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We study quantum-mechanically the frequency-dependent current noise of a tunnel-junction coupled to a
nanomechanical oscillator. The cases of both dc and ac voltage bias are considered, as are the effects of
intrinsic oscillator damping. The dynamics of the oscillator can lead to large signatures in the shot noise, even
if the oscillator-tunnel junction coupling is too weak to yield an appreciable signature in the average current.
Moreover, the modification of the shot noise by the oscillator cannot be fully explained by a simple classical
picture of a fluctuating conductance.
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Spurred primarily by experiments in solid-state qubit sys-
tems, there has recently been considerable interest in under-
standing the noise properties of mesoscopic systems used as
detectors.1–6 Many new results have emerged, including an
understanding of the connection between noise, back-action
dephasing and information,4–6 and of the influence of coher-
ent qubit oscillations on the output noise of a detector.3 Not
surprisingly, similar concerns arise in the study of nanome-
chanical oscillators. Recent experiments using single-
electron transistors(SETs) have demonstrated displacement
detection of such oscillators with a precision close to the
maximum allowed by quantum mechanics.7,8 Given the in-
terest in these systems, it is important to gain a better under-
standing of how a mesoscopic detector influences the behav-
ior of an oscillator, and vice-versa. Several works have
addressed various aspects of this problem. In particular, it
has been shown that an out-of-equilibrium detector can serve
as an effective environment for the oscillator, providing both
a damping coefficient and an effective temperature.11–13

In the present work, we study the finite-frequency output
noise of a mesoscopic displacement detector, where one ex-
pects to see signatures of the time-dependent fluctuations of
the oscillator. A completely classical study of the current
noise of a SET displacement detector was presented recently
in Refs. 14 and 15. In contrast, we consider a generic tunnel-
junction or quantum point-contact(QPC) detector, in which
the tunneling strength depends on the position of the oscilla-
tor, and calculatequantum mechanicallythe finite frequency
current noise. Such a system could be realized by using a
STM setup where one electrode is free to vibrate.9,10We treat
both dc and ac voltage bias; the latter is of particular rel-
evance to experiments.10 We find that even for a detector-
oscillator coupling so weak that there is little signature of the
oscillator in the average current, there can nonetheless be a
strong signature in the finite-frequency current noise. We
moreover find that the oscillator contribution to the noise
cannot be simply explained by a classical model of a detector
conductance which fluctuates with the oscillator position—
there are additional quantum corrections which suppress the
contribution of zero point fluctuations. We show that these
quantum corrections result from correlations between the de-
tector’s random back-action force and intrinsic output noise.
Finally, in the ac-biased case, we find that the oscillator ex-
periences atime-dependenttemperature, which has a direct

influence on the detector’s current noise. Note that the noise
of a QPC position detector was also briefly considered in
Ref. 16.

Model. Considering the simplest case where the tunnel-
matrix element depends linearly on the oscillator displace-
ment x̂, the tunnel junction detector is described-by

Hdet= S t0 + eiht8x̂

2pL
ok,k8

Y†cR,k
† cL,k8 + H.c.D − eVstdm̂

; Hdet,0 − x̂ · F̂.

Here,cL,k scR,kd destroys an electron state in the left(right)
electrode,L is the conduction-electron density of states,m̂
denotes the number of tunnelled electrons, and the operator
Y† augmentsm̂ by one.h parametrizes the sensitivity of the
transmission phase tox̂, and will in general be nonzero. We
consider both the cases of a pure dc voltageV, and a pure ac
voltageVacstd=V cosnt. Note that the tunneling Hamiltonian

itself acts as a random back-action forceF̂ on the oscillator.9

We will describe our system by a reduced density matrix
rsm;x,x8 ; td;kxur̂sm; tdux8l which tracks the state of the os-
cillator andm, the number of electrons which have tunneled
through the junction. In general, the evolution ofr̂ will be
given by a Dyson-type equation:

d

dt
r̂sm,td = −

i

"
fH0,r̂sm;tdg +E

t0

t

dt8o
m8

Šsm,m8;t − t8d

+ fU0st − t8dr̂sm8;t8dU0
†st − t8dg. s1d

Here,U0 is the evolution operator corresponding to the un-
perturbed(zero-tunneling) Hamiltonian, and we have written
the self-energyS as a super-operator.

We will consider the simplest case of weak tunneling, and
keep only self-energy terms which are lowest order in the
tunneling. S is only nonvanishing ifm8=m or m8=m±1;
these two types of contributions correspond to “scattering
out” and “scattering in” terms in a kinetic equation, and are
given by the diagrams shown in Fig. 1. These diagrams cor-
respond to standard tunneling bubbles,17 the only difference
being that the tunneling vertices can contain anx̂ operator. If
x̂ appears at thet8 end of a graph forSst ,t8d, x̂ will evolve
during the duration of the tunneling event. As a result, the
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self-energyŠ has terms involvingp̂, and the final form ofS
we obtaindoes notcorrespond to the oscillator-free case with
x̂ dependent rates. We also include perturbatively the effects
of a high-temperature Ohmic heat bath(kBTbath@"V, with V
being the oscillator frequency) on the oscillator using a
Caldeira-Leggett description18 and the lowest-order Born
diagrams in the self-energy.

