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The authors suggest an approximative solution of the two-dimensional Hubbard model close to half-filling.
It is based on partial bosonization, supplemented by an investigation of the functional renormalization group
flow. The inclusion of the fermionic and bosonic fluctuations leads in lowest order to agreement with Hartree-
Fock result or Schwinger-Dyson equation and cures the mean field ambiguity. We compute the temperature
dependence of the antiferromagnetic order parameter and the gap below the critical temperature. We argue that
the Mermin-Wagner theorem is not practically applicable for the spontaneous breaking of the continuous spin
symmetry in the antiferromagnetic state of the Hubbard model. The long distance behavior close to and below
the critical temperature is governed by the renormalization flow for the effective interactions of composite
Goldstone bosons and deviates strongly from the Hartree-Fock result.
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I. INTRODUCTION

The rich behavior of strongly coupled electron systems
has attracted the attention of physicists for many decades.
One of the most popular models, which is believed to contain
the most relevant features to explain as different phenomena
as metal-insulator transitions, ferromagnetism, antiferromag-
netism and, more recently, the behavior of high temperature
superconductors, is the Hubbard model.1 It combines formal
simplicity with a rich and complex spectrum of its implica-
tions that—even after nearly 40 years—are not fully under-
stood. Analytical results are scarcely available. Only in one
dimension or in higher dimensions for very special choices
of the parameters exact analytical solutions of the model are
known.2 Besides many other attempts the last years wit-
nessed strong efforts to investigate the properties of the
model by means of renormalization group equations.3–6 Cur-
rently, although far from being able to fully and uniquely
describe the properties of the Hubbard model, renormaliza-
tion group approaches are widely believed to be a promising
method to further investigate its interesting phase diagram.

Most of the renormalization group approaches have stud-
ied the evolution of the four fermion interaction in depen-
dence on a renormalization scalek. Phase transitions and
spontaneous symmetry breaking are regarded to be encoded
in the momentum structure of this vertex. More precisely, a
phase transition is inferred from a divergence of the running
coupling at some characteristic scalekSSB. The particular mo-
mentum structure of the divergent part of the vertex indicates
the relevant order parameter for the phase transition. Even
though the detection of a transition by this method looks
rather convincing, the appearance of a divergence atkSSB
forbids a continuation of the flow fork,kSSB. In conse-
quence, it is not possible to penetrate the low temperature
phase with nonvanishing order parameter by a straightfor-
ward study of the four fermion interaction.

For the two-dimensional model this shortcoming is par-
ticularly annoying since an exact theorem by Mermin and
Wagner7 forbids the spontaneous breaking of a continuous
symmetry at non-zero temperature. However, the widely be-
lieved antiferromagnetism in the low temperature phase of

the two-dimensional Hubbard model corresponds precisely
to the spontaneous breaking of the global spin rotation sym-
metry. Antiferromagnetic order at nonzero temperature there-
fore seems to contradict the exact theorem. The present paper
will resolve this discrepancy and presents a computation of
the antiferromagnetic order parameter for temperatures be-
low the critical temperature. A summary of our results can be
found in Ref. 8.

Our method is based on partial bosonization, whereby the

fermion bilinear,c̄c is treated as a(composite) bosonic
field f. For the Hubbard model, partial bosonization replaces

the four fermion interaction,Usc̄cd2 by a Yukawa coupling

to the boson,h̄sc̄cdf and a boson mass term,m̄2f2,

wherebyU, h̄2/m̄2. The renormalization flow describes how
the mass termm̄2skd depends on the renormalization scalek.
The onset of spontaneous symmetry breaking atk=kSSB is
signalled by the vanishing ofm̄2skd. This indeed corresponds
to a divergent four fermion couplingU. However, in the
partially bosonized formulation it is comparatively easy to
include into the truncation also the bosonic interactions gen-

erated by the flow, e.g., a quartic scalar interaction,l̄f4. (In
the fermionic language this corresponds to an eight fermion
interaction which is quite difficult to compute.) For positive

l̄ a vanishing mass termm̄2=0, or even a negative mass term
m̄2,0, still lead to a well behaved effective scalar potential

(or free energy density) Ueff=m̄2f2/2+l̄f4/8. The mini-
mum of the potential shifts form̄2,0 simply to a nonvan-

ishing valuef0
2=−2m̄2/ l̄. The value off0 can be associated

with the order parameter responsible for spontaneous sym-
metry breaking. For temperaturesT below the critical tem-
peratureTc one finds thatfskd starts being different from
zero precisely fork=kSSB.0. It becomes obvious that the
partially bosonized version of the renormalization group
equation has no problem to describe the flow also for
k,kSSBand therefore to penetrate the low temperature phase
with spontaneous symmetry breaking.

This allows us to study explicitly the issue of the Mermin-
Wagner theorem. Our findings are indeed consistent with the

PHYSICAL REVIEW B 70, 125111(2004)

1098-0121/2004/70(12)/125111(29)/$22.50 ©2004 The American Physical Society70 125111-1



formal correctness of this theorem. In an infinitely extended
space all fluctuations are included only if the effective infra-
red cutoff k is sent to zero. Indeed, we observe thatf0sk
→0d=0 such that in the formal limitk→0 the order param-
eter vanishes and the Mermin-Wagner theorem is obeyed.
However, in the low temperature phase below the critical
temperatureTc the “running” of thek dependent order pa-
rameter towards zero is extremely slow—it is only logarith-
mic. As a consequence we find antiferromagnetic order at all
realistic macroscopic scales. We conclude that the Mermin-
Wagner theorem is not practically applicable here, despite its
formal correctness.

We demonstrate this explicitly by computing the antifer-
romagnetic order parameterk and gapDa at a macroscopic
scalek−1=1 cm. The gap is directly connected to a nonvan-
ishing antiferromagnetic order parametera0,f0

2 by Da

=s2h̄2
aa0d1/2=s2ha

2kd1/2t. Here k is the dimensionless renor-
malized order parameter38 and ha the dimensionless renor-
malized Yukawa coupling such that the gap is proportional to
the hopping parametert of the Hubbard model. Figure 1
shows the temperature dependence of the antiferromagnetic
order parameterk at half-filling (vanishing chemical poten-
tial m=0). This figure may be regarded as a central result of
our paper. We clearly observe the onset of spontaneous sym-
metry breaking forT,Tc. We find that the phase transition is
continuous. For this plot we have concentrated only on the
simplest version of the Hubbard model which includes only
next neighbor hopping with coupling strengtht. For a real-
istic value t=0.3 eV the critical temperature corresponds to
Tc=400 K.

An investigation of the antiferromagnetic phase within the
partially bosonized formulation of the Hubbard model has
already been performed in Ref. 9 where we used mean field
theory(MFT). Unfortunately, we have found that in the MFT
approximation the results forTc or the antiferromagnetic or-
der parameter depend strongly on unphysical parameters
which describe the precise choice of the mean field. Since
this ambiguity is closely related to the possibility of the Fierz
reordering of the local fourfermion interaction it is dubbed
“Fierz ambiguity.” In the present paper we show that the
inclusion of the bosonic fluctuations in the renormalization
flow (beyond MFT) greatly reduces this Fierz ambiguity.

In our present truncation the resolution of the momentum
dependence of the effective four fermion vertex depends on
the choice of composite bosons included explicitly. More
precisely, the effective vertex arises from the exchange of the
bosons and therefore inherits its momentum structure from
the momentum dependence of the bosonic propagators. In
this paper we concentrate on the antiferromagnetic order and
small doping. We only take into account bosons describing
spin densities and charge densities. We emphasize, however,
that our formalism is quite general. It is also well adapted to
include the interesting superconducting channel.

This paper is organized as follows: In Sec. II we review
the functional integral description of the Hubbard model and
set up our notation. We proceed in Secs. III and IV to derive
and solve the Schwinger-Dyson gap equation. In Sec. V we
introduce our partial bosonization. We carry out a mean field
calculation in Sec. V that can be directly compared to the

Schwinger-Dyson result. The “Fierz ambiguity” arising in
this approach is described in Sec. VII. In Sec. VIII we turn to
the momentum dependence of the effective bosonic propaga-
tors which is first computed in the mean field approximation.
The one loop corrections to the bosonic propagators show
that indeed antiferromagnetism is the dominant way of
breaking the SU(2)-spin symmetry of the model. The last
part contains our renormalization group approach to the
Hubbard model in its partially bosonized version and par-
ticularly a discussion of the behavior of the flow in the phase
of broken symmetry. We review the exact functional renor-
malization group equation for the effective average action in
Sec. IX and the rebosonization of fermionic interactions in
Sec. X. Section XI sets up our truncation and choice of cut-
off functions for the Hubbard model. In Sec. XII we derive
the nonperturbative flow equations at half-fillingsm=0d.
Their solution in Sec. XIII leads to an understanding of the
appearance of antiferromagnetic order despite the Mermin-
Wagner theorem and is the basis for our main result shown in
Fig. 1. The critical behavior is discussed in more detail in
Sec. XIV. In Sec. XV we turn to nonzero doping and discuss
the phase diagram of the Hubbard model for small values of
the chemical potential. Section XVI finally discusses how the
Fierz ambiguity is substantially reduced if the effects of
bosonic fluctuations are included beyond mean field theory.
Our conclusions are summarized in Sec. XVII. In the appen-
dixes we give explicit formulas for the flow of the couplings
in different truncations and show how nonlocal operators
corresponding to ad-wave superconducting state may be in-
corporated into the formalism.

II. THE HUBBARD MODEL

The partition function of the Hubbard model is given by

Zfhg =E
ĉsbd=−ĉs0d,ĉ* sbd=−ĉ* s0d

Dsĉ*std,ĉstdd

3expS−E
0

b

dtSo
x

ĉx
†stdS ]

] t
− mDDĉxstd

+ o
xy

ĉx
†stdTxyĉystd +

1

2
Uo

x
sĉx

†stdĉxstdd2

− o
x

shx
†stdĉxstd + hx

Tstdĉx
*stddD . s1d

Here

ĉxstd = Sĉx↑std

ĉx↓std
D, ĉx

†std = sĉx↑
* std,ĉx↓

* stdd s2d

are Grassmann fields describing electrons on a quadratic lat-
tice with lattice sites atxPZ3Z. (We restrict our attention
to the two-dimensional case.) The Euclidean timet param-
etrizes a torus with circumferenceb=T −1. The functional
integral is constrained by antiperiodic boundary conditions
due to the fermionic character of the fields. The kinetic term
contains the chemical potentialm as well as the so-called
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hopping matrixT, which describes the possibility of electron
hopping between different lattice sites. For simplicity, we
assume

Txy = H− t, if x andy are nearest neighbors,

0, else.
s3d

The quartic term reflects the local Coulomb repulsion of
electrons at the same lattice site. Additionally we include
fermionic sourceshx

*std, hxstd.
Calculations are conveniently carried out in momentum

space. We define the Fourier transforms

ĉsXd = oQ
ĉsQdeiQX, ĉ*sXd = oQ

ĉ*sQde−iQX, s4d

where we use the short-hand notations,

Q = svF,qd, X = st,xd, QX= vFt + xq s5d

in position and momentum space and define sums and delta
functions accordingly

o
X

=E
0

b

dto
x

, o
Q

= T o
n=−`

` E
−p

p d2q

s2pd2 ,

dsQ − Q8d = bdn,n8s2pd2dsq − q8d,

dsX − X8d = dst − t8ddx,x8. s6d

HerevF=s2n+1dpT is calledMatsubara frequencyand the
corresponding sumMatsubara sum, with inverse temperature
b=T−1. All components ofQ or X aquire the same canonical
dimension if q and x are measured in units of the lattice
distance, i.e.,x→ax, q→q /a. Here we seta=1. Note that
all functions in momentum space are 2p-periodic in spatial
momentum. In particular, the kinetic term in momentum
space takes the form

SF,kin = o
Q

ĉ†sQdPsQdĉsQd,

PsQd = ivF − m − 2tscosq1 + cosq2d, s7d

such that the Fermi surface is located at −2tscosq1

+cosq2d=m.
Another convenient notation that we will adopt is to in-

troduce a collective indexa denoting spin,X or Q, and the
label for the two complex conjugated fermionic fields. Cor-
respondingly,a=1, . . . ,4 is the collective index associated
with the discrete “internal” indices only. Explicitly, we have

ĉasXd =1
ĉ↑

ĉ↓

ĉ↑
*

ĉ↓
*
2

a

sXd. s8d

In this notation, the partition function reads

Zfhg =E Dĉa exps− Sfĉg + haĉad s9d

with the action

Sfĉg = − 1
2 jabĉaĉb + 1

24labgdĉaĉbĉgĉd. s10d

In momentum spacejab= jabsP,Qd is defined by the Fourier
transforms(4), implying

jabsP,Qd ; JabsQddsP − Qd,

JsQd = S 0 − PsQd12

Ps− Qd12 0
D . s11d

The quartic couplinglabgd is most easily given in position
space. By comparing(9) with (1) we get

labgd = − UeabcddsX − X2ddsX − X3ddsX − X4d s12d

with a=sX,ad, b=sX2,bd, g=sX3,cd, andd=sX4,dd.

III. SCHWINGER-DYSON EQUATION

Starting from the partition function(1), we derive the
Schwinger-Dyson equation10 for the fermionic two-point
function. The lowest order approximation to the Schwinger-
Dyson equation is the Hartree-Fock equation.11–14 We start
by defining theeffective actionby the Legendre transform of
the logarithm of the partition function in the standard way,

Gfcg = − ln Z fhfcgg + hafcgca. s13d

Here ca=kĉal=] /]ha ln Z fhg denotes the “expectation
value” of the corresponding fermionic field in presence of
fermionic sources. It is possible to rewrite the effective ac-
tion as an implicit functional integral

Gfcg = − lnE Dc̃ exps− Sfc + c̃g + hac̃ad s14d

with ha=−]G /]ca. We will use this as the starting point for
the derivation of the Schwinger-Dyson equation.15 For van-

FIG. 1. Temperature dependence of the antiferromagnetic order
parameter. We plot the renormalized expectation valuek of the
antiferromagnetic condensate in the low temperature phase for
U / t=3. The scalek/ t=10−9 corresponds to a probe of macroscopic
size of roughly 1 cm. The gap for the fermionic excitations is re-
lated tok by Da/ t=Î2ha

2k.
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ishing sources one finds the derivative of Eq.(14),

] Gfcg
] cs

= − jsaca +
1

6
lsabgkĉaĉbĉgl

= − jsaca +
1

6
lsabgScacbcg + sGs2ddab

−1cg

− sGs2ddag
−1cb + sGs2ddbg

−1ca

− sGs2ddaa8
−1 sGs2ddbb8

−1 sGs2ddgg8
−1 ]3G

] ca8 ] cb8 ] cg8
D ,

s15d

where

sGs2ddab = −
]2G

] ca ] cb

s16d

is the inverse fermionic propagator. Equation(15) can be
read as an identity relating various fermionicn-point func-
tions. Differentiating(15) once more and settingc=0, we
find the Schwinger-Dyson equation

Grs
s2d = − jrs +

1

2
lrsabsGs2ddab

−1 +
1

6
lsabg

3sGs2ddaa8
−1 sGs2ddbb8

−1 sGs2ddgg8
−1 ]4G

] cr ] ca8 ] cb8 ] cg8

s17d

relating the fermionic two- and four-point functions. The last
term in this equation represents a two loop expression of the
orderl2 (Ref. 15) and will be neglected in this and the next
section. The lowest order Schwinger-Dyson equation results
in a closed equation

Gab
−1 = − jab + 1

2labgdGgd s18d

for the two-point functionGab,

Gab = sGs2ddab
−1 . s19d

It can be integrated in order to obtain the two particle irre-
ducible effective action or bosonic effective action,15,16and a
corresponding expression for the free energy.

