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Shot noise of a tunnel junction displacement detector

A. A. Clerk and S. M. Girvin
Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA
(Received 3 June 2004; published 8 September P004

We study quantum-mechanically the frequency-dependent current noise of a tunnel-junction coupled to a
nanomechanical oscillator. The cases of both dc and ac voltage bias are considered, as are the effects of
intrinsic oscillator damping. The dynamics of the oscillator can lead to large signatures in the shot noise, even
if the oscillator-tunnel junction coupling is too weak to yield an appreciable signature in the average current.
Moreover, the modification of the shot noise by the oscillator cannot be fully explained by a simple classical
picture of a fluctuating conductance.
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Spurred primarily by experiments in solid-state qubit sys-influence on the detector’s current noise. Note that the noise
tems, there has recently been considerable interest in undesf a QPC position detector was also briefly considered in
standing the noise properties of mesoscopic systems used Ref. 16.
detectors—® Many new results have emerged, including an  Model Considering the simplest case where the tunnel-
understanding of the connection between noise, back-actiomatrix element depends linearly on the oscillator displace-
dephasing and informatidiT? and of the influence of coher- mentg, the tunnel junction detector is described-by
ent qubit oscillations on the output noise of a detettdpt _
surprisingly, similar concerns arise in the study of nanome- ([ ot €77'X
chanical oscillators. Recent experiments using single- det 27\ 2k,k’
electron transistoréSET9 have demonstrated displacement R
detection of such oscillators with a precision close to the = Hgeio— X - F.
maximum allowed by quantum mechanidsGiven the in- _
terest in these systems, it is important to gain a better undet€re, ¢k (Cry) destroys an electron state in the lgight)
standing of how a mesoscopic detector influences the behaglectrode,A is the conduction-electron density of statés,
ior of an oscillator, and vice-versa. Several works havedenotes the number of tunnelled electrons, and the operator
addressed various aspects of this problem. In particular, ¥ augmentsh by one. parametrizes the sensitivity of the
has been shown that an out-of-equilibrium detector can servigeansmission phase q and will in general be nonzero. We
as an effective environment for the oscillator, providing bothconsider both the cases of a pure dc volts¥gand a pure ac
a damping coefficient and an effective temperatiré® voltageV,{t)=V cost. Note that the tunneling Hamiltonian

In the present work, we study the finite-frequency OUtPULy e 415 as a random back-action fofeen the oscillatoP
noise of a mesoscopic displacement detector, where one evi/

pects to see signatures of the time-dependent fluctuations 0 c .W'” ,c_jes_cr'b? ogr S),/stem. by a reduced density matrix
the oscillator. A completely classical study of the currentP\M: XX i) =(x|p(m; |’} which tracks th? state of the os-
noise of a SET displacement detector was presented recen jlator andm_, the_number of electrons Wh'ch haAve _tunneled
in Refs. 14 and 15. In contrast, we consider a generic tunnef—_rough the junction. In general, the evolution piwill be
junction or quantum point-conta¢@PC detector, in which

Yick o + H.c.) - eVt

given by a Dyson-type equation:

the tunneling strength depends on the position of the oscilla- ¢ i A t .

tor, and calculatguantum mechanicallthe finite frequency d—tp(m.t) =- %[Ho,p(m;t)] +f dt' > S(mm';t-t')
current noise. Such a system could be realized by using a o m

STM setup where one electrode is free to vibfewe treat o [Ug(t—t)p(m’:t ) Ul(t - )] (1)

both dc and ac voltage bias; the latter is of particular rel-

evance to experiment8.We find that even for a detector- Here, U, is the evolution operator corresponding to the un-
oscillator coupling so weak that there is little signature of theperturbedzero-tunneling Hamiltonian, and we have written
oscillator in the average current, there can nonetheless bethe self-energys as a super-operator.

strong signature in the finite-frequency current noise. We We will consider the simplest case of weak tunneling, and
moreover find that the oscillator contribution to the noisekeep only self-energy terms which are lowest order in the
cannot be simply explained by a classical model of a detectdunneling. 3 is only nonvanishing ifm’=m or m’=m+1;
conductance which fluctuates with the oscillator position—these two types of contributions correspond to “scattering
there are additional quantum corrections which suppress theut” and “scattering in” terms in a kinetic equation, and are
contribution of zero point fluctuations. We show that thesegiven by the diagrams shown in Fig. 1. These diagrams cor-
quantum corrections result from correlations between the derespond to standard tunneling bubbtéshe only difference
tector’s random back-action force and intrinsic output noisebeing that the tunneling vertices can contairkasperator. If
Finally, in the ac-biased case, we find that the oscillator exX appears at th€¢ end of a graph fo&(t,t’), X will evolve
periences d@ime-dependentemperature, which has a direct during the duration of the tunneling event. As a result, the
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a) t'?’-‘t t'.?:_:‘rt ﬁz T, 2
et —= Dy(t) = 2\ [I'o(t,AQ) + T'o(t, = Q)] (4)
P 70
b) t"—f_—"t = while E(t, n)=sin (7' [ 9)Z,20D,(t)/ # is the average back-