Finally, we specialize to the case where the voltageV is
much larger than"V /e, so that inelastic tunnel events which
excite the oscillator are not suppressed. For weak tunneling
and small ac frequencyn, we may then make a Markov
approximation in Eq. (1): U0st− t8dr̂sm8 ; t8dU0

†st− t8d
→ r̂sm8 ; td, which is equivalent to replacingU0std with the
full evolution operatorUstd. We are assuming that over the
short time scales relevant to tunneling, one can describe the
dynamics of the density matrix by its zero-tunneling evolu-
tion; the omitted terms here are formally higher order in the
tunneling. Fourier-transforming in them index, r̂sk; td
=om=−`

` eikmr̂sm; td, Eq. (1) becomes

d

dt
r̂sk;td = −

i

"
fH0 − F̄st,hdx̂,r̂g − iSg0 + g

"
Dfx̂,hp̂,r̂jg

− SD0 + Dstd
"2 Dfx̂,fx̂,r̂gg + o

s=+,−
Seisk − 1

st8d2 D
3 S2Dsstd

"2 st0 + eisht8x̂dr̂st0 + e−isht8x̂d

+ i
gsstd

"
ft0t8seishp̂r̂ − e−ishr̂p̂d

+ st8d2sp̂r̂x̂ − x̂r̂p̂dgD , s2d

whereg0 is the intrinsic damping coefficient associated with
the equilibrium bath,D0=2Mg0kBTbath is the corresponding
diffusion constant, ands= +s−d labels contributions from
forward (backwards) tunneling. The detector-dependent dif-
fusion constantDstd=osDsstd and damping coefficientgstd
=osgsstd are given by

gsstd =
"

2MV
S t8

t0
D2SGsst,"Vd − Gsst,− "Vd

2
D , s3d

Dsstd =
"2

4
S t8

t0
D2

fGsst,"Vd + Gsst,− "Vdg, s4d

while F̄st ,hd=sinhst8 /t0dos2sDsstd /" is the average back-
action force exerted on the oscillator.G±st ,Ed are thet8=0
finite temperature forward and backwards inelastic tunneling
rates involving an absorbed energyE; these rates are time-
independent in the case of a dc voltage. Note that we have
neglected self-energy terms which renormalize the oscillator
Hamiltonian; these are unimportant in the weak-tunneling
limit we consider.

Equation(2) yields a compact description of the coupled
detector-oscillator system; it is a generalization of an equa-
tion first derived(via an alternate approach) by Mozyrskyet
al.11 to anarbitrary detector in the tunneling regime, includ-
ing the possibility of anx-dependent tunnelling phase, a non-
linear junction I–V, a time-dependent bias voltage, and in-
trinsic oscillator damping. Takingk=0 yields the equation
for the reduced-density matrix of the oscillator, and(cf. Ref.
11) has the Caldeira-Leggett form for a forced, damped os-
cillator in the high-temperature regime.18 In what follows,
we focus for simplicity on the case ofT=0 in the tunnel

junction, and onh=0, which ensuresF̄=0.
Shot Noise. Equation(2) can be used to calculate the full

counting statistics of tunneled charge as a function of time.
By focusing on the time-dependence of the reduced second
momentkkm2stdll (i.e., variance), it is possible to calculate
the symmetrized frequency-dependent current noise using
the MacDonald formula.19 In the case of an ac bias voltage,
the noise is a function of two times. We focus on the part that
is independent of the average time coordinate, a quantity
directly accessible in experiment. It is given by a modified
version of the MacDonald formula:

SIsvd = 2e2vE
0

`

dt sinvtE
0

2p df

2p
· ]tkkm2st,fdll, s5d

wheref is the initial phase of the ac voltage.
dc bias. For a dc biased normal-metal junction at

T=0, the tunneling rates are given byhGsst ,Ed=st0d2sseV
+EdQsseV+Ed. Equations (3) and (4) yield
g="t82/ s4pMd and kBTef f=eV/2.11 We find from Eqs.(2)
and (5) that the current noise may be written asSIsvd
=2ekIl+DSI, where the first term corresponds to purely Pois-
sonian statistics, and the second term is a correction arising
from correlations between the motion of the oscillator and
the number of tunneled electrons:

DSIsvd =
4e3V

h
vE

0

`

dt sinvt„s2t0t8dkkx̂std ·mstdll

+ st8d2kkx̂2std ·mstdll…. s6d

Physically, the covariances appearing above arise from the
x-dependence of the tunneling probability- ifmstd is larger
than average, then it is likely thatxstd and x2std are also
larger than average. These covariances can be calculated di-
rectly from Eq.(2), and obey simple classical equations cor-
responding to a forced, damped harmonic oscillator. Con-

FIG. 1. Diagrams for the a) scattering in, and b) scattering out

terms in the self-energyS̆st− t8d. The solid lines represent the for-
ward and backwards Keldysh contours; the dashed lines are con-
duction electron propagators. The solid black vertices correspond to
t0+t8x̂. Note that anx̂ operator appearing in a vertex at timet8 will
evolve during the tunneling event.
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sider first the contribution fromkkx·mll in Eq. (6), which is
leading order int8:

uDSIsvdu1 =
e3V

h
s2t0t8d2SeV

h
−

V

4p

sDx0d2

kx2l DSxsvd, s7d

wherekx2l.eV/2MV2 is calculated using the stationary so-
lution of Eq. (2), Sxsvd=8gtotV

2kx2l / fsv2−V2d2+4gtot
2 v2g−1

is the spectral density of oscillatorx fluctuations obtained
from Eq. (2), andsDx0d2=" / s2MVd is the zero-point uncer-
tainty in the oscillator position. The first term in Eq.(7) is
exactly the answer expected(to lowest order int8) from a
simple picture of a classically fluctuating junction conduc-
tance(i.e. DSIsvd=V2SGsvd, whereSGsvd is the spectral den-
sity of conductance fluctuations, and is in turn determined by
Sxsvd). Equivalently, if we think of our junction as anx-to
-I amplifier having a gainl=2e2Vt0t8 /h, this first term cor-
responds to simply amplifying up the fluctuations of the os-
cillator: DSI =l2Sx. Equation(7) yields a peak inSIsvd at
v=V; keeping only the leading term inV, the ratio of the
peak-height to the background Poissonian noise(i.e., the S/N
ratio) is

DSIsv = Vd
2ekIl

= 4t0
2S eV

hgtot
D a2

1 + a2 ø 4S t0

t8
D22MeV

"2 , s8d

where a2=t82kx2l /t0
2, gtot=g0+g. Note that if a is small,

there will be no sizeable signature of the oscillator in the
average current(i.e., dkIl / kIl0.a2), but there may nonethe-
less be a large peak in the noise ifeV/ shgtotd is large. The
upper bound in Eq.(8) corresponds to the optimal scenario,
where there is no intrinsic(detector-independent) damping,
and a@1. The maximum S/N is determined byeV and the
sensitivity t8 /t0, and can be arbitrarily large. Due to the
dependence ong, the maximum S/N isinverselyproportional
to the detector sensitivityt8 /t0. Note the marked difference
from experiments attempting to detect coherent qubit oscil-
lations in the detector current noise,3 where back-action ef-
fects limit the S/N to a maximum of 4.

We turn now to the second term in Eq.(7), which is a
lower-order inV quantum correction to the classical result. It
would appear to causeuDSIu1 to vanish in the limit eV
→"V /2, kx2l→ sDx0d2, i.e., it suppresses a zero-point con-
tribution to uDSIu1. (Of course, we cannot rigorously take this
limit, as Eq.(2) is strictly only valid foreV@"V.) A similar
result was found for the average currentkIl in Ref. 11, where
a similar offset term could be traced to the inherent asymme-
try between events in which energy is absorbed from the
oscillator, versus those in which it is emitted to the oscillator.
In the present case, the quantum correction to the noise in
Eq. (7) can be given a classical interpretation- it arises from
correlations between the intrinsic shot noise of the detector,

and the back-action forceF̂ acting on the oscillator. If there
are such correlations, we would expect classically:

DSIsvd = l2Sxsvd + 2l Refgs− vdSIFsvdg, s9d

where SIFsvd is the symmetrized cross-correlator between
the junction current and back-action force, andgsvd is the
oscillator response function. Note that the second term above

is ~V, while the first is ~V2. Inversion symmetry forces
ReSIF to vanish;5,6 however, at finitev, Im SIF is nonzero.
Consequently, the second term above is nonzero; a direct
perturbative calculation(assuming a thermal state for the os-
cillator) shows that this term corresponds to the second term
in Eq. (7). Thus, quantum corrections to the noise, which
suppress zero-point contributions, can be associated with
classical out-of-phase correlations between the random
back-action force and the intrinsic detector output noise.

