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Electrical current noise of a beamsplitter as a test of spin entanglement
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We investigate the spin entanglement in the superconductor-quantum dot system proposed by Recher,
Sukhorukov, and Loss, coupling it to an electronic beamsplitter. The superconductor-quantum dot entangler
and the beamsplitter are treated within a unified framework and the entanglement is detected via current
correlations. The state emitted by the entangler is found to be a linear superposition of nonlocal spin singlets
at different energies, a spin-entangled two-particle wave packet. Colliding the two electrons in the beamsplitter,
the singlet spin state gives rise to a bunching behavior, detectable via the current correlators. The amount of
bunching depends on the relative positions of the single particle levels in the quantum dots and the scattering
amplitudes of the beamsplitter. It is found that the bunching-dependent part of the current correlations is of the
same magnitude as the part insensitive to bunching, making an experimental detection of the entanglement
feasible. The spin entanglement is insensitive to orbital dephasing but suppressed by spin dephasing. A lower
bound for the concurrence, conveniently expressed in terms of the Fano factors, is derived. A detailed com-
parison between the current correlations of the nonlocal spin-singlet state and other states, possibly emitted by
the entangler, is performed. This provides conditions for an unambiguous identification of the nonlocal singlet
spin entanglement.
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I. INTRODUCTION post-selected electron-electron entanglem&ftin particu-
Ever since the concept of entanglement was introdéced @, entanglement in the electrical analog of the optical Han-
it has been at the heart of conceptual discussions in quantuRiTY Brown—Twiss effecf was investigated in a mesoscopic

mechanicg The discussions have mainly concerned theconductor in the quantum Hall regime, transporting electrons

; along single edge-states and using quantum point contacts as
nonlocal properties of entanglement. Two entangled, Spaﬁear%spli'?teré? gMoreover a scghgme forpenergy-time

tlél:ly Szga;?;egorfjgt'gf.sﬁ aana E;;‘;ﬁg;}ig(tj(gzkggqffsg ntanglemert has been proposéf.The consequences of
(EPR pair, in a way scrl ephasing for orbital entanglement have been

by a local, realistic theory; i.e., the correlations give rise to &\nvestigateéﬁﬂvzsas well

violation of a Bell Inequality’. In optics, the nonlocal prop-  ~Egier proposals for electronic entanglement have been
.ertles'of entangled pairs of photons have been mtenswelgased on creating and manipulating spin entanglement, in
investigated over the last decade®Recently, the interest normal®-32 as well as in normal-superconductiig® sys-
has turned to possible applications making use of the propems. Spins in semiconductors have been sibum have
erties of entangled particles. Entanglement plays an impordephasing times approaching microseconds, making spins
tant role in many quantum computation and informationpromising candidates for carriers of quantum information.
schemes$, with quantum cryptograp#§ and quantum However, a direct detection of spin entanglement in mesos-
teleportatioA! 12 as prominent examples. copic conductors is difficult. The natural quantity to measure
Compared to optics, the investigation of entanglement iris the electrical charge current. To investigate spin current,
solid state systems is only in its infancy. However, the con-one thus in principle has to convert the spin current to charge
trolled creation, manipulation, and detection of entanglementurrent via, e.g.. spin filters. Although efficient spin filt&rs
is a prerequisite for a large-scale implementation of quanturhave very recently been realized experiment#lithere are
computation and information schemes, making it of largeconsiderable remaining experimental complications in ma-
interest to pursue the investigation of entanglement in solidipulating and detecting individual spins on a mesoscopic
state systems. Considerable experiméniahd theoretica?  scale. In particular, to detect the entanglement by a violation
progress has already been made in the understanding of eof a Bell Inequality, one neeéstwo spin filters with inde-
tangled qubits implemented with Josephson junctions. pendent and locally controllable directions to mimic the po-
For the entanglement of individual electrons, several imJarizers in optical schemés®
portant steps towards an experimental realization in mesos- An alternative idea to detect spin entanglement was pro-
copic conductors have been taken recently. A scheme fquosed by Burkard, Loss, and Sukhoruk8vand also dis-
entanglement of orbital degrees of freedom was proposed icussed qualitatively by Maitre, Oliver, and Yamambto.
Ref. 15, allowing for control of the entanglement with ex- They proposed to use the relation between the spin and or-
perimentally accessible electronic beamsplittéfs. More-  bital part of the wave function, imposed by the anti-
over, several proposahst®19for detecting entanglement via symmetry of the total wave function under exchange of two
a violation of a Bell Inequality, expressed in terms of zero-particles. A state with an anti-symmetric, singlet-spin wave
frequency noise correlatof8 have been put forth. Very re- function has a symmetric orbital wave function and vice
cently, following a proposal by Beenakket al,?! several versa for the spin triplet. When colliding the electrons in a
works have discussed the possibility of electron-hole andeamsplitter, spin singlets and triplets show bunching and
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anti-bunching behavior, respectively. These different bunch- P 1
ing behaviors were found to be detectable via the electrical ! ¥
= > {-eo 4

-

-

T -

current correlations; i.e., the properties of the orbital wave
function were used to deduce information about the spin
state. This approach was later extended to all moments of thS

current®® Moreover, it was recently further elaborated in 2 t
Ref. 40, taking spin dephasing and nonideal beamsplitters \4 > o —1e B
into account. -7 r

In comparison to detecting spin entanglement via a viola-
tion of a Bell Inequality, the approach of Ref. 30, however, FIG. 1. Schematic picture of the system. A superconduSpis
has a fundamental limitation. The anti-symmetric spin singleconnected, via tunnel barriers to two quantum datsind 3 in the
is an entangled state, while symmetric, spin-triplet states areoulomb blockade regime. The dots are further coupled, via a sec-
not neccesarily entangled. Considering, e.g., the standamnd pair of tunnel barriers, to normal leads that cross in a forward
singlet-triplet basis, only one of the three tfip'df$l> scattering single-mode beamsplitter. The beamsplitter is character-
+|l T, |T 1, and|i 1) is spin entangled. However, all spin- ized by scattering amplitudes t, r’, andt’. On the other side of
triplet states, having the same symmetrical orbital wavdhe beamsplitter, the normal leads are connected to normal electron
function, give rise to the same anti-bunching behavior in thgeservoirsA andB.
current correlatord? As a consequence, in contrast to a Bell
Inequality test, the approach of Ref. 30 cannot be employed
to distinguish between entangled and nonentangled triplgunneling out of the superconductor; however, the orbital
states. To be able to distinguish between different triplestates are different.
states, one would need to consider more involved schemes, The electrons emitted by the entangler are then collided in
implementing in addition, e.g., single spin rotatiGhs. a beamsplitter and detected in two electronic reservoirs. Due

Despite this fundamental limitation, the approach of Ref.to the singlet spin state, electrons tunneling through different
30 is, due to its comparable simplicity, still of interest for dots show a bunching behavior when colliding in the beam-
entanglers emitting nonlocal spin singlets. However, the inspjitter. Both the auto- and cross-correlations between cur-
VeStIgatlonS in Ref. 30 were Ca.r“ed out aSSUm|n.g a d|Scretﬁ§ntS f|OW|ng into the norma' reservoi{‘but not the average
spectrum of the electrons and a monoenergetic entangledrreny depend on the degree of bunching. We find that the
state incident on the beamsplitter. While giving a qualita-p,nching is proportional to the wave function overlap of the

tively correct picture of the physics, it does not quantitativelyy, , coljiding electrons. This overlap depends strongly on the
describe the situation in a conductor connected to electron:E1

