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We extended the density matrix renormalization group method to study the real time dynamics of interacting
one-dimensional spinless Fermi systems by applying the full time evolution operator to an initial state. As an
example we describe the propagation of a density excitation in an interacting clean system and the transport
through an interacting nano structure.
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€
I INTRODUCTION full matrix exponential* E‘=e "Ik, where | is the pro-

The density matrix renormalization group methodi€ction of 7t onto the Krylov —space Ki(H)
(DMRG)'?is a powerful technique to study the properties of:.Spa'{?(’HX’HZX- : ﬁe_lx}- Starting €W'th {3@: 5 we itera-
one-dimensional interacting quantum systems. The advarively increase¢ until the residualX;_, )| | is below a
tage of the DMRG is that it can treat quantum lattice systemé&esired thresholé:*>owhich we have set to 18, The final
in the presence of site-dependent interaction, hopping paranfesult is then given bye™"x=IXIZ;_,E; ;b;, whereb; is a
eters, and on-site potentidlwith high accuracy, including Pasis ofK(H) with by=x/Ix|.
subtle lattice effects like multiple umklapp proces$es. In order to calculatgé(t)) up to a final timeT, we dis-

Originally, the method was set up to describe the equilibCretize the time interval intd\; time steps{to,ty,t,. . .t}
rium properties of the ground state and a few excited stategvith t,=0, t;<tj,; andty=T. It turns out that using a time
It was then extended to calculate frequency dependent speslice t;—t;_; of the order of one is sufficient to ensure a fast
tral functions by the use of tHéd - E,— w+ 7] operatoP~’  convergence, i.e{ ~ 30, of the iteration procedure which

A second approach to study transport properties within théleterminegé(t;)),
framework of DMRG is to relate equilibrium properties of
the ground state to transport properties. Moletaal® and |&(t))) = e MG -D] g(t_y)). 3
Meden and Schollwdékcalculated the conductance through
an interacting nano structure attached to leads by relating thgf
conductance of the system to the ground state curvatur
based on an idea by Sushktv.

Cazalilla and Marstott used the basis states of the last
DMRG step of the infinite lattice algorithm to integrate the

Although one does not need to calculate the ground state
the unperturbed system, we calculate thdowest lying
BigenstatesW,,) of H, E,|¥,)=H|¥,), and use the sparse
matrix exponential only on the subspace orthogonal to these
eigenstates,

Schrédinger equation in real time. However, since the initial m-1
state changes during the time evolution, this scheme works p= WP 4
only for short time scales, since the inclusion of excited m2=0| W {(¥nl, @

states, which are necessary for the long time evolution, into
the set of basis states is not guaranteed and can be improved

as shown by Luo, Xiang, and Warg. e

() = X e ErE W, ) (W, £(0)) + e TFI(L - P)|£(0)).
m=0

Il. CALCULATION OF THE TIME EVOLUTION (5)

Instead of integrating the time dependent Schrddinge

. , ) . This projection improves the accuracy for very small pertur-
equation numerically, we apply the time evolution operator

bations. For strong perturbations we omit this projection. In
Ulty,ty) = ™Mt (1)  addition we have introduced a phase choicebf to make

the ground state time independent.
to calculate the time dependence of an initial st&te)),

|E(t)) =U(t,0)|£0)), (2) Ill. DMRG PROCEDURE

where’H is the Hamiltonian of the system of interest. We use the well-established finite lattice DMRG

While the calculation ofe™! is not feasible for large algorithm? where we target simultaneous|,) and all
matrix dimensions, one can calculate the action of a matri*f(t,-)), i.e., we perform the full time evolution in each
exponential on a vectox very similar to Lanczos sparse DMRG step. Specifically, we use the density matpixto
matrix diagonalizatiod® For this purpose one calculates the select the states
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Initial state, T=0, M=30, nc,=300, PBC TABLE I. Comparison ofvq extracted from DMRG simulations
0.503 D . for a M=30 site system and a potential strengit0.02, u

V=1.0 —x— =0.002 and Bethe ansatz results #qrin the infinite system and an

0.502 V=20 —%— infinitesimal small excitation.

0.501 \Y; -15 0.0 0.5 1.0 1.5

vg, #=0.02 1.0 1.9 2.2 2.47 271
vg, #=0.002 0.92 2.00 2.30 2.59 2.87
ve(BA) 0.88 2.00 231 2.60 2.88

0.502 . . IV. WAVE PACKET DYNAMICS

//”\‘\ e In order to prepare an initial state we apply a small per-
0.501 turbation §H to the Hamiltoniarf{ of the system of interest
\\ and calculate&(0)) as the ground state 6 + 5H.
As a first example we study the time evolution of a den-
sity pulse in a model of interacting spinless fermions:

M M 1 1
H=- E CICx—l + CT—1Cx+ VE (nx - _> (nx—l - _) , (7)
x=1 x=1 2 2

Ny

0.502 : : whereV denotes the nearest neighbor interaction parameter.

