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Small semiconductor devices can be separated into regions where the electron transport has classical char-
acter, neighboring with regions where the transport requires a quantum description. The classical transport
picture is associated with Boltzmann-like particles that evolve in the phase-space defined by the wave vector
and real space coordinates. The evolution consists of consecutive processes of drift over Newton trajectories
and scattering by phonons. In the quantum regions, a convenient description of the transport is given by the
Wigner-function formalism. The latter retains most of the basic classical notions, particularly, the concepts for
phase-space and distribution function, which provide the physical averages. In this work we show that the
analogy between classical and Wigner transport pictures can be even closer. A particle model is associated with
the Wigner-quantum transport. Particles are associated with a sign and thus become positive and negative. The
sign is the only property of the particles related to the quantum information. All other aspects of their behavior
resemble Boltzmann-like particles. The sign is taken into account in the evaluation of the physical averages.
The sign has a physical meaning because positive and negative particles that meet in the phase space annihilate
one another. The Wigner and Boltzmann transport pictures are explained in a unified way by the processes
drift, scattering, generation, and recombination of positive and negative particles. The model ensures a seam-
less transition between the classical and quantum regions. A stochastic method is derived and applied to
simulation of resonant-tunneling diodes. Our analysis shows that the method is useful if the physical quantities
do not vary over several orders of magnitude inside a device.
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I. INTRODUCTION weak scattering limit and assume that the phonon system is
in equilibrium* They concern the interaction with the
phonons, while the potential operator remains exact. The
Carrier transport in mesoscopic devices has been widelphonon interaction in the resulting equation, being nonlocal
investigated in recent years using the Wigner functionln both space and time, is yet quantum. The Wigner-
formalism! A single-particle picturgis used, where the co- Boltzmann equation is obtained after a class!cf'il limit in the
herent interaction of the electron with the device structure i€honon term, leading to the Boltzmann collision operator.

determined by the Wigner potential. This approach allows he hierarqhy of the corresponding transport models is
shown on Fig. 1.

one to handle, in a natural way, self-consistent open- S .

’ . ’ . : The effects neglected by this limit can be studied from the
boun.d.ary systems under stationary, small 3'9”?" or trar]S":”Pltomogeneous form of the equation for the reduced Wigner
conditions® Early works investigate the theoretical and nu-

cal " fh h Wi i function. In this case the latter reduces to the Levinson
merical properties o tne conerent yvigner equation aF)pr()p”'equationl,5 or equivalently to the Barker-Ferry equatién

ate for ballistic transpoft:® Dissipative interactions with it infinite electron lifetime. It should be noted that the
phonons have been approached by means of phenomenologiz er-Ferry equation can be alternatively deridtbm the

cal models based on the relaxation-time approximatfo®:  ne-hand semiconductor mod&land inclusion of a finite
The Boltzmann collision operator, acting upon the Wigneriifetime requires a refined set of approximations in the first-
distribution, has been suggested by Frerfstya more gen- principle equation. Numerical studiés?? of the Levinson
eral model of dissipative processes caused by phonons. Caiuation reveal quantum effects of collision broadening, re-
the classical collision operator and the quantum Wigner optardation, and the intracollisional field effect. These effects,
erator reside in a common equation? The answer can belated to the finite duration of the collision process, have
found by starting from the first-principle equation for the been investigated by Ferry and Barkef3—26the Modena
generalized Wigner functiok:*3Along with the electron co- group’®27-3%and otherd-31-33for ultrafast and/or high-field
ordinates, the function depends on the occupation number ¢fansport in semiconductors and insulators, and Rossi and
the phonon states in the system. Of interest is the electron, ¢tuhn®343%and other¥® 37 in photoexcited semiconductors.
reduced, Wigner function obtained from the generalizedThe solutions of the Levinson equation demonstrate the es-
Wigner function by a trace over the phonon coordinates. Atablishment of the classical, energy conserving delta function
closed equation for the reduced Wigner function can be defor long times. Semiclassically forbidden states are occupied
rived after a hierarchy of approximations, which include theat early evolution time&23%38 At higher times, which are

A. The Wigner-Boltzmann-transport
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s a
Generalized Wigner Equation
one electron / many phonon system
\. J
s )
Electron Wigner Equation FIG. 1. Hierarchy of quantum transport mod-
quantum clectron / quantum el-phonon els. The electron Wigner equation turns into the
\. J

Levinson equation for homogeneous conditions
or into the Wigner-Boltzmann equation for clas-
sical electron-phonon interaction. The Boltzmann

Levinson Equation Wigner-Boltzmann Equation equation is obtained with a classical limit in the
Wigner potential term.

