COUPLINGS (B1)
In this appendix we compute the box diagrams shown in N = 2-n1 —Qzlkz) 6
Fig. 15. They generate four fermion interactions by the kg, =112 > %— (ngth—
renormalization flow, which will later be absorbed into effec- Tq KA1+ 8Ky
tive bosonic interactions by rebosonizati@ec. X). T _
We choose the external momenta as f d q2 {tan?y(o) + 2y(20)tanhy(0) 1}
- 2m* Y0 y*(0)costt y(0)
A=Q, B=Q-K, C=Q', D=Q"+K (Al)
=2(1 = )\, (B2)
such that for then boson, In the broken(SSB) regime we find
Alpo= 2 Aog (K)Mg(K)Mg (= K) + -+, 1S 2-70-0U3( 3
2T 5 (kit) (1 + 2\ 4k,)

~ - h2 t* (™ d’q | tanhy(xy)
K) = c(Q+K). A2 — (O T2

Mo(K) = ¥ (QFQ +K) (A2) G233 2| yoew

For thep boson the Pauli matrices are omitted. We evalu-

1
cosh y(xy) | T (B3)
K=II forthea boson,

Q=Q'=0 and{ (A3)

K=0 forthep boson. NS 2- 7,1 -QAKD) 9
kida= T 2~ /2 1+ 2 2
As an example, if only th@ boson is present, we obtain Q a
t® (™ d’q | tanhy(k,)
g - (& Tht
—b—:—b:—b— —— - ( k k) a8kT§ . (277_)2{ y3(Ka)
y | Y & 5 B
' i y(k)tanhy(k,) — 1
+ = 2(1 - na)\,, B4
—4—'4—:—1— .-l - yz(Ka)COSH)' y(ka) ( 7a)\a (B4)

FIG. 15. Box diagrams generating four fermion interactions.  where
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wf + e(q)? -
(0f + €(0)? = p?)? + Aol p?

y(Ka) = %\r'éz(q) + thhiKa. (BS) Pl_:J]:(Q) =

If k obeys bottk<27T andk < 7 we are able to evaluate the
EQ sum and f|nd2Q(2 7a(1-Q?1K2) =K2T(4-,) | (8). Wl + €(q)?
Pe2(Q) = :
P (f + (elq) + w)) W} + (ea) - p)?)?
(B11)

2. Antiferromagnetism for nonzero doping

For u # 0 the flow equations for the couplinglﬁ and\,
in the bosonic potential can be obtained by appropriate de-
rivatives of (132) with respect tox

5y = 2- 7.(1 - QUK

3. Antiferromagnetism and charge density waves

The running of the anomalous dimensigg can be in-

KM= 5T 2 mRa ey
Q (KDA1+my ferred directly from(117). The flow of the masses is gov-
t# (™ d29 | tanhv V(w0 erned by a fermionic looggthe bosonic loop does not con-
aka)hZ f qz{ - V) + V) X( ) } tribute as we have neglected the quartic bosonic coupling
a2k ). (2m) v(0) costt () and reads
-(2- na)maa (B6) ™ d2 tanh 1
MG = (f9ka)h2 3 qz{ ., }
N 11_a E 2 — (1 - Q%K) aom3 ). (2m) y  cosity
“ o (WT1+m)® (B12)
% (™ d’q ) tanhy(w)
- (ﬁka)h‘l { - T 2 _
8kT5 _em?| Vo) 5 ATORE 5T d-q | 1-ytanhy 513
= (% o ”T3 _,2m?| costty |’ (B13
L Hwtanhy(w) - y(- w/y0)
~9 H 2(1 - 77a))\a:
y-(0)cosity(u) wherey= e,/ 2T,.
(B7) The running of the Yukawa couplings is governed by
with —
k= B+ By (B14)

V() = (e(q) = w/(2T). (B8)
For the flow equation of the Yukawa coupling we evaluatewith the beta functions,
Eqg. (120 with pe(Q)=(iwg+e(q)—w)/t. One finds
i = e+ B2 + B (BY) By =-hakd X PEHL+ IHPELIRZPL) - WP ML),
a L

(B15)

B =- 2h;‘k2 9,2 (PQIP(Q)

