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We extended the density matrix renormalization group method to study the real time dynamics of interacting
one-dimensional spinless Fermi systems by applying the full time evolution operator to an initial state. As an
example we describe the propagation of a density excitation in an interacting clean system and the transport
through an interacting nano structure.
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I. INTRODUCTION

The density matrix renormalization group method
(DMRG)1,2 is a powerful technique to study the properties of
one-dimensional interacting quantum systems. The advan-
tage of the DMRG is that it can treat quantum lattice systems
in the presence of site-dependent interaction, hopping param-
eters, and on-site potentials3 with high accuracy, including
subtle lattice effects like multiple umklapp processes.4

Originally, the method was set up to describe the equilib-
rium properties of the ground state and a few excited states.
It was then extended to calculate frequency dependent spec-
tral functions by the use of thefH−E0−v+ihg−1 operator.5–7

A second approach to study transport properties within the
framework of DMRG is to relate equilibrium properties of
the ground state to transport properties. Molinaet al.8 and
Meden and Schollwöck9 calculated the conductance through
an interacting nano structure attached to leads by relating the
conductance of the system to the ground state curvature,
based on an idea by Sushkov.10

Cazalilla and Marston11 used the basis states of the last
DMRG step of the infinite lattice algorithm to integrate the
Schrödinger equation in real time. However, since the initial
state changes during the time evolution, this scheme works
only for short time scales, since the inclusion of excited
states, which are necessary for the long time evolution, into
the set of basis states is not guaranteed and can be improved
as shown by Luo, Xiang, and Wang.12

II. CALCULATION OF THE TIME EVOLUTION

Instead of integrating the time dependent Schrödinger
equation numerically, we apply the time evolution operator

Ust2,t1d = e−iHst2−t1d s1d

to calculate the time dependence of an initial stateujs0dl,

ujstdl = Ust,0dujs0dl, s2d

whereH is the Hamiltonian of the system of interest.
While the calculation ofe−iHt is not feasible for large

matrix dimensions, one can calculate the action of a matrix
exponential on a vectorx very similar to Lanczos sparse
matrix diagonalization.13 For this purpose one calculates the

full matrix exponential14 E,=euitHuK
,
, where uHuK

, is the pro-
jection of H onto the Krylov space Kx

,sHd
=spanhx,Hx,H2x. . .H,−1xj. Starting with ,=5 we itera-
tively increase, until the residualo j=,−2

, uEj ,1
, u is below a

desired threshold,13,15,16which we have set to 10−9. The final
result is then given bye−iHtx=ixio j=1

, Ej ,1
, bj, wherebj is a

basis ofKx
,sHd with b1=x/ ixi.

In order to calculateujstdl up to a final timeT, we dis-
cretize the time interval intoNT time stepsht0,t1,t2. . .tNj
with t0=0, tj , tj+1 and tN=T. It turns out that using a time
slice tj − tj−1 of the order of one is sufficient to ensure a fast
convergence, i.e.,,,30, of the iteration procedure which
determinesujstjdl,

ujstjdl = e−iHst j−t j−1dujstj−1dl. s3d

Although one does not need to calculate the ground state
of the unperturbed system, we calculate them lowest lying
eigenstatesuCml of H, EmuCml=HuCml, and use the sparse
matrix exponential only on the subspace orthogonal to these
eigenstates,

P̂ = o
m=0

m−1

uCmlkCmu, s4d

ujstdl = o
m=0

m−1

e−isEm−E0dtuCmlkCmujs0dl + e−isH−E0dts1 − P̂dujs0dl.

s5d

This projection improves the accuracy for very small pertur-
bations. For strong perturbations we omit this projection. In
addition we have introduced a phase choice ofeiE0t to make
the ground state time independent.

III. DMRG PROCEDURE

We use the well-established finite lattice DMRG
algorithm,2 where we target simultaneouslyuCml and all
ujstjdl, i.e., we perform the full time evolution in each
DMRG step. Specifically, we use the density matrixr to
select the states
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r = TrSo
m

uCmlkCmu + o
j=0

N

ujstjdlkjstjduD , s6d

kept for the next iteration step, where the trace is taken over
the states of the environment block,2 and all operators, in-
cluding the Hamiltonian used to calculate the time evolution,
are updated in each DMRG step. In this work we always use
m=3 low energy states and 11 finite lattice sweeps. Note that
in the DMRG method, operators are evaluated in the sub-
space of the complete Hilbert space, which is targeted by the
DMRG procedure.

