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We investigate the spin entanglement in the superconductor-quantum dot system proposed by Recher,
Sukhorukov, and Loss, coupling it to an electronic beamsplitter. The superconductor-quantum dot entangler
and the beamsplitter are treated within a unified framework and the entanglement is detected via current
correlations. The state emitted by the entangler is found to be a linear superposition of nonlocal spin singlets
at different energies, a spin-entangled two-particle wave packet. Colliding the two electrons in the beamsplitter,
the singlet spin state gives rise to a bunching behavior, detectable via the current correlators. The amount of
bunching depends on the relative positions of the single particle levels in the quantum dots and the scattering
amplitudes of the beamsplitter. It is found that the bunching-dependent part of the current correlations is of the
same magnitude as the part insensitive to bunching, making an experimental detection of the entanglement
feasible. The spin entanglement is insensitive to orbital dephasing but suppressed by spin dephasing. A lower
bound for the concurrence, conveniently expressed in terms of the Fano factors, is derived. A detailed com-
parison between the current correlations of the nonlocal spin-singlet state and other states, possibly emitted by
the entangler, is performed. This provides conditions for an unambiguous identification of the nonlocal singlet
spin entanglement.
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I. INTRODUCTION

Ever since the concept of entanglement was introduced,1

it has been at the heart of conceptual discussions in quantum
mechanics.2–4 The discussions have mainly concerned the
nonlocal properties of entanglement. Two entangled, spa-
tially separated particles, an Einstein-Podolsky-Rosen2

(EPR) pair, are correlated in a way that cannot be described
by a local, realistic theory; i.e., the correlations give rise to a
violation of a Bell Inequality.5 In optics, the nonlocal prop-
erties of entangled pairs of photons have been intensively
investigated over the last decades.6–8 Recently, the interest
has turned to possible applications making use of the prop-
erties of entangled particles. Entanglement plays an impor-
tant role in many quantum computation and information
schemes,9 with quantum cryptography10 and quantum
teleportation11,12 as prominent examples.

Compared to optics, the investigation of entanglement in
solid state systems is only in its infancy. However, the con-
trolled creation, manipulation, and detection of entanglement
is a prerequisite for a large-scale implementation of quantum
computation and information schemes, making it of large
interest to pursue the investigation of entanglement in solid
state systems. Considerable experimental13 and theoretical14

progress has already been made in the understanding of en-
tangled qubits implemented with Josephson junctions.

For the entanglement of individual electrons, several im-
portant steps towards an experimental realization in mesos-
copic conductors have been taken recently. A scheme for
entanglement of orbital degrees of freedom was proposed in
Ref. 15, allowing for control of the entanglement with ex-
perimentally accessible electronic beamsplitters.16,17 More-
over, several proposals15,18,19for detecting entanglement via
a violation of a Bell Inequality, expressed in terms of zero-
frequency noise correlators,20 have been put forth. Very re-
cently, following a proposal by Beenakkeret al.,21 several
works have discussed the possibility of electron-hole and

post-selected electron-electron entanglement.22,23 In particu-
lar, entanglement in the electrical analog of the optical Han-
bury Brown–Twiss effect24 was investigated in a mesoscopic
conductor in the quantum Hall regime, transporting electrons
along single edge-states and using quantum point contacts as
beamsplitters.23 Moreover, a scheme for energy-time
entanglement25 has been proposed.26 The consequences of
dephasing for orbital entanglement have been
investigated15,27,28as well.

Earlier proposals for electronic entanglement have been
based on creating and manipulating spin entanglement, in
normal29–32 as well as in normal-superconducting33–35 sys-
tems. Spins in semiconductors have been shown36 to have
dephasing times approaching microseconds, making spins
promising candidates for carriers of quantum information.
However, a direct detection of spin entanglement in mesos-
copic conductors is difficult. The natural quantity to measure
is the electrical charge current. To investigate spin current,
one thus in principle has to convert the spin current to charge
current via, e.g.. spin filters. Although efficient spin filters37

have very recently been realized experimentally,38 there are
considerable remaining experimental complications in ma-
nipulating and detecting individual spins on a mesoscopic
scale. In particular, to detect the entanglement by a violation
of a Bell Inequality, one needs19 two spin filters with inde-
pendent and locally controllable directions to mimic the po-
larizers in optical schemes.6–8

An alternative idea to detect spin entanglement was pro-
posed by Burkard, Loss, and Sukhorukov,30 and also dis-
cussed qualitatively by Maître, Oliver, and Yamamoto.18

They proposed to use the relation between the spin and or-
bital part of the wave function, imposed by the anti-
symmetry of the total wave function under exchange of two
particles. A state with an anti-symmetric, singlet-spin wave
function has a symmetric orbital wave function and vice
versa for the spin triplet. When colliding the electrons in a
beamsplitter, spin singlets and triplets show bunching and
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anti-bunching behavior, respectively. These different bunch-
ing behaviors were found to be detectable via the electrical
current correlations; i.e., the properties of the orbital wave
function were used to deduce information about the spin
state. This approach was later extended to all moments of the
current.39 Moreover, it was recently further elaborated in
Ref. 40, taking spin dephasing and nonideal beamsplitters
into account.

In comparison to detecting spin entanglement via a viola-
tion of a Bell Inequality, the approach of Ref. 30, however,
has a fundamental limitation. The anti-symmetric spin singlet
is an entangled state, while symmetric, spin-triplet states are
not neccesarily entangled. Considering, e.g., the standard
singlet-triplet basis, only one of the three tripletsu↑ ↓ l
+ u↓ ↑ l, u↑ ↑ l, andu↓ ↓ l is spin entangled. However, all spin-
triplet states, having the same symmetrical orbital wave
function, give rise to the same anti-bunching behavior in the
current correlators.30 As a consequence, in contrast to a Bell
Inequality test, the approach of Ref. 30 cannot be employed
to distinguish between entangled and nonentangled triplet
states. To be able to distinguish between different triplet
states, one would need to consider more involved schemes,
implementing in addition, e.g., single spin rotations.31

Despite this fundamental limitation, the approach of Ref.
30 is, due to its comparable simplicity, still of interest for
entanglers emitting nonlocal spin singlets. However, the in-
vestigations in Ref. 30 were carried out assuming a discrete
spectrum of the electrons and a monoenergetic entangled
state incident on the beamsplitter. While giving a qualita-
tively correct picture of the physics, it does not quantitatively
describe the situation in a conductor connected to electronic
reservoirs, where the spectrum is continuous and the en-
tangled electrons generally have a wave-packet nature; i.e.,
the wave function is a linear superposition of entangled elec-
trons at different energies.15 Moreover, the wave function in
Ref. 30 was not derived considering a specific entangler; it
was instead taken to be an incoming plane wave with unity
amplitude. This makes the calculated current correlations in-
applicable to most of the entanglers considered
theoretically,29,33,34 which operate in the tunneling regime
and emit entangled states with a low amplitude.

In this paper, we revisit the approach of detection of spin-
singlet entanglement presented in Ref. 30. The abovemen-
tioned shortcomings are bypassed by treating the entangler
and the beamsplitter within a unified theoretical framework.
As a source of nonlocal spin singlets, the superconductor-
quantum dot entangler(see Fig. 1) investigated in detail by
Recher, Sukhorukov, and Loss in Ref. 33, is considered. Us-
ing a formal scattering approach, the wave function of the
electrons emitted from the entangler is calculated. It is found
to be a linear superposition of pairs of spin-entangled elec-
trons at different energies, a two-electron wave packet, simi-
lar to what was found for the superconducting orbital entan-
gler in Ref. 15. The amplitude at each energy depends on the
position of the single-particle levels in the dots. Both the
process in which the electrons tunnel through different dots,
creating the desired nonlocal EPR pair, as well as the un-
wanted process in which both electrons tunnel through the
same dot, are investigated. In both cases the spin wave func-
tion is a singlet, preserving the spin state of the Cooper pair

tunneling out of the superconductor; however, the orbital
states are different.

