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A new method for filtering three-dimensional reconstructed densities is proposed. The algorithm is tested
with simulated spectra and employed to study the electronic structure of the rare-earth compound LaB6. For
this system, momentum densities are reconstructed from theoretical and experimental two-dimensional angular
correlation of electron-positron annihilation radiation(2D ACAR) spectra. The experimental results are in good
agreement with the band structure calculated with the full-potential linearized augmented-plane-wave
(FLAPW) method within the local-density approximation(LDA ), apart from the detection of small electron
pockets in the 15th band. It is also shown that, unlike the electron-positron enhancement, the electron-electron
correlations affect noticeably the momentum density.
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I. INTRODUCTION

LaB6 belongs to rare-earth hexaborides, of the typeRB6
having a simple cubic crystal structuresPm3md. The B6 oc-
tahedra and rare-earth atoms form interpenetrating simple
cubic sublattices. The hexaborides have attracted a lot of
attention, owing a variety of behaviours, ranging from para-
magnetismsLaB6d, magnetic orderingsPrB6, NdB6d and
heavy fermion behaviorsCeB6d. The electronic structure of
the non-f-electron system LaB6 was probed by several de
Haas van Alphen(dHvA) and acoustic dHvA(Refs. 1–11) as
well as 2D ACAR(Refs. 12–14) experiments. First, six 2D
ACAR spectra were measured and interpreted in terms of
reconstructed densitiesrskd.12 Then, two 2D ACAR spectra,
measured for the[100] and[110] integration directions, were
analyzed in the form of line projections ofrskd.13 Recently,
the three-dimensional(3D) image of the Fermi surface(FS)
was displayed utilizing three 2D ACAR projections and two
different reconstruction methods.14

Experimental results were compared with band-structure
calculations.8,15,16According to the standard FLAPW(within
LDA ) method,16 the FS, generated by a single(14th) conduc-
tion band, consists of a set of symmetrical electron ellipsoids
centered at X points of the cubic Brillouin zone(BZ) and
connected by short necks. There is a strong hybridization of
the B p and Ladf states, wheref states are unoccupied. In
addition to the main FS sheet, a joint application of theory
and dHvA experiments8,10 established the existence of a sec-
ond sheet of 12 smaller electron pockets along theGM di-
rections. These FS elements, obtained by displacing the en-
ergy parameter of the 4f orbitals upward by 0.1 Ry and
including the spin-orbit interaction in the self-consistent
band structure calculations, were not detected in the previous
2D ACAR experiments.12,13

In this paper we analyzee-p momentum densities in
LaB6, reconstructed from both two theoretical(consistent
with band structure results presented in Ref. 16) and the
three experimental 2D ACAR spectra from Ref. 14 and in-
terpret them both in the extendedp and reducedk spaces. A
new method of filtering densities reconstructed from their
line projections is proposed and applied to cubic model and
2D ACAR data in LaB6.

II. RECONSTRUCTION TECHNIQUE

In the last decades, the mathematical problem of recon-
struction of densities from their line projections has exten-
sively been investigated for its relevance to medical diagnos-
tic studies.17–19 Similar methods are utilized to study the
electronic structure of solids where, by using the positron
annihilation technique,20 one measures line integrals of a
density as well:

Nspy8,pz8d =E
−`

`

dpx8rspd. s1d

Hererspd is the electron momentum density in the extended
zone scheme(defined in the crystal systemp), as seenby
positron, andNspy8 ,pz8d describes two-dimensional angular
correlation of annihilation radiation(2D ACAR) spectrum
measured in the laboratory framep8.

In most cases, the 3D density is yielded by reconstructing
separately its 2D subsections from 1D line integrals. For ex-
ample, in Cormack’s method(CM) (Ref. 21) both functions
N andr are expanded into the polar Fourier series. Choosing
planespz8=const., perpendicular to the main rotation axis of
the crystalpz (on such planes number of equivalent direc-
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tions is maximum), both series reduce to cosine series22

rspx,py,pz = const.d ; rsp̃,wd = o
n=0

`

rnsp̃dcossnwd s2d

and

Nspy8,pz8 = const.d ; Nst,bd = o
n=0

`

Nnstdcossnbd, s3d

with n= iR, whereR denotes the order of the main rotation
axis [001] (i =0,1,2, . . .,etc.). Here both functions are de-
scribed in the polar systemspx, pyd, defined on each of the
planespz8=pz=f001g. The variablest= upy8u andb denote the
distance of the integration line from the origin of this polar
coordinate system and its angle with respect to the fixed axis
px, respectively, andp̃=Îpx

2+py
2.