V:?-S SR L In this work we measure all energies with respect to strength
V=2
0.501 o
:x e
f*?éx i
0.5 _
// o SH=-pu>, exp - )nx, (8)
x=1

=20 —*— of the hopping parameter, which is set to one.
To create a wave packet we add a Gaussian potential
= 20°
0 5 10 15
» where u is the strengthg the width, andx; the position of
the perturbation. In Fig. 1 we have plotted the time evolution
Time step T=8, M=30, ng,,=300, PBC of an initial wave packet at;=6 in a 30 site system at half
Voo —— filling and periodic boundary condition using 300 states per
V=1.0 —x— DMRG block. Due to time reversal symmetry the initial state
V=20 —»%— . . . .
7 consists of a left and a right moving wave packet. During the
b, time evolution the initial peak splits into two peaks which
Xk are moving with the group velocitiesvg. For V=0 the
\H DMRG results coincide with the result from exact diagonal-
- ization. As a first result this method gives direct access to the
25 30 group velocityvy of a density excitation without relying on
x finite size analysis or arguments from conformal field
FIG. 1. (Color onling Time evolution of a wave packet for a theory!’ In Table | we compare the extracted group veloci-
system ofM=30 sites, periodic boundary conditions, a¥¢0.0  tjes vg for the M=30 site system with the Fermi velocity-
(plus), V=1.0(crossepandV=2.0 (star9. The snapshots are taken known from Bethe ansatz results for an infinitesimal excita-
att;=0, 2, 5, and 8ng,,= 300 states per block were kept within the tjon in the infinite system size limitpg=1sin(27)/(m
DMRG procedure. —27) with the usual parametrization=-2 co$27).1” As ex-
pected fromvg the wave packets travel faster the stronger
N repulsive interaction are, while they are slowed down by
P:TF<E |V (P ] +2 |§(tj)><§(tj)|>y (6)  attractive interaction. Fop=0.002 there is a good agree-
m 1=0 ment fromuvg with vg, while the results fou=0.02 already
kept for the next iteration step, where the trace is taken oveinclude dispersion effects. In addition, the broadening of the
the states of the environment blotlkand all operators, in- Wave packets reveals information on the dispersion relation.
cluding the Hamiltonian used to calculate the time evolution A detailed study is beyond the scope of this work and subject
are updated in each DMRG step. In this work we always uséor future studies.
m=3 low energy states and 11 finite lattice sweeps. Note that It is not obvious that one can target for a few low lying
in the DMRG method, operators are evaluated in the substates|¥,) of H, the ground stat&(0) of H+&H and N

space of the complete Hilbert space, which is targeted by the 50 time steps of(t;) simultaneously in each DMRG step.
DMRG procedure. However, since the DMRG truncation is the only approxima-
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Initial state, t=0, M=50, V=1.0, PBC
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FIG. 2. (Color onling (a) Initial wave packet for a 50 site sys-
tem with periodic boundary conditions ak@-1, for different num-
bers of states kept per blockg,;=100 (plus), 200 (crosses 500
(starg and 750(open squares extracted from a simulation with
T=20 and time step§—t;_;=1. (b) Same system at time step
3
=
+
C><

tion in our method, we can systematically increase the num-ts,
ber of states\c,; kept per block to control errors due to the
Hilbert space truncation. In Fig. 2 we plot an initial wave
packet£(0) and a snapshot afit) att;=8 for a 50 site sys-
tem, a potential strength ofi=0.02, an interaction oW
=1.0, periodic boundary conditions and a simulation time of
T=20. While for the initial state 200 states per block are
sufficient to describe the wave packet, far more states are
needed to obtain the dynamics of the wave packet correctly~

Remarkably, the overlap¥,|£(0)) between the ground

state of H and the ground state of the system %f+ §H
shown in Fig. 2 is 99.99%. Therefore, it is the 0.01% contri- i

5*(n, + Ny,

0

bution which gives the initial excitation and governs the time
evolution. This high overlap was the motivation to introduce

the projection defined in Eq4).