The electrons emitted by the entangler are then collided in
a beamsplitter and detected in two electronic reservoirs. Due
to the singlet spin state, electrons tunneling through different
dots show a bunching behavior when colliding in the beam-
splitter. Both the auto- and cross-correlations between cur-
rents flowing into the normal reservoirs(but not the average
current) depend on the degree of bunching. We find that the
bunching is proportional to the wave function overlap of the
two colliding electrons. This overlap depends strongly on the
position of the single-particle levels in the dot, being maxi-
mal for both levels aligned with the chemical potential of the
superconductors. The part of the current correlators sensitive
to bunching is of the same magnitude as the part insensitive
to bunching, making an experimental detection of the spin-
singlet entanglement feasible.

The current correlators are independent of scattering
phases and are thus insensitive to orbital dephasing. How-
ever, spin dephasing generally leads to a mixed spin state
with a finite fraction of triplets. Since the spin triplets have a
tendency to anti-bunch, the spin dephasing results in a reduc-
tion of the overall bunching behavior and eventually, for
strong spin dephasing, to a crossover to an anti-bunching
behavior. A simple expression for the concurrence, quantify-
ing the entanglement in the presence of spin dephasing, is
derived in terms of the Fano factors.

For electrons tunneling through the same dot, the wave
function is a linear superposition of states for the pair tun-
neling through dots 1 and 2. Both the cross- and auto-
correlators contain a two-particle interference term, sensitive
to the position of the single-particle levels in the dots; how-
ever, in a different way than the bunching-dependent term for
tunneling through different dots. In particular, the correlators
depend on the scattering phases, providing a way to distin-
guish between the two tunneling processes by modulating,
e.g., the Aharonov-Bohm phase.33 Moreover, the phase de-
pendence makes the correlators sensitive to orbital dephas-
ing, while the spin part of the wave function is insensitive to
dephasing.

FIG. 1. Schematic picture of the system. A superconductor(S) is
connected, via tunnel barriers to two quantum dots(1 and 2) in the
Coulomb blockade regime. The dots are further coupled, via a sec-
ond pair of tunnel barriers, to normal leads that cross in a forward
scattering single-mode beamsplitter. The beamsplitter is character-
ized by scattering amplitudesr , t , r8, and t8. On the other side of
the beamsplitter, the normal leads are connected to normal electron
reservoirsA andB.
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II. THE SUPERCONDUCTOR-QUANTUM DOT
ENTANGLER

A schematic picture of the system is shown in Fig. 1. A
superconducting(S) electrode is connected to quantum dots
(1 and 2) via tunnel barriers. The dots are further contacted
via normal leads to a controllable single-mode electronic
beamsplitter16 characterized by the forward scattering ampli-
tudesr , t , r8, and t8. The arms going out from the beam-
splitter are connected to normal electron reservoirsA andB.

We first concentrate on a description of the entangler, the
superconductor–quantum dot part of the structure in Fig. 1,
investigated in great detail in Ref. 33. The entangler was also
recently examined within a density matrix approach.41 The
role of the beamsplitter is discussed further below, after a
discussion of the quantum state emitted by the entangler. To
simplify our presentation, we carry over the notation from
Ref. 33 when nothing else is stated.

An energy diagram of the superconductor–quantum dot
normal lead part of the structure is shown in Fig. 2. A nega-
tive bias −eV is applied to the normal reservoirs while the
superconductor is grounded. The chemical potential of the
superconductor is taken as a reference energy,mS=0, giving
the chemical potential of both normal reservoirsmNA=mNB
;mN=−eV. Each dot 1 and 2 contains a single, spin-
degenerate level in the energy range −eV to eV, with ener-
gies«1 and«2, respectively. The level spacing in the dots is
assumed to be much larger than the applied bias, so that no
other levels of the dots participate in the transport. The tem-
perature is much lower than the applied bias(but much larger
than the Kondo temperature).

The tunnel barriers between the dots and the supercon-
ductor are much stronger than the tunnel barriers between the
dots and the normal leads. As a consequence, the broadening
g of the levels in the dots(taken the same for both dots)
results entirely from the coupling to the normal leads. The
voltage is applied such that the entire broadened resonances
are well within the bias window; i.e.,eV− u« ju@g with j
=1,2. Thequantum dots are in the Coulomb blockade re-

gime; i.e., it costs a charging energyU to put two electrons
on the same dot. The ground state contains an even number
of electrons in the lower lying levels.

The transport takes place as Cooper pairs tunnel from the
superconductor, through the dots, and out into the normal
leads. Due to the dominating tunnel barrier at the dot-
superconductor interface, one pair that tunneled onto the dots
leaves the dots well before the next pair tunnels. There are
two distinct possibilities for the Cooper pair to tunnel from
the superconductor to the normal leads, shown in Fig. 3:

• I, the pair splits and one electron tunnels through each
dot, 1 and 2;

• II, both electrons tunnel through the same dot, 1 or 2.
It was shown in Ref. 33 that under the conditions stated
above, all other tunneling processes could be neglected. Pro-
cess I creates the wanted EPR pair, a spin-singlet state with
the two electrons spatially separated. However, in an experi-
ment, one cannota priori exclude the second, unwanted pro-
cess II. One thus has to investigate process II as well, to
provide criteria for an unambiguous experimental identifica-
tion of emission of EPR pairs.

Process I, with the two electrons tunneling through differ-
ent dots, is suppressed below the single-particle tunneling
probability squared, since the two electrons have to leave the
superconductor from two spatially separated points; i.e., ef-
fectively breaking up the Cooper pair. The tunneling ampli-
tude for a ballistic, three-dimensional superconductor33,42 is
A0~exps−d/jd / skFSdd, whered is the distance between the
superconductor-dot connection points,kFS the Fermi wave
number in the superconductor, andj the superconducting
coherence length. This amplitude is in general larger for
lower dimensional35 and disordered43,44 superconductors. An
investigation of the dependence ofA0 on the geometry of the
contacts to the superconductor was performed in Refs. 44
and 45. We point out that ways to avoid the suppression due
to pair breaking by means of additional dots have been dis-
cussed in a similar context in Ref. 46. However, since more
dots complicate the calculation as well as the experimental
realization, we consider the simpler geometry in Fig. 1.

Process II, with both electrons tunneling through the same
dot, is suppressed by the Coulomb blockade in the dots, as
1/U. In addition, there is a process that avoids double occu-
pancy of the dots, but instead requires a pair breaking, lead-
ing to suppression of the order 1/D. Together, this gives an
amplitudeB0~ s1/U+1/Dpd. The exact expression for the

FIG. 2. Energy diagram of the entangler-beamsplitter system in
Fig. 1. A biaseV is applied between the superconducting reservoir,
with chemical potentialmS=0, and the normal reservoirsA andB,
with the same chemical potentialmN=−eV. There is only one spin-
degenerate level of each dot, with energies«1 and«2, respectively,
in the energy range −eV to eV. The level widthg is determined by
the coupling to the normal reservoirs. The biaseV is taken to be
much smaller than the superconducting gap,eV!D, but so large
that the broadened levels are well within the bias window,eV
− u« ju@g, j =1,2.

FIG. 3. Tunneling processes transporting two electrons from the
superconductor to the normal leads. Process I, in which the two
electrons tunnel through different dots, one through dot 1 and one
through dot 2, creates the wanted EPR pair. Process II, in which the
two electrons tunnel through the same dot, either both through dot 1
or both through dot 2, is unwanted.
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constantsA0 and B0 in terms of tunnel amplitudes between
the dots and the superconductor and the dots and the leads
can be found in Ref. 33; for our purposes, these expressions
are not necessary.

We point out that possible candidates for experimental
realization of the proposed system are the extensively
investigated47 heterostructures with semiconductors con-
tacted to metallic superconducting electrodes. Electron trans-
port through double dots in semiconductor systems have
been recently been reviewed,48 with an emphasis on experi-
mental advances.

III. THE WAVE FUNCTION OF THE SPIN-ENTANGLED
ELECTRONS

To calculate the wave function of the electrons emitted
from the superconductor–quantum dot entangler, we employ
the formal scattering theory49 with the Lippman-Schwinger
equation expressed in terms of the transfer matrix(T-matrix).
The total Hamiltonian of the system can be written asH
=H0+HT, where H0 is the Hamiltonian of the supercon-
ductor, the quantum dots, and the normal leads. The pertur-
bation HT describes tunneling between the superconductor,
dots, and leads. The exact many-particle stateuCl satisfies
the Schrödinger equationsE−HduCl=0. In the absence of a
perturbation,HT=0, the system is in the ground stateu0l
= u0lSu0lDu0lN, with different chemical potentials,mS=0, and
mN=−eV. The perturbationHT causes the electrons to tunnel
from the superconductor, via the quantum dots, to the normal
leads.