If Nnstd is expanded into a series of Chebyshev polyno-
mials of the second kindsUlstdd:

Nnstd = 2o
m

`

an
mÎ1 − t2Un+2mstd, s4d

then Eq.(1) can be solved analytically and

rnsp̃d = o
m

`

sn + 2m+ 1dan
mRn

msp̃d, s5d

whereRn
msp̃d are Zernike polynomials.

Having 2D densities on each of the planespz=const.=pz
c,

one is able to construct the 3D quantity,

rsp̃,pz
cd = o

n=0
rnsp̃,pz

cdcossnwd, s6d

which can be described in the spherical system

rsp,Q,wd = o
n=0

rnsp,Qdcossnwd, s7d

wherep=Îp̃2+pz
2 andsQ=arctansp̃/pzd ,wd are the azimuthal

and polar angles ofp with respect to the reciprocal lattice
coordinate system.

Having functionsrnsp,Qd, reconstructed via Cormack’s
or other reconstruction algorithms,23 one can improve recon-
structed densities by the new filtering method that will be
described in the next chapter and then applied to both cubic
model and 2D ACAR spectra for LaB6.

III. NEW METHOD OF FILTERING
RECONSTRUCTED DENSITIES

In crystalline solids various physical quantities are invari-
ant under a suitably chosen projection operator, which is a
sum(with appropriate coefficients) of transformations of the
point group of the crystal. The electron densityr (and its
plane integrals) have the full symmetry of the BZ(the sym-
metry of theG1 type where the screw-rotation axes and glide-
reflection planes are replaced by plain rotation axes and re-
flection planes) which can be described by a series of lattice
harmonics of a given symmetry:

rspd ; rsp,Q,wd = o
l,n

rl,nspdFl,nsQ,wd. s8d

The index n distinguishes harmonics of the same order,
rl,nspd are the radial coefficients of 3D densities and

rl,nspd =E
0

2p E
0

p

rsp,Q,wdFl,nsQ,wdsinsQddQdw. s9d

In the case of structures with oneR-fold axis (tetragonal,
trigonal or hcp lattices) the lattice harmonics have the form:

Fl,n =5Î
s2l + 1d

4p
PlscosQd

Îs2l + 1dsl − umud!
2psl + umud!

Pl
umuscosQdcossmwd,6

s10d

where, respectively,l =2i and l =R+2i with m=R+Ri and
mø l si =0,1,2, . . .d. Pl

umu are associated Legendre poly-
nomials andR is equal to 6, 4, and 3 for hcp, tetragonal,
and trigonal systems, respectively. Here, the subscript
n=1,2,3, . . .labels harmonics with the samel.

Such a form of the lattice harmonics allows to express
functionsrnsp,Qd [defined in Eq.(7)] as

rnsp,Qd = o
l=n

`

cl
nrl,nspdPl

nscosQd, s11d

where c are normalization factors defined in the Eq.(10).
Denotingcl

nPl
nscosQd;gl

n, e.g., for the tetragonal structure
sR=4d three first density components are the following:

r0sp,Qd = r0,1spd + g2
0r2,1spd + g4

0r4,1spd + ¯ ,

r4sp,Qd = g4
4r4,2spd + g6

4r6,2spd + g8
4r8,2spd + ¯ ,

r8sp,Qd = g8
8r8,3spd + g10

8 r10,3spd + g12
8 r12,3spd + ¯ .

For the cubic structures, having three fourfold axes, the
lattice harmonics are linear combinations of the associated
Legendre polynomials.24 Moreover, since for some indexl
there are a few independent lattice harmonics with the same
polynomialsPl

msxd, in expressions forrnsp,Qd there are also
terms with linear combinations of the radial functionsrl,nspd
of the same orderl,

rnsp,Qd = o
l=n

`

o
n

dl,n
n cl

nrl,nspdPl
nscosQd. s12d

d are the coefficients of symmetrized spherical harmonics,
referred to as cubic harmonics and given in Table I in Ref.
24.
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In this case three first density components are equal to

r0sp,Qd = r0,1spd + d4,1
0 g4

0r4,1spd + d6,1
0 g6

0r6,1spd + ¯ ,

r4sp,Qd = d4,1
4 g4

4r4,1spd + d6,1
4 g6

4r6,1spd + d8,1
4 g8

4r8,1spd

+ d10,1
4 g10

4 r10,1spd + sd12,1
4 r12,1spd

+ d12,2
4 r12,2spddg12

4 + ¯ ,

r8sp,Qd = d8,1
8 g8

8r8,1spd + d10,1
8 g10

8 r10,1spd + ¯ .