-

reservoirs. where the i . i d th osition of the single-particle levels in the dot, being maxi-
voirs, w spectrum 1S continuous and e €fg, o o hoth |evels aligned with the chemical potential of the

tangled electrons generally have a wave-packet nature; i.e, -
the wave function is a linear superposition of entangled elec§Uperconductors. The part of the current correlators sensitive

trons at different energi¢§.Moreover, the wave function in 0 Euncﬂ!ng IS ofkthe same ma.gthdT 33 thg partflnsensn.lve
Ref. 30 was not derived considering a specific entangler; i bunching, making an experimental detection of the spin-

was instead taken to be an incoming plane wave with unity>"9/et entanglement feasible. _
amplitude. This makes the calculated current correlations in- "€ current correlators are independent of scattering
applicable to most of the entanglers considered®hases f';md are thus insensitive to orbital de.phasmg. How-
theoretically2%3334 which operate in the tunneling regime €Ver, spin dephasing generally leads to a mixed spin state
and emit entangled states with a low amplitude. with a finite fraction of triplets. Since the spin triplets have a
In this paper, we revisit the approach of detection of spiniendency to anti-bunch, the spin dephasing results in a reduc-
singlet entanglement presented in Ref. 30. The abovemetrion of the overall bunching behavior and eventually, for
tioned shortcomings are bypassed by treating the entanglétrong spin dephasing, to a crossover to an anti-bunching
and the beamsplitter within a unified theoretical framework.behavior. A simple expression for the concurrence, quantify-
As a source of nonlocal spin singlets, the superconductoiing the entanglement in the presence of spin dephasing, is
guantum dot entanglésee Fig. 1 investigated in detail by derived in terms of the Fano factors.
Recher, Sukhorukov, and Loss in Ref. 33, is considered. Us- For electrons tunneling through the same dot, the wave
ing a formal scattering approach, the wave function of thefunction is a linear superposition of states for the pair tun-
electrons emitted from the entangler is calculated. It is foundieling through dots 1 and 2. Both the cross- and auto-
to be a linear superposition of pairs of spin-entangled eleceorrelators contain a two-particle interference term, sensitive
trons at different energies, a two-electron wave packet, simito the position of the single-particle levels in the dots; how-
lar to what was found for the superconducting orbital entanever, in a different way than the bunching-dependent term for
gler in Ref. 15. The amplitude at each energy depends on tHenneling through different dots. In particular, the correlators
position of the single-particle levels in the dots. Both thedepend on the scattering phases, providing a way to distin-
process in which the electrons tunnel through different dotsguish between the two tunneling processes by modulating,
creating the desired nonlocal EPR pair, as well as the ure.g., the Aharonov-Bohm pha3&Moreover, the phase de-
wanted process in which both electrons tunnel through th@endence makes the correlators sensitive to orbital dephas-
same dot, are investigated. In both cases the spin wave funirig, while the spin part of the wave function is insensitive to
tion is a singlet, preserving the spin state of the Cooper paidephasing.
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FIG. 3. Tunneling processes transporting two electrons from the

superconductor to the normal leads. Process |, in which the two
FIG. 2 E di f th tanaler-b ltt " . electrons tunnel through different dots, one through dot 1 and one
- & ENergy diagram ot the entangler-beamspitter system II?hrough dot 2, creates the wanted EPR pair. Process I, in which the

F'_?H 1-hA b!aSFV '? a?_plled_ gethetnhthe supelrconduct_llgg rZsBerVO'r’two electrons tunnel through the same dot, either both through dot 1
with chemical potentiaus=0, and the normal reservoirs and B, or both through dot 2, is unwanted.

with the same chemical potentia\=—eV. There is only one spin-
degenerate level of each dot, with energiggand e,, respectively, . . . .
in the energy rangeeV to eV. The level widthy is determined by ~ 9imMe; i.e., it costs a charging energyto put two electrons

the coupling to the normal reservoirs. The biéis taken to be ©On the same dot. The ground state contains an even number

much smaller than the superconducting ga=<A, but so large  Of electrons in the lower lying levels.

that the broadened levels are well within the bias windeW, The transport takes place as Cooper pairs tunnel from the
~lej|=>v j=1,2. superconductor, through the dots, and out into the normal
leads. Due to the dominating tunnel barrier at the dot-

Il. THE SUPERCONDUCTOR-QUANTUM DOT superconductor interface, one pair that tunneled onto the dots
ENTANGLER leaves the dots well before the next pair tunnels. There are

two distinct possibilities for the Cooper pair to tunnel from
A schematic picture of the system is shown in Fig. 1. Athe superconductor to the normal leads, shown in Fig. 3:
superconductingS) electrode is connected to quantum dots e |, the pair splits and one electron tunnels through each
(1 and 3 via tunnel barriers. The dots are further contacteddot, 1 and 2;
via normal leads to a controllable single-mode electronic « Il, both electrons tunnel through the same dot, 1 or 2.
beamsplitte'® characterized by the forward scattering ampli- It was shown in Ref. 33 that under the conditions stated
tudesr, t, r’, andt’. The arms going out from the beam- above, all other tunneling processes could be neglected. Pro-
splitter are connected to normal electron reservAiendB. cess | creates the wanted EPR pair, a spin-singlet state with
We first concentrate on a description of the entangler, thé¢he two electrons spatially separated. However, in an experi-
superconductor—quantum dot part of the structure in Fig. Iment, one canndat priori exclude the second, unwanted pro-
investigated in great detail in Ref. 33. The entangler was alsoess Il. One thus has to investigate process Il as well, to
recently examined within a density matrix approd€fhe  provide criteria for an unambiguous experimental identifica-
role of the beamsplitter is discussed further below, after dion of emission of EPR pairs.
discussion of the quantum state emitted by the entangler. To Process I, with the two electrons tunneling through differ-
simplify our presentation, we carry over the notation froment dots, is suppressed below the single-particle tunneling
Ref. 33 when nothing else is stated. probability squared, since the two electrons have to leave the
An energy diagram of the superconductor—quantum dosuperconductor from two spatially separated points; i.e., ef-
normal lead part of the structure is shown in Fig. 2. A negafectively breaking up the Cooper pair. The tunneling ampli-
tive bias eV is applied to the normal reservoirs while the tude for a ballistic, three-dimensional supercond@ttsris
superconductor is grounded. The chemical potential of thé,xexp—d/¢)/(kesd), whered is the distance between the
superconductor is taken as a reference engegy,0, giving  superconductor-dot connection poinkgg the Fermi wave
the chemical potential of both normal reservoitga=ung ~ Number in the superconductor, agdthe superconducting
=pun=—€V. Each dot 1 and 2 contains a single, spin-coherence length. This amplitude is in general larger for
degenerate level in the energy range\-o eV, with ener-  lower dimensiondP and disorderet#** superconductors. An
giese; ande,, respectively. The level spacing in the dots isinvestigation of the dependenceAf on the geometry of the
assumed to be much larger than the applied bias, so that m@ntacts to the superconductor was performed in Refs. 44
other levels of the dots participate in the transport. The temand 45. We point out that ways to avoid the suppression due
perature is much lower than the applied kilast much larger  to pair breaking by means of additional dots have been dis-
than the Kondo temperatyre cussed in a similar context in Ref. 46. However, since more
The tunnel barriers between the dots and the supercomtots complicate the calculation as well as the experimental
ductor are much stronger than the tunnel barriers between thealization, we consider the simpler geometry in Fig. 1.
dots and the normal leads. As a consequence, the broadeningProcess II, with both electrons tunneling through the same
v of the levels in the dotgtaken the same for both dots dot, is suppressed by the Coulomb blockade in the dots, as
results entirely from the coupling to the normal leads. Thel/U. In addition, there is a process that avoids double occu-
voltage is applied such that the entire broadened resonancpancy of the dots, but instead requires a pair breaking, lead-
are well within the bias window; i.eeV-|gj|>y with j ing to suppression of the order A/ Together, this gives an
=1,2. Thequantum dots are in the Coulomb blockade re-amplitude By (1/U+1/A). The exact expression for the
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constantsA, and By in terms of tunnel amplitudes between 1

the dots and the superconductor and the dots and the leads W)y=|0)- > E i0|N><N|T(0)|0>- (4)
can be found in Ref. 33; for our purposes, these expressions NN
are not necessary. In the system under consideration, all relevant matrix

We point out that possible candidates for experimentaklement?® (N|T(0)|0) are analytic in the upper part of the
realization of the proposed system are the extensivelxomplex energy plane. As a consequence, in the integration
inVeStigated7 heterostructures with semiconductors Con'over energies of the individua' partic|e3|m>, the pole aris_
tacted to metallic superconducting electrodes. Electron transng from the denominatoiEy—i0 can be replaced by a
port through double dots in semiconductor systems haveyE,)-function, imposing a total energgy=0, equal to the
been recently been reviewétiwith an emphasis on experi- cpemical potential energy of the superconductor. This gives
mental advances. the wave function