IV. WAVE PACKET DYNAMICS

In order to prepare an initial state we apply a small per-
turbationdH to the HamiltonianH of the system of interest
and calculateujs0dl as the ground state ofH+dH.

As a first example we study the time evolution of a den-
sity pulse in a model of interacting spinless fermions:

H = − o
x=1

M

cx
†cx−1 + cx−1

† cx + Vo
x=1

M Snx −
1

2
DSnx−1 −

1

2
D , s7d

whereV denotes the nearest neighbor interaction parameter.
In this work we measure all energies with respect to strength
of the hopping parameter, which is set to one.

To create a wave packet we add a Gaussian potential

dH = − mo
x=1

M

expS−
sx − x1d2

2s2 Dnx, s8d

wherem is the strength,s the width, andx1 the position of
the perturbation. In Fig. 1 we have plotted the time evolution
of an initial wave packet atx1=6 in a 30 site system at half
filling and periodic boundary condition using 300 states per
DMRG block. Due to time reversal symmetry the initial state
consists of a left and a right moving wave packet. During the
time evolution the initial peak splits into two peaks which
are moving with the group velocities ±vg. For V=0 the
DMRG results coincide with the result from exact diagonal-
ization. As a first result this method gives direct access to the
group velocityvg of a density excitation without relying on
finite size analysis or arguments from conformal field
theory.17 In Table I we compare the extracted group veloci-
ties vg for the M =30 site system with the Fermi velocityvF
known from Bethe ansatz results for an infinitesimal excita-
tion in the infinite system size limit,vF=p sins2hd / sp
−2hd with the usual parametrizationV=−2 coss2hd.17 As ex-
pected fromvF the wave packets travel faster the stronger
repulsive interaction are, while they are slowed down by
attractive interaction. Form=0.002 there is a good agree-
ment fromvg with vF, while the results form=0.02 already
include dispersion effects. In addition, the broadening of the
wave packets reveals information on the dispersion relation.
A detailed study is beyond the scope of this work and subject
for future studies.

It is not obvious that one can target for a few low lying
statesuCml of H, the ground statejs0d of H+dH and N
,50 time steps ofjstjd simultaneously in each DMRG step.
However, since the DMRG truncation is the only approxima-

FIG. 1. (Color online) Time evolution of a wave packet for a
system ofM =30 sites, periodic boundary conditions, andV=0.0
(plus), V=1.0 (crosses) andV=2.0 (stars). The snapshots are taken
at tj =0, 2, 5, and 8.nCut=300 states per block were kept within the
DMRG procedure.

TABLE I. Comparison ofvg extracted from DMRG simulations
for a M =30 site system and a potential strengthm=0.02, m
=0.002 and Bethe ansatz results forvF in the infinite system and an
infinitesimal small excitation.

V −1.5 0.0 0.5 1.0 1.5

vg, m=0.02 1.0 1.9 2.2 2.47 2.71

vg, m=0.002 0.92 2.00 2.30 2.59 2.87

vFsBAd 0.88 2.00 2.31 2.60 2.88
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tion in our method, we can systematically increase the num-
ber of statesnCut kept per block to control errors due to the
Hilbert space truncation. In Fig. 2 we plot an initial wave
packetjs0d and a snapshot ofjstd at tj =8 for a 50 site sys-
tem, a potential strength ofm=0.02, an interaction ofV
=1.0, periodic boundary conditions and a simulation time of
T=20. While for the initial state 200 states per block are
sufficient to describe the wave packet, far more states are
needed to obtain the dynamics of the wave packet correctly.

Remarkably, the overlapkC0ujs0dl between the ground
state ofH and the ground state of the system ofH+dH
shown in Fig. 2 is 99.99%. Therefore, it is the 0.01% contri-
bution which gives the initial excitation and governs the time
evolution. This high overlap was the motivation to introduce
the projection defined in Eq.(4).