For cubic symmetries, contrary to the case of other struc-
tures, functionsrnsp,Qd strongly depend on each other,
which is illustrated in Table I. For example, all radial func-
tions rl,1spd that occur infnÞ0sp,Qd, occur also inf0sp,Qd.

Using the orthogonality relation for the associated Leg-
endre polynomials25

E
0

1

Pl
msxdPn

ksxddx= dlndmk
1

2l + 1

sl + umud!
sl − umud!

, s13d

wherex=cosQ and the factors4pd−1/2 is omitted, one can
estimate the radial componentsrl,nspd. The above equation
defines the normalization constantscl andcl

n/2 [see Eqs.(10)
and (11)].

For structures with oneR-fold axis:

rl,1spd =E
0

p/2

clPlscosQdr0sp,QdsinQdQ s14d

and forn.1,

rl,nspd =
1

2
E

0

p/2

cl
nPl

nscosQdrnsp,QdsinQdQ. s15d

In the case of cubic structures the corresponding formulas
are the same butrl and rl,n are replaced bydl,1rl,1spd and
ondl,n

n rl,nspd, respectively.
The most efficient way of calculating polynomialsPlsxd is

to use their recurrence relation25

Plsxd =
2l − 1

l
xPl−1sxd −

l − 1

l
Pl−2sxd,

whereP0=1 andP1=x.
In order to obtain functionscm

mPm
msxd, denoted below as

Wm
m:

Wm
msxd = s4m+ 2d1/2sinmsQd

2m

fs2md!g1/2

m!
,

the following iteration procedure is used:

Wm
msid = Wm

msi − 1d
sinsQd

2
S i + m

i
D1/2

with changingi up to m, where in the zero stepWm
msi =0d

=s4m+2d1/2.
Next polynomials are evaluated from the relation

Wm+1
m sxd = s2m+ 3d1/2xWm

msxd

and forn=m+2 up tonø l:

Wn
msxd = S 4n2 − 1

n2 − m2D1/2

xWn−1
m sxd

− F sn − 1d2 − m2

n2 − m2 G1/2S2n + 1

2n − 3
D1/2

Wn−2
m sxd.

Summarizing, the steps to apply the new method are de-
scribed as follows:

(1) Reconstruct density componentsrnsp̃d {with Cor-
mack’s [Eq. (5)] or other methods} on each planepz
=const.=pz

c independently, gettingrnsp̃,pz
cd. Express them in

the spherical coordinate system, obtainingrnsp,Qd, defined
in Eq. (7).

(2) Invert Eq.(11) or (12) to get[via Eqs.(14) and(15)]
the rl,nspd coefficients.

(3) Construct new functionsrnsp,Qd using Eq.(11) or
(12) from the calculatedrl,nspd and, finally, create new 3D
densitiesrsp;sp,Q ,wdd [Eq. (7)].

In the case of structures with oneR-fold rotation axis, for
each independent functionrnsp,Qd its radial components
rl,nspd are calculated separately. Then a newrnsp,Qd can be
created fromrl,nspd neglecting components withl above
which rl,nspd are smaller than the experimental noise. For the
cubic structures, wherernsp,Qd are strongly dependent on
each other, the possibility of improving densities is much
greater. In this case, one can determine radial components
rl,nspd of the same orderl simultaneously from all functions
rnsp,Qd in which they occur(see Table I). For example,
r12,1spd together withr12,2spd can be evaluated from four
functionsrnsp,Qd with n=0, 4, 8, 12. Therefore, each com-
ponentrl,nspd is determined not only from the values of a
given functionrnsp,Qd for all anglesQ but also from sev-
eralrnsp,Qd. Having thus obtained radial components one is
able not only to filter primary functionsrnsp,Qd but addi-
tionally create newrnsp,Qd of a higher ordern.

In the following, CM and NM denote standard Cormack’s
method and the new filtering method applied to densities
reconstructed by the Cormack’s technique, respectively.