IIl. THE WAVE FUNCTION OF THE SPIN-ENTANGLED |W) =0y - 2mi >, 8(En)|NXNIT(0)|0). (5)
ELECTRONS N

. ... It was shown in Ref. 33 that, under the conditions stated
To calculate the wave function of the electrons emitted

above and to lowest order in coupling between the supercon-
from the supercon_ductor—quar_ltum dot_entangler, we emploéﬂuctor and the dots, the operaibicreates from the vacuum
the fo.rmal scattering theaty with the L|ppman—$chW|pger |0) a two-electron spin-entangled state. As pointed out above,
equation expre;seq in terms of the transfer mm"'_‘at”x)- depending on the relation between the amplitutlgandB,,
The total Ham"m”'?” of the system can be written s the transport of the two electrons through the saprecess
=Hy+H+, where Hy is the Hamiltonian of the supercon-

II') or different(process ) dots dominates. Below, we con-
dugtor, the quantum dots, and the normal leads. The pertuE'ider, for simplicity, only the limiting cases, in which either |
bation Hy describes tunneling between the supercpnductoror [l 'is completely dominating; however, our analysis can
dots, anq Igads. The exact many-particle stit satisfies straightforwardly be extended to a situation in which they are
the Schrodinger equatiofE—H)|¥)=0. In the absence of a of comparable strength
perturbation,H;=0, the system is in the ground std@® '
=|0)40)p|0)y, with different chemical potentialgss=0, and A. Electrons tunneling through different dots
un=—€V. The perturbatiotH causes the electrons to tunnel
from the superconductor, via the quantum dots, to the normqb
leads.

We first consider process I, in which the amplitude for
nneling through different dots is much larger than the am-

. . li | th h th . Thi h -
We use the local nature of the tunneling perturbation an{ ftude to tunnel through the same dot 's creates the de

) i EPR pai local spin- I ir of el .
take the formal scattering approach to the problem. Accord—Ired pair, a nonlocal spin-entangled pair of electrons

. . / . The quantities in this limit are denoted with a “I.” The wave
N9 to_ this approach, the stdt@). can be obtained by solving function for two spin-entangled electrons at enerdiesand
the Lippman-Schwinger equation in Fock space, as

E,is

_ A 1
[¥) =10+ GOH|W), @ 1 E2 = [}, (Bt (E) - bf (£}, (E)]0), (©

where the retarded operatai}(E):[E—H0+i0]‘l gives a t .
state describing particles going out from the scattering re!Vhere the operatds,(E) creates an outgoingrom the dots

gion. Note that the total energy of the ground stéiteis E towards the beamsplitteelectron plar_we wave with spiar

=0. The formal solution of Eq(1) can be written as =1, 1 and momentunk(E) =kg +E/%v in the normal lead
=1,2. Here, k: andvg are the Fermi wave number and ve-
locity, respectively, the same for both normal leads. The am-
plitude for this process was found in Ref. 33 to have a
double-resonant form

W) =0y + G(0)T(0)|0), 2

where

) iAgyl(my2

~ (E1,E5[T(0)[0), = — (m2) . . (7
T(E) = Hy + Hy >, [G(E)Hq]" 3) (Ey +e1=i9/2)(Ep+ 2= 17/2)
n=t With this, we are able to obtain the asymptotics of the out-

is the T-matrix. One then inserts a complete set of many—.gomg spin-entangled state. To do so we substitute (0.

body states 1E\|N)XN| with |N) the eigenbasis of the into Eq.(5) and find

HamiltonianH,; i.e., the basis of Fock states of electrons and |w,) = |0)

guasiparticles in the leads, dots, and superconductor, respec- oV

tively. The quantum numbeX collectively denotes the ener- T By pl T

gies, spins, lead and dot indices, etc., of the individual par- * f_evdENE)[blT(E)bzl( B~ by, By E)]|O>'
ticles. The eigenenergy of the stdh® (i.e., the total energy

of the individual particlegis Ey. This gives an expression

for the state with

(8
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Agy a stationary scattering state, does not describe wave packets
AE) = (E+e,-i1y/2)(-E+s —i‘y/Z); 9 in the traditional sense with two electrons moving out from
— ! 2 the dots as time passéas a solution to the time-independent
i.e., A(E)=(-imy2)(E,-E[T(0)|0),. This state is the sum of many-particle Schrédinger equatiof?,) has a trivial time
the unperturbed ground state and an entangled, two-electrefependence To obtain such a wave function, one must
state. The entangled state is a linear superposition of spipreak time translation invariance by introducing a time-
singlets at different energies, an entangled two-particle wavgependent perturbation; e.g., a variation of the tunnel barrier
packet. The singlet spin state results from the singlet state Gfrength or dot-level energies in time.
the Cooper pair, conserved in the tunneling from the super- | this context, it is worthwhile mentioning that such a
conductor. Moreover, the two electrons in each singlet haV@ime-dependent wave function was recently considered by
opposite energiek and £ (counted fromus=0), a conse- Hy and Das Sarnfa for a double-dot turnstile entangler.
quence of the Cooper pairs having zero total energy wittHowever, in Ref. 50, the entangled wave function was not
respect to the chemical potential of the superconductor.  derived from a microscopic calculation, but merely postu-
Several important observations can be made regarding thgted. The wave function had an amplitude of order ugity
state in Eq.(8). First, the properties, including the two- tynneling limit) and contained a double integral over energy.
particle wave-packet structure, can be clearly seen by writingrhis is different from our wave function in Eq8) and,
the wave function in first quantization. Introducing,E)  moreover, gives rise to a qualitatively different result for the
1) for bi'(E)|0), the properly symmetrized wave function currents as well as the current correlators studied below.

is given by(omitting the ground statf)) Second, the entangled state in E§) has just the same
ev form as the pair-splitted state obtained in the normal-
|\If,>:J dEAE)(|1,B),[2,-E),+[2,-E),|1,E),) superconducting system of Ref. 15, where a scattering ap-
-eV proach based on the Bogoliubov—de Gennes equation was
® (|T>,,L|ly> _ |l>,L|T>V) (10) used. This shows rigorously that the effect of the strong Cou-

lomb blockade, prohibiting two electrons to tunnel through
with u,v the particle indices. The coordinate-dependenthe same dot, can be incorporated in a scattering formalism
wave function¥(x,,,x,)=(x,,x,|¥) can then be written by putting the amplitude for Andreev reflection back into the

(x=0 at the lead-dot connection points same dot to zero. From this observation, it follows that the
_ 102 223V (h ol Lt rest of the calculation in the paper where the state in(8q.
¥y(x,x,) = 'f/’(xwxv)()‘u)‘v“L )\M)\V)(XMXV XMXV) is employed could in principle be carried out strictly within

(11)  the scattering approathto the Bogoliubov—de Gennes
equation. However, in such a calculation the entanglement is

with not directly visible, which makes the interpretation of the
_ 2miyAy result difficult. Instead, below, we work directly with the
X, X,) = 201y state in Eq(8).