V. TRANSPORT THROUGH A QUANTUM DOT

region coupled to noninteracting leads, see Fig. 3,

Left Lead Nano System
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FIG. 3. (Color onling Nano structure attached to leads.

Right Lead
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FIG. 4. (Color onling Transport through an interacting region of
Mg=7 sites andVi_ =43 lead sites, hard wall boundary conditions

andng,=1000. The snapshots are takeat0,3,7,12. The density

] ] is averaged over two neighboring sites to smoothigndacillations
In order to study transport through an interacting nanoang s plotted vs the site locationfor V=0 (plus), V=1 (crossey

structure, we prepare a system consisting of an interacting=2 stars, an&/=5 (squares ForV=0 the line is calculated by an

exact diagonalization.

M n2—l 1 1
H:_E (ClCX_l"'Ci_le)'FV E (nx_§>(nx—l_§>
x=1 x=n+1
1 1
+ W n——-Jln_1—=1, 9
M Y x:nELn2< X 2)( x-1 2) 9
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where the hopping parameter is set to odds the interac-
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tion on the nano structure anddefines a smoothening of the keep in mind that for such small systems the effective pa-
onset of interaction at the nano structure. In this work werameters, likewg, have not reached the infinite system limit.
have sety=0.5, compare Molinat al® In the following we  However, the scaling already leaves its fingerprint.
denoteMg=n,—n; the humber of sites in the nano structure,

M the number of site of the total system alig=M —Mg the VI. SUMMARY

number of lead sites. , _ In summary we have shown an accurate method to calcu-
_ 'tl'nIIFlg.I 4 vge_ SQEW lthﬁelt'mde iVOIU“ot” of a_ﬂ\éﬁvavi packet |ate real time dynamics within the framework of DMRG. By
initiafly placed in the 1eft lead ol a system wids=7, applying the matrix exponential on an initial state we per-
=50, interactionV=0.0, 1.0, 2.0 and 5.0 and hard wall ¢\ the complete time integration of the time dependent
boundary conditions, which lead to perfect reflection at theSchrddinger equation in each single DMRG step. In this
chain ends. To rule out truncation errors we ugg=1000 V%etup the only approximation is given by the truncation pro-

states per block, compare the discussion of Fig. 2. We ha X .
averaged the density over neighboring sites to smoothen o FdWe of the DMRG, which be can systematically checke.d
y increasing the number of states kept. Therefore this

the Friedel oscillationgfor all V) and the charge density . ;
wave on the dot folV=5.0. At the beginning of the time method can be applied to strongly correlated systems even in

evolution, the wave packet is not overlapping with the inter-th® presence of strong perturbations. Using this method we
acting nano structure, hence the packets travel synchronousfiive demonstrated that many particle correlations are al-
for all interaction strength. Once they reach the nano structéady significant for transport properties for systems as small
ture, the wave packets move with the group velocity of thedS seven sites.
interacting system. After the wave packets have left the in- Note added in proofWhile preparing this work we be-
teracting region they continue to move at the velocity of thecame aware of related wof®on using real time dynamics
noninteracting system. The wave packets which traveleavithin the DMRG. Both apply a Suzuki-Trotter decomposi-
through the interacting region are now traveling in front oftion of the time evolution operator. In addition, their work
those with smaller interaction. relies on the state predictiéito calculate the time evolution
For U=<2.0 the nano structure is transparent, althoughof a state, which represents an additional approximation.
there seems to be a reflection of a negative pulse as predicted
by Safi and SchulZ® For very strong interactionl) > 2.0, ACKNOWLEDGMENTS
there is an instability to a charge density ordertdgand the | acknowledge the support of the Center for Functional
nano structure has a finite reflection. We would like to re-Nano Structures within project B2.10. | would like to thank
mark that these simulations clearly demonstrate that the LuiKarl Meerbergen for his hints on the matrix exponential and
tinger description of the infinite system already makes sensmsightful discussions with Ralph Werner, Peter Wolfle, Gert
for a system consisting of a few lattice sites only. One should.. Ingold, and Rudolf Lohner.
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