9 -1 k3> PAL){3n2P.L) + 2P XL}, (B16
ZhngT Q{ (kakPFl(Q))zlkz— h, = o (9KEL F (D{3hzP, (L) +hoP, (L)}, (B16)
(2= (1 - QUKD O(K - Q) and
+ PFl(Q) (1 + mz)z } ’ mz
) = 28 KF > {2n4P2(L) P H(IT - L)PRY (- L)[PE(IT - L
Rl (LTS CID BETS 1 P OPI - PELIPAI -0
" 1 - PE{(L) 1+ R2h2(PRAL)P I - L) + Py Y(L)
= i 3 | APRQ) X PRI~ D)PEH- DIPEIT - ) + PRV, (B17)
o (2= 71 - QUKD)O(R- QD) — _ _
~2PR(Q) L+ P } = S @R + P AP )
P L
1 P
Qe (810) X[PE(-L) + ML)} (B18)
with In a more explicit form they read
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—_— dzqg[( . {( 7, h)( 7, h)}tahy{hﬂg,;m
e ) e M\ (T2 + & [\Paw@ Par/ \Pu@ P,/ 4Ty (Pax Py

T, wdzqg{( . { R m }+tanhy@>] 810
hy J-n @\ (7T + € | Pal@Padm =) ParPar ) 4Tey P2,/ |’

with y=€,/2T,. Similarly we find foer,

e[ K &= (T {( % @)M_ﬁﬂ)} ) {E,_SFLA}H
o) 2en)? [Eé‘*(WTk)Z]Z Px(@ P, Pa@)  Par 4Tz costty [ Pon  Par

e R )
h, J-r @07\ ((@T0?+ 7 T\ Pi@  PL/ \Pi(a) Py

[
+iz(tanhy_ 1 ){3_§k+—gﬁ})} (B20)
8TE\ Y cosit y Pav P2y
[
APPENDIX C: FERMIONIC REGULATOR where € is the two dimensional completely antisymmetric

tensor(e=ic?) and &, is the unit vector inx direction. We

Let us take a look at how the fermionic regulator function PR ~ : N~
works. For this purpose we investigate the integrand of théallso definecy similar to G,. With these definitions we may

- . . fewrite the interaction term as follows:
fermionic part of the flow equation for the bosonic mass
(B10), i.e., the function

tanhy 1 21( ) (W )?=p =3 =-m5;=58% (D2
_tanhy _ 2t(cosq, + COSQ,
F (0, 0) = y " cosht y’ y= T, : and further note the identity
(C1) . ~~ .
= PiPivg, T MMise +2C,iC, =0 (D3)

If the flow is properly implemented-(q;,q,) should be
dominated by momenta close to the Fermi surface for smaly 4 similar forx—y.
T, /t, since we only change the size of the shell of fluctua-
tions around the Fermi surface lags lowered. In Fig. 16 we - . !
plot F(qy,qy) for different values ofT,/t. The left part of and add a term q_uadratlc in the_se_ fields to the action such
Fig. 16 shows=(qy,qp) for fairly large values off, while the that the four fermion interaction is just cancelled,

right part is for lowT,. Observe that the contribution to the n o, .y n

integral comes from narrower regions around the Fermi sur- Sy Bl=S4, ¢ 1+ AS 4y B], (D4)

face the smalleiT, becomes. This was exactly what was
intended by the regulator.

> A A A

N S T S L
ASy=> {3U,(pi =P + 3Up(my — my)?
X
APPENDIX D: COOPER PAIRS IN THE d-WAVE

CHANNEL +Uy(§ ~5)(5 -3) + UJ(E -G (&4~ o)
The Hubbard interaction may be decomposed into fer- -3y =P (pise, ~ Pise)* %(rAﬁi —Fﬁi)(rﬁ@x—ﬁ;héx)]
mion bilinears in many different ways. To display a few, we
define fermion bilinears corresponding to charge density, +Uy[x—yl}. (DY)

magnetization and Cooper pairs in different channels, - .
Restricting the couplings to the range

p(X) ="p; = h, U0,
M(X) = m = g 54,
X =F= e, SX)=F =- e, UpUm > Uit Uy, (D6)

ensures that the auxiliary fields are Gaussian and can be in-

&X) =Ci=thieding, TN =Ty=-dipesi, (DD tegrated out after a shift of variables. Imposing
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|
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|
(@ < '
7 ¢ ® °
F i;[\'\v“ “""”ﬁf FIG. 17. Theq=0 mode ofd(Q) in its local form. Solid and
2r ”/f““ W‘""""" "’M[[ dashed lines indicate that two fermion operators on neighboring
” [W«M.,,- ‘ “ "’Ml (m lattice sites are connected with positive or negative sign,
e ” W“ MK respectively.