TABLE I. Occurrence of radial componentsrl,nspd in rnsp,Qd
(marked by symbol “1” ) for cubic structures(according to Table I
in Ref. 24).

rl,nspd
for sl ,nd

r0sp,Qd r4sp,Qd r8sp,Qd r12sp,Qd r16sp,Qd

(0,1) 1

(4,1) 1 1

(6,1) 1 1

(8,1) 1 1 1

(10,1) 1 1 1

(12,1) 1 1 1 1

(12,2) 1 1 1

(14,1) 1 1 1 1

(16,1) 1 1 1 1 1

(16,2) 1 1 1 1
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IV. APPLICATION TO MODEL

Usually, when the reconstruction method described in
Chapter II (or equivalent Ref. 23) is applied to cubic sys-
tems, one imposes on the reconstructed density the following
symmetry requirement(e.g., Ref. 26):

rspx,py,pzd = rspy,pz,pxd = rspx,pz,pyd. s16d

This condition follows from the symmetry of the cubic struc-
tures, i.e., nonequivalent fraction of the BZ is equal to 1/48
[Eq. (16)], instead of 1/16[Eq. (2)]. However, such a treat-
ment is not equivalent to that proposed in this paper as
shown further. The results of imposing the requirement(16)
on model densities reconstructed via the CM are presented in
Fig. 1.

It appears that the main discrepancy with the model[part
(c)] is observed on the first reconstruction plane[part (a)].
This is due to the difficulty to describe the high anisotropy of
our model by only five componentsrnsp̃d in Eq. (2). A simi-
lar situation takes place on a few next reconstruction
planes—see results around the horizontal axis in the part(b).
However, on the higher reconstruction planepz=p* (and
neighboring planes) the model density[sphere centered at
p=s0,0,p* d] is isotropic and can be described only by one
component. Thus, here one is able to reproduce the same
element(as on the first reconstruction plane) with very high
precision. Due to this reason results after the symmetry re-
quirement [part (d)] are always improved. In the case of
experimental data such a procedure additionally reduces the
statistical noise.

This treatment is equivalent to the following: densities,
after requirement(16), take into account the cubic symmetry.
However, since they are not described by the lattice harmon-
ics series there is no dependence between densities in points
sp,Q ,wd lying in the same irreducible part of the BZ and
having the samep (it is not so in the case of the NM).

For the model density five model line projections were
calculated for the following equally spaced anglesw=0.0°,
11.25°, 22.5°, 33.75°, 45.0°. Next, five functionsrnsp,Qd
were reconstructed employing the CM. Using coefficients
from Table I in Ref. 24 it was possible to determine lattice
harmonics[thus also radial componentsrl,nspd] up to the
orderl =30 and next create new functionsrnsp,Qd. The com-
parison between densitiesrspd, reconstructed via the CM
and NM [with the symmetry requirement(16)], presented in
Figs. 2 and 3 shows that the new method improves notice-
ably the reconstructed densities in the whole momentum
range.

V. APPLICATION TO EXPERIMENTAL
2D ACAR SPECTRA IN LaB 6

For the simple cubic compound LaB6 three 2D ACAR
spectra were measured(raw data), for anglesw=0.0°, 22.5°,
45.0°, and subjected to a deconvolution algorithm(deconvo-
luted data)—for more details, see Ref. 14. These deconvo-
luted spectra were used to reproduce three functionsrnsp,Qd
via the CM. Next, radial componentsrl,nspd (up to l =30)
were determined and new functionsrnsp,Qd were created up
to n=28 [neglectingr30,nspd that are smaller than the experi-

FIG. 1. Densities reconstructed, via the CM, from five projec-
tions for model density displayed in part(c). Parts (a) and (b)
present, respectively, reconstructed densities on the first plane(001)
and on the perpendicular plane(100), i.e., densities along[100]
reconstructed independently on succeeding planes, parallel to(001).
Part (d) shows results after applying symmetry requirement de-
scribed by Eq.(16).

FIG. 2. Absolute differences between model and reconstructed
densities on the(001) plane. Left and right sides show results for
the CM and NM, respectively. In both cases the symmetry require-
ment (16) was imposed on reconstructed densities. The darker col-
ors denote the higher values, which are changing from 0 up to 9.6
(in % of the maximum value of the model density).

FIG. 3. Densitiesrspd along the(100) direction reconstructed
using the CM(open squares) and NM(solid circles), compared with
model (solid line). Their differences were shown in Fig. 2
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mental noise]. Some of densitiesrnsp,Qd are displayed in
Fig. 4. In order to show their details, we subtracted from
r0sp,Qd the isotropic componentr0,1spd, being the isotropic
average of the 3D densityrspd and calculated fromr0sp,Qd
using Eq.(14) for l =0.