We use the local nature of the tunneling perturbation and
take the formal scattering approach to the problem. Accord-
ing to this approach, the stateuCl can be obtained by solving
the Lippman-Schwinger equation in Fock space, as

uCl = u0l + Ĝs0dHTuCl, s1d

where the retarded operatorĜsEd=fE−H0+ i0g−1 gives a
state describing particles going out from the scattering re-
gion. Note that the total energy of the ground stateu0l is E
=0. The formal solution of Eq.(1) can be written as

uCl = u0l + Ĝs0dTs0du0l, s2d

where

TsEd = HT + HTo
n=1

`

fĜsEdHTgn s3d

is the T-matrix. One then inserts a complete set of many-
body states 1=oNuNlkNu with uNl the eigenbasis of the
HamiltonianH0; i.e., the basis of Fock states of electrons and
quasiparticles in the leads, dots, and superconductor, respec-
tively. The quantum numberN collectively denotes the ener-
gies, spins, lead and dot indices, etc., of the individual par-
ticles. The eigenenergy of the stateuNl (i.e., the total energy
of the individual particles) is EN. This gives an expression
for the state

uCl = u0l − o
N

1

EN − i0
uNlkNuTs0du0l. s4d

In the system under consideration, all relevant matrix
elements33 kNuTs0du0l are analytic in the upper part of the
complex energy plane. As a consequence, in the integration
over energies of the individual particles inuNl, the pole aris-
ing from the denominatorEN− i0 can be replaced by a
dsENd-function, imposing a total energyEN=0, equal to the
chemical potential energy of the superconductor. This gives
the wave function

uCl = u0l − 2pio
N

dsENduNlkNuTs0du0l. s5d

It was shown in Ref. 33 that, under the conditions stated
above and to lowest order in coupling between the supercon-
ductor and the dots, the operatorT creates from the vacuum
u0l a two-electron spin-entangled state. As pointed out above,
depending on the relation between the amplitudesA0 andB0,
the transport of the two electrons through the same(process
II ) or different (process I) dots dominates. Below, we con-
sider, for simplicity, only the limiting cases, in which either I
or II is completely dominating; however, our analysis can
straightforwardly be extended to a situation in which they are
of comparable strength.

A. Electrons tunneling through different dots

We first consider process I, in which the amplitude for
tunneling through different dots is much larger than the am-
plitude to tunnel through the same dot. This creates the de-
sired EPR pair, a nonlocal spin-entangled pair of electrons.
The quantities in this limit are denoted with a “I.” The wave
function for two spin-entangled electrons at energiesE1 and
E2 is

uE1,E2lI =
1
Î2

fb1↑
† sE1db2↓

† sE2d − b1↓
† sE1db2↑

† sE2dgu0l, s6d

where the operatorbls
† sEd creates an outgoing(from the dots

towards the beamsplitter) electron plane wave with spins
=↑ ,↓ and momentumksEd=kF+E/"vF in the normal leadl
=1,2. Here,kF andvF are the Fermi wave number and ve-
locity, respectively, the same for both normal leads. The am-
plitude for this process was found in Ref. 33 to have a
double-resonant form

kE1,E2uTs0du0lI =
iA0g/spÎ2d

sE1 + «1 − ig/2dsE2 + «2 − ig/2d . s7d

With this, we are able to obtain the asymptotics of the out-
going spin-entangled state. To do so we substitute Eq.(7)
into Eq. (5) and find

uCIl = u0l

+E
−eV

eV

dEAsEdfb1↑
† sEdb2↓

† s− Ed − b1↓
† sEdb2↑

† s− Edgu0l,

s8d

with
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AsEd =
A0g

sE + «1 − ig/2ds− E + «2 − ig/2d
; s9d

i.e., AsEd=s−ipÎ2dkE,−EuTs0du0lI. This state is the sum of
the unperturbed ground state and an entangled, two-electron
state. The entangled state is a linear superposition of spin
singlets at different energies, an entangled two-particle wave
packet. The singlet spin state results from the singlet state of
the Cooper pair, conserved in the tunneling from the super-
conductor. Moreover, the two electrons in each singlet have
opposite energiesE and −E (counted frommS=0), a conse-
quence of the Cooper pairs having zero total energy with
respect to the chemical potential of the superconductor.

Several important observations can be made regarding the
state in Eq.(8). First, the properties, including the two-
particle wave-packet structure, can be clearly seen by writing
the wave function in first quantization. Introducingu1,El
^ u↑ l for b1

↑†sEdu0l, the properly symmetrized wave function
is given by(omitting the ground stateu0l)

uCIl =E
−eV

eV

dEAsEdsu1,Elmu2,−Eln + u2,−Elmu1,Elnd

^ su↑lmu↓nl − u↓lmu↑lnd s10d

with m ,n the particle indices. The coordinate-dependent
wave functionCIsxm ,xnd=kxm ,xn uCIl can then be written
(x=0 at the lead-dot connection points) as

CIsxm,xnd = csxm,xndslm
1ln

2 + lm
2ln

1dsxm
↑ xn

↓ − xm
↓ xn

↑d
s11d

with

csxm,xnd =
2pigA0

2« − ig

3expfikFsxn + xmd − is« − ig/2duxn − xmu/"vFg ,

s12d

where, for simplicity, the case with energies«1=«2;« is
considered. To arrive at Eq.(11), we first introduced the
wave functionskxl uEl=expfiksEdxlg, l =m ,n, the spin spinors
kxl u ↑ l=xl

↑, kxl u ↓ l=xl
↓, and the orbital spinorskxl u1l=ll

1,
kxl u2l=ll

2, and then performed the integral over energy. The
orbital spinors describe the wave function in the space
formed by the lead indices 1 and 2, a pseudo spin space, as
discussed in Ref. 15. We note that the beamsplitter, discussed
below, only act in the orbital 12-space(i.e., spin-independent
scattering). Moreover, it is the property of the state in 12-
space that determines the current correlators discussed be-
low.

As is clear from Eq.(11), the state is a direct product state
between the spin and orbital parts of the wave function. The
spin state is anti-symmetric under exchange of the two elec-
trons, a singlet, while the orbital state is symmetric, a triplet.
The probability to jointly detect one electron atxm in lead 1
and one atxn in lead 2 decays exponentially with the distance
uxm−xnu, an effect of the two electrons being emitted at es-
sentially the same time(separated by a small time" /D) to
pointsxm=0 andxn=0, respectively. Note that the stateuCIl,

a stationary scattering state, does not describe wave packets
in the traditional sense with two electrons moving out from
the dots as time passes(as a solution to the time-independent
many-particle Schrödinger equation,uCIl has a trivial time
dependence). To obtain such a wave function, one must
break time translation invariance by introducing a time-
dependent perturbation; e.g., a variation of the tunnel barrier
strength or dot-level energies in time.

In this context, it is worthwhile mentioning that such a
time-dependent wave function was recently considered by
Hu and Das Sarma50 for a double-dot turnstile entangler.
However, in Ref. 50, the entangled wave function was not
derived from a microscopic calculation, but merely postu-
lated. The wave function had an amplitude of order unity(no
tunneling limit) and contained a double integral over energy.
This is different from our wave function in Eq.(8) and,
moreover, gives rise to a qualitatively different result for the
currents as well as the current correlators studied below.

Second, the entangled state in Eq.(8) has just the same
form as the pair-splitted state obtained in the normal-
superconducting system of Ref. 15, where a scattering ap-
proach based on the Bogoliubov–de Gennes equation was
used. This shows rigorously that the effect of the strong Cou-
lomb blockade, prohibiting two electrons to tunnel through
the same dot, can be incorporated in a scattering formalism
by putting the amplitude for Andreev reflection back into the
same dot to zero. From this observation, it follows that the
rest of the calculation in the paper where the state in Eq.(8)
is employed could in principle be carried out strictly within
the scattering approach51 to the Bogoliubov–de Gennes
equation. However, in such a calculation the entanglement is
not directly visible, which makes the interpretation of the
result difficult. Instead, below, we work directly with the
state in Eq.(8).