e
—

oS

—
e

it

)
|

‘ \‘\W“ AAANY AN ‘ |
o %MM&\\E\\&&&W‘W""“W‘““&“ "’hk - ~ Collecting the terms iD4) we see that we are now deal-
- g i & ey offmors coild o s v o

action reads

" S, Bl =Salth ¥ B+ S4B,

FIG. 16. Fermionic regulator. We plot the functidf(qy,ds)

defined in(C1) for T,/t=5 (left) and T,/t=1/5 (right). Sin= 2 4 Qi o= pt (Q)]1HQ)
Q
3Up-U,-2Us=U (D7) +3(U, = Uy cos g, — Uy cosay)p(- Qp(Q)+ 3(Up,
furthermore ensures that the resulting four fermion interac- + Uy cos gy + Uy cosgy)m(- Qm(Q)+ U (Q)S(Q)
tion in AS,; cancels precisely the one in the original action. +U,8(Q)e(Q) + Uyﬁ;(Q)éy(Q)}. (D9)

These conditions thus ensure that the partially bosonized par-
tition function, _ . :
where for next neighboft) and diagonal neighbdt’) cou-

o o A . plings one has
Zn,7m]= f Dy, ¢ B)exp— Loh, o Bl + 57 -+ mif)
(D8) €(g) = - 2t(cosqy + cosq,) — 4t' cosqy, Cosqy. (D10)

is indeed equivalent t@l). The Yukawa interaction reads

S=- X {5« - Q+Q')(U, - Uy cosk,— Uy cosk)p(K)iF (Q)#Q")+ (U + Uy cosk, + Uy cosk)m(K) ¢ (QF#Q")
KQQ'

+8(K-Q- Q’){ UJS (K) Q) ef Q') - 3(K) &7 (Q)e (Q)] + Uy cos%[él(K) HQ e Q)- &(K) ¢/ (Q)e (Q')]

+ U, cos ™M () HQ Q) /(K) &*(QW(Q')]H . (D1Y)
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Here we have used the Fourier transfor@sfor the fermi-
ons and
X0 =2e¥HQ), ¥ (X=2e Y (Q (D12
Q Q
for X®)=(p,m,&"), while for &,&" we use
&(X) = E @2 (Q),

& (X) = 2 e"<QX+qx’2>cx(Q>M (D13)

and similar forc'”,
In order to get an operator that hdsvave symmetry we
perform the transformation of variables,

=3@+d),
&, =3@-d,

and similar foré", d". If we insert this variable transforma-
tion into the action(D9) and setU,=U,=U, we obtain for
the e andd dependent part of the action,

C

8= (6, +8),

d=(@&-¢), (D14)

1 * ~ % ~
SEEDY SULE (Q&Q) +d'(QdQ} - > dK-Q-Q)
Q

KQQ'
X { —U°<
2

- &K)Y (Qer Q)]+ —* (

QX_QL +COqu_

cos
2

qX)[é*(K)t?/(Q)ez?f(Q’)
- q;)
2

X [d" (K) Q) e Q") —a(Kﬁ/f(Q)e&*(Q')]}. (D15)

Oy — Oy

oS o
2

— COS

PHYSICAL REVIEW B70, 125111(2004)

Integrating out the bosons is equwalent to msertmg the so-
lutions of their field equanonéS[:p np B]/8B=0 (i.e.,

saddle pointinto the aCtIOFIS[¢,¢ ,B]. For the bosor the
solution is

d(Q) =%(Q) -%,(Q) =d(Q), (D16)

as expected from the construction of In the fermionic
theory it is thus this combination that is represented by the

bosond.

Let us take a look at thg=(0,0) mode ofd(Q), i.e., at a
spatially homogeneous field. Frof@16) we know that it is
a superposition of stripes along tkeandy axis added with
opposite signs. To find a “local” expression we rewrite

d(Q=0) =2 (cosk, - cosky)#(K)eh(- K)
K

S5 0P+ 8) + PO X - 8)
X
= YOe(X+&) ~ HX)ed(X &)}, (D17)

so that at each lattice site we find an operator of the form
shown in Fig. 17. We see that indeed this boson may serve as
a lattice representation ofdy._,2» wave as it changes its sign
under rotation by 90° but not under reflection at ther y
axes(see also Ref. 34 for a more extensive classification

The mean field approach including the bogbis discussed
in Ref. 9.
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