IV. ANTIFERROMAGNETIC GAP EQUATION

The Hubbard model(1) is symmetric under global
SUs2d-spin and Us1d-charge transformations. However, for
small T and smallm (corresponding to small doping) it is
well known that the Hubbard model exhibits antiferromag-
netic behavior. A nonvanishing expectation value of the op-

erator ĉ†sXdsW ĉsXd in macroscopically large regions can be
associated with spontaneous breaking of theSUs2d-spin
symmetry. Even though spontaneous symmetry breaking of a
continuous symmetry is forbidden in a strict sense by the
Mermin-Wagner theorem7 we will see in Sec. XIII that the
main physical features are correctly described by such a “na-
ive spontaneous symmetry breaking.” The leading order
Schwinger-Dyson equation exhibits a nonzero expectation

value39 of the antiferromagnetic condensate40

gab
sadsXd =

haaW

U
expsiPXdS 0 − sW

sW T 0
D , s20d

with P=s0,p ,pd. Here the factor expsiPXd ensures the al-
ternating sign of the spin density between neighboring lattice
sites. We therefore investigate the possible solutions of Eq.
(18) for Green functions obeying

GabsX,Xd = gab
shdsXd + gab

sadsXd, s21d

where the symmetry conserving part can be parametrized as

gab
shdsXd = −

hrr

U
S 0 − 12

12 0
D . s22d

Since the second term on the right-hand side(rhs) of Eq. (18)
is local [due to Eq.(12)] it only involves GabsX,Xd and
therefore induces a “local gap,”

DabsXd = −
U

2
eabcdsgcd

shdsXd + gcd
sadsXdd=sDrdab + sD̄adabsXd,

s23d

with charge density shift

Dr = − hrrS 0 − 12

12 0
D s24d

andantiferromagnetic spin density gap,

sD̄adabsXd = sDadab expsiPXd,

Da = − haS 0 − sW TaW

sWaW 0
D . s25d

For nonvanishingDa the fermionic propagator indeed ac-
quires a mass gap according to

Gab
−1sX,Yd = − jabsX,Yd + DabsXddsX − Yd. s26d

On the other hand, we will see below that the charge density
shift only shifts the effective value of the chemical potential,
meff=m=hrrsmd with rsm=0d=0.

In order to determinehaaW andhrr as functions ofT andm
we must solve the “gap equation” which obtains by evaluat-
ing the inverse of Eq.(26) at equal argumentsX=Y, i.e.,

gsXd = GsX,Xd = s− j + Dd−1sX,Xd. s27d

In momentum space this becomes

gsQd = o
K

GsK,Q + Kd = o
K

s− j + Dd−1sK,Q + Kd s28d

with gap function

DsP,Qd = DrdsP − Qd + DadsP − Q + Pd. s29d

The solution of(28) needs the inversion of the inverse propa-
gator (26) in momentum space,
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s− j + DdsP,Qd = s− JsPd + DrddsP − Qd + DadsP − Q + Pd.

s30d

By use of the identity

Da
*s− JsQd + Drd* = s− JsQd + DrdDa s31d

we find

s− j + Dd−1sP,Qd = − N−1sPdhsJsP + Pd − Drd*dsP − Qd

+ Da
*dsP + P − Qdj s32d

with

NsPd = sJsP + Pd − Drd*sJsPd − Drd − Da
*Da

= AsPd + 2ivFmeff diags1,1,− 1,− 1d,

AsPd = vF
2 + ha

2aW2 − mcff
2 + 4t2scosp1 + cosp2d2,

meff = m + hrr. s33d

Inserting Eq.(32) into Eq. (28) and performing the Fourier
transform of Eq.(20) [with gsXd=oQ eiQXgsQd] we arrive at
the gap equation forhaaW,

1 = Uo
Q

AsQd
A2sQd + 4vF

2meff
2 . s34d

Equation(34) admits a solution withaW Þ0 for low enough
T andmeff. This nontrivial solution has indeed a lower value
of the relevant free energy17 as compared to the solution with
aW =0. It is therefore a good candidate for the thermal equilib-
rium state at lowT. [We will argue in more detail below
(Sec. VIII) that this state indeed minimizes the appropriate
free energy in the approximation of the lowest order
Schwinger-Dyson equation.] The onset of spontaneous sym-
metry breakingsaW Þ0d—as the temperature is lowered from
high values whereaW =0—can be associated with a phase
transition. We have solved Eq.(34) numerically9 and the
result for the critical line in the planesT,meffd is shown in
Fig. 2 (upper curve).

We can extend the analysis for other possible forms of the
local gap[or gsXd]. For example, ferromagnetism(instead of
antiferromagnetism) can be described by replacing in Eq.
(20) haaW expsiPXd→hmmW . We have found that the solutions
with mW Þ0 have a higher free energy as compared toaW Þ0
and that antiferromagnetism is indeed favored. Charge den-
sity waves[with an additional factor expsiPXd in Eq. (22)]
do not allow for nontrivial solutions. The same is true for
local Cooper pairs withs, p or d symmetry. Nonlocal sym-
metry breaking expectation valuesGabsX,YÞXd do not con-
tribute to the lowest order Schwinger-Dyson equation due to
the locality of the four fermion interaction. Within the
Schwinger-Dyson approach an investigation of realistic non-
local Cooper pairs which could be responsible for supercon-
ductivity therefore requires the inclusion of the higher order
terms.(See Ref. 15 for an explicit formula of the next order
term.) As an alternative, one may realize that the renormal-
ization flow of the four fermion interaction introduces non-
localities in the effective four fermion interaction4 and use

the “renormalized gap equation” proposed in Ref. 15. For
nonlocal four fermion interactions even the lowest order
Schwinger-Dyson equation can have nontrivial solutions for
nonlocal gaps.

We will go beyond the leading order Schwinger-Dyson
equation by using renormalization group equations from Sec.
IX on. Before, it will be instructive to understand the con-
nection between the Schwinger-Dyson equation and mean
field theory based on partial bosonization. This will provide
us with an appropriate setting for the renormalization group
equation by which we can explore the region of spontaneous
symmetry breaking.

V. PARTIAL BOSONISATION OF THE HUBBARD MODEL

Among the most promising approaches to investigate the
properties of the Hubbard model are renormalization group
studies. So far, these calculations have been mainly carried
out in a purely fermionic formulation.3–5 The onset of spon-
taneous symmetry breaking then shows up in the divergence
of the quartic coupling in certain momentum channels, if one
follows the renormalization group flow to larger length
scales. This approach has the limitation that one is not able to
follow the flow into the region of broken symmetry. This
would need the inclusion of higher multifermion interactions
and therefore become extremely complex. We adopt here an
alternative approach, where symmetry breaking is encoded
in nonvanishing expectation values ofbosonic fields. Each
bosonic field corresponds to one possible symmetry breaking
channel. This allows us to keep a simple overview in the
realistic case of competing channels. In this work we will
work with a bosonic field reflecting antiferromagnetic behav-
ior. Similarly, bosons corresponding tos-, p- or d-wave su-
perconducting behavior could be defined for an extended
discussion.9

The main idea is to rewrite the original Hubbard model
with a quartic fermionic interaction as an equivalent Yukawa
theory, where the quartic fermionic interaction is replaced by
fermion bilinears coupled to the bosons.18 As mentioned
above,symmetry breaking shows up as nonvanishing expec-
tation values of some bosonic fields. These order parameters
can be computed by following the renormalization group
flow for the bosonic effective potential(free energy density)
into the broken symmetry region. In particular, it is now
straightforward to investigate the role of bosonic self-
interactions which correspond to higher multifermion inter-
actions in the purely fermionic language. Furthermore, the
identification of symmetry breaking channels with bosonic
excitations(particles) enhances our intuitive understanding
of what happens during the flow.

However, this approach, as advantageous it may seem at
first sight, is plagued by a coupling ambiguity problem. In
the fermionic theory, we face one single quartic couplingU,
whereas in the partially bosonized theory, we introduce as
many Yukawa couplings as we introduce bosonic fields.
These Yukawa couplings are not uniquely determined by the
equivalence to the original fermionic model—different
choices of these couplings lead to precisely the same fermi-
onic model if we integrate out the bosons. This coupling
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ambiguity would not give rise to any problems were we able
to solve the flow equations exactly. But for many approxi-
mations the results will unphysically depend on the choice of
the couplings. At this point, the Schwinger-Dyson approach
presented in the last sections comes in handy. We will see
that at least for a given channel the gap equation corresponds
to the mean field equation with a definite choice of the
Yukawa couplings. This determines at least the rough range
for the Yukawa couplings which can serve as a reasonable
starting point for approximations beyond the mean field ap-
proximation. We will discuss in Sec. XV how the inclusion
of the bosonic fluctuation effects by the use of the partially
bosonized flow equations reduces drastically the dependence
of physical quantities on the precise choice of the Yukawa
couplings.

In this section we will show how to partially bosonize the
Hubbard model for the case where we only take into account
a charge density bosonrsXd and aspin density boson mW sXd.
These are the same degrees of freedom we used in the ansatz
(24) and (25) for the gap function. Our bosonization proce-
dure preserves explicitly the continuous SUs2d-spin symme-
try while it is consistent with the Hartree-Fock result. This
settles a widely discussed13 apparent conflict between these
two aims. We begin by defining the fermion bilinears,

r̃sXd = ĉ†sXdĉsXd,

mW̃ sXd = ĉ†sXdsW ĉsXd. s35d

With these bilinears the fermionic coupling term of the origi-
nal Hubbard model can be written as

sĉ†sXdĉsXdd2 = r̃sXd2 = − 1
3mW̃ sXd2. s36d

Suppressing the explicit notation forX the fermionic action
in the presence of sources for the bilinears is given by

SF = SF,kin + 1
2Usĉ†ĉd2 − Jrr̃ − JWmmW̃ , s37d

with SF,kin the fermion kinetic term(7). The partition func-
tion reads

Z =E Dsc* ,cdexps− sSF + Shdd,

Sh = − h†c − hTc* . s38d

We define the partially bosonized partition function by

Zfh,h* ,Jr,JWmg =E Dsc* ,c,r̂,mŴ dexps− sS+ Sh + SJdd

s39d

with

S= SF,kin + 1
2Urr̂2 + 1

2UmmŴ 2 − Urr̂r̃ − UmmŴ mW̃ ,

SJ = − Jrr̂ − JWmmŴ . s40d

The functional integral now also involves the bosonic fields

r̂ andmŴ . The equations of motion for the bosons yield

r̂ = r̃ +
Jr

Ur

, mŴ = mW̃ +
JWm

Um
. s41d

We now demand that inserting the bosonic equations of mo-
tion, Sshould reduce toSF up to field independent terms. It is
then easy to check by Gaussian integration that the partition
function (39) is equal to(38) up to the logarithm of a field
independent quadratic function of the sources.9 Equivalence
between the bosonic and fermionic formulation is therefore
achieved for

U = − Ur + 3Um. s42d

At this point we explicitly see that different combinations of
the couplingsUr and Um in the partially bosonized theory
lead to the same fermionic theory.

In summary, the fermion-boson action takes the following
form in momentum space:

S= SF,kin + SB + SY + SJ,

SF,kin = o
Q

ĉ†sQdsivF − m − 2tscosq1 + cosq2ddĉsQd,

SB =
1

2o
Q

sUrr̂sQdr̂s− Qd + UmmŴ sQdmŴ s− Qdd,

SY = − o
QQ8Q9

dsQ − Q8 + Q9dsUrr̂sQdĉ†sQ8dĉsQ9d

+ UmmŴ sQdĉ†sQ8dsW ĉsQ9dd,

SJ = − o
Q

sJrs− Qdr̂sQd + JWms− QdmŴ sQdd. s43d

Here the bosonic momentaQ=svB,q1,q2d involve Matsub-
ara frequenciesvB=2pmT with integerm.

VI. MEAN FIELD CALCULATION

In this section we will explicitly calculate the effective
action in an approximation that sets the bosonic fields to
constant background fields. Only the fermion fluctuations are
included in the functional integral(39). In this “mean field
theory” (MFT) the fermionic integration can be carried out
analytically. In particular, constant bosonic “background
fields” r andaW,

r̂sQd → rdsQd,

mŴ sQd → aWdsQ − Pd, s44d

correspond to homogeneous charge densitysrd and antifer-
romagnetismsaWd. The mean field partition function reads
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Z =E Dsĉ* ,ĉdexps− SMFd,

SMF = o
Q

ĉ†sQdsivF − m − 2tscosq1 + cosq2ddĉsQd

− o
Q

sUrrĉ†sQdĉsQd + UmaWĉ†sQ + PdsW ĉsQdd

+
V2

2T
sUrr2 + UmaW2d − Jrs0dr − JWms− PdaW , s45d

with V2 the two-dimensional volume of the lattice. From the
effective action,

GMF = − ln ZMF + Jrs0dr + JWms− PdaW , s46d

we can derive theeffective potential41

Usr,aWd =
TG

V2
=

1

2
sUrr2 + UmaW2d + DUsr,aWd, s47d

with the fermionic one loop contribution

DUsr,aWd = −
T

V2
lnE Dsĉ* ,ĉdexps− SDd,

SD = o
Q

sĉ†sQdPsQdĉsQd − UmaWĉ†sQ + PdsW ĉsQdd,

s48d

andPsQd now given by

PsQd = ivF − meff − 2tscosq1 + cosq2d,

meff = m + Urr. s49d

By defining

c̃sQd = S ĉsQd

ĉsQ + Pd
D s50d

we can castDU into the form

DUsr,aWd = −
T

V2
lnE Dsc̃* ,c̃dexpS−

1

2o
Q

c̃†sQdP̃sQdc̃sQdD ,

P̃sQd = S PsQd − UmaWsW

− UmaWsW PsQ + Pd
D . s51d

The integral is Gaussian and can be carried out

DUsr,aWd = −
1

2o
Q

lns− detP̃sQdd

= − o
Q

lnsvF
2 − meff

2 + 4t2scosq1 + cosq2d2

+ Um
2 aW2 + 2ivFmeffd. s52d

The Matsubara sum inDU can be analytically performed, so
that we finally find(apart from a temperature dependent con-
stant)

DU = − TE
−p

p d2q

s2pd2 o
ePh−1,1j

ln coshS 1

2T
smeff

+ eÎ4t2scosq1 + cosq2d2 + Um
2 aW2dD . s53d

In order to establish the connection between the mean
field approach and the lowest order Schwinger-Dyson equa-
tion we take a closer look at Eq.(52). The value ofaW2 mini-
mizing the effective potential is zero for the symmetric
phase, but differs from zero in the case that the the symmetry
is spontaneously broken, which in our case means that the
system shows antiferromagnetic behavior. The necessary
condition for this is]U /]aW2=0, which can be brought into
the form

1 = 2Umo
K

AsKd
A2sKd + 4vF

2meff
2 . s54d

This is the same as Eq.(34), if we identify the gaphrr in the
gap equation(Sec. IV) with Urr here so thatmeff used in the
gap equation and the mean field calculation coincide) and
similarly Um

2 aW2=ha
2aW2. We also have to setUm=U /2, which

implies Ur=U /2 by Eq. (43). The Schwinger-Dyson ap-
proach therefore does not have the coupling ambiguity intro-
duced in the partial bosonization procedure. As mentioned
before, it corresponds to a special choice of the couplings in
mean field theory.