It is seen that both general shape and magnitude of the
three first functionsrnsp,Qd reconstructed via the CM and
NM are very similar, although the NM filters the experimen-
tal noise. However, in the case of the NM it was possible to
create new functionsrnsp,Qd with nù12. It is visible that
the series is slowly convergent and at least functions with
n=12 and 16 should not be neglected inrspd. This is proved
by results displayed in Figs. 5 and 6 showing the anisotropic
part of densities obtained via the CMsm=3d and NMsm=3d,
wherem denotes the number of functionsrnsp,Qd in rspd. It

is clear that three first functionsrnsp,Qd are not sufficient
for description of densities because there are large discrep-
ancies between results on planes(001) and(100) both for the
CM and NM. Only in the case of using at least fivernsp,Qd,
densities on these two planes are the same, i.e., the symmetry
requirement(16) is automatically fulfilled. However, densi-
ties reconstructed by the CM(3) and NM with imposing this
requirement do not differ too much, although the use of new
rnsp,Qd filters the experimental noise and introducing new
higherrnsp,Qd enhances the anisotropy(similarly to decon-
volution procedure). This result is clearly visible in Fig. 7
where densitiesrskd [rspd folded into the first BZ(Ref. 27)]
for different reconstruction algorithms and along the main
symmetry directions are presented.

According to the method proposed in Ref. 28, the inter-
section ofrskd for CM(3) and NM(8) could be used to de-
termine the experimental Fermi momentakF (if the corre-
sponding elements of the FS were big enough). For the XR
and XM directions thus estimatedkF are equal to 0.248 and
0.266 atomic units of momentum(a.u.), respectively. Using
the maximum gradient procedure proposed in Ref. 26 the
following values ofkF were found(a.u.): 0.245, 0.251, 0.245
(along XR) and 0.267, 0.266, 0.266(along XM) for cases
CM(3), NM(3), NM(8), respectively. These values are in

FIG. 4. Functionsrnsp,Qd for nÞ0 and r0sp,Qd−r0,1spd,
reconstructed employing the CM and NM. Each function is shown
in the momentum range 1.3831.38 sa.u.d2 satomic units of
momentumd2, and the lighter colors denote the higher values.

FIG. 5. The anisotropy of densities:rspd−r0,1spd in LaB6, re-
constructed via the CM(3). Parts (a) and (b) show, respectively,
reconstructed densities on the(001) and(100) planes. Parts(c) and
(d) display, respectively, densities after symmetrization on the(100)
plane and in the whole space[after requirement(16)]. The momen-
tum range in each part is 1.631.6 sa.u.d2 and the lighter colors
denote the higher values.

FIG. 6. The same as in Fig. 5 but for the NM(3).

FIG. 7. Densitiesrskd in LaB6 along the XR and XM directions,
reconstructed by various techniques[CM(3), NM(3), NM(8)] and
normalized to the same volume in the whole spacek. Two vertical
lines on the XR and XM directions show the positions where den-
sitiesrskd of the CM(3) and NM(8) intersect.
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very good agreement with theoretical APW band structure
results8 [kF=0.249 and 0.266(a.u.) for XR and XM, respec-
tively] but they are somewhat bigger than FLAPW results16

[equal to 0.243 and 0.256(a.u.) for the XR and XM direc-
tions, respectively]. Along the GM direction there are two
hole-elements that are too narrow to be reproduced properly
within the experimental resolution. However, the comparison
of rskd obtained by the CM(3) and NM(8) suggests that this
unoccupied region surrounding theG point really exists. The
more detailed analysis will be given at the end of the next
section.

VI. COMPARISON OF EXPERIMENT WITH THEORY
IN LaB 6

Two theoretical 2D ACAR spectra in LaB6 for angles
w=0.0°, 45.0°, consistent with band-structure results pre-
sented in Fig. 2 in Ref. 16, were calculated within the inde-
pendent particle model(IPM), convoluted with the experi-
mental resolution function and normalized to the same
volume as the corresponding experimental ones.14 First, they
were used to create 1D ACAR spectraJspzd [plane projec-
tions of rspd] to study many-body effects. Differences be-
tween Jspzd for the main symmetry directions[c100] and
[110] are presented in Fig. 8. They show that the anisotropy
of the raw experimental profiles is very similar to the corre-
sponding anisotropy of the convoluted theoretical profiles.
However, its magnitude is about 1.5–2.0 times smaller.

Since the electron-positronse-pd correlations are not
taken into account in the theory, the normalization of theo-
retical and experimental spectra to the same volume is
problematic.29 Indeed, due to thee-p correlations the core
contribution (in the experiment) is smaller in comparison
with IPM calculations. However, because there are many va-
lence electrons(27) screening the ions, the core contribution
is essentially reduced by the positron wave function, taken
into account in the present IPM calculations. Thus, the mag-
nitude of the observed anisotropy of the theoretical spectra
has to be enhanced. By doing this we get a similar effect as

observed in the Compton scattering experiments(e.g., Ref.
30, and references therein)—the anisotropy of the theoretical
1D spectra about two times higher than for experimental
ones.