Third, it is also interesting to note the close connection
between the emission of a Cooper pair and the process of
spontaneous, parametric down-conversion52 of pairs of pho-
tons investigated in optics, in which a single photon from a
pump laser is split in a nonlinear crystal into two photons.
From the point of view of the theoretical approach, expand-
ing the outgoing state in a ground state and, to first order in
perturbation, an emitted pair of particles, is similar to the
work in, e.g., Ref. 53. The resulting state[Eq. (8)], is a spin
singlet, while a state with polarization entanglement is, under
appropriate conditions, produced in the down-conversion
process(type II). Moreover, the emission of the two elec-
trons is “spontaneous;” i.e., random and uncorrelated in time,
in the same way as for the down-converted photons. One can
also point out the perhaps less obvious relation that the two
electrons emitted from the superconductor carry information
about the phase of the superconducting condensate, just as
the two photons carry information of the phase of the field of
the pump laser. A coherent superposition of states of pairs of
electrons emitted from different points of the superconductor,
can give rise to observables sensitive to the difference in
superconducting phase between the two emission points, as
was demonstrated in Ref. 15. This has its analog in the pho-
tonic experiment with a single, coherent laser pumping two
separate nonlinear crystals, presented in Ref. 54.
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B. Electrons tunneling through the same dot

We now turn to process II, in which the amplitude for
tunneling through the same dot is much larger than the am-
plitude to tunnel through different dots. The wave function
for two electrons to tunnel to energiesE1 andE2 in lead j is

uE1,E2lII =
1
Î2

fbj↑
† sE1dbj↓

† sE2d − bj↓
† sE1dbj↑

† sE2dgu0l .

s13d

The amplitude for this process,kE1,E2uTs0du0lII , was found
in Ref. 33 to have a single resonant form, different from Eq.
(7), given by

kE1,E2uTs0du0lII =
iB0

p2Î2

3S 1

E1 + « j − ig/2
+

1

E2 + « j − ig/2
D .

s14d

Here, for simplicity, the two dot–superconductor contacts are
taken to be identical. Since the superconductor is a macro-
scopically coherent object, the total state is a linear combi-
nation of the states corresponding to two electrons tunneling
through dot 1 and dot 2. To obtain the asymptotics of the
outgoing spin-entangled state, we substitute Eq.(14) into Eq.
(5) and find

uCIIl = u0l +E
−eV

eV

dEfB1sEdb1↑
† sEdb1↓

† s− Ed

+ B2sEdb2↑
† sEdb2↓

† s− Edg , s15d

with

BjsEd =
B0s« j − ig/2d

sE + « j − ig/2ds− E + « j − ig/2d
; s16d

i.e., BjsEd=s−ip2Î2dkE,−EuTs0du0lII . Arriving at Eq. (15),
we used the propertyBs−Ed=BsEd and the anti-commutation
relations of the fermionic operators.

This state is a linear superposition of the states for two
electrons tunneling through the same dot. Comparing to the
stateuCIl in Eq. (11) for the two electrons tunneling through
different dots, we can make the following comments.(i) Just
as uCIl, the wave functionuCIIl in first quantization is a
product of an orbital and a spin wave function. The spin
wave function is, as foruCIl, a singletxm

↑ xn
↓−xm

↓ xn
↑. The or-

bital wave function for the simplest situation«1=«2 is, how-
ever, proportional tolm

1ln
1+lm

2ln
2, one of the Bell states, an

orbitally entangled state.(ii ) The stateuCIIl is the same as
would be obtained within scattering theory(as was shown in
Ref. 15), takingBjsEd to be the effective Andreev reflection
amplitude at dotj and assuming no crossed Andreev reflec-
tion between the dots; i.e., zero probability for an incident
electron in lead 1 to be backreflected as a hole in lead 2 and
vice versa.

With the state in Eq.(15) and the state for two electrons
tunneling through different dots, in Eq.(8), we are in a po-
sition to analyze the transport properties.

IV. CURRENT CORRELATORS

The two electrons emitted from the dot-superconductor
entangler propagate in the leads 1 and 2 towards the normal
reservoirsA andB. As shown in Fig. 1, the two normal leads
are crossed in a single-mode reflectionless beamsplitter. The
beamsplitter is characterized by a spin- and energy-
independent unitary scattering matrix connecting outgoing
and ingoing operators as

SbA

bB
D = Sr t8

t r8
DSb1

b2
D , s17d

where the subscriptsA andB denote towards what reservoir
the electron is propagating. The electrons are then detected in
the normal reservoirsA andB.

We point out that beamsplitters completely without back-
scattering are not easily produced experimentally. Qualita-
tively, electrons backscattering from the beamsplitter will be
reflected from the quantum dots with unit probability(in the
tunnel limit considered) and propagate towards the beam-
splitter again. Due to the resonant character of the scattering
at the dots, the electrons will, however, pick up energy-
dependent phases. This additional energy dependence of the
scattering amplitudes might modify the transport properties
considerably. It should be emphasized that this effect of
backscattering is generic for dot-entangler beamsplitter sys-
tems. It is therefore preferable in an experimental setup to try
to minimize the backscattering at the beamsplitter.

In principle, backscattering can be incorporated quantita-
tively in our model; however, to keep the discussion as
simple as possible, we consider only the reflectionless beam-
splitter. Several aspects of backscattering from the beam-
splitter were recently investigated by Burkard and Loss,40

extending the model in Ref. 30. However, in Ref. 40, an
isolated beamsplitter, not coupled to a specific entangler, was
considered, and thus the problem with further scattering from
the entangler was not addressed.

We also note that phases due to propagation can be in-
cluded in the scattering amplitudes of the beamsplitter. In the
typical system of interest, with a lateral sizeL in the mi-
crometer range, the energy-dependent part of the phase
,Lg /"vF picked up by the electrons when propagating in
the leads is negligibly small. The energy-independent part
enter the results in the same way as an Aharanov-Bohm
phase or a superconducting phase difference, further dis-
cussed below in connection to the treatment of tunneling
through the same dot.

The properties of the electrons emitted by the entangler
are investigated via the current and the zero-frequency cur-
rent correlators. The electrical current operator in leada is
given by55

Îa =
e

h
E dEdE8eisE−E8dt/"

3o
s

fbas
† sEdbassE8d − aas

† sEdaassE8dg , s18d

whereaas
† sEd creates an electron plane wave incoming from
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the normal reservoira with spin s=↑ ,↓ and momentum
ksEd. The averaged current is given by

Ia ; kÎal, s19d

wherek¯l;kCu¯ uCl. The zero-frequency correlations be-
tween the currents in the leadsa andb are

Sab =E dtkDÎastdDÎbs0d + DÎbs0dDÎastdl, s20d

whereDIastd= Iastd− Ia is the fluctuating part of the current
in lead a. We study the two cases with electrons tunneling
through different dots and the same dot separately.

V. TUNNELING THROUGH DIFFERENT DOTS

For electrons tunneling through different dots, the ques-
tion is how the degree of spin-singlet entanglement is re-
flected in the current and current correlators. The averaged
current, evaluated with the stateuCIl in Eq. (8), becomes

Ia
I =

2e

h
E

−eV

eV

dEuAsEdu2, s21d

which is the same fora=A andB. Since the two resonances
«1 and «2 are well within the voltage range(i.e., eV− u«1u,
eV− u«2u@g), we get the current

Ia
I =

2e

h

4puA0u2g

se1 + e2d2 + g2 , s22d

just the same expression as in Ref. 33, where the leads of the
entangler were contacted directly to the normal reservoirs
(no beamsplitter). The current is maximal for an asymmetric
setting of the resonances«1=−«2. This two-particle reso-
nance reflects the fact that the two electrons in the Cooper
pairs are emitted at opposite energies with respect to the
superconducting chemical potential. The current contains no
information about the entanglement of the emitted state. In
fact, the same current would be obtained by considering a
product state of one electron in lead 1 and one in lead 2,
independent of their spins.