VII. MEAN FIELD AMBIGUITY

For high enough temperature and small enough coupling
an expansion in the small dimensionless quantityU /T is ex-
pected to be valid. In this limit the lowest order Schwinger-
Dyson equation becomes the lowest order in a systematic
expansion where higher orders are suppressed by higher or-
ders ofU /T. (This is not a simple expansion in powers of
U /T like perturbation theory but rather corresponds to a re-
summed expansion.) For smallU /T mean field theory there-
fore gives an incorrect result unless we choose the particular
bosonization procedure withUm=Ur=U /2. Since the func-
tional integral transformations leading to partial bosonization
are exact the failure of mean field theory for other choices of
Um and Ur must be due to the bosonic fluctuations which
have not yet been included. If we were able to compute the
effects of the bosonic fluctuations exactly the final results
would have to be completely independent of the choice of
Um provided Eq.(36) is obeyed. In general, the inclusion of
the bosonic fluctuations is therefore crucial for a reliable pic-
ture. This issue has been systematically studied in Ref. 19.
For smallU /T it just happens that the sign of the effect of
the bosonic fluctuations may be positive or negative, depend-
ing on the value ofUm. In particular, we infer that to lowest
order in U /T the bosonic correction to the(anti)ferromag-
netic correlation functionkm̃sXdm̃sYdl precisely vanishes for
Um=U /2.

Near the phase transition an expansion in smallU is no
longer reliable, the characteristic quantityU / uT−Tcu even di-
verges for T→Tc. The corrections to the lowest order
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Schwinger-Dyson equation become important. In conse-
quence, there is no reason to believe that the bosonic fluc-
tuations beyond mean field theory are a small effect forUm
=U /2. We conclude that for the range of largeU / uT−Tcu the
“gap equation” valueUm=U /2 is at best a good educated
guess. We feel that it is much safer to study a whole range42

of choices forUm. The dependence on the choice ofUm/U in
mean field theory may then be turned into an advantage
when fluctuations beyond mean field theory are included: if
an approximation beyond mean field theory is valid the de-
pendence on the unphysical parameterUm/U should get con-
siderably reduced as compared to mean field theory. This
becomes a demanding check for the validity of approxima-
tions. We will see in Sec. XVI that our renormalization group
approach indeed has this important property. For the mo-
ment, we illustrate the mean field ambiguity by the lower
curve in the phase diagram in Fig. 2 which corresponds to
the choiceUm=U /3, Ur=0. In the language of the present
section this figure shows the mean field results for the onset
of spontaneous symmetry breaking towards the antiferro-
magnetic state for two choices of the Yukawa couplings
Ur ,Um, namely Um=U /3, Ur=0 (lower line) and for Um
=U /2, Ur=U /2 (upper line). The lines indicate a second
order phase transition and stop where the phase transition
becomes of first order. We observe that without the inclusion
of the bosonic fluctuations the “mean field ambiguity” for the
phase diagram is considerable. Depending on the choice of
Um/U the critical temperature varies by more than a factor of
2, limiting severely the reliability of mean field theory.

VIII. MEAN FIELD CALCULATION OF THE BOSONIC
PROPAGATOR

In this section we will calculate the bosonic propagator

for mŴ in mean field theory. This also gives the bosonic propa-

gator according to the lowest order Schwinger-Dyson equa-
tion if we chooseUm=U /2. There are two reasons why we
are interested in the result. In the derivation of the gap equa-
tion and the mean field approximation, we haveassumedthat
antiferromagnetism is the dominating mechanism by which
the SUs2d symmetry is spontaneously broken. By inspection
of the bosonic propagator as a function of momentum we
will see that indeed antiferromagnetism(in contrast to, e.g.,
ferromagnetism) is the favored mode of symmetry breaking.
The second reason is that—as we will see in the subsequent
sections—our renormalization group equations take the form
of one loop equations. The calculation in this section there-
fore can be immediately used as a technical ingredient for the
derivation of the renormalization group equations. Further-
more, the general features of the momentum dependence of
the bosonic propagators found in this section will be useful
in order to device truncations for the flow equations.

The bosonic propagators are propagators for fermion bi-
linears and therefore correspond to particular combinations
of four fermion correlation functions in the original fermi-
onic description. They are particularly simple to describe in
the partially bosonized language of Sec. V. For example, the
propagator for the spin wave boson,

kmisXdmjsYdlc = sGB
mdi jsX,Yd, s55d

is given by the inverse of the second functional derivative of
the effective action with respect to the scalar fields in the
appropriate channel. Here the effective action in the partially
bosonized language obtains from the partition function(39)
by the usual Legendre transform,

Gfr,mW ,c,c*g = − ln Z + Jrr + JWmmW + h†c + hTc* . s56d

As usual the second functional derivative ofG with respect
to r andmW is directly related to the second functional deriva-
tive of ln Z with respect to the sourcesJr andJm (by inver-
sion). Applying this to Eqs.(38) and (37) and settingJr

=Jm=0 we see indeed how particular combinations of fermi-
onic four-point functions can directly be read off from the
bosonic inverse propagator.17

In absence of spontaneous spin-symmetry breaking the
inverse bosonic propagator formW obtains by expandingG in
second order inmW for fixed constantr andc=c* =0,

G =
1

2o
QQ8

mis− QdsGm
s2ddi jsQ,Q8dmjsQ8d + ¯ , s57d

Gm
s2dsQ,Q8d = Ĝs2d

m sQddsQ − Q8d s58d

[with GB
smd=sGm

s2dd−1]. In Sec. VI we have already computed

Ĝs2d
m sQ=Pd in Eqs.(48) and (52). It corresponds to the anti-

ferromagnetic susceptibility or inverse correlation length,

sĜm
s2ddi jsPd = m̄a

2di j , m̄a
2 = Um + 2

]

] saW2d
uDUuaW2=0. s59d

The critical line for the phase transition shown in Fig. 2
corresponds tom̄a

2sT=Tcd=0. If we re-express this in the fer-
mionic language the four fermion interaction in the antifer-

FIG. 2. Phase boundary for low temperature antiferromagnetism
in the lowest order Schwinger-Dyson and mean field approxima-
tions. We show the critical temperature as a function of the chemi-
cal potentialm. We choose couplingsUm=U /3, Ur=0 (lower line)
andUm=U /2, Ur=U /2 (upper line). The upper line corresponds to
the the solution of the Schwinger-Dyson equation. Both curves cor-
respond to thesamevalue U / t=3 and their difference reflects the
Fierz ambiguity discussed in Sec. VII.
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romagnetic channel diverges forT→Tc proportional tom̄a
−2.

In this section we want to computeĜm
s2dsQd for arbitrary

Q. Antiferromagnetism is the preferred condensate(with

lowest free energy) if Ĝm
s2dsQd has its minimum forQ=P. (A

minimum atQ=0 would favor a ferromagnetic condensate.)
We start from the action(43) and treat the bosonic fields as
background fields according to

r̂sQd → r, mŴ sQd → mW sQd. s60d

Note that we now keep the momentum dependence ofmW to
be able to distinguish between ferromagnetic, antiferromag-
netic, etc. behavior. For a(mean field) computation of the
fermionic fluctuation effects we need the expansion of the
action (43) in second order in the fermion fields

S2 = o
QQ8

ĉ†sQdsP0sQ,Q8d + DPsQ,Q8ddĉsQ8d s61d

with

P0sQ,Q8d = PsQddsQ − Q8d,

DPsQ,Q8d = − UmmW sQ − Q8dsW , s62d

and PsQd given by Eq.(43) in second order in the fermion
fields. The fermionic functional integral can be carried out
and we get

DG = − lnE Dsĉ* ,ĉdexps− S2d

= − ln detsP0 + DPd

= DG0 + DG1 + DG2 + ¯

= − Tr ln P0 − TrsP0
−1DPd +

1

2
TrsP0

−1DPP0
−1DPd.

s63d

The first term is independent ofmW , the second vanishes, and
DG2 is the mW -propagator correction we are looking for. Its
second derivative is given by

sDĜm
s2ddi jsQd = DPmsQddi j ,

DPmsQd = 2Um
2o

K

P−1sKdP−1sK + Qd. s64d

If we set Q=P, we reproduce the term in the mean field
result of quadratic order inaW.

The inverse propagator for the spin wave bosons can now
be computed numerically after adding the classical piece

(40) S0, i.e., PmsvB,q1,q2d=Ĝm
s2dsQd=Um+DPmsvB,q1,q2d.

For vanishing Matsubara frequency[i.e., Q=s0,q1,q2d] and
for m=0 the Matsubara sums in(64) can be performed ana-
lytically

DPmsQd = Um
2T

spTd2E
−p

p d2q

s2pd2SSm,
eq

pT
,
eq+k

pT
D . s65d

For this purpose we use the identity

Ssm;a,bd = o
nPZ

ab− s2n + 1ds2sn + md + 1d
fa2 + s2n + 1d2gfb2 + s2sn + md + 1d2g

= −
p

2

sa − bdStanh
ap

2
− tanh

bp

2
D

4m2 + sa − bd2 , s66d

which has the following limits:

Ss0;a,ad = −
p2

4
cosh−2ap

2
,

Ss0;a,− ad = −
p

2

tanh
ap

2

a
. s67d

We show the momentum dependence ofPm in Fig. 3 and
observe a pronounced minimum forQ=P. This clearly es-
tablishes that antiferromagnetism is the preferred condensate
as compared to other spin waves withQÞP. We also note
that the minimum ofPm gets more pronounced as the tem-
perature is lowered, reachingPmsPd=0 for T=Tc. (For our
exampleTc<0.2t.) Also notice the development of sharp

FIG. 3. Mean field approximation for the inverse propagator of
spin waves as a function of momenta. We show two different tem-
peraturesT=0.5t (upper part) andT=0.15t (lower part) for meff=0,
vB=0 and chooseUm= t.
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crests at low temperature(lower figure) due to the singulari-
ties in the fermionic propagators at the Fermi surface.

Figure 4 shows the dependence ofPmsQd on the Matsu-
bara frequencyvB=2pmT for two values of the external
momenta. Note that thevB=0 mode is the one that is
changed most by fluctuation effects. Forq1=q2=0 this is
even the only mode that is changed at all, whileDPm van-
ishes in the other cases. We observe thatPm is even invB as
requested by the discrete(time reversal) symmetry of the
Hubbard model.

A main reason for calculating the one loop corrections to
the bosonic propagators was to get a feeling for the momen-
tum dependence the propagators are likely to obtain under a
renormalization group flow. In Sec. VI we will make use of
these observations in order to formulate suitable truncations
for the bosonic propagators. A more detailed discussion of
the propagators of the other bosonic fields(charge density
waves, Cooper pairs) can be found in Ref. 17.

IX. EXACT RENORMALIZATION GROUP EQUATION

In the remainder of this paper we want to extend our
analysis of the Hubbard model beyond the approximation of

mean field theory. Our tool will be nonperturbative flow
equations for the scale dependence of the effective average
action.20 The flow equations are obtained from a truncation
of the exact functional renormalization group equation
(ERGE).21,22 Within the fermionic language a truncation to
momentum dependent four fermion interactions for the
ERGE of Ref. 21 has been performed43 in Ref. 5. This analy-
sis shows forT→Tc and m=0 a leading divergence of the
four fermion interaction in the antiferromagnetic channel. It
also covers the issue of superconductivity for large enough
umu and the analysis has been extended beyond next neighbor
coupling.

The limitation of the fermionic language concerns the re-
gion when some of the couplings grow very large. One ex-
pects that large quartic fermion couplings also induce large
eight fermion couplings and so on. In particular, it seems
very difficult to explore the low temperature phase with
spontaneous symmetry breaking in this way. For this reason
we explore here the formulation in the partially bosonized
language of Sec. V. As we have argued, the divergence of a
four fermion coupling just corresponds to the vanishing of
the mass of the bosonic field. If higher order bosonic inter-
actions are included in the effective bosonic potentialU one
can easily explore the region where the curvature ofU at the
origin gets negativesma

2,0d. This region is characterized by
“spontaneous symmetry breaking.”

Let us consider a theory containing complex bosonic

fields û, û* , real bosonic fieldsŵ and fermionic fieldsĉ, ĉ* .
We collect the fields into generalized fields and define gen-
eralized sources for them(the indicesa run over field type,
momentum, internal indices, etc.),

x̂a = sû,û* ,ŵ,ĉ,ĉ*da,

Ja = s j * , j ,l,h* ,hda,

SJfx̂g = − Jax̂a = − s j * û + jû* + lŵ + h*ĉ + hĉ*d. s68d

Now we regularize the theory by adding an infrared cutoff
,Rk to the original action

DSkfx̂g = 1
2x̂aRk,abx̂b = û*Rk

uû + 1
2ŵ*Rk

wŵ + ĉ*Rk
cĉ. s69d

It will have the effect of cutting off momenta withq2,k2

(bosonic fields) or in a shell of sizek around the Fermi
surface(fermionic fields). In presence of the cutoff the gen-
erating functional for the connected Green functions depends
on the scalek,

WkfJg = lnE Dx̂ exps− sSfx̂g + DSkfx̂gd + Jx̂d. s70d

More precisely, the functionRk
csQd is tailored in order to

regularize the fermionic zero modes of the propagator. For
momenta far from the Fermi surface(compared tok) Rk

c is to
vanish rapidly so that the behavior of these modes is essen-
tially unaltered. A similar task is assigned to the bosonic
cutoff functions. Here the zero modes can occur forQ2=0 on
the critical line andRk

usQd, Rk
wsQd act essentially as addi-

tional mass terms,k2 for the low momentum region. This is

FIG. 4. Inverse propagator for the bosonmW as a function of the
Matsubara frequencyvB=2pmT at T=0.2t for Um= t. We show
q1=q2=0 (upper part) andq1=q2=p (lower part).
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easily generalized to the case when the zero mode occurs for
some other momentum, e.g.,Q=P. In the limit k→0 we
demand that the regulators vanish whereas fork→` we as-
sume them to diverge

lim
k→0

Rk
x = 0, lim

k→`
Rk

x = `. s71d

Our specific choice of the cutoff functions will be given in
Sec. XI.

We may now proceed to define the effective average ac-
tion Gk in analogy to the definition(13). By a Legendre
transform with respect to the classical fields

x = kx̂l =
d

dJ
WkfJg, s72d

we obtain the functional

G̃kfxg = Jx − WkfJg, s73d

whereJ=Jfxg is a solution of Eq.(72). As will become clear
in a moment it is favorable to subtract the cutoff action from
this functional and define theeffective average actionas

Gkfxg = Jx − WkfJg − DSkfxg. s74d

The effective average action is the effective action of a
theory containing an extra regulator or “mass” term as de-
scribed by the actionSfx̂g+DSkfx̂g. Since the effective action
respects all(linearly realized symmetries of the original ac-
tion, this also applies toGkfxg for all k, if the regulator
DSkfx̂g respects the symmetries. It is thus possible to expand
the effective average action in invariants with respect to
these symmetries.

The limits (71) lead to corresponding limits44 for the ef-
fective average action,21

lim
k→0

Gkfxg = Gfxg, lim
k→`

Gkfxg = Sfxg. s75d

This is why we choose to subtract the regulator in the defi-
nition of Gkfxg: for large “cutoff” k this functional is nothing
but the original action. The effective average action therefore
interpolates smoothly between the classical actionS and the
effective actionG as k changes from very large values to
zero. The quantitative change ofGk with k will be described
by the ERGE derived below.