The effect of diminishing the anisotropy of experimental
profiles may point out thee-e correlation effect, suggested in
Ref. 16, observed in Compton scattering experiments and
studied in detail for both ACAR and Compton 1D data in
Y.31 This effect is interpreted ase-e correlations for the fol-
lowing reasons. According to all theoretical investigations
(performed for electron gas, see Ref. 32 and references in
Ref. 31) e-e correlation effects influence the electron mo-
mentum density by increased smearing the FS and by the
appearance of a momentum tail above the Fermi momentum
kF. As a consequence the anisotropy of profiles becomes
lower.

The analogous behavior(indicating stronge-e correla-
tions) is observed for functionsN0sp,Qd and N4sp,Qd, de-
termined from two raw experimental and convoluted theoret-
ical 2D ACAR spectra in LaB6, and for the corresponding
r0sp,Qd, r4sp,Qd, andrspd, the last displayed in Fig. 9. In
order to show its details, we present only its anisotropic part
r0spd−r0,1spd. In this figure results for experimental raw
data(previously normalized to the theoretical spectra) had to
be multiplied by the factor 1.7 to get anisotropy of a similar
order as for the convoluted theory.

The observation ofe-e correlations in the positron anni-
hilation experiment is very important because all theories,
apart from the theory presented in Ref. 33, devoted to the
many-body effects in thee-p annihilation(e.g., Ref. 34, and
references therein) are based on the Carbotte and Kahana
results.35 According to them the dynamic parts of the “direct”
e-p and e-e interactions cancel themselves and one should
observe only the static part of thee-p interaction. Our studies
of the many-body effects in yttrium concluded that the static
part of the “direct”e-p interaction(so-called enhancement)
is rather momentum-independent,36 in agreement with Bloch
Modified Ladder (BML ) theory results(e-p interaction is
introduced via lattice37). Next, the simultaneous analysis of
Compton scattering and positron annihilation experiments al-
lowed to observe stronge-e correlations not only in the
Compton scattering but also in the positron annihilation
experiment.31

FIG. 8. Differences between ID ACAR spectra in LaB6 for di-
rections[100] and[110] [in % of the average value ofJspz=0d for
given kind of spectra]. Solid and dashed lines display differences
for theoretical and convoluted theoretical spectra, respectively.
Lines with circles and squares denote differences for raw and de-
convoluted experimental profiles, respectively.

FIG. 9. Densitiesrspd−r0,1spd, reconstructed from two convo-
luted theoretical(left part) and raw experimental(right part) 2D
ACAR spectra(normalized to the same volume). Experimental den-
sities are multiplied by the factor 1.7. The momentum range in each
part is 1.631.6 sa.u.d2 and the lighter colors denote the higher
values.
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In Fig. 10 the isotropic component of densities,r0,1spd,
reconstructed from three experimental 2D ACAR spectra in
LaB6, is compared withr0,1spd for Y,31 Mg and Cd.38

Densities for Y, Mg, and Cd were shifted to have the
valuefr0,1spd /r0,1sp=0dg=0.5 for the same momentump as
in LaB6. In this way we can compare the momentum densi-
ties in these metals close to their averaged FS’s, which, how-
ever, do not have to occur forfr0,1sp=pFd /r0,1s0dg=0.5. It
shows that only for Mg there isKahana-typeenhancement
with its typically strong momentum dependence. Such an
enhancement is in agreement with differente-p interaction
theories[e.g., BML and LDA(Ref. 39)]. The same behavior
was observed for Cu where a significant hybridization be-
tween 4s and 3d electrons is present and both theories BML
and LDA showed aKahana-typeenhancement, proved also
by the experiment.40 For yttrium somee-p interaction theo-
ries (for more details see, Ref. 36) suggested aKahana-type
enhancement, too. However, the experiment(Ref. 31, and
references therein) detected no enhancement, in agreement
with the results of BML, which resembled the results of
IPM. Such a lack of a momentum dependence of thee-p
enhancement in Y is caused by strong lattice effects(intra-
band and interband transitions). It seems that the same situ-
ation (lack of momentum dependente-p enhancement) is
observed in LaB6. Concerning the electronic structure stud-
ies, the good agreement between theoretical and correspond-
ing experimental data suggests that the electronic structure of
LaB6 is well described by the FLAPW theory(see Figs. 8
and 9). Thus, because the observed smearing ofr0,1spd is
much and much stronger than in convoluted theoretical
r0,1spd it must follow from stronge-e correlations(such a
conclusion was also drawn after the previous analyzes).