_ o . action force exerted on the oscillatdr.(t,E) are ther' =0
FIG. 1. Diagrams for the)ascattering in, and bscattering out  finjte temperature forward and backwards inelastic tunneling
terms in the self-energ¥(t-t’'). The solid lines represent the for- rates involving an absorbed enerBy these rates are time-
ward and backwards Keldysh contours; the dashed lines are Cohdependent in the case of a dc voltage. Note that we have
ductioAn electron propagators. The soli_d bl_ack vertices c_orres_pond tﬁeglected self-energy terms which renormalize the oscillator
7o+ 7'X. Note that arx operator appearing in a vertex at tiewill  pamiltonian; these are unimportant in the weak-tunneling
evolve during the tunneling event. limit we consider.

Equation(2) yields a compact description of the coupled
self-energyi has terms involving), and the final form of detector-oscillator system; it is a generalization of an equa-
we obtaindoes notorrespond to the oscillator-free case with tion first derived(via an alternate approachy Mozyrskyet
% dependent rates. We also include perturbatively the effectdl.** to anarbitrary detector in the tunneling regime, includ-
of a high-temperature Ohmic heat bakid Ty, > #42, with ing the possibility of arx-dependent tunnelling phase, a non-
being the oscillator frequengyon the oscillator using a linear junction I-V, a time-dependent bias voltage, and in-
Caldeira-Leggett descriptiéh and the lowest-order Born trinsic oscillator damping. Taking=0 yields the equation
diagrams in the self-energy. for the reduced-density matrix of the oscillator, ol Ref.

Finally, we specialize to the case where the voltagis ~ 11) has the Caldeira-Leggett form for a forced, damped os-
much larger thakQ/e, so that inelastic tunnel events which cillator in the high-temperature regim&.In what follows,
excite the oscillator are not suppressed. For weak tunnelinge focus for simplicity on the case daf=0 in the tunnel
and small ac frequency, we may then make a Markov junction, and ony=0, which ensure&=0.
approximation in  Eq. (1)1 Ug(t=t")p(m’;t)Uj(t-t") Shot NoiseEquation(2) can be used to calculate the full
— p(m’;t), which is equivalent to replacingy(7) with the  counting statistics of tunneled charge as a function of time.
full evolution operatolU(7). We are assuming that over the By focusing on the time-dependence of the reduced second
short time scales relevant to tunneling, one can describe th@oment((m?(t))) (i.e., variancg it is possible to calculate
dynamics of the density matrix by its zero-tunneling evolu-the symmetrized frequency-dependent current noise using
tion; the omitted terms here are formally higher order in thethe MacDonald formuld? In the case of an ac bias voltage,
tunneling. Fourier-transforming in then index, p(k;t) the noise is a function of two times. We focus on the part that
=>r__.ekm5(m;t), Eq. (1) becomes is independent of the average time coordinate, a quantity

directly accessible in experiment. It is given by a modified
version of the MacDonald formula:

S(w) = 282wa dtsin th
0

0

9t = th —Fi sl Vo+7>A - 2n
qiP ki = 2THo~ F(t. m)%.p] |< - | {pp}] g—i-ﬁt«mz(t@)», 5)

Do+DM®)) . (o k-1
_< %2 >[X'[X'p]]+2_( (7)2 where ¢ is the initial phase of the ac voltage.
' dc bias For a dc biased normal-metal junction at

2D,(1) o o Ciom e T=0, the tunneling rates are given by (t,E)=(m)%(oeV
X( 72 (7o +€777'X)p(70 +€7777'X) +E)®(ceV+E). Equations (3) and (4) yield
() _ | y=h7'?/(47M) and KgTes= e\/./2.ll We find from Egs.(2)
+i= =17 (€77Pp — €7 "pp) and (5) that the current noise may be written &)
h =2¢e(I)+AS, where the first term corresponds to purely Pois-
o ane nn sonian statistics, and the second term is a correction arising
+(7)A(PpX = XpP)] ], (2)  from correlations between the motion of the oscillator and

the number of tunneled electrons:

3 ]
wherey, is the intrinsic damping coefficient associated with AS(w) = wa dt sin wt((277 )(X(t) - m(t)))
the equilibrium bathPg=2M ykgTpat iS the corresponding h 0

diffusion constant, andr=+(-) labels contributions from

N2/ (2(1) .
forward (backwards tunneling. The detector-dependent dif- (7)) - m(D)). (6)
fusion constanD(t)=2,D,(t) and damping coefficieni(t)  Physically, the covariances appearing above arise from the
=2,7,(t) are given by x-dependence of the tunneling probability-ni{t) is larger

than average, then it is likely thadt) and x3(t) are also
o larger than average. These covariances can be calculated di-
__h (1) (Ta(t,ﬁﬂ) - T{r(t,—ﬁﬂ)) (3y  rectly from Eq.(2), and obey simple classical equations cor-
2MQN\ 1 2 ’ responding to a forced, damped harmonic oscillator. Con-
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sider first the contribution fronkx-m)) in Eq. (6), which is  is =V, while the first is=V2. Inversion symmetry forces
leading order in7': ReS¢ to vanish®® however, at finitew, Im Sg is nonzero.
) Consequently, the second term above is nonzero; a direct
ev_Q (Axy) )S((w) 7) perturbative calculatiotassuming a thermal state for the os-
h 47 (&) ' cillator) shows that this term corresponds to the second term
where(x?) =eV/2M? is calculated using the stationary so-

in Eq. (7). Thus, quantum corrections to the noise, which
lution of Eq. (2), S(0) =8y Q20 [(w~ 022+ 4y, L suppress zero-point contributions, can be associated with
is the spectral density of oscillator fluctuations obtained

classical out-of-phase correlations between the random

) X i back-action force and the intrinsic detector output noise
from Eq.(2), and(Axp)*=#i/(2M (D) is the zero-point uncer- Finally, we return to Eq(6) and examine the contribution
tainty in the oscillator position. The first term in E(Y) iS  fom ((x%-m)), a term which is higher-order inf . One finds:
exactlythe answer expectedo lowest order in7’) from a

SV
A8ty = & 2r

simple picture of a classically fluctuating junction conduc- _ eV ~af €Y Q (Axo)?

tance(i.e. AS(w)=V?S;(w), whereSs(w) is the spectral den- [AS(w)],= T(T ) h o 2n A

sity of conductance fluctuations, and is in turn determined by o

S(w)). Equivalently, if we think of our junction as axto « f o , _ 10
-1 amplifier having a gain.=2e?V7y7' /h, this first term cor- 2 S{@)Sdw - o). (10

responds to simply amplifying up the fluctuations of the os- . ' . .
cillator: AS=)\%S,. Equation(7) yields a peak inS(w) at Again, the first term above agrees with the expectation for a

w=Q: keeping only the leading term i, the ratio of the classically fluctuating junction conductance; it yields peaks

peak-height to the background Poissonian ndise, the S/N in S at =0 and ©=2(). The second term is fa quantum
ratio) is correction, completely analogous to that found f&S|;.

ac bias We now consider an ac bias voltaggt)
AS(w=0Q) 4 ( eV) o? _ (E>22Mev =V coqrt), whereeVs v, Q. In the limit of smallv, it is
- 0

2¢e(1) hyr) 1+a? B2 (®) possible to derive a simple expression for the time-dependent

where o?=7'2(x%)/ 72, yo=7o+7. Note that if « is small,

there will be no sizeable signature of the oscillator in the

average curreng.e., 5(I'>/<|>Oza'2), but there 'may nonethe- o 740 _ iy

less be a large peak in the noiseeW/ (hy,,) is large. The "= | —codndI'|eVcoso+Ex——|. (11)
. . . + 0 ar 2

upper bound in Eq(8) corresponds to the optimal scenario,

where there is no intrinsicdetector-independentamping,  ysing Eqs(3) and(4),we find that the damping coefficient

and a>1. The maximum S/N is determined leV/ and the o the oscillator is time-independent and identical to that in
sensitivity 7'/ 7o, and can be arbitrarily large. Due to the the ¢ case, whereas the diffusion constant is time-dependent
dependence o, the maximum S/N isnverselyproportional  anq contains higher harmonics of the ac frequendyriting

to the detector sensitivity’ / 7,. Note the marked difference D(t) =2M ks Ter(t), we have to a good approximation:
from experiments attempting to detect coherent qubit oscil-