We specify the second functional derivative in a symmet-
ric form containing both left and right derivatives,

Fab
s2dfxg =

dW

dxa

Ffxg
dQ

dxb

s76d

and notice the identity

G̃k,ab
s2d Wk,bg

s2d = Mag, M = diags1,1,1,− 1,− 1d. s77d

For thek derivative ofG̃k one now obtains21,22

]kG̃kfxgx = − ]kWkfJgJ = k]kDSkl=
1
2]kRk,abkxaxbl

= 1
2]kRk,abhWk,ba

s2d + kxalkxblj

= 1
2]kRk,abWk,ba

s2d + ]kDSkfxg, s78d

where we used the fact thatWkfJg is the generating func-
tional of connected Green functions. With the aid of(77) we
immediately obtain a flow equation for the effective average
action,

]kGkfxg = 1
2]kRk,abfGk

s2d + Rkgbg
−1Mga= 1

2STrh]kRkfGk
s2d + Rkg−1j.

s79d

Here the “supertrace” runs over field type, momentum, inter-
nal indices, etc., and has an additional minus sign for fermi-
onic entries.

This equation is exact—we have only performed well-
defined formal manipulations.45 However, it is an equation
for an infinite number of couplings and hence by nomeans
accessible to an exact solution. The usefulness of Eq.(79)
will only show up if we are able to make sensible approxi-
mations to the flow equation. We will come back to this later.
Here we note that in the flow equation(79) the regulator
functionRk appears in the effective propagator as an infrared
(or Fermi surface) regulator whereas the factor]kRk reflects
the fact that the onlyk dependence arises through the regu-
lator. For an appropriate choice ofRk with ]kRk decreasing
rapidly for large momenta the momentum integrals are ultra-
violet finite. This means that effectively only a small interval
of momenta contributes to the integrals.

Let us rewrite the flow equation in a very useful way
making contact to perturbation theory. Define the derivative
(the indexi counts the field types)

]̃ k = s]kRk
i d

]

] Rk
i . s80d

With the aid of this derivative the flow equation can be cast
into the form

]kGkfxg = 1
2STrh]̃ k lnfGk

s2d + Rkgj. s81d

This can to be compared with the regularized perturbative
one loop result46

Gkfxg = GLfxg + 1
2STrslnfSs2d + Rkg − lnfSs2d + RLgd.

s82d

Performing thek derivative of Eq.(82) leads to a one loop
flow equation. A “renormalization group improvement”Ss2d

→Gk
s2d promotes this equation to a nonperturbative exact

flow equation.20 This comparison with perturbation theory
allows us to identify the right-hand side of(81) as a sum of
one particle irreducible one loop diagrams, where all cou-
plings have been replaced by their renormalized counter-
parts. Momentum integrations, sums over internal indices,
etc., are performed after the]̃k derivative.

Obtaining the flow equation for some coupling thus
amounts to summing all one loop diagrams for this coupling,
evaluating the]̃k derivative and then calculating the trace.
However, we may be able to perform parts of the trace first if
thecutoff does not depend on it. For example, we will later
be able to first sum over Matsubara indices before perform-
ing the ]̃k derivative. Technically, this is a very useful prop-
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erty since it allows us to use directly the one loop computa-
tions (e.g., Sec. VIII) for a derivation of the appropriate
renormalization flow equations.

On the level of the exact flow equation we have, of
course, to remember that the one loop diagrams have to be
evaluated for field dependent propagators as given bysGk

s2d

+Rkd−1. Therefore the flow equation(79) is a complex differ-
ential equation for functionals. In this paper we tackle it by
expanding the effective action in powers of the fields,

Gkfxg = o
n=0

`
1

n!oai

xa1
¯ xan

Gk;a1,. . .,an

snd . s83d

The flow equations of then-point functionsGk
snd can easily be

derived from Eq.(79) by appropriate functional derivatives.
However, the flow of somen-point function will in general
contain highern-point functions. This is a general feature: if
we perform a systematic expansion of the effective average
action, the set of flow equations will not be closed. We have
to truncate the expansion at some point.

X. REBOSONIZATION OF FOUR FERMION
INTERACTIONS

Any partially bosonized theory will generate four fermion
interaction terms under a renormalization group step corre-
sponding to the diagrams in Fig. 5. However, we wanted to
capture the complicated behavior of higher fermion vertices
in the bosonic language—this is what the bosonization pro-
cedure is all about. One might suspect that it should be pos-
sible to rebosonize the fermionic coupling obtained after
some renormalization group step by a suitable field redefini-
tion of the bosonic fields. This is indeed the case as was
shown in Ref. 23(see also Ref. 19).

Consider a theory with(effective average) action,

Gkfc,c* ,fg = o
Q

c*sQdPc,kcsQd+
1

2o
Q

fs− QdPf,ksQdfsQd

− o
Q

hksQdfsQdf̃s− Qd

+ o
Q

lc,ksQdf̃sQdf̃s− Qd, s84d

where f̃ is the fermionic bilinear corresponding to the
bosonic fieldf, e.g., f̃isQd=oK c*sKdsicsQ+Kd, and the
initial condition for the purely fermionic coupling islc,k̄=0

at some initial scalek̄.
Now perform a renormalization group step from the scale

k̄ to the scalek= k̄−Dk. The change in scale,Dk, is supposed
to be so small that the changes in couplings are also small;

they are calculated by the flow equation(79) for the trunca-
tion (84). As can be seen from the diagrams in Fig. 5, the
four fermion couplinglc,k will in general be different from
zero, sayDlc,k, at the new scalek.

We will use our freedom in the definition of the bosonic
fields to consider a field redefinition at the scalek,

fksQd = fk̄sQd + DaksQdf̃sQd, s85d

where Dak is an up to now arbitrary function.(We setfk̄
=f at the initial scale.) For infinitesimally small shifts this
results in a flow equation for ak-dependent field variablefk,

]kfksQd = − ]kaksQdf̃sQd. s86d

Let us see how we can implement the field redefinition into
the renormalization group formalism. In the exact renormal-
ization group equation(79) the change of scale]kGkfxgux is
calculated at fixed fields. Hence, if in addition we perform a
shift in the fields as above and consider the flow for fixedfk,
the flow equation becomes

]kGkfc,c* ,fkg

= ]kGkufc,c* ,fkgufk
+ o

Q
S d

dfk
Gfc,c* ,fkgD]kfk

= ]kGkufc,c* ,fkgufk
+ o

Q

s− ]kaksQdPf,ksQdfksQdf̃s− Qd

+ hksQd]kaksQdf̃sQdf̃s− Qdd. s87d

It is appropriate to define the couplingshk, etc., as the coef-
ficients of polynomials infk. The second term in Eq.(87)
changes the flow equations forhk andlc,k to

]khkusQdufk + ]kaksQdPf,ksQd,

]klc,ksQd = ]klc,kusQdufk + hksQd]kaksQd. s88d

We may now demand that the purely fermionic coupling
vanishes for all scalesk, i.e., ]klc,ksQd;0. This determines
]kaksQd and leads to a modified flow equation for the
Yukawa coupling,

]khksQd = ]khkusQdufk −
Pf,ksQd
hksQd

]klc,kusQdufk. s89d

As a net result, we have traded the “regeneration” of a four
fermion coupling against a modification of a running Yukawa
coupling.

Even though nodirect four fermion coupling is now
present in the truncation(84) slc,k;0d, the effective four
fermion coupling can always be reconstructed from the par-
tially bosonized effective action. For this purpose one solves
the field equation forfk as a functional ofc and reinserts the
solution fk

s0dfcg into the effective action. For the truncation
(84) this yields

fk
s0dsQd = hksQdPf,k

−1 sQdf̃skd,

FIG. 5. Box diagrams for four fermion interactions. Solid lines
denote fermions, dashed lines bosons.
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lc,k
eff sQd = − 1

2hk
2sQdPf,k

−1 sQd. s90d

Adding the various bosonic channels which have been taken
into account in the bosonization procedure a suitable renor-
malized local quartic fermion couplingUk can be defined as
a linear combination oflc,k

eff sQ=0d. Once the flow ofhk and
Pf,k is computed one can compare the flow ofUk with the
flow computed directly in a purely fermionic formulation.3–5

We have checked that with our rebosonization prescription
the “fermionic” and “bosonic” flow ofUk agree in lowest
nontrivial order (e.g., ]kUk=cUk

2). We emphasize that this
“one loop accuracy” of the flow ofUk would not hold had we
omitted the “rebosonization correction”(89).

Beyond one loop order the “fermionic” and “bosonic”
flow of Uk shows differences that depend on the precise trun-
cation. (Without truncations the two versions of the flow
have, of course, to coincide precisely.) They reflect the em-
phasis on different aspects of the model. The bosonic flow
investigated here takes also into account the effect of the
bosonic fluctuations. They contribute to the generation of
quartic bosonic couplings which would correspond to eight
fermion vertices in a purely fermionic language. These quar-
tic bosonic interactions are crucial for our ability to explore
spontaneous symmetry breaking by the renormalization
group flow. Indeed, they guarantee that the bosonic effective
potential remains bounded from below even if the bosonic
propagatorPf,ksQd turns negative for some range ofQ. From
Eq. (90) we learn that the effective four fermion couplingUk
will diverge precisely whenPf,k vanishes. This divergence
limits the effective fourfermion coupling of the purely fermi-
onic flow to the symmetric phase. Going beyond, and in
particular exploring the ordered phase, would require to take
at least eight fermion vertices into account, rendering a
purely fermionic description complicated. These difficulties
are overcome by the bosonic flow equations which can easily
follow the flow of a four boson vertex.

On the other hand, we observe that the four fermion
vertex multiplied by lc,k

eff [Eq. (90)] shows a particular
structure in momentum space: from the combination
oQ lc,ksQdf̃sQdf̃s−Qd the momentum of a pair of two fer-
mions sum up to a common “pair momentum”Q. This “fac-
torized structure” does not exhibit the most general momen-
tum dependence of the effective four fermion vertex
permitted by the symmetries. It is therefore not possibleto
rebosonize the most general momentum dependent four fer-
mion interaction generated by the flow. As long as one uses
only local bosonic fields only the “dominant part” of the four
fermion interaction—precisely the one that can be described
by bosonexchange in several channels—can be made to van-
ish for all k with the help of field redefinitions. In our ap-
proximation, we simply omit the “subdominant part” that
does not take a factorized form. This contrasts with the work
on the fermionic renormalization flow3–6 where, in principle,
the full momentum dependence of the four fermion interac-
tion is taken into account.(Of course, one could combine the
advantages of both approaches by extending the truncation,
keeping explicitly the influence of the “subdominant” four
fermion interactions.) In short, whereas the fermionic formu-
lation typically allows for a higher resolution of the momen-

tum dependence of the four fermion vertex, the partially
bosonized version permits the inclusion of higher vertices
and the investigation of spontaneous symmetry breaking.

XI. RENORMALIZATION FLOW OF THE HUBBARD
MODEL

We now want to apply the renormalization group formal-
ism summarized in the preceding sections to the Hubbard
model. We will concentrate on the region close to half-filling
and low temperatures where the system is dominated by the
antiferromagnetic spin density. In this section we will there-
fore leave aside all bosons apart from the spin densitymW sXd.
There is then no ambiguity how the parameterUm is related
to the original fermionic couplingU, namelyUm=U /3. We
extend this truncation by including other bosonic degrees of
freedom in Sec. XVI. We recall in this setting the mean field
approximation is not consistent with Hartree-Fock or lowest
order perturbation theorysUmÞU /2d. The consistency will
be established only by the inclusion of the bosonic fluctua-
tion effects.

A. Truncation

Let us now try to define a suitable truncation for the ef-
fective action. The initial condition(at very largek) for the
flow equation(79) is the classical action. In the course of the
flow towards lower scales the effective average action will in
general pick up all possible couplings that are compatible
with the symmetries of the theory. In order to make progress
we have to truncate this set of infinitely many couplings. We
will make an ansatz containing a fermionic kinetic termGc,k,
a term containing a Yukawa-type interaction between fermi-
ons and bosonsGY,k and a bosonic action to be specified
below. (A term containing a four fermion interaction is to be
rebosonized as sketched in the preceding section.) As we are
mainly interested in antiferromagnetic behavior we define
the boson

aWsQd = mW sQ + Pd, s91d

whose zero momentum modeaWs0d corresponds to a homoge-
neous antiferromagnetic spin density.

For the fermionic kinetic term we adopt the classical part
unchanged

Gc,kfc,c*g = o
Q

c†sQdPFsQdcsQd,

PFsQd = ivF + e − m, esqd = − 2tscosqx + cosqyd,

s92d

where we restrict ourselves to nearest neighbor hopping. In

contrast, the Yukawa couplingh̄a,k is taken to be scale de-
pendent,

GY,kfc,c* ,aWg = − h̄a,k o
KQQ8

aWsKdc*sQdsW csQ8d

3dsK − Q + Q8 + Pd. s93d

For the purely bosonic part we investigate a kinetic term plus
a local effective potential,
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Ga,kfaWg =
1

2o
Q

aWs− QdPasQdaWsQd + o
X

UfaWsXdg. s94d

Due to SUs2d symmetry the potential can only depend on the
rotation invariant combinationasXd= 1

2aWsXdaWsXd or, in mo-
mentum space

asK,K8d = 1
2aWsKdaWsK8d. s95d

Furthermore we will make an expansion in powers of the
field aW up to a quartic interaction. We take a different expan-
sion point in the symmetric regime(SYM) and in the regime
with spontaneous symmetry breaking(SSB) as it is prefer-
able to always expand around the minimum of the potential

SYM: o
X

UfaWg = o
K

m̄a
2as− K,Kd

+
1

2 o
K1¯K4

l̄adsK1 + K2 + K3 + K4d

3asK1,K2dasK3,K4d,

SSB:o
X

UfaWg =
1

2 o
K1¯K4

l̄adsK1 + K2 + K3 + K4d

3sasK1,K2d − a0dsK1ddsK2dd

3sasK3,K4d − a0dsK3ddsK4dd. s96d

The parameters in the potential are the scale dependent mass

m̄askd or the minimuma0skd, as well as the couplingl̄askd.
For largek we start in the SYM regime and switch to the
flow equations for the SSB regime at the scalekSSB defined
by m̄a

2skSSBd=0.
The bosonic propagator on the classical level is simply a

mass term in our case, i.e.,Pa=0, l̄a=0. We let us guide by
the one loop results of the preceding section for the momen-
tum dependence and take

PasQd = ZaQ̂
2 = ZasvB

2 + t2fqg2d, s97d

whereZa is a scale dependent wave function renormalization
(with the dimension of mass−1) and the functionfqg2 is de-
fined asfqg2=qx

2+qy
2 for qi P f−p ,pg and continued periodi-

cally otherwise.
The ansatzfqg2 for the spatial part is to mimic the mo-

mentum dependence of Fig. 3. It is not very accurate forqi
2

in the vicinity of p2. Fork!L this region gives only a small
contribution, however, whereas fork nearL the whole ki-
netic term is small as compared to the mass term.(The clas-
sical approximation isZa=0.) The dependence on the Mat-
subara frequency is more difficult. A look at Fig. 4 shows
that the bosonic propagator is changed only for the smallest
frequencies, while the higher frequency modes retain the
classical mass term(without sizeable kinetic term). This
could be reflected by thevB-dependent partXasvBd in Pa

obeying Xas0d=0, Xa<mcl
2 −m̄a

2skd for large vB. Lowering
the scale, thevB=0 mode will then dominate the propagation
more and more. Our approximationXasvBd=ZavB

2 is chosen
for the sake of simplicity: it has the correct qualitative prop-

erty of suppressing the effect of the high frequency modes.
One would suspect a similar behavior for the quartic bo-

son couplingl̄a which is generated by the fermion loop: the
low frequency modes are supposedly changed most, imply-

ing that l̄a depends substantially on the frequencyvB. [For

example, we could replacel̄a→ l̄pi=1
4 flsvB

i d with fls0d=1
while fl=0 for largevB

i , wherei labels the external legs of

the diagram contributing to the flow ofl̄.] We neglect this
effect here since the contribution of modes with largevB is
suppressed anyhow by the term,ZavB

2 in the inverse propa-
gator.