To obtain information about the entanglement, we turn to
the current correlators. Inserting the expression for the state
uCIl into Eq. (20), following Ref. 55, we get the expressions
for the auto-correlations

SAA
I = SBB

I =
4e2

h
E

−eV

eV

dEhf1 + 2RTguAsEdu2

+ 2RTAsEdA* s− Edj s23d

as well as the cross-correlations

SAB
I = SBA

I =
4e2

h
E

−eV

eV

dEhfT2 + R2guAsEdu2

− 2RTAsEdA* s− Edj , s24d

whereR= ur u2= ur8u2 andT= utu2= ut8u2=1−R. We note that the
total noiseSI of the current flowing out of the superconductor
is twice the Poissonian, i.e.,

SI = SAB
I + SBA

I + SAA
I + SBB

I = 4esIA
I + IB

I d , s25d

describing an uncorrelated emission of pairs of electrons.
This result, an effect of the tunneling limit, is different from
the one in Ref. 30, where an entangled state with unity am-
plitude was considered and the total noise was found to be
zero.

It is clear from the calculation that the second term in Eqs.
(23) and(24) depends directly on the symmetry properties of
the orbital wave function, and thus, due to the anti-symmetry
of the total wave function, indirectly on the symmetry prop-
erties of the spin wave function. For a spin-triplet stateuCIl,
the last term in Eqs.(23) and(24) would have opposite signs.
Since all the three possible triplets, with spin wave functions
xm

↑ xn
↓+xm

↓ xn
↑, xm

↑ xn
↑, and xm

↓ xn
↓ have the same anti-symmetric

orbital wave function(lm
1ln

2−lm
2ln

1 for «1=«2) they give rise
to the same noise correlators. As a consequence, performing
a noise correlation measurement, one can only distinguish
between spin singlets and spin triplets, but not between en-
tangledxm

↑ xn
↓+xm

↓ xn
↑ and nonentangledxm

↑ xn
↑, xm

↓ xn
↓ spin trip-

lets. This was pointed out already in Ref. 30. We note that it
is possible to distinguish between the different triplets in a
more advanced beamsplitter scheme, using controlled single
spin rotations via, e.g, a local Rashba interaction.31 Such a
scheme is straightforwardly included into our theoretical
treatment. However, it demands a more involved experimen-
tal setup and is therefore not considered here; we restrict our
investigation to the simplest possible system.

To investigate the properties of the current correlators in
detail, the remaining integral over energy in Eqs.(23) and
(24) is carried out, giving

E dEAsEdA* s− Ed =
4puA0u2g3

fse1 − e2d2 + g2gfse1 + e2d2 + g2g .

s26d

This shows that, unlike the current, the noise is sensitive to
both the difference and the sum of the dot energy levels. We
note that the integral ofAsEdA* s−Ed is manifestly positive
and smaller than the integral ofuAsEdu2 for all «1, «2 except
for «1=«2, when they are equal.

From these observations, we can draw several conclusions
and compare our results to the results in Ref. 30.

(i) The second term in Eqs.(23) and (24), dependent on
the orbital symmetry of the wave function, leads to a sup-
pression of the cross-correlation, but to an enhancement of
the auto-correlation. This is an effect of the bunching behav-
ior of the spin singlet; i.e., the two electrons show an in-
creased probability to end up in the same normal reservoir.30

For a symmetric beamsplitter,R=T=1/2 and aligned dot
levels «1=«2, the cross-correlations are zero(to the leading
order in tunneling probability considered here). This is a sig-
nature of perfect bunching of the two electrons.

(ii ) The last term in Eqs.(23) and(24) is proportional to
the spectral overlapedEAsEdA* s−Ed. The spectral overlap
physically corresponds to the overlap between the wave
functions of the two electrons colliding in the beamsplitter.
For single-particle levels at different energies«1Þ«2, the
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spectral amplitudes of the emitted electrons are centered at
different energies and, consequently,30 the Pauli principle re-
sponsible for the bunching is less efficient.

It is important to note that the last term in Eqs.(23) and
(24), dependent on the bunching, generally is of the same
magnitude as the first term. We emphasize that this result is
qualitatively different from what was found in Ref. 30,
where the bunching-dependent part of the current correlator
was proportional to a Kronecker delta-function in energy, a
consequence of considering a discrete spectrum. Our result
clearly shows that it should be experimentally feasible to
detect the bunching, and thus demonstrate that spin singlets
are emitted from the entangler. We note that the same quali-
tative result was found in Ref. 50.

(iii ) The cross-correlations are positive for any transpar-
ency of the beamsplitters(note thatR2+T2ù2RT). This is
different from the result in Ref. 30, where negative cross-
correlations were predicted. The negative correlations are
again a result of the unity amplitude of the incoming en-
tangled state considered in Ref. 30. In this context, we point
out that positive cross-correlations have been predicted in
several few-mode56 and many-mode57 normal-
superconductor hybrid systems as well as purely normal sys-
tems in the presence of interactions.58 In several of these
cases, the positive correlations were explained with semi-
classical models. Thus, the presence of positive correlations
cannot itself be taken as a sign of spin entanglement.

We point out that the expression for the energy-dependent
integrand of the cross-correlators in Eq.(24) can be under-
stood in an intuitive way, by considering the elementary scat-
tering processes contributing to the noise, shown in Fig. 4.

Let us consider the probability for the two electrons emit-
ted from the superconductor to end up, one with spin up and
energyE in reservoirA and the other with spin down and
energy −E in reservoirB. There are two paths the electrons
can take from the superconductor to the reservoirs:(a) the
electron with spin up and energyE via dot 1 and the electron
with spin down and energy −E via dot 2, this process having
an amplitudett8AsEd; (b) the electron with spin down and
energy −E via dot 1 and the electron with spin up and energy
E via dot 2, this process having an amplituderr 8As−Ed.
Since the two processes have the same initial and final states,

they are indistinguishable and their amplitudes must be
added. This gives together the energy-dependent joint
detection probability ,utt8AsEd+rr 8As−Edu2=T2uAsEdu
+ R2uAs−Edu2 + rr 8t* t8*AsEdA* s−Ed + r* r8* tt8As−EdA* sEd.
Analogously to the noise correlators for the entangler with
energy-independent tunneling probabilities in Ref. 15, it is
found that the noise correlatorSAB

I is simply proportional to
the integral over energy of the joint detection probability.
Using that the integral in Eq.(24) goes from −eV to eV and
that the unitarity of the scattering matrix in Eq.(17) gives
rt*+ t8r8*=0, we get the expression in the integrand in Eq.
(24).

For the auto-correlation, a similar interpretation in terms
of probabilities for two-particle scattering processes only is
not possible, one also has to consider single-particle prob-
abilities. Formally, this is the case since auto-correlations
contain exchange effects between the two particles scattering
to the same reservoir.

A. Fano factors

A quantitative analysis of the current correlators is most
naturally performed via the Fano factorsFab

=Sab / s2eÎIaIbd. The Fano factor isolates the dependence of
the noise on various parameters, not already present in the
current. For the cross- and auto-correlations, respectively, we
have

FAB
I = FBA

I = T2 + R2 − 2RTuHs«1 − «2du2 s27d

and

FAA
I = FBB

I = 1 + 2RT+ 2RTuHs«1 − «2du2, s28d

where

Hs«1 − «2d =
ig

«1 − «2 + ig
. s29d

We note that only the last terms in Eqs.(27) and(28) depend
on the energies«1 and «2 of the levels in the dots. In line
with the discussion of the current correlations above, we
point out that this energy dependence is qualitatively differ-
ent from a Kronecker delta-function in energy, found in Ref.
30 as a consequence of considering a discrete spectrum.

The Fano factor as a function of energy difference«1
−«2 is plotted for several values of transparency of the beam-
splitter in Fig. 5. For the cross-correlators, the Fano factor
has a minimum for the two resonant levels aligned:«1=«2.
The value at this minimum decreases monotonically from 1
to 0 when increasing the transparencyT of the beamsplitters
from 0 to 0.5(the Fano factor for transmission probabilityT
is the same as for 1−T). Thus, for a completely symmetric
beamsplitter(T=R=0.5), the Fano factor is zero. This corre-
sponds to the case of perfect bunching. For the auto-
correlators, the picture is the opposite. The Fano factor has a
maximum for the two resonances aligned:«1=«2. The value
at this maximum increases monotonically from 1 to 2 when
increasing the transparencyT of the beamsplitters from 0 to
0.5. Thus, for a symmetric beamsplitter(T=R=0.5), the
Fano factor is now 2.