V. TRANSPORT THROUGH A QUANTUM DOT

In order to study transport through an interacting nano
structure, we prepare a system consisting of an interacting
region coupled to noninteracting leads, see Fig. 3,

H = − o
x=1

M

scx
†cx−1 + cx−1

† cxd + V o
x=n1+1

n2−1 Snx −
1

2
DSnx−1 −

1

2
D

+ gV o
x=n1,n2

Snx −
1

2
DSnx−1 −

1

2
D , s9d

where the hopping parameter is set to one,U is the interac-

FIG. 2. (Color online) (a) Initial wave packet for a 50 site sys-
tem with periodic boundary conditions andV=1, for different num-
bers of states kept per block:nCut=100 (plus), 200 (crosses), 500
(stars) and 750(open squares), extracted from a simulation with
T=20 and time stepstj − tj−1=1. (b) Same system at time steptj

=8.

FIG. 4. (Color online) Transport through an interacting region of
MS=7 sites andML=43 lead sites, hard wall boundary conditions
andnCut=1000. The snapshots are taken atT=0,3,7,12. The density
is averaged over two neighboring sites to smoothen 2kF oscillations
and is plotted vs the site locationx for V=0 (plus), V=1 (crosses),
V=2 stars, andV=5 (squares). For V=0 the line is calculated by an
exact diagonalization.

FIG. 3. (Color online) Nano structure attached to leads.
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tion on the nano structure andg defines a smoothening of the
onset of interaction at the nano structure. In this work we
have setg=0.5, compare Molinaet al.8 In the following we
denoteMS=n2−n1 the number of sites in the nano structure,
M the number of site of the total system andML=M −MS the
number of lead sites.

In Fig. 4 we show the time evolution of a wave packet
initially placed in the left lead of a system withMS=7, M
=50, interactionV=0.0, 1.0, 2.0 and 5.0 and hard wall
boundary conditions, which lead to perfect reflection at the
chain ends. To rule out truncation errors we usenCut=1000
states per block, compare the discussion of Fig. 2. We have
averaged the density over neighboring sites to smoothen out
the Friedel oscillations(for all V) and the charge density
wave on the dot forV=5.0. At the beginning of the time
evolution, the wave packet is not overlapping with the inter-
acting nano structure, hence the packets travel synchronously
for all interaction strength. Once they reach the nano struc-
ture, the wave packets move with the group velocity of the
interacting system. After the wave packets have left the in-
teracting region they continue to move at the velocity of the
noninteracting system. The wave packets which traveled
through the interacting region are now traveling in front of
those with smaller interaction.

For Uø2.0 the nano structure is transparent, although
there seems to be a reflection of a negative pulse as predicted
by Safi and Schulz.18 For very strong interaction,U.2.0,
there is an instability to a charge density ordering,4,17 and the
nano structure has a finite reflection. We would like to re-
mark that these simulations clearly demonstrate that the Lut-
tinger description of the infinite system already makes sense
for a system consisting of a few lattice sites only. One should

keep in mind that for such small systems the effective pa-
rameters, likevF, have not reached the infinite system limit.
However, the scaling already leaves its fingerprint.

VI. SUMMARY

In summary we have shown an accurate method to calcu-
late real time dynamics within the framework of DMRG. By
applying the matrix exponential on an initial state we per-
form the complete time integration of the time dependent
Schrödinger equation in each single DMRG step. In this
setup the only approximation is given by the truncation pro-
cedure of the DMRG, which be can systematically checked
by increasing the number of states kept. Therefore this
method can be applied to strongly correlated systems even in
the presence of strong perturbations. Using this method we
have demonstrated that many particle correlations are al-
ready significant for transport properties for systems as small
as seven sites.

Note added in proof. While preparing this work we be-
came aware of related work19,20on using real time dynamics
within the DMRG. Both apply a Suzuki-Trotter decomposi-
tion of the time evolution operator. In addition, their work
relies on the state prediction21 to calculate the time evolution
of a state, which represents an additional approximation.
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