In addition to the truncation we still have to specify the
regulator functions for the renormalization group equations.

B. Fermionic regulator

The fermionic cutoff function is inspired by the fact that
at nonvanishing temperature the propagatorPFsQd= ivF+e
−m has no zero modes. This means that the temperature itself
acts as a regulator. We therefore choose

Rk
csQd = ivFSTk

T
− 1D = 2piSnF +

1

2
DsTk − Td, s98d

which has the effect of replacing the temperatureT by some
function Tk in the fermionic propagator. We specify this
function to bespù2d

T k
p = T p + kp, s99d

]kTk = S k

Tk
Dp−1

→ H1 if k @ T,

sk/Tdp−1 if k ! T,
s100d

such that for largek the flow mimics a change in temperature
whereas fork!T the modification of the fermion propagator
becomes ineffective. For fermionic modes for which the dis-
tance of the momentum to the Fermi surface is smaller than
pT no additional regularization is needed anyhow.

In short, we want a cutoff that is ineffective fork!T and
allows us to approach the Fermi surface continuously for
k.T. We will see in the next section that this requiresp.2
and we will choosep=4.

C. Bosonic regulator

For k!T possible infrared problems may arise from the
fluctuations of long range bosonic modes. This is particularly
relevant near a second order phase transition where the
bosonic correlation length diverges. Such potential problems
are avoided by the bosonic regulator. We take a “linear
cutoff”25

Rk
asQd = Zask2 − Q̂2dQsk2 − Q̂2d, s101d

whereQ̂2 is defined in Eq.(97). This leads to a full propa-
gator of the form
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Pk
asQd = PasQd + Rk

asQd

=ZasQ̂2 QsQ̂2 − k2d + k2 Qsk2 − Q̂2dd = ZaQk
2,

s102d

where

Qk
2 =HQ̂2 if Q̂2 . k2,

k2 if Q̂2 , k2.
s103d

The regulator function(101) thus only hampers the propaga-
tion of modes with small momenta and Matsubara frequen-

cies whereQ̂2,k2. Therefore, by loweringk, we effectively
average over larger and larger regions in position space. We
may therefore relate properties of the effective average ac-
tion Gk at a given scalek to properties of size 1/k in position
space. Since the fermionic modes are effectively integrated
out for k!T we can associate in this rangek−1 with a typical
(linear) size of the experimental probe. Indeed, fluctuations
with size larger than the experimental probe should not be
included in a “physical” definition of the relevant effective
action. For practical purposes one is therefore interested in
macroscopically large but not infinite values ofk−1.

D. Initial values

For k→` both the fermionic and bosonic propagators
vanish. Therefore the loop contributions vanish andGk→`

indeed equals the classical action. The initial conditions for
the parameters occurring in the truncation can therefore be
read off from the classical action(43). For very largek one
starts in the SYM regime with

m̄a
2 = Um, l̄a = 0,h̄a = Um, Za = 0. s104d

XII. FLOW EQUATIONS AT HALF FILLING

In this and the following section we study the Hubbard
model at half-filling, i.e., for vanishing chemical potential
m=0. As a test of the reliability of our approach we extend
the truncation in Sec. XVI and check the influence of the
Fierz ambiguity.

A. Bosonic potential

The flow equation for the effective potentialUsad obtains
by evaluating the ERGE(79) for a homogeneous antiferro-
magnetic order parameteraWsQd=aWdsQd, a= 1

2aW2. The contri-
bution of the fermionic fluctuations can be found by replac-
ing in the mean field theory result(53) T→Tk in the
fermionic propagator and applying the]̃k derivative. The
bosonic contribution is the same as for theOs3d linear s
model,20,22

]kUsad = ]kU
Bsad + ]kU

Fsad

=
1

2o
Q,i

]̃ k lnfPasQd + M̂i
2sad + Rk

asQdg

− 2TE
−p

p d2q

s2pd2]̃ k ln coshysad. s105d

Here the boson mass termsM̂i
2 are different for the “radial

mode” (in the direction ofaW ) and the “Goldstone modes”
(perpendicular toaW ),

M̂1,2,3
2 sad=Hsm̄a

2 + 3l̄aa,m̄a
2 + l̄aa,m̄a

2 + l̄aad SYM

sl̄as3a − a0d,l̄asa − a0d,l̄asa − a0dd SSB.

s106d

In the SSB regime we recognize the two massless Goldstone
bosons fora=a0. The squared fermion mass(mass gap)
2h̄a

2a enters the function

ysad =
1

2Tk

Îe2sqd + 2h̄a
2a. s107d

The flow of the mass term and quartic coupling follow from
simple differentiation of Eq.(105):

SYM: ]km̄a
2 =

]

] a
us]kUsaddua=0,

]kl̄a =
] 2

] a2us]kUsaddua=0,

SSB:]ka0 = −
1

l̄a

]

] a
us]kUsaddua=a0

,

]kl̄a =
]2

] a2us]kUsaddua=a0
. s108d

Here the flow of the minimum is inferred from the fact that
U8sa0d=0 and hencesd/dkdU8sa0d=]kU8sa0d+U9sa0d]ka0

=0.
With the aid of(108) we may now derive the flow equa-

tions for the parameters in the effective potential. However,
first we introduce rescaled and renormalized quantities

u =
Ut2

Tk2, ã =
Zat

2a

T
s109d

such that

ma
2 =

m̄a
2

Zak
2 =

] u

] ã
, ka =

Zat
2

T
a0,

la =
T

Za
2t2k2l̄a =

]2u

] ã2, ha
2 =

T

Zat
4h̄a

2 s110d

are all dimensionless.
The flow equation foru can be expressed in terms of

“threshold functions”l̄ 0
2swd which express the decoupling of

particles with mass much larger thank (largew)
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k]kuã = − 2u + haãu8 +
t2

Tk2uk]kUua

=− 2u + haãu8 +
1

4p
o

i

l̄ 0
2swi,ha,Td+ s0

Fsm̃F
2,Td.

s111d

This uses]kuuã=]kuua+haãu8, u8=]u/]ã and ha is the
anomalous dimension

ha = − k]k ln Za. s112d

The dimensionless threshold functionssq̃= tqd,

l̄ 0
2sw,ha,Td =

2p

k o
n
E

−tp

tp d2q̃

s2pd2]̃ k lnsPk
a + M̂2d,

s0
Fsm̃F

2,Td = S k

Tk
Dp−2S t

Tk
D3E

−p

p d2q

s2pd2ỹ tanhS t

2Tk
ỹD ,

ỹ = s4scosq1 + cosq2d2 + m̃F
2d1/2 s113d

decay rapidly for large values of the argumentsw

=M̂2/ sZak
2d, m̃F

2 =2ha
2ã. Their explicit form is given in the

Appendix. The characteristic scale dependence of the mass
term and quartic coupling is shown in Fig. 6. The running for
k@ t has not much physical meaning and rather sets the stage
for the correct translation between the classical action and
Gk<t. The physical fluctuation effects become important for
k, t as seen in the running ofm̄a

2.
It is instructive to consider the long wavelength limitk2

!T2. For p.2 the fermionic contributions0
F vanishes

,kp−2. As argued in the preceding section the fermionic in-
frared cutoff should be ineffective fork!T. This means that
the change inTk becomes irrelevant. In turn, this requires
sufficiently largep and we choosep=4. On the other hand,
the bosonic threshold function approaches fork!T the one
for the two-dimensional linearOs3d s model22,24,25

l̄ 0
2sw,ha,Td → l0

2sw,had =
1 − ha/4

1 + w
. s114d

In the long wavelength limit we therefore recover the well
studied flow equations for the scalarOs3d model in two
dimensions.26 The flow equations forma

2, la and k involve
the a derivatives ofl0

2 and s0
F and can be found in the Ap-

pendix. We note that all these equations have a simple dia-
grammatic representation. For example, the mass contribu-
tions in the symmetric regime are shown in Fig. 7.

B. Anomalous dimension

The anomalous dimensionha=−k]k ln Za is a measure for
the change of the wave function renormalizationZa with
scale. Therefore we can extract it from the momentum de-
pendence of the bosonic two-point function,

GB,kin = o
K

PasKdas− K,Kd = Zao
K

K̂2as− K,Kd.

s115d

As we are mainly interested in the spatial momentum depen-
dence we define

Za =
1

t2
U ]

] sl2d
U

l=0
UH d

das− K,Kd
GkJU

c,c*=0,a=a0

,

K = svB = 0,k = le1d, s116d

wherea0 is the minimum of the effective potential. We ob-
serve thatZa is closely related to the momentum dependence
of the inverse propagator shown in Figs. 3 and 4. The defi-
nition (115) and(116) corresponds to an approximation near
the minimum, where the constant part(at the minimum) is
substracted.

In the symmetric phase(SYM) the bosonic propagator is
affected by the two diagrams in Fig. 7. However, the bosonic
loop is independent of the external momenta and therefore
does not contribute to the anomalous dimension. The fermi-
onic loop is well known from our loop calculation by the

replacementsT→Tk, Um→ h̄a for PasKd=PmsK+Pd in Eq.
(64), and performing the]̃k derivative. We obtain

FIG. 6. Flow of the renormalized and unrenormalized mass
10−1ma

2 (solid), 102m̄a
2/ t (long dashes) and the quartic bosonic cou-

pling la (short dashes) in the symmetric regime(SYM) at half-
filling. We have chosenU / t=3 andT/ t=0.15.

FIG. 7. Diagrams for the running of the scalar two-point
function.
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ha
sFd = ha

2tsk]kTkd3 ]

] Tk

]

] sl2d

35 1

Tk
E

−p

p d2q

s2pd2

tanh
esqd
2Tk

+ tanh
esq + lê1d

2Tk

sesqd + esq + lê1dd/t 64
l=0

.

s117d

A characteristic evolution ofZa andha is plotted in Fig. 8.
In the SSB regime we also get a contribution from the

bosonic sector. The contribution comes from a bosonic loop
with four external legs, where two external legs are con-
nected to the condensate. As we will see later, the system
enters the broken phase at small values of the cutoff param-
eterk. At these values only the lowest Matsubara frequency
svB=0d contributes in the bosonic propagator[cf. (102)].
The bosonic contribution toha is then the same as the cor-
responding one for a simpleOs3d model in two dimensions.
Here the anomalous dimension has been calculated to be20

ha
sBd =

la
2ka

p
m2,2

2 s2laka,0d =
la

2ka

ps1 + 2lakad2 , s118d

where the functionm2,2
2 sw1,w2d contains the momentum de-

pendence of the loop integral and depends on the regulator
Rk

a. For our choice of regulator it has been computed
explicitly24 as shown in(118). In the SSB regime the contri-
bution from the fermionic loop is much smaller than the
bosonic contribution and we will neglect it.

C. Running Yukawa coupling

In the symmetric phase the running of the Yukawa cou-
pling is generated by the diagrams in Fig. 9.

The first diagram is the direct contribution, while the last
two contribute by rebosonization as prescribed in Sec. X.

More details on the extraction of the rebosonized flow equa-
tions can be found in Appendix A.

In the symmetric phase we get for the running ofha,

k]kha
2 = ha

2ha + bha
2

sdd + bha
2

srbd, s119d

where the “direct” and “rebosonized” contributions to the
beta functions readfv̂F=s2n+1dpTkg

bha
2

sdd = − 2ha
4 t2

k2T
k]̃ko

Q

hpa
−1sQdpF

−1sQdpF
−1sQ + Pdj

=− 2ha
4 t4

k2To
Q
H k]kv̂F

2

sv̂F
2 + e2sqdd2

1

Qk
2/k2 + ma

2

+
1

v̂F
2 + e2sqd

s2 − has1 − Q̂2/k2ddQsk2 − Q̂2d
s1 + ma

2d2 J ,

bha
2

srbd = 2ma
2ha

4 t2

k2T
k]̃ko

Q

hpa
−1sQdpa

−1sP − QdpF
−1s− Qd

3fpF
−1sP − Qd − pF

−1sQdgj

=4ma
2ha

4 t4

k2To
Q
H k]kv̂F

2

sv̂F
2 + e2sqdd2

1

Qk
2/k2 + ma

2

+ 2
1

v̂F
2 + e2sqd

s2 − has1 − Q̂2/k2ddQsk2 − Q̂2d
s1 + ma

2d2 J
3

1

sQ + Pdk
2/k2 + ma

2 . s120d

In Eq. (120) we useQk
2=Q̂2QsQ̂2−k2d+k2Qsk2−Q̂2d, k]kv̂F

=s2n+1dpkpTk
1−p, and

pFsQd = siv̂F + esqdd/t, pasQd = Qk
2/k2 + ma

2. s121d

We plot the flow of the renormalized and unrenormalized
Yukawa coupling in the symmetric regime in Fig. 10.

For the specific parameters used for this plot we observe

very little running of h̄a. The charge will be more pro-
nounced for other choices of the parameters, as discussed in
Sec. XV. In the regime with spontaneously broken SUs2d
symmetry(SSB) the change in the Yukawa coupling is neg-
ligible as we have checked numerically. We neglect the run-

FIG. 8. Flow of the wave function renormalizationZa (solid)
and the anomalous dimension 10−1ha (dashes) in the symmetric
regime (SYM) at half-filling. We have chosenU / t=3 and T/ t
=0.15.

FIG. 9. Diagrams for the running Yukawa coupling.
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ning of the Yukawa couplingh̄askd in the SSB regime. For
k,kSSB we therefore keep the unrenormalized Yukawa cou-

pling fixed h̄ask,kSSBd= h̄askSSBd.

XIII. SPONTANEOUS SYMMETRY BREAKING

We now turn to a numerical analysis of the above flow
equations. For this we setU / t=3 and take a temperatureT
=0.15t. The initial scalek0=100t is chosen so large that the
final results do not depend on it and the one loop results are
well produced in the beginning of the flow. The differential
equations were integrated by a standard Runge-Kutta like
routine.27 In Fig. 6 we plot the flow of the renormalized mass
ma

2, the unrenormalized massm̄a
2 and the quartic bosonic cou-

pling la. The values ofk correspond to a flow in the sym-
metric regime(SYM) where the minimum of the effective
potential occurs for a vanishing order parametera=0. One
observes that the running ofm̄a sets in only fork& t. Then
both m̄a andma decrease. At lnk/ t<−2.2 the bosonic mass
ma

2 vanishes and for smaller values ofk we enter the SSB
regime. We denote the corresponding scale bykSSB. In Fig. 8
we plot the flow of the wave function renormalizationZa and
the corresponding anomalous dimensionha. This explains
qualitatively the flow of the renormalized couplings in Fig.
6: for scales above lnk/ t<2.0 the running is mainly domi-
nated by the simple scaling due to the respective dimensions
of the couplings. In an intermediate range down to lnk/ t
<−1 the large value ofha dominates the flow while for even
smaller values of lnk/ t the fermionic part of the flow equa-
tions play an ever increasing role.