FIG. 4. Elementary scattering processes(shown at the beam-
splitter) contributing to the cross-correlatorsSAB

I . The two processes
(a) and(b) transport a pair of electronsu↑ ,El and u↓ ,−El from the
superconductor to the reservoirsA and B, respectively. The two
processes, having the same initial and final state, are indistinguish-
able and their amplitudes must be added. The correlatorSAB

I is
proportional to the integral over energy of the(energy-dependent)
joint detection probability.
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B. Decoherence

Considering the robustness of the bunching behavior, an
important observation is that the Fano factors in Eqs.(28)
and (27) [as well as the noise correlators in Eqs.(23) and
(24)] depend only on the respective transmission and reflec-
tion probabilitiesT andR. All information about the scatter-
ing phases, from the beamsplitter as well as from the propa-
gation in the leads, drops out. As a consequence, the
correlators are insensitive to dephasing of the orbital part of
the wave function; i.e., processes that cause slow and energy-
independent fluctuations of the scattering phases. This insen-
sitivity, different from schemes based on orbital
entanglement,15,21,23,27can be understood by considering the
first quantized version[in Eq. (11)] of the wave function
uCIl. Any orbital phase picked up by an electron in, e.g., lead
1, just gives rise to an overall phase factor of the total orbital
wave function, since each term in the wave function corre-
sponds to one electron in lead 1 and one in lead 2. Moreover,
any orbital “pseudo spin flip” would imply a scattering of
particles between the leads 1 and 2 and is not allowed in the
nonlocal geometry.

The situation is different for spin decoherence, energy-
independent spin-flip, or spin-dephasing processes tending to
randomize the spin directions. Keeping the discussion com-
pletely general, in the sense that we do not consider any
specific microscopic mechanism of the spin dephasing, spin
decoherence modifies the Fano factors in Eqs.(27) and(28).
Formally, the(mixed) state in the presence of decoherence is
described by a density matrixr. Writing r in a spin singlet-
triplet basis, as shown in the Appendix, only the diagonal
elementsrSS (singlet) and rT0T0

, rT+T+
, rT−T−

(triplets) con-
tribute to the current correlators. As discussed above, all the
three spin triplets give rise to the same Fano factors. The
spin-triplet Fano factors are given by the spin-singlet ones in
Eqs. (27) and (28) by changing the sign of the last term
2RTuHs«1−«2du2; i.e., from bunching to anti-bunching. Using
that the sum of the diagonal elements of the density matrix is
1 (i.e., rSS+rT0T0

+rT+T+
+rT−T−

=1), the effect of spin deco-
herence is to renormalize only the part of the Fano factors
dependent on the dot-level energies as

uHs«1 − «2du2 → s2rSS− 1duHs«1 − «2du2. s30d

The renormalization factor is thus the singlet weight minus
the total triplet weight,rSS−srT0T0

+rT+T+
+rT−T−

d=2rSS−1.
This clearly displays how decoherence, reducing the singlet
weight and consequently increasing the triplet weight, leads
to a crossover atrSS=1/2 from a bunching to an anti-
bunching behavior of the noise correlators. For a completely
dephased spin state, with an equal mixture of singlets and
triplets srSS=rT0T0

=rT+T+
=rT−T−

=1/4d, the renormalization
factor 2rSS−1 saturates at the value −1/2.

We point out that this discussion might be modified when
considering other types of effects causing decoherence, such
as, e.g., inelastic scattering. A more detailed investigation
(see, e.g., Refs. 59), going beyond the scope of the paper, is
needed to address these issues.

C. Spin-entanglement bound

In the absence of spin decoherence, the spin state of the
emitted pair is a singlet, a maximally entangled state. For
finite spin decoherence, this is no longer the case, and the
question arises as to how to obtain quantitative information
about the spin entanglement from the measurements of the
current correlators.

We stress that our interest here is the spin entanglement of
r only. However,r contains information about the spin part
of the state as well as the energy-dependent orbital part, the
wave-packet structure of the emitted pair of electrons. To
quantify the spin entanglement, one thus has to consider a
measurement sensitive to the spin part ofr only (see the
Appendix). One such important example is the cross-
correlators between the currents in the leads 1 and 2(i.e.,
without beamsplitters). It was shown in a related system in
Ref. 15 that these cross-correlators are simply proportional to
the probability to jointly detect one particle in lead 1 and one
in 2. The wave-packet property of the emitted pair results
only in an overall constant multiplying the probabilities. As a
consequence, a Bell Inequality, derived in terms of the joint
detection probabilities, could be formulated in terms of zero-
frequency cross-correlators. In the same way, for the
superconductor-dot entangler considered here, the spin en-
tanglement of the two emitted electrons can in principle be
tested via a Bell Inequality formulated in terms spin current
correlators.19 The situation is different for the beamsplitter
setup, in which the Fano factors in Eqs.(27) and (28) in
general depend on the wave-packet structure via the dot-
level-dependent factoruHs«1−«2du2, quantifying the overlap
of the two electrons when colliding. However, for«1=«2
[i.e., maximal overlap,uHs0du2=1] the Fano factors are inde-
pendent of the wave-packet structure of the emitted electrons
and are thus only sensitive to the spin part ofr [see Eq.
(30)].

The spin part ofr can be described by the 434 spin
density matrixrs, rigorously defined in the Appendix(note
that r, due to the continuous energy variable, is infinitely
dimensional). Formally, rs is the density matrix obtained
when tracingr, for aligned dot levels«1=«2, over energies.
The question is thus how to determine the entanglement of

FIG. 5. The Fano factor for the cross-correlationsFAB=FBA (left
panel) and auto-correlationsFAA=FBB (right panel) as a function of
the normalized energy differences«1−«2d /g for various beamsplit-
ter transparencies.
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rs. In general, knowledge of all the matrix elements is
needed. This information, however cannot be obtained
within our approach, since the Fano factors only provide
information about the spin-singlet weight, as is clear from
Eq. (30). It is nevertheless possible, as described in detail in
the Appendix, to follow the ideas of Burkard and Loss40 and
obtain a lower bound for the spin entanglement.

There are several different measures of entanglement for
the mixed state of two coupled spin-1/2 systems. Here, we
consider the concurrence60 C, with C=0 sC=1d for an unen-
tangled(maximally entangled) state. To establish the lower
bound, it can be shown that the concurrenceCsrsd is always
larger than or equal to the concurrenceCsrWd of the so-called
Werner state,61 described by the density matrixrW. The
Werner state, defined as the average ofrs over identical and
local random rotations, has the same singlet weightrSSasrs.
The concurrence of the Werner state has the appealing prop-
erty that it is a function of the spin-singlet weight only:CW
=maxh2rSS−1,0j.

The findings above thus lead to the simple and important
result that the renormalization, Eq.(30), of the Fano factors
in Eqs.(27) and(28) due to spin decoherence can be written
as (for CW.0)

uHs«1 − «2du2 → CWuHs«1 − «2du2, s31d

whereCW thus provides a lower bound for the spin entangle-
ment of the emitted pair of electrons[for the pure singlet
rSS=1, CW andCsrsd are equal and maximal]. Thus, as long
as the Fano factors display a bunching behavior, the spin
entanglement is finitesCW.0d. For a crossover to anti-
bunching behavior,CW=0 and one can no longer conclude
anything about the entanglement of the spin state. The value
of CW can be extracted directly from the experimentally de-
termined Fano factors, as the amplitude of the modulation of
the Fano factors with respect to dot-level amplitudes«1−«2
divided by 2RT. The values ofR and T can be extracted
independently from the Fano factors at dot levels such that
Hs«1−«2d<0.

The result in Eq.(31) thus provides a simple relation be-
tween the Fano factors and the minimum spin entanglement
CW. It is clear, however, that since the Fano factors only
provide information about the singlet weight, full informa-
tion about the spin entanglement cannot be obtained by the
beamsplitter approach employed here. It should be noted that
the result in Eq.(31) is quantitatively different from what
was obtained in Ref. 40, a consequence of the different states
considered for the emitted electrons, as discussed above in
connection with the current correlators.