) ) . Third, it is also interesting to note the close connection
xexike(x, +x,) —i(e —i¥2)|x, = x,|/five], between the emission of a Cooper pair and the process of
(12) spontaneous, parametric down-converiaf pairs of pho-
o . ) . tons investigated in optics, in which a single photon from a
where, for simplicity, the case with energies=s,=¢ IS pump laser is split in a nonlinear crystal into two photons.
considered. To arrive at Eq11), we first introduced the From the point of view of the theoretical approach, expand-
wave functiongx | E)=exdik(E)x], I =4, v, the spin spinors  ing the outgoing state in a ground state and, to first order in
x| 1)=x{, (x| 1)=xi, and the orbital spinorgx|1)=\{,  perturbation, an emitted pair of particles, is similar to the
(x|2)=\?, and then performed the integral over energy. Thework in, e.g., Ref. 53. The resulting std&q. (8)], is a spin
orbital spinors describe the wave function in the spacesinglet, while a state with polarization entanglement is, under
formed by the lead indices 1 and 2, a pseudo spin space, appropriate conditions, produced in the down-conversion
discussed in Ref. 15. We note that the beamsplitter, discussguiocess(type Il). Moreover, the emission of the two elec-
below, only act in the orbital 12-spa¢iee., spin-independent trons is “spontaneous;” i.e., random and uncorrelated in time,
scattering. Moreover, it is the property of the state in 12- in the same way as for the down-converted photons. One can
space that determines the current correlators discussed balso point out the perhaps less obvious relation that the two
low. electrons emitted from the superconductor carry information
As is clear from Eq(11), the state is a direct product state about the phase of the superconducting condensate, just as
between the spin and orbital parts of the wave function. Théhe two photons carry information of the phase of the field of
spin state is anti-symmetric under exchange of the two eledhe pump laser. A coherent superposition of states of pairs of
trons, a singlet, while the orbital state is symmetric, a triplet.electrons emitted from different points of the superconductor,
The probability to jointly detect one electronygtin lead 1 can give rise to observables sensitive to the difference in
and one ak, in lead 2 decays exponentially with the distancesuperconducting phase between the two emission points, as
Ix,—x,|, an effect of the two electrons being emitted at es-was demonstrated in Ref. 15. This has its analog in the pho-
sentially the same timéseparated by a small time/A) to  tonic experiment with a single, coherent laser pumping two
pointsx, =0 andx, =0, respectively. Note that the sta®®),  separate nonlinear crystals, presented in Ref. 54.
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B. Electrons tunneling through the same dot IV. CURRENT CORRELATORS

We now turn to process I, in which the amplitude for e o electrons emitted from the dot-superconductor
tunneling through the same dot is much larger than the amspangler propagate in the leads 1 and 2 towards the normal
plitude to tunnel through different dots. The wave function aqenoirsA andB. As shown in Fig. 1, the two normal leads
for two electrons to tunnel to energigs andE; in leadj is 516 crossed in a single-mode reflectionless beamsplitter. The

1 beamsplitter is characterized by a spin- and energy-
[Ey,Eohy = TE[b}(El)bL(Ez) - b, (Ey)bf,(E>) ]|0). independent unitary scattering matrix connecting outgoing
v and ingoing operators as
(13

The amplitude for this procesés;, E,[T(0)|0),, was found (bA> = (r t, )(bl), (17)
in Ref. 33 to have a single resonant form, different from Eq. bg t r'/\b,

(7). given by where the subscriptd andB denote towards what reservoir

iBg the electron is propagating. The electrons are then detected in
(E1, E[T(0)[0)y = 772\5 the normal reservoiré andB.
‘ We point out that beamsplitters completely without back-
><< 1 + 1 ) scattering are not easily produced experimentally. Qualita-
Exte—iy/2 Ep+e—iy2 ) tively, electrons backscattering from the .beamspl.itter will be
(14) reflected from the quantum dots with unit probabiliiy the
tunnel limit considered and propagate towards the beam-
Here, for simplicity, the two dot—superconductor contacts aresplitter again. Due to the resonant character of the scattering
taken to be identical. Since the superconductor is a macrat the dots, the electrons will, however, pick up energy-
scopically coherent object, the total state is a linear combidependent phases. This additional energy dependence of the
nation of the states corresponding to two electrons tunnelingcattering amplitudes might modify the transport properties
through dot 1 and dot 2. To obtain the asymptotics of theconsiderably. It should be emphasized that this effect of
outgoing spin-entangled state, we substitute(E4) into Eq.  backscattering is generic for dot-entangler beamsplitter sys-
(5) and find tems. It is therefore preferable in an experimental setup to try
Ry to minimize the backscattering at the beamsplitter.
W)= |o>+f dE[Bl(E)bJ{T(E)bL(— E) ~In p.rinciple, backscattering can be incorpora}ted qgantita—
—eV tively in our model; however, to keep the discussion as
simple as possible, we consider only the reflectionless beam-
+BZ(E)b§T(E)b£i(_ E)]' (15 splitter. Several aspects of backscattering from the beam-
with splitter were recently investigated by Burkard and L¥ss,
. extending the model in Ref. 30. However, in Ref. 40, an
Bo(e; ~1%/2) (16)  isolated beamsplitter, not coupled to a specific entangler, was
(E+ej—iy/2)(~E+g—iy2)’ considered, and thus the problem with further scattering from

ie., Bj(E)=(-in2\2)(E,~E[T(0)|0),. Arriving at Eq. (15, "€ entangler was not addressed.

. . : We also note that phases due to propagation can be in-
we qsed the proper@( E)_B(E) and the anti-commutation cluded in the scattering amplitudes of the beamsplitter. In the
relations of the fermionic operators.

Thi . i o £ th ¢ typical system of interest, with a lateral sitein the mi-

electrgnzt?lﬁAzlﬁlglqﬁrzguzlﬁlp&rg?sixg doottCeorsrzzgerisngoiot\;vﬁgrometer range, the energy dependent part of the phase
. ‘ . =~Lylh icked up by the electrons when propagating in

state|V¥,) in Eq. (11) for the two electrons tunneling through AR ied bropagating

. . the leads is negligibly small. The energy-independent part
different dots, we can mgke the follqwmg com.me!ot}:.]_ust enter the results in the same way as an Aharanov-Bohm
as |¥,), the wave function¥,) in first quantization is a

quct of bital and . functi Th . phase or a superconducting phase difference, further dis-
product ot an orbital and a spin Wa¥el un? '?n' € SPINcyssed below in connection to the treatment of tunneling
wave function is, as fof¥,), a singlety, x, = x,X,- The or-

bital function for the simol e ens e is h through the same dot.
ltal wave function for the simplest situatieg=e¢, is, how- The properties of the electrons emitted by the entangler
ever, proportional tov, A, +A5\7, one of the Bell states, an

. N _ are investigated via the current and the zero-frequency cur-
orbitally entangled statdii) The state|¥,) is the same as ot correlators. The electrical current operator in leais

would be obtained within scattering theqas was shown in given by®
Ref. 15, taking B|(E) to be the effective Andreev reflection

B;(E) =

amplitude at dofj and assuming no crossed Andreev reflec- - e . )
tion between the dots; i.e., zero probability for an incident Ia:HJdEdEe'(E‘E Yun
electron in lead 1 to be backreflected as a hole in lead 2 and
vice versa. % t N 4t '
With the state in Eq(15) and the state for two electrons UE (b2 (E00s(E7) = 20, (B2 (E)]. - (19
tunneling through different dots, in E¢8), we are in a po-
sition to analyze the transport properties. Whereafw(E) creates an electron plane wave incoming from
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the normal reservoie with spin o=7,] and momentum S=Sg+Shat Siat Sp=4e(ly+15), (25)
k(E). The averaged current is given by
. describing an uncorrelated emission of pairs of electrons.
lo={la), (19 This result, an effect of the tunneling limit, is different from
the one in Ref. 30, where an entangled state with unity am-
plitude was considered and the total noise was found to be
zero.
- . - - Itis clear from the calculation that the second term in Egs.
Sup= f dt(Al () Al 4(0) + Al 5(0)Al (1)), (200 (23) and(24) depends directly on the symmetry properties of
the orbital wave function, and thus, due to the anti-symmetry
whereAl (t)=1,(t) -1, is the fluctuating part of the current of the total wave function, indirectly on the symmetry prop-
in lead . We study the two cases with electrons tunnelingerties of the spin wave function. For a spin-triplet statg),

where(---y=(|---|¥). The zero-frequency correlations be-
tween the currents in the leadsand 8 are

through different dots and the same dot separately. the last term in Eq923) and(24) would have opposite signs.
Since all the three possible triplets, with spin wave functions
Tolaeybot Tt Lol i i
V. TUNNELING THROUGH DIFFERENT DOTS X, XoF X, X XuXy @nd x, x, have the same anti-symmetric