In Fig. 11 we explore the SSB regime withaskdÞ0 for
k,kSSB. First, we observe that the quartic bosonic coupling
reaches a fixed point very soon. This is because the positive
term ,la

2 in Eq. (B4) just compensates the negative contri-
butions from the fermions and dimension scaling. Two op-
posite effects govern the flow of the location of the minimum
of the potential, as parameterized byka. For k only some-

what smaller thankSSB the fermionic fluctuations dominate
the flow. They lead to increasing values ofka. However,
soon the fermionic contribution becomes smaller due to the
increasing mass(gap) of the fermions. Then the bosonic loop
involving the massless Goldstone bosons dominates. This
only results in a slow logarithmic “running” ofka, but it
finally drives the minimum to zero and thus restores the sym-
metry. When the fermionic part becomes negligible we ef-
fectively deal with a bosonicOs3d model in two dimensions
for which the symmetry restoration is a well known feature
and has been extensively studied in our functional renormal-
ization group formalism.20,22,26

This picture reconciles the antiferromagnetic order with
the Mermin-Wagner theorem,7 which states that a continuous
symmetry cannot be broken at nonvanishing temperature in
two dimensions and below. We indeed lose the notion of
symmetry breaking if we average over arbitrarily large vol-
umes, i.e., lower the cutoff parameterk to zero. Fork→0 the
order parameteraskd always vanishes, in accordance with
the Mermin-Wagner theorem. This is due to the presence of
Goldstone modes in the SSB regime. ForOs2d models in two
dimensions there is another possibility to circumvent the
Mermin-Wagner theorem related to a Kosterlitz and Thouless
phase transition(Ref. 28). It is speculated that this kind of
mechanism may play a role in the superconducting region
(Refs. 9 and 29). Nevertheless, we find that for low tempera-
tures the symmetry is restored only when averaging over
extremely large samples unaccessible to any real experiment.

For example, forT=0.05t the restoration of theOs3d sym-
metry would require the effects of the Goldstone-boson fluc-
tuations with characteristic length scale(inverse momentum)
of 1031 cm. For any realistic experimental length scale, how-
ever, the order parameteraskd remains nonzero. This in-
cludes macroscopic length scales. We conclude that it makes
perfect sense to speak about long range antiferromagnetic
order.

FIG. 10. Flow of the renormalized 10−2ha (solid) and unrenor-

malized h̄a (dashes) Yukawa couplings in the symmetric regime
(SYM) at half-filling. We have chosenU / t=3 andT/ t=0.15.

FIG. 11. Flow of the renormalized minimum of the potentialka

(solid), the quartic bosonic coupling 10−2la (long dashes) and the
wave function renormalization 10−1Za (short dashes) in the broken
(SSB) regime at half-filling. We have chosenU / t=3 and T/ t
=0.15.
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Let us consider a probe with some finite macroscopic size,
say 1 cm. Obviously, the fluctuations with momenta smaller
than s1 cmd−1 are absent in this setting and we should stop
the renormalization flow at some nonzerok=s1 cmd−1

<10−9t. For all observations with characteristic length scale
smaller than 1 cm(in order to avoid boundary effects from
the particular geometry of the probe) one observes all fea-
tures of an effective antiferromagnetic state: For all tempera-
tures smaller than a “critical temperature”Tc there will be an
average spin directionaW0 (“spontaneous symmetry break-
ing”). Furthermore, the fluctuations orthogonal toaW0 will be-
have as two Goldstone modes with effectively “infinite”
(ù size of the sample) correlation length for allT,Tc. On
the other hand, the antiferromagnetic spin wave fluctuations
in the direction ofaW0 (radial mode) will have a finite corre-
lation lengthj for T,Tc. As Tc is approached from below
also the radial correlation length divergesjsT→Tcd→“`” ,
i.e., exceeds the size of the probe. The different behavior of
the Goldstone and radial modes is a direct consequence of
the presence of a direction specified byaW0. Another conse-
quence of effective antiferromagnetic order is the presence of
a mass gap for the electrons and holes.

Let us next turn to the notion of a critical temperatureTc.
We will see that its precise value depends on the sizek−1 of
the experimental probe. For this purpose we display in Fig.
12 the running ofka for various temperatures. For a fixed
value of k.0 (corresponding to the inverse of the sample
size) we always observe a transition to an ordered phase ifT
is low enough. This transition temperature is denoted by
Tcskd. In Fig. 1 it is directly visible as the temperature for
which the order parameterka vanishes. In fact, Fig. 1 shows
kaskd with k/ t=10−9 much smaller than all other character-
istic scales of the model.

Inspecting Fig. 12 we may define a characteristic scale of
symmetry restorationkSR by the vanishing ofka, i.e.,

askSRd=0. Only “domains” with a size ofkSR
−1 become so

randomly oriented that no net order prevails on length scales
larger thankSR

−1. For an experimental setting with character-
istic scalek@kSR the formal “asymptotic symmetry restora-
tion” for k→0 is without practical relevance. Thus, even
though formally correct, the Mermin-Wagner theorem fails
to be practically applicable in the case of the Hubbard model
at low temperature. In contrast, fork!kSR the precise value
of k is unimportant and we may takek=0. In fact, this situ-
ation corresponds to the ordered phase with a renormalized
mass(or inverse correlation length) mR,kSR.

26 The correla-
tion length j acts as an effective physical cutoff such that
fluctuations on length scales larger thanj are irrelelvant and
an additional “experimental cutoff”k!mR has no effect.

XIV. CRITICAL BEHAVIOR

For T sufficiently large compared toTc our analysis con-
firms the statement of Refs. 30 and 31 that the long distance
behavior of the Hubbard model can be described by a clas-
sical nonlinears-model. This holds forT in the vicinity of
and belowTc. We can use our findings in order to establish a
quantitative description of the temperature dependence of the
correlation lengthj=mR

−1. For characteristic momenta!T
the fermion fluctuations are cut off by the temperature and
only the bosonic flutuations remain relevant. Within the re-
maining effective classicalOs3d linear s model the running
of k obeys fork sufficiently large26

k]kk =
1

4p
+

1

16p2k
+ 0sk−2d. s122d

As a reasonable approximation(cf. Fig. 11) we may employ

a “linear”47 behavior fork betweenkm and k̃SR,

kskd = kmsTd −
1

4p
ln

kmsTd
k

, s123d

wherekmsTd corresponds to the maximum of the curves in

Fig. 11. Withj−1= k̃SR/CSR andksk̃SRd=0 one obtains for the
correlation length

j =
CSR

kmsTd
exps4pkmsTdd. s124d

Using the definition(110) for k this yields the characteristic
behavior30

j = C̃ expSg

T
D s125d

with

g = 4pâ0sTdẐasTdt2. s126d

Here âsTdẐa
sTd denotes the T-dependent maximum of

sa0Zadskd and bothg andC̃=CSR/km depend smoothly onT
(without particular features forT→0d.

For T,Tc the correlation length according to Eq.(125)
exceeds the size of the experimental probe and Eq.(125) is
no longer applicable. The modifications of the results of Ref.

FIG. 12. Flow of the renormalized minimum of the potentialka

in the broken(SSB) regime at half-filling for different temperatures.
We have chosenU / t=3. The temperatures are in the setT/ t
=h0.05,0.07,0.085,0.10,0.13,0.17j (from top to bottom). For T/ t
=0.05 the order persists up tok<10−40t corresponding to a sample
size of 1031 cm. This clearly demonstrates that the Mermin-Wagner
theorem is not practically applicable.
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30 for T,Tc therefore concern the temperature region where
the formal correlation length(for k→0) would become ex-
tremely large and not practically meaningful anymore. We
can actually use Eq.(123) for an estimate of the critical
temperatureTcskd,

Tcskd =
gsTcd

lnskmsTcd/kd
. s127d

The k dependence ofTc is only mild—typically a change in
k by a factor of 10 changesTc by 10%. For a sample size
k=10−9t<s1 cmd−1 we may use a quantitative formula forj,

jt = csTdexpH20.7bsTd
Tc

T
J s128d

with

bsTd =
â0sTdẐasTd

â0sTcdẐasTcd
,

csTd = CSR
kmsTcd
kmsTd

SkmsTcd
t

DdsTd

,

dsTd = bsTd
Tc

T
− 1, s129d

and bsTcd=1,csTcd=CSR. Despite the fact thatTc is not a
sharp temperature the behavior forT nearTc shares several
features of standard critical behavior. It is obvious that the
correlation length increases very rapidly asT is lowered from
say 1.5Tc to 1.1Tc—still, it does not diverge forT→Tc. On
the other hand, forT,Tc the order parameter reaches zero
for T→Tc (fixed k) according to

kasTd = SgsTdTc

T
− 1DkmsTcd +

1

4p
ln

kmsTcd
kmsTd

. s130d

The critical temperatureTc=0.114t can be directly read off
from Fig. 1. Furthermore, in the vicinity ofTc the propagator
Gsq2d for the antiferromagnetic spin waves with momenta
q2@j −2 is characterized by an anomalous dimensionha

=hask=Îq2,T=Tcd, namely

Gsq2d = sZask = Îq2dq2d−1 , sq2d−1+ha/2. s131d

We emphasize that all the critical features discussed in this
section extend beyond the particular approximations of this
work and beyond the particular next-neighbor-coupling Hub-
bard model. They are universal and hold whenever the long
distance behavior can be described by an effective two-
dimensional model for a spin field withOs3d symmetry.

For T.Tc the universal critical behavior observed in the
renormalization flow completely agrees with the results from
the ciritcal behavior of the classical48 Heisenberg model ob-
tained by Refs. 30 and 31. In particular, this concerns the
successful comparison with experimental data for pure
La2CuO4.

32 Sufficiently nearTc the deviations from the uni-
versal behavior are very small since the evolution proceeds
in the “classical Heisenberg regime” for many orders of
magnitude(cf. Fig. 12). Concerning the nonuniversal quan-

tities a detailed comparison of the results of our method with
the rich experimental information for many different materi-
als becomes feasible if the parameters of the microscopic
action can be determined reliably. This would be a very re-
warding task but is beyond the scope of this paper. The tem-
perature range for the universal behavior is limited by a char-
acterisitc temperatureTpc that we will discuss next.

Indeed, inspection of Fig. 12 reveals another characteris-
tic temperature, namely the minimal temperature for which
the flow enters the SSB regime. We will call this the pseud-
ocritical temperatureTpc and infer Tpc=0.18t (for U / t=3d.
For T.Tpc the mass termma

2skd remains positive for allk.
We note thatTpc is substantially aboveTcsTpc/Tc<1.6d. In
the temperature range betweenTc andTpc we may describe
the physics by antiferromagnetic domains with fluctuating
directions. The typical size of domains with local order ex-
tends up to the scalekSR

−1 wherekaskSRd=0. On length scales
larger thankSR

−1 no long range order remains. It is obvious that
the critical behavior described by Eq.(123) loses its validity
for T above Tpc or in the vicinity of Tpc. ThereforeTpc
roughly describes the upper bound of the range of validity in
T for the critical behavior discussed above.

The positivity ofma
2 for T.Tpc implies that the effective

four Fermion interaction mediated by the exchange of theaW
boson remains finite. We conclude that the “critical tempera-
ture” determined by the fermionic flow equations3–6 actually
corresponds toTpc rather thanTc. Indeed, the approach based
on the fermionic flow equation precisely looks for the “criti-
cal temperature” where the four Fermion interaction diverges
for somek or, in our language, wherema

2 reaches zero. The
same holds for mean field theory or the Hartree-Fock ap-
proximation. Again, these approaches determineTpc rather
thanTc. The true critical behavior discussed in this section is
governed by the renormalization flow for the effective inter-
actions of composite Goldstone bosons. It cannot be captured
by the Hartree-Fock approximations or the fermionic flow
equations. We emphasize that the influence of the Goldstone
boson fluctuation on the value of the critical temperature is a
large effect—we findTc almost a factor of two lower49 than
for the mean field theory.

XV. RENORMALIZATION FLOW FOR NONZERO
DOPING

In this section we want to compute parts of the phase
diagram for nonzero doping. For this purpose we study the
flow equation for nonvanishing chemical potential in the
symmetric phase(i.e., mÞ0, a=0). The bosonic part of the
flow of the effective potential is not altered, while the fermi-
onic part gets modified. Similar to Eq.(111) we obtain

k]kuã = − 2u + hãu8+
1

4p
o

i

l̄ 0
2swi,ha,Td + s0

Fsm̃F
2,T,md,

s132d

where l̄ 0
2 is defined as in Eq.(113), while s0

F reflects the
different location of the Fermi surface formÞ0,
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s0
Fsm̃F

2,T,md=−
t2

k
E

−p

p d2q

s2pd2]̃ k

3Hln cosh
tỹ + m

2Tk
+ ln cosh

tỹ − m

2Tk
J ,

ỹ = s4scosq1 + cosq2d2 + m̃F
2d1/2. s133d

The flow equations for the couplingsma
2 and la in the

bosonic potential can again be obtained by appropriate de-
rivatives with respect toã [cf. Eq. (110)].

The equation for the anomalous dimension becomes

ha = ha
2tks]kTkd3 ]

] Tk

]

] sl2d

35 1

Tk
E

−p

p d2q

s2pd2

tanh
esqd + m

2Tk
+ tanh

esq + lê1d − m

2Tk

sesqd + esq + lê1dd/t 64
l=0

.

s134d

For the Yukawa coupling we obtain the same functional form
of the beta functions as in Eq.(120). However, the fermionic
propagator is now replaced bypFsQd=sivF+esqd−md / t [cf.
Eq. (92)].

We have analyzed the phase diagram of the Hubbard
model for small values of the chemical potentialm. The re-
sults are plotted in Fig. 13, where again we have chosenU
=3t. The upper line shows the temperatureTpc at which the
bosonic mass vanishes in mean field theory[cf. Eq. (64) for
Q=P]. For the bosonization we have chosenUr=0. For the
small values ofm considered here the MFT approximation
yields a second order phase transition such that the critical
line indeed corresponds to a vanishing bosonic mass term.
(In order to deal with first order phase transitions one would
haveto treat the bosonic potential in a more complicated
truncation. We therefore restrict ourselves to small values of
m here.) In the MFT approximationTpcsmd therefore indi-
cates the phase boundary andTpc coincides withTc.

The lower curve in Fig. 13 shows the pseudocritical tem-
peratureTpc for various values of the chemical potential de-
rived with the aid of the flow equations displayed above
(again withU=3t, Ur=0). One observes that the pseudocriti-
cal temperature is lowered as compared to the mean field
result. This is precisely the effect of the bosonic fluctuations.
Indeed, the bosonic fluctuations have the tendency to stabi-
lize the symmetric phase—they give a positive contribution
to themass term. This can explain why the pseudocritical
temperature is lowered. Another effect is the influence of the
bosonic fluctuations on the running of the Yukawa coupling.
The larger the Yukawa coupling the stronger is the destabi-
lization of the symmetric phase by the fermion fluctuations.
This effect can lower or enhanceTpc, depending on the pre-
cise choice of the bosonization. It will be discussed in more
detail in Sec. XVI. The effect of the bosonic corrections is
only moderates,10%d for the parameters of our example.

This can be very different for other choices of partial-
bosonization, as visible in Fig. 14 for largeUr / t whereTpc is
lowered by almost a factor of 2.