Finally, we return to Eq.(6) and examine the contribution
from kkx2·mll, a term which is higher-order int8. One finds:

fDSIsvdg2 =
e3V

h
st8d4SeV

h
−

V

2p

sDx0d2

kx2l D
3E dv8

2p
Sxsv8dSxsv − v8d. s10d

Again, the first term above agrees with the expectation for a
classically fluctuating junction conductance; it yields peaks
in SI at v=0 and v=2V. The second term is a quantum
correction, completely analogous to that found foruDSIu1.

ac bias. We now consider an ac bias voltageVacstd
=V cossntd, whereeV@"n ,"V. In the limit of smalln, it is
possible to derive a simple expression for the time-dependent

tunneling rates.20 Defining hG̃sEd=st0d2E·QsEd, we have
Gsst ,Ed=on=0

` s1−dn,0/2dsnGs
sndsEdcosnnt, with:

Gs
snd = o

±
E

0

p du

p
cossnudG̃SeVcosu + E ±

n"n

2
D . s11d

Using Eqs.(3) and(4),we find that the damping coefficientg
of the oscillator is time-independent and identical to that in
the dc case, whereas the diffusion constant is time-dependent
and contains higher harmonics of the ac frequencyn. Writing
Dstd=2MgkBTef fstd, we have to a good approximation:

kBTef fstd =
eV

p
F o

n=0

eV/"n S 2s− 1dn

1 − s2nd2Dcoss2nntd − 1G . s12d

The small but finite photon frequencyn prevents higher har-
monics from contributing toTef f; without it, we would have
simply kBTef fstd=Vucosntu /2, which tends to zero twice each
period. With the finite cut-off included, the minima of
kBTef fstd are ."n. The time-dependence ofTef fstd implies
that the position variancekx2stdl of the oscillator will be
time-dependent; as we show, this has a direct influence on
the noise and the average current. For the latter quantity, we
find:

kIstdl =
e2V

h
cossntdft0

2 + st8d2kx2stdlg − DIstd,

where the quantum correction is approximatelyDIstd
.eg ·sgnfcosntg. Turning to the noise, we may again de-
composeSIsvd into a frequency-independent part and a term
arising from correlations betweenxstd and mstd: SIsvd
;sV /2pde0

2p/Vdt̄SIst̄ ,vd=SI
a+DSIsvd. For the frequency-

independent contributionSI
a, we find:
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SI
a =

4e2

h
FeV

p
t0

2 + st8d2SkBTef fstdkx2stdl −
V

2p
sDx0d2DG ,

s13d

where the bar indicates a time-average. The first term is the
standard result for the shot noise of an ac-biased junction.21

The second term indicates that the time-dependence of
kx2stdl [calculated from Eq. (2)] makes a frequency-
independent contribution to the noise. Forn@V, kx2l re-
sponds only weakly to the time-dependence ofTef fstd,
whereas forn,V, the response becomes appreciable and
180 degrees out-of-phase withVstd. If in additiong0!g, one
finds a resultingsuppressionof the oscillator’s contribution
to SI

a; this is shown in Fig. 2. Small resonances also occur
whenV is a multiple ofn. The oscillator modification ofSI

a

is not captured by the classical picture of a fluctuating con-
ductance.

Finally, the frequency-dependent contributionDSIsvd to
the noise, which arises from correlations betweenxstd and
mstd, takes the simple form:

DSIsvd =
1

4
uo

±
DSIsn ± vdudcF1 + OS"V

eV
DG , s14d

where the omitted terms correspond to “quantum correc-
tions” of the sort previously discussed. Without these, Eq.

(14) is precisely the answer expected for a fluctuating clas-
sical conductance—one needs to simply shift the noise in the
dc case up to the frequencyn. In contrast, the quantum cor-
rections toDSI for ac bias are not simply given by shifting
the corresponding terms found for dc bias—one finds that the
quantum corrections are larger in the ac case by a factor of
4/p. The effect ofDSIsvd on the full noise is shown in Fig.
3.

In conclusion, we have presented a fully quantum me-
chanical calculation of the frequency-dependent current
noise of a tunnel junction displacement detector, for both the
cases of dc and ac voltage bias. The oscillator can lead to
large effects in the shot noise, even if the coupling to the
detector is weak; moreover, these effects cannot be com-
pletely described using a classical picture of a fluctuating
junction conductance.
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FIG. 2. Oscillator contribution toSI
a, the frequency-ińdependent

part of the shot noise(i.e., second term in Eq.(13)), versus the ac
voltage frequencyn, for V /g=50,g0=0, and eV@"n ,"V. The
maximum suppression of this term atn=V (over itsn→` limit ) is
by 8/9.

FIG. 3. Full shot noiseSIsvd for an ac bias voltage of frequency
n=100V, including the effects of correlations betweenxstd and
mstd (cf. Eq. (14)). We have choseneV=100"V, a2=1, sg0+gd
=V /20, and t0=0.1. The y axis is scaled by the value of the
v-independent part of the noise.
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