For electrons tunneling through different dots, the ques®rbital wave function\, A5~ NN, for e1=¢,) they give rise
tion is how the degree of spin-singlet entanglement is ref0 the same noise correlators. As a consequence, performing
flected in the current and current correlators. The average@ NCiS€ correlation measurement, one can only distinguish
current, evaluated with the stalté,) in Eq. (8), becomes betweenTsplm slln%]lets and spin trlple'%s,Tbutl n?t bgtwgen en-

w tangled?(#xy+xﬂ)<y and nonentanglle;stﬂ)(y, XXy, Spin trip- .
| = 2e dEAE)]? (21) !ets. Th'IS was pplnted _out already in Ref.' 30. We note th_at it
“h )y ' is possible to distinguish between the different triplets in a
more advanced beamsplitter scheme, using controlled single
which is the same fou=A andB. Since the two resonances spin rotations via, e.g, a local Rashba interactbSuch a
e, and g, are well within the voltage rangé.e., eV-|e4|,  scheme is straightforwardly included into our theoretical
eV-|g; > v), we get the current treatment. However, it demands a more involved experimen-
2e  AnlAfy _tal setup r_;md is therefore not cons_idered here; we restrict our
| = ——, (22) investigation to the simplest possible system.
“ hg+e)i+y To investigate the properties of the current correlators in

just the same expression as in Ref. 33, where the leads of tlzfta"' the remaining integral over energy in E¢83) and

entangler were contacted directly to the normal reservoir 4) is carried out, giving
(no beamsplitter The current is maximal for an asymmetric 5
setting of the resonances =-&,. This two-particle reso- deA(E)A*(— E)= 4 Ag*y? '
nance reflects the fact that the two electrons in the Cooper [(e1- €)%+ Y[ (&1 + )%+ V]
pairs are emitted at opposite energies with respect to the (26)
superconducting chemical potential. The current contains no
information about the entanglement of the emitted state. Irhis shows that, unlike the current, the noise is sensitive to
fact, the same current would be obtained by considering @oth the difference and the sum of the dot energy levels. We
product state of one e!ectron in lead 1 and one in lead 2,0te that the integral oA(E)A*(—E) is manifestly positive
independent of their spins. and smaller than the integral p&(E)|? for all &, &, except

To obtain information about the entanglement, we turn to,, £,=8,, when they are equal.

the current correlators. Inserting the expression for the state From these observations. we can draw several conclusions
|¥)) into Eq.(20), following Ref. 55, we get the expressions 54 compare our results to the results in Ref. 30.

for the auto-correlations (i) The second term in Eq$23) and(24), dependent on
ae? (v the orbital symmetry of the wave function, leads to a sup-
SAA: §BB: —f dE{[1 + 2RT]|A(E)|? pression of the cross-correlation, but to an enhancement of
hJoev the auto-correlation. This is an effect of the bunching behav-
+ 2RTAE)A* (- E)} (23) ior of the spin '_s_inglet; ie., th_e two electrons show an i_n-
creased probability to end up in the same normal resetVoir.
as well as the cross-correlations For a symmetric beamspliteR=T=1/2 andaligned dot
462 (& IeveIs;lzez, the cross—cqryelation; are zg(to thelleadi_ng
Sag=Sha= —f de{[ T2+ R?]|A(E)? order in tunneling probability considered herehis is a sig-
h J_ev nature of perfect bunching of the two electrons.

(i) The last term in Eq923) and(24) is proportional to
~2RTABA* (- B)}, 29 ihe spectral overlagdEAE)A*(-E). The spectral overlap
whereR=|r|2=|r’|> and T=|t|?=|t'|>=1-R. We note that the physically corresponds to the overlap between the wave
total noiseS of the current flowing out of the superconductor functions of the two electrons colliding in the beamsplitter.
is twice the Poissonian, i.e., For single-particle levels at different energies+ ¢,, the
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|T,E) |¥.-E) they are indistinguishable and their amplitudes must be
1 \/ A 1 4  added. This gives together the energy-dependent joint
detection  probability ~|tt’ A(E)+rr’'A(-E)[2=T?|A(E)|
+ + RIA(-E)|2 + rr't*t'* A(E)A* (-E) + r*r'*tt' A(-E)A* (E).
|J"_E) |T’E) Analogously to the noise correlators for the entangler with
/\ B 2 B energy-independent tunneling probabilities in Ref. 15, it is
found that the noise correla\t&AB is simply proportional to
(a) (b) the integral over energy of the joint detection probability.
Using that the integral in Eq24) goes from €V to eV and
that the unitarity of the scattering matrix in EGL7) gives
rt*+t'r’'*=0, we get the expression in the integrand in Eq.

FIG. 4. Elementary scattering procesgeshown at the beam-
splitten) contributing to the cross-correlatc@B. The two processes
(a) and(b) transport a pair of electror}$ ,E) and|| ,—E) from the (24)
superconductor to the reservoifs and B, respectively. The two )

processes, having the same initial and final state, are indistinguish- For the_ _a_uto-correlatlon,_a similar |r_1terpretat|0n in term_s
able and their amplitudes must be added. The correlgligris of probabilities for two-particle scattering processes only is

proportional to the integral over energy of ttenergy-dependent no.t.possmle, one als_o has to ConSIdgr single-particle F’mb'
joint detection probability. abilities. Formally, this is the case since auto-correlations

contain exchange effects between the two particles scattering
spectral amplitudes of the emitted electrons are centered ¢o the same reservoir.
different energies and, consequeriflghe Pauli principle re-
sponsible for the bunching is less efficient.

It is important to note that the last term in E¢&3) and
(24), dependent on the bunching, generally is of the same A quantitative analysis of the current correlators is most
magnitude as the first term. We emphasize that this result isaturally _performed via the Fano factorsF,z
qualitatively different from what was found in Ref. 30, :SaB/(Ze\f'lalﬂ). The Fano factor isolates the dependence of
where the bunching-dependent part of the current correlatahe noise on various parameters, not already present in the
was proportional to a Kronecker delta-function in energy, acurrent. For the cross- and auto-correlations, respectively, we
consequence of considering a discrete spectrum. Our resiiave
clearly shows that it should be experimentally feasible to | | ) )
detect the bunching, and thus demonstrate that spin singlets Fag=Fga=T?+R2-2RTH(e; -~ &))| (27
are emitted from the entangler. We note that the same qualig,4
tative result was found in Ref. 50.

(i) The cross-correlations are positive for any transpar- Fia=Fgg=1+2RT+2RTH(e, - &,)?, (29)
ency of the beamsplitter@ote thatR?+T?=2RT). This is

A. Fano factors

different from the result in Ref. 30, where negative cross-Where

correlations were predicted. The negative correlations are iy

again a result of the unity amplitude of the incoming en- H(e; - &) :m- (29
1782

tangled state considered in Ref. 30. In this context, we point
out that positive cross-correlations have been predicted iliVe note that only the last terms in Eq27) and(28) depend
several few-mod® and many-mod¥ normal- on the energies; and s, of the levels in the dots. In line
superconductor hybrid systems as well as purely normal syswith the discussion of the current correlations above, we
tems in the presence of interacticisin several of these point out that this energy dependence is qualitatively differ-
cases, the positive correlations were explained with semient from a Kronecker delta-function in energy, found in Ref.
classical models. Thus, the presence of positive correlation80 as a consequence of considering a discrete spectrum.
cannot itself be taken as a sign of spin entanglement. The Fano factor as a function of energy differenge
We point out that the expression for the energy-dependent e, is plotted for several values of transparency of the beam-
integrand of the cross-correlators in Eg4) can be under- splitter in Fig. 5. For the cross-correlators, the Fano factor
stood in an intuitive way, by considering the elementary scathas a minimum for the two resonant levels alignegs ..
tering processes contributing to the noise, shown in Fig. 4. The value at this minimum decreases monotonically from 1
Let us consider the probability for the two electrons emit-to 0 when increasing the transparericpf the beamsplitters
ted from the superconductor to end up, one with spin up anétfom 0 to 0.5(the Fano factor for transmission probabiliy
energyE in reservoirA and the other with spin down and is the same as for 1P. Thus, for a completely symmetric
energy E in reservoirB. There are two paths the electrons beamsplitte(T=R=0.5), the Fano factor is zero. This corre-
can take from the superconductor to the reserv@asthe  sponds to the case of perfect bunching. For the auto-
electron with spin up and enerdyvia dot 1 and the electron correlators, the picture is the opposite. The Fano factor has a
with spin down and energyE-via dot 2, this process having maximum for the two resonances aligneg=e,. The value
an amplitudett’ A(E); (b) the electron with spin down and at this maximum increases monotonically from 1 to 2 when
energy E via dot 1 and the electron with spin up and energyincreasing the transparendyof the beamsplitters from 0 to
E via dot 2, this process having an amplitudg A(-E). 0.5. Thus, for a symmetric beamsplittéF=R=0.5), the
Since the two processes have the same initial and final statdsano factor is now 2.
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[H(e1-e5)[? = (2pss= DIH(e1-5) 2. (30)