7_/

tunneling rate€° Defining hI'(E)=(7)?E-O(E), we have
T, (t,E)==7o(1-8,6/2)0" T " (E)cosnut, with:

lations in the detector current noidayhere back-action ef- vV eVihy 2(= 1)
fects limit the S/N to a maximum of 4. kgTerdt) = —| > <ﬁ>cos(2nvt) -11. (12
We turn now to the second term in E¢), which is a T L n=0 (2n)

lower-order inV quantum correction to the classical result. It

would appear to causeAS|; to vanish in the limiteV

— 1012, (x*)— (Axp)? i.e., it suppresses a zero-point con-

tributionto AS|;. (Of course, we cannot rigorously take this

limit, as Eq.(2) is strictly only valid fore\/_> 7Q.) A similar keToif) are =fiv. The time-dependence df(t) implies

res'ultlwas found for the average curréntin Ref. 11, where that the position variancéx?(t)) of the oscillator will be

a similar offset term could be traced to the inherent asyMME;me-dependent; as we show, this has a direct influence on

try _between events in .Wh'ch energy 1S absorbed frqm th‘?he noise and the average current. For the latter quantity, we

oscillator, versus those in which it is emitted to the oscillator.; .

In the present case, the quantum correction to the noise in

Eq. (7) can be given a classical interpretation- it arises from ey

correlations between the intrinsic shot noise of the detector, (V)= Tcos(vt)[ré+ (7)%x()] = Al(Y),

and the back-action forcé acting on the oscillator. If there

are such correlations, we would expect classically: where the quantum correction is approximateM(t)

=evy-sgncost]. Turning to the noise, we may again de-

AS(0) = \*§(w) + 2\ REQ(~ 0)Se(w)], © composeS(w) into a frequency-independent part and a term

where Sg(w) is the symmetrized cross-correlator betweenarising from correlations betweer(t) and m(t): S(w)

the junction current and back-action force, ag@) is the E(Q/2w)fSW/QdTS(t_,w):$a+AS(w). For the frequency-

oscillator response function. Note that the second term aboviedependent contributio8, we find:

The small but finite photon frequenayprevents higher har-
monics from contributing t@s; without it, we would have

simply kgTet(t) =V|cost|/2, which tends to zero twice each
period. With the finite cut-off included, the minima of
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FIG. 2. Oscillator contribution t&, the frequencyfidependent
part of the shot noisé.e., second term in Eq13)), versus the ac
voltage frequencyy, for /y=50,y,=0, and eV>fv,h). The
maximum suppression of this term et () (over itsy— oo limit) is
by 8/9.

4e?| eV e
S'= T[ To+ (T')2<kBTeff(t)<X2(t)> - ZT(AXO)ZH ,

(13)

k
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FIG. 3. Full shot nois&(w) for an ac bias voltage of frequency
v=100(Q), including the effects of correlations betweg(t) and
m(t) (cf. Eq. (14)). We have choseeV=10000, o?=1, (y+7)
=0/20, and 79=0.1. They axis is scaled by the value of the
w-independent part of the noise.

where the bar indicates a time-average. The first term is the14) is precisely the answer expected for a fluctuating clas-
standard result for the shot noise of an ac-biased junétion. sical conductance—one needs to simply shift the noise in the

The second term indicates that the time-dependence
(X3(t)) [calculated from Egq.(2)] makes a frequency-

independent contribution to the noise. For ), (x?) re-
sponds only weakly to the time-dependence Tii(t),

whereas forv~(}, the response becomes appreciable ang,,

180 degrees out-of-phase wit). If in addition y,<<y, one
finds a resultingsuppressiorof the oscillator’s contribution

to S this is shown in Fig. 2. Small resonances also occur

when () is a multiple ofv. The oscillator modification o§*

Qfc case up to the frequenay In contrast, the quantum cor-

rections toAS for ac bias are not simply given by shifting

the corresponding terms found for dc bias—one finds that the
uantum corrections are larger in the ac case by a factor of

. The effect ofAS(w) on the full noise is shown in Fig.

3.

In conclusion, we have presented a fully quantum me-

chanical calculation of the frequency-dependent current

is not captured by the classical picture of a fluctuating conhoise of a tunnel junction displacement detector, for both the

ductance.

Finally, the frequency-dependent contributidig(w) to
the noise, which arises from correlations betweén and
m(t), takes the simple form:

1 hQ
AS(w)=7 2 AS(ve w)|dc[1 +0<5>] . (19

cases of dc and ac voltage bias. The oscillator can lead to
large effects in the shot noise, even if the coupling to the
detector is weak; moreover, these effects cannot be com-
pletely described using a classical picture of a fluctuating

junction conductance.
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