XVI. REMOVING THE MEAN FIELD AMBIGUITY

In this chapter we want to investigate how well the inclu-
sion of running couplings is able to solve the ambiguity with
respect to the choice of Yukawa couplings in the bosoniza-
tion procedure, which was so annoying in the mean field
calculation. For this purpose we add in our truncation ther
boson corresponding to fluctuations in the charge density. To
keep things simple, however, we reduce the bosonic effective
potential to a simple mass term for each boson and restrict
our discussion to the symmetric phase.

For the full inverse propagatorPk
asQd=PasQd+Rk

asQd of
the aW boson we choose

Pk
asQ = svB,qddHm̄aL

2 + Rk
a ; PL

a for vB Þ 0,

Zafqg2 + m̄ak
2 + Rk

a ; Pk
asqd for vB = 0,

s135d

and similarly forPk
rsQd (however, we fixZr=1). The func-

tion fqg2 is defined as in Eq.(97). This choice reflects the
fact that in the one loop calculation we found that thevB
=0 mode is changed most. Furthermore, if we make an
vB-independent choice of the bosonic regulator, we are able
to perform the Matsubara sums in the loops for the Yukawa
ouplings, which drastically speeds up the numerics. We
choose here a masslike cutoffRk

B=k2 for both aW andr. The
fermionic kinetic part of the truncation is chosen as in Sec.
XI. Specifically, we restrict ourselves to nearest neighbor
hopping. Furthermore we will only considerm=0. Also the
Yukawa part is chosen as in Sec. XI. Details of the flow
equations for this truncation can be found in Appendix B 3.

This truncation is a very primitive one. It was chosen in
order to highlight the dominant factor for the cure of the
Fierz ambiguity, namely the inclusion of the bosonic fluctua-
tions beyond mean field theory. The simple choice also
makes the numerics relatively fast. We therefore do not ex-
pect very precise results but one should be able to see the
general features of the flow.

The first check was to see if the one loop corrections to
the fermionic couplingU are reproduced by the above flow
equations. For smallU, andT sufficiently aboveTc, the per-
turbative expansion inU is valid and one may compute the
correctionDU=cU2 in the purely fermionic language. Here
we compute the same quantity in the partially bosonized ver-
sion. For this purpose we start at a large value of the cutoffk,
follow the flow for a while and “integrate out” the bosons
with their new couplings to obtain the newU. As mentioned
before, this amounts to a solution of the scalar field equations
in presence of fermionic “background fields.” As expected, it
turns out that for large enough values ofk the flow indeed
obeys the correct one loop equation. For smallU and largeT
we recover the perturbative result. This holds independently
of the choice of the bosonization parametersUi. This is of no
surprise because of the one loop form of the flow equations
and the fact that our truncation and rebosonization system-
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atically includes all terms contributing in orderU2. We em-
phasize, however, that the rebosonization of Sec. X is needed
in order to obtain one loop accuracy.19

If we follow the flow towards smaller values ofk, the
purely fermionic coupling will not remain local but rather
obtain a complicated momentum dependence. Furthermore,
the loop calculations are no longer adequate as a comparison
for the quality of the flow. We therefore need another quan-
tity to investigate the invariance of the flow under different
parametrizations of the bosonization. For this purpose we
have chosen the pseudocritical temperatureTpc where the
mass of the bosonaW vanishes.

In Fig. 14 we plot the pseudocritical temperatureTpc for
the transition to the antiferromagnetic phase for different val-
ues of the parametersUm andUr. Thereby we keep a fixed
value of the four fermion couplingU=12t=3Um−Ur. This
graph has been calculated both with the flow equations and
in the “mean field approximation,” i.e., by searching for the
zeroes of the bosonic mass in the fermionic one loop calcu-
lation of the two point function.50 The fermionic cutoff was
chosen to beTk

2=T2+k2 for this plot. One observes that even
for the solution of the flow equation the pseudocritical tem-
perature still depends on the choice of the bosonization.
However, this dependence is relatively mild as compared to
the mean field result and certainly due to our poor truncation.
This shows that even a crude inclusion of the bosonic fluc-
tuations leads to a substantial improvement over mean field
theory as far as the Fierz ambiguity(choice ofUi) is con-
cerned. The comparison in Fig. 14 with the Hartree-Fock
result (corresponding toUr=Um=6t) also demonstrates the
overall size of the change inTpc due to the bosonic fluctua-
tions.

We mention that the scale independence of the unrenor-

malized Yukawa couplingh̄a seen in Fig. 10 is also found in
the present truncation forUr=0. For other values of the pa-
rameters the unrenormalized Yukawa coupling indeed
changes more substantially. In the present truncation the flow

of m̄a is influenced only throughh̄a [see(B12)]. Therefore, if

h̄a is altered during the flow this will result in a change of the
final value of m̄a and hence the critical temperature. It is

precisely the interplay of the running ofh̄a with other effects
that leads to the robustness of the flow equation result. In a

sense, the flow finds the “correct value” ofh̄a independently
of the initial value fork→`. Indeed, the initial value de-
pends strongly on the choice ofUm and this “memory” must
be lost for physical quantities to be independent of the choice
of bosonization. We also observe that the “Schwinger-Dyson
value” Ur=Um is not the choice which minimizes the effect
of the bosonic fluctuations. This rather happens forUr / t
<2.5.

XVII. CONCLUSIONS

The phase diagram of a high temperature superconductor
shows many complicated features. At low doping and low
temperature these materials are antiferromagnetic insulators.
Increasing the concentration of electrons or holes turns them
into a superconductorwith exceptionally high transition tem-
peratures as compared to “conventional” superconductors.
Not much is known about the mechanism for the binding of
electrons into Cooper pairs in these materials. Between dop-
ing concentrations leading to antiferromagnetic or supercon-
ducting behavior one suspects a region in which many dif-
ferent degrees of freedom seem to play a role. The
clarification of the basic degrees of freedom and their inter-
play in this pseudogap region still needs a lot of experimen-
tal and theoretical effort.

The common feature of all high temperature supercon-
ductors is their highly anisotropic structure composed of lay-
ers of copper oxidesCuO2d planes. The interesting properties
of these materials and the mechanisms for generating them
seem to be largely confined to these planes. The two-
dimensional Hubbard model is a simple attempt to capture

FIG. 13. Pseudocritical temperatureTpc versus chemical poten-
tial m for U / t=3 in the mean field approximation(above) and with
flow equations(below).

FIG. 14. Pseudocritical temperatureTpc for different choices of
the parameterUr, calculated with flow equations(solid line) and in
the mean field approximation(dotted line). The fermionic coupling
is U=12t=3Um−Ur. The Hartree-Fock(or Schwinger-Dyson) re-
sult corresponds to the mean field value atUr=6t, i.e., Tpc<2.9t.
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this microscopic structure. The model assumes electrons that
are able to tunnel from site to site on a lattice and feel a
mutual screened Coulomb repulsion. Whether such an over-
simplified model is able to reproduce the complex phase
structure of a real high temperature superconductor or parts
of it still has to be clarified. A lot of theoretical work has
been dedicated to this task over the last years but so farthe
results are still inconclusive.

The aim of this paper is a computation of the phase dia-
gram, the temperature dependence of the antiferromagnetic
order parameter and the critical behavior of the correlation
length for the two-dimensional Hubbard model with next
neighbor coupling and small doping. Although the quantita-
tive results of this mainly theoretical investigation cannot be
directly compared with experimental results we believe that
several universal features actually hold independently of the
details of the superconducting material. We attempt a solu-
tion of the Hubbard model by means of renormalization
group (RG) equations. Earlier RG studies have already re-
vealed the power of this technique in the context of the Hub-
bard model.3–6 The use of a purely fermionic language, how-
ever, renders an investigation of the low temperature phase
extremely difficult. We believe that it is favorable to include
the interesting degrees of freedom more explicitly. This can
be achieved by rewriting the original action of the Hubbard
model in a partially bosonized form.

Already a simple mean field calculation in the partially
bosonized Hubbard model leads to very encouraging results.
We were able to reproduce9 a phase diagram that closely
resembles the one of a real high temperature superconductor.
However, this simple approach also reveals an undesirable
drawback of the bosonization procedure. The couplings are
not uniquely fixed by the reformulation procedure but there
is an arbitrariness connected to different parametrizations of
the coupling term. This “Fierz ambiguity” is also mirrored in
the results. Even though the reformulation itself is exact,
approximations break this parametrization invariance and of-
ten lead to a strong dependence of the computed phase dia-
gram on unphysical parameters.

In the mean field approximation the fluctuations of the
bosonic fields are completely neglected. Taking the bosonic
fields into account should dispose of or at least diminish the
parametrization dependence of the results. An inclusion of
the effective bosonic fluctuations may be performed using
renormalization group equations. We base our investigation
on truncations of an exact functional renormalization group
equation for the effective action. The partially bosonized
theory then serves as a starting point for the flow of cou-
plings. A one loop calculation serves as a guide for the for-
mulation of suitable truncations schemes and also clarifies
the relation between diagrams in the bosonized theory and
the original fermionic formulation.

A first truncation deals with antiferromagnetic behavior at
and close to half-filling. We are able to observe the breaking
of the spin rotation symmetry and may follow the flow fur-
ther into the ordered phase. We obtain a plausible explana-
tion of why antiferromagnetic behavior may be observed in
the two-dimensional model despite of the Mermin-Wagner
theorem which forbids the breaking of a continuous symme-
try in two dimensions forT.0. The antiferromagnetic order

is lost only when averaging over extremely large spatial ex-
tensions, much beyond any practical macroscopic scale.(In a
strict sense, observation of antiferromagnetism may be re-
garded as a finite size effect.) We emphasize that effective
long range order is a two-dimensional phenomenon which
does not need the existence of a third dimension in realistic
materials51 (with weak coupling between the plans). For a
low doping concentration we calculate a phase diagram that
agrees well with other investigations.

A necessary check of the consistency of our truncation
scheme concerns the question to which extend physical ob-
servables depend on the unphysical parameters introduced in
the bosonisation procedure. We have studied the dependence
of the pseudocritical temperatureTpc on the unphysical ratio
of Yukawa couplingsUm/Ur (at fixedU=3Um−Ur). Figure
14 shows that the Fierz ambiguity of mean field theory is
substantially reduced by the inclusion of the bosonic fluctua-
tions, even in a very crude truncation. This result is encour-
aging and tests along this line should be performed for future
more elaborate truncations.

Our main result is the temperature dependence of the an-
tiferromagnetic order parameterkasTd shown in Fig. 1. This
determines the gap for the electrons according toDa

=Î2ha
2kat. We also have given a detailed description of the

universal critical behavior for temperatures near the critical
temperatureTc, including the temperature dependence of the
correlation length forT.Tc and an estimate of the range of
validity of the universal behaviorsT&0.8Tpcd. In agreement
with other methods33–35we find thatTc is substantially lower
than the Hartree-Fock result.

All our findings point to a simple Landau theory for the
antiferromagnetic spin waves in the low temperature phase,

SL =
1

2
ZasTd]iaW]iaW +

1

8
l̄asTdSaW2 −

2T

ZasTdt2
kasTdD2

.

s136d

By variation with respect toaWsxd one finds the field equations
for static spin wave configurations in thermal equilibrium,

DaW =
l̄a

2Za
SaW2 −

2T

Zat
2kaDaW . s137d

The effective parametersZa, l̄a, and ka depend onT, the
chemical potentialm (doping) and the characteristic length
scale of the configuration or experimental probek−1. They
can be directly extracted from the solution of the flow equa-

tion. SinceZa and l̄a depend continuously onm and are
positive form=0 they will remain positive in a whole range
of m. We see no sign of instability towards a spiral state for
small nonzero doping.13,36,37

In view of the self-consistency of our picture concerning
the Mermin-Wagner theorem and the Fierz ambiguity we be-
lieve that our exploration of the low temperature phase is
reliable. The quantitative accuracy can be improved by fu-
ture more extended truncations. This should confirm if all
essential physical ingredients are indeed taken into account
in the present truncation. It will also permit a more detailed
study of the universal critical behavior near the second order
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phase transition and an extension of the phase diagram to
larger doping.

Already at the present stage our investigation goes sub-
stantially beyond the results of a Hartree-Fock or Schwinger-
Dyson calculation. The additional effects of the bosonic fluc-
tuations that we have included in the present work lowers the
critical temperature by roughly a factor of 2. This demon-
strates the importance of these fluctuations even for the
rough features of the phase diagram. A robust picture of the
low temperature phase and the phase transition can only be
reached if the fluctuation effects of these collective bosonic
degrees of freedom are taken into account properly.

Indeed, the functional renormalization group in the par-
tially bosonized formulation presented here has interesting
prospects for understanding further features of the Hubbard
model. It allows us to investigate directly the low tempera-
ture phases with nonvanishing order parameters. Further
channels of possible spontaneous symmetry breaking can be
described by additional bosonic degrees of freedom. This
concerns, in particular, the boson responsible ford-wave su-
perconductivity for large doping9 which is briefly discussed
in Appendix D. Adding further bosonic channels also im-
proves the resolution of the momentum dependence of the
four fermion vertex. It remains to be seen how these methods
can contribute to the fascinating theoretical challenge of es-
tablishing a quantitative phase diagram of the Hubbard
model.

APPENDIX A: FOUR FERMION COUPLINGS

In this appendix we compute the box diagrams shown in
Fig. 15. They generate four fermion interactions by the
renormalization flow, which will later be absorbed into effec-
tive bosonic interactions by rebosonization(Sec. X).

We choose the external momenta as

A = Q, B = Q − K, C = Q8, D = Q8 + K sA1d

such that for themW boson,

DGbox = o
KQQ8

lQQ8sKdmW̃ QsKdmW̃ Q8s− Kd + ¯ ,

mW̃ QsKd = c*sQdsW csQ + Kd. sA2d

For ther boson the Pauli matricessW are omitted. We evalu-
atedlQQ8sKd at

Q = Q8 = 0 andHK = P for the aW boson,

K = 0 for ther boson.
sA3d

As an example, if only theaW boson is present, we obtain

Dla = − h̄a
4o

L

Pa
−1sLdPa

−1sP − LdPF
−1s− Ld

3fPF
−1sP − Ld − PF

−1sLdg. sA4d

For the evaluation of this expression leading to Eqs.(120),
(B10), (B17), and(B18) one employs the identities

ssis jdabssis jdgd = 3dabdgd − 2sab
k sgd

k ,

ssis jdabss jsidgd = 3dabdgd + 2sab
k sgd

k . sA5d

APPENDIX B: EXPLICIT FORM OF THE FLOW
EQUATIONS

1. Antiferromagnetism at half-filling

We display here the explicit flow equations for the mass
term, order parameter and quartic scalar coupling form=0.
They are obtained by taking appropriate derivatives of Eq.
(111). With the definitionsha=−]t ln Za (anomalous dimen-

sion) and oQ̄fsQd;oQ Qsk2−Q̂2dfsQd we get in the sym-
metric (SYM) regime

k]kma
2 = −

5

2

la

T
o
Q

2 − has1 − Q̂2/k2d
sk/td2s1 + ma

2d2 + s]kTkdha
2 t4

2kTk
3

3E
−p

p d2q

s2pd2H tanhys0d
ys0d

+
1

cosh2 ys0dJ− s2 − hadma
2,

sB1d

k]kla = 11
la

2

T
o
Q

2 − has1 − Q̂2/k2d
sk/td2s1 + ma

2d3 − s]kTkdha
4 t6

8kTk
5

3E
−p

p d2q

s2pd2H tanhys0d
y3s0d

+
2ys0dtanhys0d − 1

y2s0dcosh2 ys0d J
− 2s1 − hadla. sB2d

In the broken(SSB) regime we find

k]kka =
1

2T
o
Q

2 − has1 − Q̂2/k2d
sk/td2 S 3

s1 + 2lakad2 + 2D
− s]kTkd

ha
2

la

t4

2kTk
3E

−p

p d2q

s2pd2H tanhyskad
yskad

+
1

cosh2 yskadJ− haka, sB3d

k]kla =
la

2

T
o
Q

2 − has1 − Q̂2/k2d
sk/td2 S 9

s1 + 2lakad3 + 2D
− s]kTkdha

4 t6

8kTk
5E

−p

p d2q

s2pd2H tanhyskad
y3skad

+
2yskadtanhyskad − 1

y2skadcosh2 yskad J− 2s1 − hadla, sB4d

whereFIG. 15. Box diagrams generating four fermion interactions.
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yskad =
1

2Tk

Îe2sqd + 2t2ha
2ka. sB5d

If k obeys bothk,2pT andk,p we are able to evaluate the

ōQ-sum and findōQs2−has1−Q̂2/k2dd=k2Ts4−had / s8pd.