The renormalization factor is thus the singlet weight minus
the total trlplet Weight,pss_ (pTOTO+pT+T++pT,T,)ZZPSS_1'
This clearly displays how decoherence, reducing the singlet
weight and consequently increasing the triplet weight, leads
to a crossover aps=1/2 from a bunching to an anti-
bunching behavior of the noise correlators. For a completely
dephased spin state, with an equal mixture of singlets and
triplets (pss=pr,r,=pr,7,=pr 7. =1/4), the renormalization
factor 20551 saturates at the value -1/2.

We point out that this discussion might be modified when
considering other types of effects causing decoherence, such

FIG. 5. The Fano factor for the cross-correlatithg=Fg, (left ~ as, e.g., inelastic scattering. A more detailed investigation
pane) and auto-correlationBaa=Fgg (right pane) as a function of ~ (see, e.g., Refs. 59going beyond the scope of the paper, is
the normalized energy differenée;—&,)/y for various beamsplit- needed to address these issues.
ter transparencies.

42 0 2 4 !
(e

4 2 0
(€€ )Y

B. Decoherence C. Spin-entanglement bound

In the absence of spin decoherence, the spin state of the

Considering the robustness of the bunching behavior, agmitted pair is a singlet, a maximally entangled state. For
important observation is that the Fano factors in E@8)  finite spin decoherence, this is no longer the case, and the
and (27) [as well as the noise correlators in E¢83) and  question arises as to how to obtain quantitative information
(24)] depend only on the respective transmission and reflecabout the spin entanglement from the measurements of the
tion probabilitiesT andR. All information about the scatter- current correlators.
ing phases, from the beamsplitter as well as from the propa- We stress that our interest here is the spin entanglement of
gation in the leads, drops out. As a consequence, thg only. However,p contains information about the spin part
correlators are insensitive to dephasing of the orbital part opf the state as well as the energy-dependent orbital part, the
the wave function; i.e., processes that cause slow and energyave-packet structure of the emitted pair of electrons. To
independent fluctuations of the scattering phases. This insequantify the spin entanglement, one thus has to consider a
sitivity, ~different from schemes based on orbital measurement sensitive to the spin partpobnly (see the
entanglement??-232’can be understood by considering the Appendiy. One such important example is the cross-
first quantized versiorfiin Eq. (11)] of the wave function correlators between the currents in the leads 1 anide2
|¥). Any orbital phase picked up by an electron in, e.g., leadyithout beamsplittens It was shown in a related system in
1, just gives rise to an overall phase factor of the total orbitaRef. 15 that these cross-correlators are simply proportional to
wave function, since each term in the wave function correthe probability to jointly detect one particle in lead 1 and one
sponds to one electron in lead 1 and one in lead 2. Moreovefp 2. The wave-packet property of the emitted pair results
any orbital “pseudo spin flip” would imply a scattering of only in an overall constant multiplying the probabilities. As a
particles between the leads 1 and 2 and is not allowed in theonsequence, a Bell Inequality, derived in terms of the joint
nonlocal geometry. detection probabilities, could be formulated in terms of zero-

The situation is different for spin decoherence, energyfrequency cross-correlators. In the same way, for the
independent spin-flip, or spin-dephasing processes tending tuperconductor-dot entangler considered here, the spin en-
randomize the spin directions. Keeping the discussion comanglement of the two emitted electrons can in principle be
pletely general, in the sense that we do not consider anjested via a Bell Inequality formulated in terms spin current
specific microscopic mechanism of the spin dephasing, spigorrelators:® The situation is different for the beamsplitter
decoherence modifies the Fano factors in Eg%) and(28). setup, in which the Fano factors in Eq&7) and (28) in
Formally, the(mixed) state in the presence of decoherence isgeneral depend on the wave-packet structure via the dot-
described by a density matrjx Writing p in a spin singlet-  |evel-dependent factdH(e,—¢,)|?, quantifying the overlap
triplet basis, as shown in the Appendix, only the diagonalf the two electrons when colliding. However, fef=s,
elementspss (singled and pr 7., pr,7,, pr1_ (triplets) con-  [je. maximal overlap|H(0)[2=1] the Fano factors are inde-
tribute to the current correlators. As discussed above, all thpendent of the wave-packet structure of the emitted electrons
three spin triplets give rise to the same Fano factors. Thand are thus only sensitive to the spin partpofsee Eq.
spin-triplet Fano factors are given by the spin-singlet ones in30)].
Egs. (27) and (28) by changing the sign of the last term  The spin part ofp can be described by thex4 spin
2RTIH(g1-£,)[% i.e., from bunching to anti-bunching. Using density matrixp,, rigorously defined in the Appendignote
that the sum of the diagonal elements of the density matrix ishat p, due to the continuous energy variable, is infinitely
1 (i.e., psstpryr,tpr,1,tpr.1_=1), the effect of spin deco- dimensional. Formally, p, is the density matrix obtained
herence is to renormalize only the part of the Fano factorsvhen tracingp, for aligned dot levelg,=¢,, over energies.
dependent on the dot-level energies as The question is thus how to determine the entanglement of
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p- In general, knowledge of all the matrix elements is 2e (&Y

needed. This information, however cannot be obtained A= N dE[R[B4(E)|? + T|BL(E)[?],

within our approach, since the Fano factors only provide ev

information about the spin-singlet weight, as is clear from oy (32
Eq. (30). It is nevertheless possible, as described in detail in n_2e 2 2

the Appendix, to follow the ideas of Burkard and L#sand s = h _eVdE[T|Bl(E)| +RIBB)].

obtain a lower bound for the spin entanglement.

There are several different measures of entanglement faince the two resonances ande, are well within the volt-
the mixed state of two coupled spin-1/2 systems. Here, wage rangdi.e., eV—-|e,|, eV-|e,| > ), we can perform the
consider the concurren®C, with C=0 (C=1) for an unen- integrals and get the curréft
tangled(maximally entangledstate. To establish the lower
bound, it can be shown that the concurrefip,) is always
larger than or equal to the concurrer@g@,) of the so-called
Werner staté! described by the density matrip,. The
Werner state, defined as the averagepbver identical and ~Which is the same for both reservoisis=A,B. We note that
local random rotations, has the same singlet wejghasp,. the two-particle resonance in the current, present in the pair-
The concurrence of the Werner state has the appealing propplitting case 1, is absent due to the Coulomb blockade, as
erty that it is a function of the spin-singlet weight onlg,,  Pointed out in Ref. 33. A difference from Ref. 33 is, how-
=max2pss 1,0} ever, that due to the absence of backscattering at the beam-