VI. TUNNELING THROUGH THE SAME DOT

We now turn to the situation in which the two electrons
tunnel through the same dot. To be able to distinguish this
process II from process I, it is important to study the current
as well as the noise in detail. The averaged current in Eq.
(19), evaluated with the state in Eq.(15), becomes for reser-
voirs A andB,

IA
II =

2e

h
E

−eV

eV

dEfRuB1sEdu2 + TuB2sEdu2g ,

s32d

IB
II =

2e

h
E

−eV

eV

dEfTuB1sEdu2 + RuB2sEdu2g .

Since the two resonances«1 and«2 are well within the volt-
age range(i.e., eV− u«1u, eV− u«2u @g), we can perform the
integrals and get the current33

Ia
II =

2e

h
puB0u2/g, s33d

which is the same for both reservoirsa=A,B. We note that
the two-particle resonance in the current, present in the pair-
splitting case I, is absent due to the Coulomb blockade, as
pointed out in Ref. 33. A difference from Ref. 33 is, how-
ever, that due to the absence of backscattering at the beam-
splitter, there is no scattering-phase dependence of the cur-
rent. Consequently, there is no dependence on a possible
difference in the superconducting phase at the two emission
points or an Aharonov-Bohm phase62 due to a magnetic flux
in the area between the superconductor, the dots, and the
beamsplitter. It should be pointed out that this is not a ge-
neric result for normal-superconducting systems. In a situa-
tion with backscattering, which is inevitable in, e.g., the
three-terminal forklike geometries, Andreev interferometers,
studied extensively in both diffusive63 and ballistic64 conduc-
tors, the current is indeed sensitive to a superconducting
phase difference as well as the Aharonov-Bohm phase.

Regarding the spin entanglement, just as for process I, no
information is provided by the averaged current. The same
result would have been obtained considering an incoherent
superposition of two electrons in lead 1 and two in lead 2,
independent of spin state. Turning to the current correlators,
inserting the expression for the stateuCIIl into Eq. (20), one
gets the expressions for the auto-correlations

SAA
II =

4e2

h
E dEhRs1 + RduB1sEdu2 + Ts1 + TduB2sEdu2

+ 2Refsr* t8d2B1
*sEdB2sEdgj ,

s34d

SBB
II =

4e2

h
E dEhTs1 + TduB1sEdu2 + Rs1 + RduB2sEdu2

+ 2Refsr* t8d2B1
*sEdB2sEdgj

with Ref¯g denoting the real part, as well as the cross-
correlations

SAB
II = SBA

II =
4e2

h
E dEhRTfuB1sEdu2 + uB2sEdu2g

− 2Refsr* t8d2B1
*sEdB2sEdgj . s35d

The integrals overuBjsEdu2 were carried out above[Eq. (33)].
Performing the integral overB1sEdB2

*s−Ed in the limit eV
− u«1u ,eV− u«2u @g, we get
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E dEB1
*sEdB2sEd =

pi uB0u2

e1 − e2 + ig
. s36d

The expressions for the correlators above yield that the total
noiseSII of the current flowing out of the superconductors is

SII = SAB
II + SBA

II + SAA
II + SBB

II = 4esIA
II + IB

IId , s37d

twice the Poissonian, describing, just as in case I, an uncor-
related emission of pairs of electrons.

We note that, in contrast to the current and the transport
properties in case I, in which the two electrons tunnel
through different dots, the noise contains information about
the scattering phases(via r * t8). Quite generally, one can
write

sr* t8d2 = RTeif, s38d

wheref is a scattering phase of the beamsplitter. Scattering
phases picked up during propagation in the leads simply add
to f. As a consequence,f can be modulated by, e.g., an
electrostatic gate changing the length of the lead 1 or 2 or by
an Aharonov-Bohm flux threading the region between the
dots, the superconductor and the beamsplitter. An important
consequence of this phase dependence of the current correla-
tors is that it can be used to distinguish between tunneling
via process II and between process I, since the current corr-
elators of the latter show no phase dependence. This was
pointed out in Ref. 33.

This phase dependence shows that the correlators in Eqs.
(34) and(35) are sensitive to dephasing affecting the orbital
part of the wave function. For complete dephasing, the last
term in Eqs.(34) and (35) is suppressed. The orbital en-
tanglement in Eq.(15), the linear superposition of states cor-
responding to tunneling through dots 1 and 2, is lost. This
sensitivity to orbital dephasing is different from the one for
process I discussed above. However, again in contrast to pro-
cess I, the current correlators are insensitive to spin dephas-
ing. This can be understood by considering the first quan-
tized wave functionuCIIl, discussed following Eq.(16),
keeping in mind that the wave function is a direct product of
a spin part and an orbital part. The spin wave function is a
singlet,xm

↑ xn
↓−xm

↓ xn
↑, but the orbital wave function is a com-

bination of triplets,lm
1ln

1+lm
2ln

2 for «1=«2. Since no scatter-
ing between the leads is possible(i.e., no pseudo spin flip),
orbital dephasing cannot change the triplet character of the
orbital wave function and, as a result, the spin wave function
is bound to be a singlet. Thus, the spin entanglement inuCIIl
is protected against decoherence.

Turning to the Fano factor, the auto- and cross-
correlations are

FAA
II = FBB

II = 1 +T2 + R2 + 2RTRefeifHs«1 − «2dg s39d

and

FAB
II = FBA

II = 2RT− 2RTRefeifHs«1 − «2dg , s40d

respectively, whereHs«1−«2d is given in Eq.(29).
The Fano factor as a function of energy difference«1

−«2 is plotted in Figs. 6 and 7 for several values of the
transparency of the beamsplitter.

For zero phase differencef=0, the Fano factor for the
cross-correlations shows a dip for aligned resonant levels. At
«1−«2=0, the Fano factor is zero, independent of the beam-
splitter transparencyT. This is a signature of perfect bunch-
ing. For finite phase differencefÞ0, the Fano factor be-
comes asymmetric in«1−«2, showing a Fano-shaped
resonance, with the minimum shifted away from«1=«2.

The Fano factor for the auto-correlations, forf=0, shows
a corresponding peak for aligned resonant levels, reaching 2
for «1=«2. For finite phase differencefÞ0, the Fano factor
becomes asymmetric, with the maximum Fano factor shifted
away from«1=«2.

We point out that, similar to case I, the integrand of the
cross-correlators can be understood by considering the basic
two-particle scattering processes. They are shown in Fig. 8;
the general explanation is along the same line as for process
I, discussed above.

VII. DISCUSSION AND CONCLUSIONS

In conclusion, we have investigated the spin entanglement
in the superconductor–quantum dot system proposed by Re-
cher, Sukhorukov, and Loss.33 Using a formal scattering

FIG. 6. The Fano factor for the cross-correlationsFAB=FBA for
phase differencef=0 (left panel) f=p /2 (right panel) and as a
function of the normalized energy differences«1−«2d /g for various
beamsplitter transparencies.

FIG. 7. The Fano factor for the auto-correlationsFAA=FBB for
phase differencef=0 (left panel) f=p /2 (right panel) and as a
function of the normalized energy differences«1−«2d /g for various
beamsplitter transparencies.
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theory, we have calculated the wave function of the electrons
emitted by the entangler and found that it is a superposition
of spin singlets at different energies: a two-particle wave
packet. Both the wave function for the two electrons tunnel-
ing through different dots, creating the desired nonlocal EPR
pair, as well as the wave function for the two electrons tun-
neling through the same dot, were calculated.

The two electrons in the emitted pair collide in a beam-
splitter before exiting into normal reservoirs. Due to the
symmetrical orbital state, a consequence of the anti-
symmetrical singlet spin state, the electrons tunneling
through different dots show a tendency to bunch. This
bunching can be detected via the current correlations. It was
found that the amount of bunching depends on the position
of the single-particle levels in the dots as well as on the
scattering properties of the beamsplitter. Importantly, the
magnitude of the bunching-dependent term in the cross cor-
relations was found to be of the same order as the bunching-
independent term, implying that an experimental detection of
the bunching, and thus indirectly the spin-singlet entangle-
ment, is feasible.