2. Antiferromagnetism for nonzero doping

For mÞ0 the flow equations for the couplingsma
2 andla

in the bosonic potential can be obtained by appropriate de-
rivatives of (132) with respect toã

k]kma
2 = −

5

2

la

T
o
Q

2 − has1 − Q̂2/k2d
sk/Td2s1 + ma

2d2

+ s]kTkdha
2 t4

2kTk
3E

−p

p d2q

s2pd2H tanhỹsmd
ỹs0d

+
ỹsmd/ỹs0d
cosh2 ỹsmdJ

− s2 − hadma
2, sB6d

k]kla = 11
la

2

T
o
Q

2 − has1 − Q̂2/k2d
sk/Td2s1 + ma

2d3

− s]kTkdha
4 t6

8kTk
5E

−p

p d2q

s2pd2H tanhỹsmd
ỹ3s0d

+
2ỹsmdtanhỹsmd − ỹs− md/ỹs0d

ỹ2s0dcosh2 ỹsmd J− 2s1 − hadla,

sB7d

with

ỹsmd = sesqd − md/s2Tkd. sB8d

For the flow equation of the Yukawa coupling we evaluate
Eq. (120) with pFsQd=sivF+esqd−md / t. One finds

k]kha
2 = ha

2ha + bha
2

sdd + bha
2

srbd, sB9d

bha
2

sdd = − 2ha
4 t4

k2T
k]̃ ko

Q

hPF1
−1sQdpasQdj

=− 2ha
4 t4

k2To
Q
H− sk]kPF1

−1sQdd
1

Qk
2/k2 + ma

2

+ PF1
−1sQd

s2 − has1 − Q̂2/k2ddQsk2 − Q̂2d
s1 + ma

2d2 J ,

bha
2

srbd = − 4ma
2ha

4 t4

k2T
k]̃ ko

Q
hPF2

−1sQdpa
−1sQdpa

−1sQ + Pdj

=− 4ma
2ha

4 t4

k2To
Q
Hsk]kPF2

−1sQdd
1

Qk
2/k2 + ma

2

− 2PF2
−1sQd

s2 − has1 − Q̂2/k2ddQsk2 − Q̂2d
s1 + ma

2d2 J
3

1

sQ + Pdk
2/k2 + ma

2 , sB10d

with

PF1
−1sQd =

vF
2 + esqd2 − m2

svF
2 + esqd2 − m2d2 + 4vF

2m2 ,

PF2
−1sQd =

vF
2 + esqd2

svF
2 + sesqd + md2d2svF

2 + sesqd − md2d2 .

sB11d

3. Antiferromagnetism and charge density waves

The running of the anomalous dimensionha can be in-
ferred directly from(117). The flow of the masses is gov-
erned by a fermionic loop(the bosonic loop does not con-
tribute as we have neglected the quartic bosonic coupling)
and reads

]km̄a
2 = s]kTkdh̄a

2 T

2Tk
3E

−p

p d2q

s2pd2H tanhy

y
+

1

cosh2 y
J ,

sB12d

]km̄r
2 = s]kTkdh̄r

2 T

Tk
3E

−p

p d2q

s2pd2H1 − y tanhy

cosh2 y
J , sB13d

wherey=eq/2Tk.
The running of the Yukawa couplings is governed by

k]kh̄i = b
h̄i

sdd
+ b

h̄i

srbd sB14d

with the beta functions,

b
h̄a

sdd
= − h̄ak]̃ ko

L

PF
−1sL + PdPF

−1sLdhh̄a
2Pa

−1sLd − h̄r
2Pr

−1sLdj,

sB15d

b
h̄r

sdd
= h̄rk]̃ ko

L

PF
−2sLdh3h̄a

2Pa
−1sLd + h̄r

2Pr
−1sLdj, sB16d

and

b
h̄a

srbd
=

m̄a
2

2h̄a

k]̃ ko
L

h2h̄a
4Pa

−1sLdPa
−1sP − LdPF

−1s− LdfPF
−1sP − Ld

− PF
−1sLdg+ h̄a

2h̄r
2sPa

−1sLdPr
−1sP − Ld + Pr

−1sLd

3Pa
−1sP − LddPF

−1s− LdfPF
−1sP − Ld + PF

−1sLdgj, sB17d

b
h̄r

srbd
=

m̄r
2

2h̄r

k]̃ ko
L

hs3h̄a
4Pa

−2sLd + h̄r
4Pr

−2sLddPF
−1s− Ld

3fPF
−1s− Ld + PF

−1sLdgj. sB18d

In a more explicit form they read
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]kh̄a = h̄aTE
−p

p d2q

s2pd2]̃ kFS 1

spTkd2 + eq
2HS h̄ak

2

Paksqd
−

h̄aL
2

PaL

D − S h̄rk
2

Prksqd
−

h̄rL
2

PrL

DJ +
tanhy

4Tk
2y
H h̄aL

2

PaL

−
h̄rL

2

PrL

JDG
−

2Tm̄ak
2

h̄a

E
−p

p d2q

s2pd2]̃ kFS 1

spTkd2 + eq
2H h̄ak

4

PaksqdPaksp − qd
−

h̄aL
4

PaLPaL

J +
tanhy

4Tk
2y

h̄aL
4

PaL
2 DG , sB19d

with y=eq/2Tk. Similarly we find forh̄r,

]kh̄r = h̄rTE
−p

p d2q

s2pd2]̃ kFS eq
2 − spTkd2

feq
2 + spTkd2g2HS h̄ak

2

Prksqd
−

h̄aL
2

PrL

D + 3S h̄ak
2

Paksqd
−

h̄aL
2

PaL

DJ −
1

4Tk
2 cosh2 y

H h̄rL
2

PrL

+ 3
h̄aL

2

PaL

JDG
+

Tm̄rk
2

h̄r

E
−p

p d2q

s2pd2]̃ kFS eq
2

sspTkd2 + eq
2d2H3S h̄ak

4

Pak
2 sqd

−
h̄aL

4

PaL
2 D + S h̄rk

4

Prk
2 sqd

−
h̄rL

4

PrL
2 DJ

+
1

8Tk
2S tanhy

y
−

1

cosh2 y
DH3

h̄ak
4

PaL
2 +

h̄rL
4

PrL
2 JDG . sB20d

APPENDIX C: FERMIONIC REGULATOR

Let us take a look at how the fermionic regulator function
works. For this purpose we investigate the integrand of the
fermionic part of the flow equation for the bosonic mass
(B10), i.e., the function

Fsq1,q2d =
tanhy

y
+

1

cosh2 y
, y =

2tscosq1 + cosq2d
Tk

.

sC1d

If the flow is properly implementedFsq1,q2d should be
dominated by momenta close to the Fermi surface for small
Tk/ t, since we only change the size of the shell of fluctua-
tions around the Fermi surface ask is lowered. In Fig. 16 we
plot Fsq1,q2d for different values ofTk/ t. The left part of
Fig. 16 showsFsq1,q2d for fairly large values ofTk while the
right part is for lowTk. Observe that the contribution to the
integral comes from narrower regions around the Fermi sur-
face the smallerTk becomes. This was exactly what was
intended by the regulator.

APPENDIX D: COOPER PAIRS IN THE d-WAVE
CHANNEL

The Hubbard interaction may be decomposed into fer-
mion bilinears in many different ways. To display a few, we
define fermion bilinears corresponding to charge density,
magnetization and Cooper pairs in different channels,

r̃sXd ; r̃i = ĉi
*ĉi ,

mW̃ sXd ; mW̃ i = ĉi
*sW ĉi ,

s̃sXd ; s̃i = ĉieĉi, s̃*sXd ; s̃i
* = − ĉi

*eĉi
* ,

c̃xsXd ; c̃xi = ĉieĉi+êx
, c̃x

*sXd ; c̃xi
* = − ĉi+êx

* eĉi
* , sD1d

where e is the two dimensional completely antisymmetric
tensorse= is2d and êx is the unit vector inx direction. We
also definec̃y similar to c̃x. With these definitions we may
rewrite the interaction term as follows:

sĉi
*ĉid2 = r̃i

2 = − 1
3mW̃ i

2 = − mW̃ 3,i
2 = 1

2s̃i
* s̃i sD2d

and further note the identity

− r̃ir̃i+êx
+ mW̃ imW̃ i+êx

+ 2cx
*
icxi = 0 sD3d

and similar forx→y.

Let us now introduce auxiliary fieldsB̂=sr̂ ,mŴ , ŝ, ĉ, ĉyd
and add a term quadratic in these fields to the action such
that the four fermion interaction is just cancelled,

Sfĉ,ĉ* ,B̂g = Sfĉ,ĉ*g + DSintfĉ,ĉ* ,B̂g, sD4d

DSint = o
X

h 1
2Ursr̂i − r̃id2 + 1

2UmsmŴ i − mW̃ id2

+ Ussŝi
* − s̃i

*dsŝi − s̃id + Uxfsĉxi
* − c̃xi

* dsĉxi − c̃xid

− 1
2sr̂i − r̃idsr̂i+êx

− r̃i+êx
d+ 1

2smŴ i − mW̃ idsmŴ i+êx
− mW̃ i+êx

dg

+ Uyfx → ygj. sD5d

Restricting the couplings to the range

Ui . 0,

Ur,Um . Ux + Uy, sD6d

ensures that the auxiliary fields are Gaussian and can be in-
tegrated out after a shift of variables. Imposing
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3Um − Ur − 2Us = U sD7d

furthermore ensures that the resulting four fermion interac-
tion in DSint cancels precisely the one in the original action.
These conditions thus ensure that the partially bosonized par-
tition function,

Zfh,h*g =E Dsĉ* ,ĉ,B̂dexps− Sfĉ,ĉ* ,B̂g + h*ĉ + hĉ*d

sD8d

is indeed equivalent to(1).

Collecting the terms in(D4) we see that we are now deal-
ing with a theory of fermions coupled to bosons via a
Yukawa interaction. In Fourier space the partially bosonized
action reads

Sfĉ,ĉ* ,B̂g = Skinfĉ,ĉ* ,B̂g + SYfĉ,ĉ* ,B̂g,

Skin = o
Q

hĉ*sQdfivQ − m + esqdgĉsQd

+ 1
2sUr − Ux cosqx − Uy cosqydr̂s− Qdr̂sQd+ 1

2sUm

+ Ux cosqx + Uy cosqydmŴ s− QdmŴ sQd+ Usŝ
*sQdŝsQd

+ Uxĉx
*sQdĉxsQd + Uyĉy

*sQdĉysQdj, sD9d

where for next neighborstd and diagonal neighborst8d cou-
plings one has

esqd = − 2tscosqx + cosqyd − 4t8 cosqx cosqy. sD10d

The Yukawa interaction reads

SY = − o
KQQ8

FdsK − Q + Q8dsUr − Ux coskx − Uy coskydr̂sKdĉ*sQdĉsQ8d+ sUm + Ux coskx + Uy coskydmŴ sKdĉ*sQdsW ĉsQ8d

+ dsK − Q − Q8dHUsfŝ*sKdĉsQdeĉsQ8d − ŝsKdĉ*sQdeĉ*sQ8dg + Ux cos
qx − qx8

2
fĉx

*sKdĉsQdeĉsQ8d− ĉxsKdĉ*sQdeĉ*sQ8dg

+ Uy cos
qy − qy8

2
fĉy

*sKdĉsQdeĉsQ8d− ĉysKdĉ*sQdeĉ*sQ8dgJG . sD11d

FIG. 16. Fermionic regulator. We plot the functionFsq1,q2d
defined in(C1) for Tk/ t=5 (left) andTk/ t=1/5 (right).

FIG. 17. Theq=0 mode of d̃sQd in its local form. Solid and
dashed lines indicate that two fermion operators on neighboring
lattice sites are connected with positive or negative sign,
respectively.
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Here we have used the Fourier transforms(4) for the fermi-
ons and

x̂sXd = o
Q

eiQXx̂sQd, x̂*sXd = o
Q

e−iQXx̂*sQd sD12d

for X̂s* d=sr̂ ,m̂, ŝs* dd, while for ĉ, ĉ* we use
ĉxsXd = o

Q

eisQX+qx/2dĉxsQd,

ĉx
*sXd = o

Q

e−isQX+qx/2dĉx
*sQdM , sD13d

and similar forcy
s* d.

In order to get an operator that hasd-wave symmetry we
perform the transformation of variables,

ê= sĉx + ĉyd, ĉx = 1
2sê+ d̂d,

d̂ = sĉx − ĉyd, ĉy = 1
2sê− d̂d, sD14d

and similar forê* , d̂* . If we insert this variable transforma-
tion into the action(D9) and setUx=Uy=Uc we obtain for
the e andd dependent part of the action,

Se,d = o
Q

1

2
Uchê*sQdêsQd + d̂*sQdd̂sQdj − o

KQQ8

dsK − Q − Q8d

3HUc

2
Scos

qx − qx8

2
+ cos

qx − qx8

2
Dfê*sKdĉsQdeĉsQ8d

− êsKdĉ*sQdeĉ*sQ8dg+
Uc

2
Scos

qx − qx8

2
− cos

qx − qx8

2
D

3fd̂*sKdĉsQdeĉsQ8d − d̂sKdĉ*sQdeĉ*sQ8dgJ . sD15d

Integrating out the bosons is equivalent to inserting the so-

lutions of their field equationsdSfĉ ,ĉ* ,B̂g /dB̂=0 (i.e., the

saddle point) into the actionSfĉ ,ĉ* ,B̂g. For the bosond̂ the
solution is

d̂sQd = c̃xsQd − c̃ysQd = d̃sQd, sD16d

as expected from the construction ofd̂. In the fermionic
theory it is thus this combination that is represented by the

bosond̂.

Let us take a look at theq=s0,0d mode ofd̃sQd, i.e., at a
spatially homogeneous field. From(D16) we know that it is
a superposition of stripes along thex andy axis added with
opposite signs. To find a “local” expression we rewrite

d̃sQ = 0d = o
K

scoskx − coskydĉsKdeĉs− Kd

=
1

2o
X

hĉsXdeĉsX + êxd + ĉsXdeĉsX − êxd

− ĉsXdeĉsX + êyd − ĉsXdeĉsX − êydj, sD17d

so that at each lattice site we find an operator of the form
shown in Fig. 17. We see that indeed this boson may serve as
a lattice representation of adx2−y2 wave as it changes its sign
under rotation by 90° but not under reflection at thex or y
axes(see also Ref. 34 for a more extensive classification).
The mean field approach including the bosond̂ is discussed
in Ref. 9.
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