The findings above thus lead to the simple and importangPlitter, there is no scattering-phase dependence of the cur-
result that the renormalization, E€R0), of the Fano factors rent. Consequently, there is no dependence on a possible

in Egs.(27) and(28) due to spin decoherence can be writtendifference in the superconducting phase at the two emission
as(for Cy,>0) points or an Aharonov-Bohm ph&delue to a magnetic flux

in the area between the superconductor, the dots, and the
beamsplitter. It should be pointed out that this is not a ge-
neric result for normal-superconducting systems. In a situa-
i ) tion with backscattering, which is inevitable in, e.g., the
whereCy, thus provides a lower bound for the spin entangle-thee_terminal forklike geometries, Andreev interferometers,
ment of the emitted pair of electrorjor the pure singlet  gy,qieq extensively in both diffusif®and ballistié* conduc-
pss=1, Cw andClp,) are equal and maximplThus, as Iong 45 the current is indeed sensitive to a superconducting
as the Fano factors display a bunching behavior, the spinase difference as well as the Aharonov-Bohm phase.
entanglement is finitgCy,>0). For a crossover to anti- * Regarding the spin entanglement, just as for process I, no
bunching behaviorC,,=0 and one can no longer conclude jnformation is provided by the averaged current. The same
anything about the entanglement of the spin state. The valugsult would have been obtained considering an incoherent
of Cyy can be extracted directly from the experimentally de-syperposition of two electrons in lead 1 and two in lead 2,
termined Fano factors, as the amplitude of the modulation ofygependent of spin state. Turning to the current correlators,

the Fano factors with respect to dot-level amplitudgse,  inserting the expression for the statie,) into Eq.(20), one

independently from the Fano factors at dot levels such thai

2e
"= FW|BO|2/7, (33

[H(e1 = &5)[> — CylH(e1 - &2) %, (31

H(ey—&,)=0. | 4ef ) )
The result in Eq(31) thus provides a simple relation be- AT T J dE{R(1 +R)|By(E)|?+ T(1 +T)[B,(E)|

tween the Fano factors and the minimum spin entanglement

Cw. It is clear, however, that since the Fano factors only + 2R (r*t')?By(E)B,(E) ]},

provide information about the singlet weight, full informa- (34)

tion about the spin entanglement cannot be obtained by the | 4e? 5 5
beamsplitter approach employed here. It should be noted that Sss= Y f dE{T(1 +T)|By(E)|?+ R(1 +R)[B,(E)|
the result in Eq.(31) is quantitatively different from what

was obtained in Ref. 40, a consequence of the different states + 2Re[(r*t’)28*1(E)Bz(E)]}
considered for the emitted electrons, as discussed above in ]
connection with the current correlators. with Re[---] denoting the real part, as well as the cross-

correlations

4¢?
Sre=Sea= f dE{RT|BLE)P + [BAE)F]
We now turn to the situation in which the two electrons

tunnel through the same dot. To be able to distinguish this - 2Rq (r*t')?B}(E)B,(E) |}. (35)
process Il from process |, it is important to study the current

as well as the noise in detail. The averaged current in EqThe integrals ovelB;(E)|* were carried out aboviEq. (33)].
(19), evaluated with the state in E(L5), becomes for reser- Performing the integral oveBl(E)B*z(—E) in the limit eV
voirs A and B, —|eq|,eV-|e,| >, we get

VI. TUNNELING THROUGH THE SAME DOT
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. iB 2 0.5
JdEBl(E)BZ(E)=LO|_. (36)
€~ € tly 0.4
The expressions for the correlators above yield that the tota

noiseS' of the current flowing out of the superconductors is i 0.3

S'=Sig+ Shat Siat Sip=4e(lx +15), (37) u?o.z
twice the Poissonian, describing, just as in case |, an uncor
related emission of pairs of electrons. 0.1
We note that, in contrast to the current and the transport \ /
properties in case |, in which the two electrons tunnel O — >3 ¢ 2 4 —>510 >
through different dots, the noise contains information about (&)Y (&, &)lY
the scattering phasewia r*t’). Quite generally, one can
write FIG. 6. The Fano factor for the cross-correlati¢ig=Fga for
phase differenceb=0 (left pane) ¢==/2 (right pane) and as a
(r*t’)2 =RTé?, (38) function of the normalized energy differeneg —¢,)/ y for various

. . . . beamsplitter transparencies.
where ¢ is a scattering phase of the beamsplitter. Scattering

phases picked up during propagation in the leads simply add

to ¢. As a consequence) can be modulated by, e.g., an . i ;
electrostatic gate changing the length of the lead 1 or 2 or b ross-correlations shows a dip for allgned resonant levels. At
=0, the Fano factor is zero, independent of the beam-

an Aharonov-Bohm flux threading the region between the’l £2~ F .
dots, the superconductor and the beamsplitter. An importar'f‘tpIItter trqn_sparency. T.h's is a signature of perfect bunch-
consequence of this phase dependence of the current correl39- For finite phta_se _d|ffe_renc¢7:]0, _the Fanlg factor: be-d
tors is that it can be used to distinguish between tunneling®M€S asym_meﬂr:c &1~ &2, ﬁ_ﬁov(\jnng af ano-shape
via process Il and between process I, since the current cor gsonance, wi € minimum shitted away iref=e;.

elators of the latter show no phase dependence. This was The Fanodf_actor foﬁ ;he all_Jto-cdorreIanon?,ltm:IO, showr? 5
pointed out in Ref. 33. a corresponding peak for aligned resonant levels, reaching

fgr g1=g,. For finite phase difference +# 0, the Fano factor

This phase dependence shows that the correlators in Eob. i h th ) F tactor shifted
(34) and(35) are sensitive to dephasing affecting the orbital \?V(;(;n;reosma:y_rr‘lame fic, wi € maximum Fano factor shitte
1—¢2:

art of the wave function. For complete dephasing, the las? . . .
P b P g We point out that, similar to case I, the integrand of the

term in Egs.(34) and (35) is suppressed. The orbital en- 2 .
tanglement in Eq(15), the linear superposition of states cor- cross—co_rrelators can be understood by conS|der|ng'the_baS|c
' S‘two-partlcle scattering processes. They are shown in Fig. 8;

responding to tunneling through dots 1 and 2, is lost. Thi h | lanation is al h f ¢
sensitivity to orbital dephasing is different from the one for € general explanation IS along the same finé as for process
4. discussed above.

process | discussed above. However, again in contrast to pr
cess |, the current correlators are insensitive to spin dephas-

ing. This can be understood by considering the first quan- VII. DISCUSSION AND CONCLUSIONS

tized wave function|¥,), discussed following Eq(16), ) ) . )

keeping in mind that the wave function is a direct product of " conclusion, we have investigated the spin entanglement
a spin part and an orbital part. The spin wave function is 4" the superconductor-quantum dot system proposed by Re-

Singbt,x,txi*xixfﬂ but the orbital wave function is a com- Ccher. Sukhorukov, and Lo$3.Using a formal scattering

bination of triplets A\, +\2)\? for &,=&,. Since no scatter-

ing between the leads is possilglee., no pseudo spin flip 2
orbital dephasing cannot change the triplet character of the
orbital wave function and, as a result, the spin wave function 1.9}
is bound to be a singlet. Thus, the spin entanglemen¥jn

For zero phase differencg=0, the Fano factor for the

is protected against decoherence. i 18
Turning to the Fano factor, the auto- and cross- =

correlations are 17

Fia=Fla=1+T24 R+ RTRAEH(es-59)] (39 16
and el

I Il i L3 2. 9.2
Fag=Fpa=2RT-2RTRd€?H(e; - ,)],  (40) R ATY

respectively, wheréi(z,-¢5) is given in Eq.(29). FIG. 7. The Fano factor for the auto-correlatidfg,=Fgg for

The Fano factor as a function of energy differenge  phase differencep=0 (left pane) ¢=/2 (right pane) and as a
—¢g, is plotted in Figs. 6 and 7 for several values of thefunction of the normalized energy differeneg —«,)/ y for various
transparency of the beamsplitter. beamsplitter transparencies.
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|T,E) relators were found to be dependent on the scattering phases,
1 A 1 A providing a way to distinguish between the two tunneling
+ |4,-E) processes by modulating the phase.
|V.-£)
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FIG. 8. Elementary scattering procesgshown at the beam- . B
y "9 P Senow tronic Properties.

splitten) contributing to the cross-correlatcﬁB. The two processes
(a) and(b) transport a pair of electror}$ ,E) and|| ,—E) from the
superconductor to the reservoisand B, respectively. APPENDIX

theory, we have calculated the wave function of the electrons |n the presence of spin decoherence, the state of the pair
emitted by the entangler and found that it is a superpositiorf electrons emitted through different dots can be described
of spin singlets at different energies: a two-particle wavepy a density matrixp, which can be written as
packet. Both the wave function for the two electrons tunnel- .
ing through different dots, creating the desired nonlocal EPR _ 2
pair, as well as the wave function for the two electrons tun- p= {f dEIACE) } 2 Paar f dEdE
neling through the same dot, were calculated. 4