The current correlators for electrons tunneling through
different dots were found to be insensitive to orbital dephas-
ing. Spin dephasing, on the contrary, tends to randomize the
spin state, leading to a mixed spin state with a finite fraction
of triplets. Since singlet and triplet spin states give rise to a
bunching and anti-bunching behavior, respectively, when
colliding in the beamsplitter, strong dephasing will suppress
the bunching behavior and will eventually cause a crossover
to anti-bunching. To quantify the entanglement in the pres-
ence of spin dephasing, we have derived an expression for
the concurrence in terms of the Fano factors. In addition, via
the current correlations, it is not possible to distinguish be-
tween entangled and nonentangled spin-triplet states, since
all triplets show the same bunching behavior. This implies
that the method of detecting spin entanglement via current
correlations in the beamsplitter geometry has a fundamental
limitation compared to the experimentally more involved
Bell Inequality test.

We have also investigated the current correlations in the
case in which the two electrons tunnel through the same dot.
The wave function was found to be a linear superposition of
states for the pair tunneling through dots 1 and 2. The cross-
and auto-correlators are sensitive to the position of the
single-particle levels in the dots; however, in a different way
than for tunneling through different dots. Moreover, the cor-

relators were found to be dependent on the scattering phases,
providing a way to distinguish between the two tunneling
processes by modulating the phase.
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APPENDIX

In the presence of spin decoherence, the state of the pair
of electrons emitted through different dots can be described
by a density matrixr, which can be written as

r = FE dEuAsEdu2G−1

o
q,q8

rqq8E dEdE8

3AsEdA* sE8duCqsEdlkCq8sE8du, sA1d

noting that the normalization givesoqrqq=1. The indexq
runs over the states in the singlet-triplet basishqj
=hS,T0,T+,T−j; i.e.,

uCSsEdl =
1
Î2

fb1↑
† sEdb2↓

† s− Ed − b1↓
† sEdb2↑

† s− Edgu0l,

uCT0
sEdl =

1
Î2

fb1↑
† sEdb2↓

† s− Ed + b1↓
† sEdb2↑

† s− Edgu0l,

sA2d
uCT+

sEdl = b1↑
† sEdb2↑

† s− Edu0l,

uCT−
sEdl = b1↓

† sEdb2↓
† s− Edu0l.

The coefficientsrqq8 depend in general on the nature and the
strength of the spin decoherence. As pointed out in the text,
only energy-independent spin decoherence is considered, and
consequently the coefficientsrqq8 are independent of energy.

The current operators conserve the individual spins. As a
consequence, the off-diagonal elements ofr do not contrib-
ute to the noise correlators. As discussed in the text, all trip-
lets contribute equally to the correlators. Since the singlet
and triplet states contribute with opposite sign to the last
term in Eqs.(27) and(28), the effect of spin decoherence on
the Fano factors can be incorporated by renormalizing
uHs«1−«2du2→ s2rSS−1duHs«1−«2du2, with the renormaliza-
tion factor expressed in terms ofrSS only (using rSS+rT0T0
+rT+T+

+rT−T−
=1), the weight of the singlet component inr.

It is a difficult (and in general not analytically tractable)
problem to evaluate the entanglement of the full density ma-
trix, since r contains information about both the energy-
dependent orbital part of the state as well as the spin part. In
particular, due to the continuous energy variable, the dimen-
sion ofr is infinite. Here, we are, however, interested only in
the spin entanglement ofr. To determine the spin entangle-
ment, one has to consider measurement schemes in which

FIG. 8. Elementary scattering processes(shown at the beam-
splitter) contributing to the cross-correlatorsSAB

II . The two processes
(a) and(b) transport a pair of electronsu↑ ,El and u↓ ,−El from the
superconductor to the reservoirsA andB, respectively.
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the observablesO are sensitive only to the spin part ofr.
Such observables satisfy the property

E dEdE8AsEdA* sE8dkCqsEduOuCq8sE8dl

= kCquOsuCq8l E dEuAsEdu2, sA3d

whereuCq8l are given fromuCq8sEdl in Eq. (A2) by remov-
ing the energy dependence; e.g.,uCT+

l=b1↑
† b2↑

† u0l. The opera-
tor Os is a function of the energy-independentb-operators.
Using the property in Eq.(A3), we can write

kOl = trfrOg = FE dEuAsEdu2G−1

o
q,q8

rqq8

3E dEdE8AsEdA* sE8dkCqsEduOuCq8sE8dl

= o
q,q8

rqq8kCquOsuCq8l ; trfrsOsg. sA4d

The 434 spin density matrixrs is thus

rs = o
q,q8

rqq8uCqlkCq8u. sA5d

It is straightforward to show that for the specialr for aligned
dot levels«1=«2, the current correlators in Eq.(20) are in-
sensitive to the wave-packet structure ofr. In this case,rs is
directly obtained fromr by tracing over energies. More gen-
erally, independent of«1,«2, the spin current correlators be-
tween lead 1 and 2(i.e., in the absence of the beamsplitter)
are insensitive to the wave-packet structure ofr. These latter
correlators can be used to test a Bell Inequality, along the
lines of Refs. 15 and 19.

Our interest is thus to investigate the entanglement ofrs,
conveniently expressed in terms of the concurrence.60 The
concurrenceC is defined as

Csrsd = maxh0,Îl1 − Îl2 − Îl3 − Îl4j , sA6d

where thelis are the real and positive eigenvalues, in de-
creasing order, ofrsr̃s. The matrixr̃s is defined as

r̃s = ssy ^ sydrs
* ssy ^ syd, sA7d

where sy are Pauli matrices, rotating locally the spins in
leads 1 and 2, respectively. Importantly, in Eq.(A7), the
density matrixrs is written in the spin-up/spin-down basis;
i.e., b1↑

† b2↓
† u0l, etc. The concurrence isC=0 for an unen-

tangled state andC=1 for a state that is maximally en-
tangled.

To determineCsrsd, full information aboutrs is needed.
In the approach taken here, investigating the spin entangle-
ment via a beamsplitter and current correlators, one cannot,
however, determine all elements of the density matrixrs. As
a consequence, the spin entanglement of the emitted pair
cannot be determined precisely. It is nevertheless possible,
following the ideas of Burkard and Loss,40 to obtain a lower
bound for the spin entanglement.

To obtain the lower bound, we first note two important
properties of Csrsd. (i) Csrsd is invariant under local
rotations;60 i.e., Csr̄sd=Csrsd for r̄s=sU1 ^ U2drssU2

†
^ U1

†d,
whereU1 andU2 are unitary 232 matrices acting locally on
the spins in leads 1 and 2, respectively.(ii ) Csrsd is a convex
function,65 oipiCsridùCsoipirid; i.e., for a density matrix
rs=oipiri, with oipi =1, the entanglement of the total den-
sity matrix is smaller than or equal to the weighted entangle-
ment of the parts(a consequence of information being lost
when adding density matrices).

Consider the density matrixrW obtained by averagingrs

with respect to all possible local rotationsU ^ U; i.e., the
same rotation in leads 1 and 2. Formally,rW=ksU
^ UdrssU† ^ U†dlU is calculated, wherek¯lU denotes an av-
erage with respect toU, uniformly distributed in the group of
unitary 232 matrices. This gives the Werner state61

rW = rSSuCSlkCSu +
1 − rSS

3

3suCT0
lkCT0

u + uCT+
lkCT+

u + uCT−
lkCT−

ud , sA8d

where we note that the singlet component is unaffected by
the rotation U ^ U. Importantly, the entanglement of the
Werner state is a function of the singlet coefficientrSSonly.
Using the two properties(i) and (ii ) of the entanglement
stated above, we can write

CsrWd = CfksU ^ UdrssU†
^ U†dlUg

ø kCfsU ^ UdrssU†
^ U†dglU

= kCsrsdlU = Csrsd . sA9d

This shows that the concurrence of the Werner stateCW
=CsrWd provides a lower bound for the entanglement of the
full spin stateCsrsd. The concurrence of the Werner state is
CW=maxh2rSS−1,0j. The renormalization of the Fano fac-
tors in Eqs.(27) and (28) due to spin decoherence can now
simply be writtenuHs«1−«2du2→CWuHs«1−«2du2, whereCW

ù0 is a lower bound for the concurrence of the spin state in
the presence of decoherence. This is Eq.(31) in the text.
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