It is known that it is not possible to get FS fromrspd
becausersp=pFd is not a constant value. However, one
can try to obtain some information from the function
rspd−r0,1spd (presented in Fig. 11) that corresponds to the
anisotropy of densities around the “averaged FS.” Namely,
the isodensities in Figs. 5, 6, 9, and 11(c) are nearly parallel
to the BZ boundaries along the lineS;GM. In the case of
densities reconstructed from the theoretical 2D ACAR spec-
tra, they produce a FS where states alongGM are empty(see
black color in Fig. 13(a) shown further). Indeed, the conse-
quent reconstructed FS does not show the ellipsoid necks but

is very close to theS line. However, calculations of theoret-
ical densitiesrspd (from which 2D ACAR spectra were cre-
ated) were performed for a limited mesh(35 points) inside
the irreducible part of the BZ. Thus, densities reconstructed
from the theoretical spectra are probably missing the details
required to reproduce the necks appropriately. Nevertheless,
we note that a good deal of the anisotropic part of thee-p
momentum density in thep space reflects the general fea-
tures of the FS[a similar procedure has been already applied
in Ref. 41 for line projections ofrspd in CeB6]. This obser-
vation is a basis to the interpretation of our experimental
results, presented detailed in Fig. 12.

The experimental densities indicate that the FS crosses the
GM line [Figs. 12(a) and 12(c)]. For sake of comparison, we
drew the same anisotropic part of the densities reconstructed
by the CM(3) [Fig. 12(e)]. In this case the above feature is
not seen—this is observed only for the NM(8) anddrawnby
componentsrnsp,Qd for nù8 [Fig. 12(d)]. As it was shown
by different tests and is seen in Fig. 7 here the NM works as
a deconvolution procedure(i.e., enhances anisotropy) and
thus allows us to detect some subtle details. So, the observed
fine feature is connected with neither the effect of bigger
smearing of the experiment bye-e correlations nor the ex-
perimental error[density components in Fig. 12(d) do not
have an oscillating character and the prominent element is
visible].

Due to the above considerations, it seems that we
observe small electron pockets in the next(15th) band
around theS line, detected by some dHvA experiments.8,10 It
is worth noticing that the group symmetry character of the
15th band along theGMsSd line is S4 (see Refs. 8 and 16).
As such, its contribution to the momentum density in the

FIG. 10. r0,1spd reconstructed from 2D ACAR data for various
metals(for details see text).

FIG. 11. Densities on the plane(001), reconstructed by NM(8)
from three deconvoluted 2D ACAR spectra:r0,1spd—part (a),
rspd—part(b), andrspd−r0,1spd—part(c), compared with the free-
electron sphere containing 27 electrons—part(d). All parts are
drawn with some BZ boundaries.
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first BZ and higher BZ’s, wherep is parallel tok, vanishes,
as discussed by Harthornet al. (see Ref. 42). However, it
may appear forp="sk +Gd with reciprocal lattice vectors
G=s2p /adsj ,h ,0d, wherejÞhÞ0. Thus, it can contribute
along suchGM lines that are parallel to the XX line from the
first BZ [see Fig. 11(c)]. In the extended zonep the 14thsS1d
and 15thsS4d bands occur in the part of thep space marked
by the thickened square in Fig. 11(c). In this area, there are
the biggest contribution to the total densitiesrspd coming
from the 14th band(below theGM line) and from the 15th
band(above this line). Thus, some details of the FS just in
this region were able to be observed.

In the case of the theoretical calculations these elements
may only be obtained if the spin-orbit interaction is included
in the band structure calculations as well as the 4f level is
displaced upward by 0.1 Ry(which may correspond to self-
interactions and/or the nonlocal corrections to LDA—for
more details, see Refs. 8 and 16) and do not appear in Fig.
12(f).