The two electrons in the emitted pair collide in a beam- XAE)A*(E') W (E)X¥q (E')], (A1)
splitter before exiting into normal reservoirs. Due to the L . .
symmetrical orbital state, a consequence of the antin©ting that the normalization giveSqpq,=1. The indexq
symmetrical singlet spin state, the electrons tunnelingUnS_oOver the states in the singlet-triplet basig}
through different dots show a tendency to bunch. This 1S To, T+, -} i,
bunching can be detected via the current correlations. It was 1
found that the amount of bunching depends on the position  [W¢(E)) = —=[b},(E)b}, (- E) - b, (E)b}, (- E)][0),
of the single-particle levels in the dots as well as on the V2
scattering properties of the beamsplitter. Importantly, the
magnitude of the bunching-dependent term in the cross cor-
relations was found to be of the same order as the bunching-
independent term, implying that an experimental detection of
the bunching, and thus indirectly the spin-singlet entangle-
ment, is feasible.

The current correlators for electrons tunneling through
different dots were found to be insensitive to orbital dephas- Wy (E)) = b} (E)b), (- E)[0).
ing. Spin dephasing, on the contrary, tends to randomize the

spin state, leading to a mixed spin state with a finite fraction! N€ co€fficients,,, depend in general on the nature and the

of triplets. Since singlet and triplet spin states give rise to at€Ngth of the spin decoherence. As pointed out in the text,
bunching and anti-bunching behavior, respectively, wherPnly energy-mdepende_n'; spin decoherence is considered, and
colliding in the beamsplitter, strong dephasing will suppres$onsequently the coefficientg, are independent of energy.
the bunching behavior and will eventually cause a crossover |N€ current operators conserve the individual spins. As a
to anti-bunching. To quantify the entanglement in the presonsequence, the off-diagonal elementgafo not contrib-
ence of spin dephasing, we have derived an expression fojte to the_n0|se correlators. As discussed in _the text, aI_I trip-
the concurrence in terms of the Fano factors. In addition, vidSts contribute equally to the correlators. Since the singlet
the current correlations, it is not possible to distinguish bend triplet states contribute with opposite sign to the last
tween entangled and nonentangled spin-triplet states, sind8™ in Eqs(27) and(28), the effect of spin decoherence on
all triplets show the same bunching behavior. This implieshe Fanozfactors can be |ncozrporated by renormalizing
that the method of detecting spin entanglement via currerJf"(sl_gz)| —(2pss- 1)|.H(81‘82)| , with the renormaliza-
correlations in the beamsplitter geometry has a fundament&ion factor expressed in terms pgsonly (using psstpr;7,
limitation compared to the experimentally more involved *pr,1,*pr_1_=1), the weight of the singlet component in
Bell Inequality test. It is a difficult (and in general not analytically tractaple
We have also investigated the current correlations in thgroblem to evaluate the entanglement of the full density ma-
case in which the two electrons tunnel through the same dotlix, since p contains information about both the energy-
The wave function was found to be a linear superposition oflependent orbital part of the state as well as the spin part. In
states for the pair tunneling through dots 1 and 2. The crosgarticular, due to the continuous energy variable, the dimen-
and auto-correlators are sensitive to the position of theion ofp is infinite. Here, we are, however, interested only in
single-particle levels in the dots; however, in a different waythe spin entanglement @i To determine the spin entangle-
than for tunneling through different dots. Moreover, the cor-ment, one has to consider measurement schemes in which

1
[, (E) = 5 [b]; (B3, (- E) + b}, )b (- B0,

(A2)
W1 (E)) =bl,(E)b}, (- )|0),
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the observable® are sensitive only to the spin part pf  tangled state andC=1 for a state that is maximally en-

Such observables satisfy the property tangled.
To determineC(p,,), full information aboutp, is needed.
* (e / In the approach taken here, investigating the spin entangle-
J dEJEAE)A* (E )<\Pq(E)|O|\Pq'(E ) ment via a beamsplitter and current correlators, one cannot,

however, determine all elements of the density maifixAs
- ) 2 a consequence, the spin entanglement of the emitted pair
<\Pq|o"|q,q >JdE|A(E)| ' (A3) cannot be determined precisely. It is nevertheless possible,
following the ideas of Burkard and Lo4%to obtain a lower

where|¥ ) are given fromW¥,(E)) in Eq. (A2) by remov-  pound for the spin entanglement.

ing the energy dependence; e[y )=b},b} |0). The opera- To obtain the lower bound, we first note two important
tOI’_OU is a function_of the energy-indep_endembperators. properties of C(p,). (i) C(p,) is invariant under local
Using the property in EqA3), we can write rotations? i.e., C(p,)=C(p,) for p,=(U; ® U,)p, (Ul UD),
-1 whereU; andU, are unitary 2 2 matrices acting locally on
(O) =t pO] = U dE|A(E)|2] > Puq the spins in leads 1 and 2, respectiveii. C(p,,) is a convex
aq’ function® X;p,C(p))=C(ipip;); i.e., for a density matrix

pPe=2iPipi» With 2;p;=1, the entanglement of the total den-

xf dEdE’A(E)A*(E’)(\Ifq(E)|O|\Ifq,(E’)) sity matrix is smaller than or equal to the weighted entangle-
ment of the partga consequence of information being lost

_ _ when adding density matrices
- qzq, Paq (WalOo W) = trlp,O,]. (Ad) Consider the density matrix, obtained by averaging,,
with respect to all possible local rotatioh$® U; i.e., the
The 4X 4 spin density matrixp,, is thus same rotation in leads 1 and 2. Formally,=((U
®U)p,(UT®UM)), is calculated, wheré - ), denotes an av-
po= 2 qu’|q’q><q’q’|- (AS) erage with respect td, uniformly distributed in the group of
a.a’ unitary 2x 2 matrices. This gives the Werner sfite
It is straightforward to show that for the specialor aligned 1-pss
dot levelse;=¢,, the current correlators in E¢20) are in- pw=psd V(W + T3
sensitive to the wave-packet structurepoin this casep,, is
directly obtained fronp by tracing over energies. More gen- ><(|‘I’T0><‘1’TO| +|Wr (W | + |\IfT7><\PT7|), (A8)

erally, independent of,e,, the spin current correlators be- , .

tween lead 1 and B.e., in the absence of the beamsplifter where we note that the singlet component is unaffected by
are insensitive to the wave-packet structur@ GThese latter  the rotationU®U. Importantly, the entanglement of the
correlators can be used to test a Bell Inequality, along th&Verner state is a function of the singlet coefficipgsonly.

lines of Refs. 15 and 19. Using the two propertiegi) and (i) of the entanglement
Our interest is thus to investigate the entanglement,of Stated above, we can write
conveniently expressed in terms of the concurréficehe Clpw) = C[{(U @ U)p,(UT & UT))]
concurrenceC is defined as N +
o <(c[(Ua U)p,(UT® U")]),
Clp,) =max0, A= o= s =N}, (A6) =(Clpo)u=Clp).- (A9)
creasing order, op,p,. The matrixp, is defined as =C(py) provides a lower bound for the entanglement of the

(A7) full spin stateC(p,). The concurrence of the Werner state is

Cw=max2pss-1,0. The renormalization of the Fano fac-
where o, are Pauli matrices, rotating locally the spins in tors in Egs.(27) and(28) due to spin decoherence can now
leads 1 and 2, respectively. Importantly, in Eé&7), the  simply be written|H(g,—&,)|>— CyH(g1—¢,)|2, whereCy,
density matrixp, is written in the spin-up/spin-down basis; =0 is a lower bound for the concurrence of the spin state in
i.e., b},b} |0), etc. The concurrence i€=0 for an unen- the presence of decoherence. This is €4) in the text.

7)0' = (a-y ® Uy)p;(o'y ® 0'y)y
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