Finally, by looking at the densitiesrskd obtained by ap-
plying the LCW transformation torspd and presented in the
part 3 of Fig. 13, it appears thatrskd derived from two con-
voluted theoretical spectra are not able to reproduce the un-
occupied region surrounding theG point (the corresponding
dHvA frequency is denoted ase in Refs. 2 and 9. This in-
ability is due to resolution smearing(compare with part 2 of
Fig. 13) as well as the positron wave function effect, dem-
onstrated in Fig. 12(a) of Ref. 16. Namely,e-p k-space den-
sity rskd (calculated within IPM for the 13 fully occupied
valence bands) at theG point is significantly higher than at
M. This effect is due to a different orbital character of the
electron states. Moreover,e-p correlations should enhance
this effect—the more localized electron, the lower probabil-
ity of its annihilating. The smaller size of the unoccupied
region aroundG (having linear dimensions of the order of the
experimental resolution) compared to the unoccupied region

around M increases the effect. However, after applying the
new filtering procedure(parts 7 and 8), which not only filters
the experimental noise but also enhances the anisotropy of
the densities,rskd around theG is decreased. Thus, we can
confirm the existence of the regione, detected also in dHvA
experiments.1–3,6 Indeed,e is also observed in thep space
[Fig. 12(b)] and the FS is in good agreement with the theory.
Similarly to what observed inp space(recall Fig. 9), the
anisotropy ofrskd is diminished, which proves again the
e-e correlation effect.

VII. SUMMARY

The proposed technique of filtering reconstructed densi-
ties was applied to the cubic model and to 2D ACAR spectra
in LaB6. The method not only filters the experimental noise
but slightly enhances some details of the reconstructed den-
sities as well.

FIG. 12. rspd−r0,1spd reconstructed from three deconvoluted
experimental 2D ACAR spectra via NM(8) and CM(3) [quadrants
(a) and(e), respectively] and from two convoluted theoretical spec-
tra [quadrant(f)], in the same part ofp space as marked by thick-
ened square in Fig. 11(c). Quadrants(b) and (c) show elements of
quadrant(a) from the 14th and 15th bands, respectively, mirrored
about theGM diagonal. Densities from quadrant(a) after subtract-
ing r4sp,Qd are displayed in(d).

FIG. 13. Densitiesrskd in LaB6 compared with the theoretical
occupancy in the 14th band(Ref. 16) (part 1, where white areas
denote occupied states). Densities reconstructed from two 2D
ACAR spectra are presented in parts 2 to 4 for: 2—theory,
3—theory convoluted with the experimental resolution, 4—raw ex-
perimental data. Next parts display densities reconstructed from
three raw(part 5) and three deconvoluted(parts 6–8) experimental
data for cases: CM(3) (parts 5–6), NM(3) (part 7), NM(8) (part 8).
Panels(a), (b), and (c) show densities on parallel planes distant
from theG point at 0,p /a, andp /2a, respectively, wherea is the
lattice constant.
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Experimental 2D ACAR spectra for LaB6 were inter-
preted in terms of both 1D projections(to studye-e correla-
tion effects) and reconstructed 3D densities both in the ex-
tendedp and reducedk spaces. Due to the simultaneous
(using the same procedures) analysis of theoretical(for
merely two main symmetry directions) and experimental 2D
ACAR spectra and the corresponding densities as well, the
following conclusions can be drawn for LaB6:

(1) The IPM describes the experimental data well and the
typical momentum-dependente-p enhancement is not ob-
served. This effect is somewhat surprising because according
to the electronic structure calculations,8,16 bands crossing the
Fermi level are parabolic. Thus, one could expect some
momentum-dependence of thee-p enhancement.

(2) The small magnitude of the anisotropy of the experi-
mental densities points out strong anisotropice-e correla-
tions, in agreement with the suggestion in Ref. 16. This is a
very important result because almost all theoretical ap-
proaches devoted to the many-body effects in thee-p anni-
hilation are based on the Carbotte and Kahana results35 and
hint that the momentum-dependente-e correlations should
not be observed in thee-p annihilation experiment.

(3) Electron states(both topology of FS and character of
bands, seen in the positron annihilation experiment) in LaB6
are well described by the FLAPW band theory. However,

detailed analysis of densities inp space(we excluded smear-
ing effects, experimental noise, etc.) showed that the aniso-
tropic part of the densities clearly reflects the fact that there
are necks in the the 14th band. Moreover, from our analysis
in p space we conjecture the existence of small additional FS
electron pockets in the 15th band observed also in dHvA
experiments.8,10 These pockets, whose sizes are smaller than
the limit set by the resolution of the current 2D-ACAR spec-
trometers, are not detected ink space(there is no such pos-
sibility to reproduce remarkably high jump of densitiesrskd
in this small region). However, the comparative analysis inp
space between the theoretical data utilized here(where no
such FS sheet occurs) and the experimental data, recon-
structed adopting the NM presented in this paper, shows ad-
ditional density consistent with our conjecture.
Therefore, this special filter seems to be a promising tool to
reveal fine features of thee-p momentum density until now
precluded to the 2D ACAR experiments.
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