homog. clectron / quantum cl-phonon quantum electron / classical el-phonon

Classical Boltzmann Equation
classical electron / classical el-phonon

above a few hundred femtoseconds for GaAs, the Boltzmanthe physical model with respect to the band structfr&
limit dominates in the carrier evolution. A theoretical analy- scattering with lattice imperfectiori$;*3-4>Pauli exclusion
sis supports this result. Ringhofet al3® have derived the principle**#7and particle-partick scattering retain the pic-
classical limit and the first-order correction of the equationture of developing particles. Below we summarize these
by using a small parameter. The latter requires that the prodnodels, starting with the direct application of the classical
uct of the time scale and the phonon frequency scale to bepicture.
come much larger than unity, which gives rise to coarse The smoothed effective potential appro&dhtilizes clas-
graining in time. Thus, for long evolution times, the quantumsical particles to account for quantum mechanical size quan-
effects in the electron-phonon interaction can be neglectedization effects. The effective potential is a smoothing of the
Consequently the intracollisional field effect is not importantreal classical potential due to the finite size of the electron
in stationary high-field transport in semiconductors whenwave packet. It has been shown that the classical trajectories
single-valley transport is consider&dWe note that the resulting from the effective potential have important details
above considerations hold in the weak collision limit, wherein common with the corresponding Bohm trajectofigé
the next interaction begins well after the completion of thefurther generalization of the approach replaces the action of
current one. the Hamiltonian on the wave function by the action of a
We conclude that an inclusion of the Boltzmann operatorclassical Hamiltonian on particles with an appropriately
in the Wigner equation requires that the dwell time of themodified potential. A set of coupled equations is obtained for
carriers inside the device, and hence the device itself, mughe inhomogeneous equilibrium distribution function in the
be sufficiently large. On the contrary, the application of thedevice and its first-order correction. The effective potential,
Wigner potential operator is reasonable for small device dodefined in terms of a pseudodifferential operator acting on
mains, where the potential changes over a region are comptie device potential, becomes also a function of the momenta
rable with the coherence length of the electron. These reef the classical particle¥:>?
guirements are not contradictory, as the actual device is Ultrafast phenomena in photoexcited semiconductors are
composed of the active quantum domain attached to largdescribed by a set of coupled equations, where the distribu-
contact regions. tions of the electrons and holes and the interband polariza-
tion are treated as independent dynamical variables. The cho-
sen representation utilizes density matrices defined in the
(k, k") wave-vector space. If interaction processes are treated
Particle models are developed for computation of physicabn a semiclassical level, so that all transition functions be-
guantities by stochastic or deterministic approaches in theome positive, the set of equations has the structure of rate
framework of different quantum-kinetic theories. It has beerequations that can be solved with a generalized ensemble
recognized that these models, primarily introduced for nuMonte Carlo(EMC) schemée? The fact that a particle model
merical purposes, can be used to interpret and explain puiie associated with the evolution of the inter-band polariza-
guantum phenomena, such as tunneling and interference. Ntien, a complex quantity responsible for the coherence in the
merical particle models are based on the convenient ideas photogeneration processes, shows ttiatthe EMC method
the classical Boltzmann model. The most simple version ohas evolved beyond the understanding of the method as a
the latter is built up on the free-electron quasiparticle concomputer experiment that emulates natural processes; and
cepts of effective mass and energy dispersion. Expansion @fi) numerical particles are introduced with the purpose to

B. Particle models
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model the dynamics of a quantity with no particle analogy.evolution particles accumulate a numerical quantity called
Furthermore, the positiveness of the transition functions isveight, which carries the quantum information for the sys-
not a necessary condition for a Monte Carlo approach. It haeem. The weight is taken into account in the computation of
been shown that the action of the Wigner potential, which ighe physical averages. This model should be regarded as a
an antisymmetric quantity, gives rise to a Markov processtheoretical achievement, as the practical implementation in-
which can be regarded as a scattering of a particle betwearolves enormous computational burdén.
consecutive points in the phase-spate. An operator-splitting method applied to the coherent
In Wigner representation, numerical particles are pointlikeWigner equation gives rise to a picture where an ensemble of
objects, whose temporal evolution determines trajectories iparticles drift over classical trajectories. The quantum infor-
the (r k) phase space. Wigner trajectories can be defined bynation is carried by a numerical quantity called affiffty?*
modified Hamilton equations, formulated with the help of aThe method consists of consecutive steps of drift over the
quantum forcé&® The latter is manifestly nonlocal in space trajectories followed by an update of affinity from the
and expressed through the Wigner potential, the WigneWVigner potential. The approach is numerically tractable and
function, and its derivative with respect to the momentumshows an excellent agreement with deterministic solutions of
coordinate’® Wigner trajectories provide a pictorial explana- the problenf® Phonon interaction and coupling to a Poisson
tion of the evolution of the quantum system and, in particu-solver can be included in a straightforward vf&go that the
lar, nicely illustrate tunneling process&s’ When it is pos-  approach appears as a generalization of the Ensemble Monte
sible to define a quantum force, Wigner trajectories maintairCarlo method for solving the Wigner-Boltzmann equation.
the values of the Wigner function during the time evolutionRecently a finite collision duration has been inclufédh
and thus satisfy the Liouville theorem. However the quantunthis approach the solution is determined by the evolution of
force has singularities at the points where the momentunan initial condition.
derivative of the Wigner function becomes zero. At these We propose an approach where the Wigner equation, with
points, trajectories can be created or destré{dd.general, a Boltzmann scattering term, is interpreted as a Boltzmann
Wigner trajectories remain an auxiliary tool for modeling of equation with a generation term. The interaction with the
guantum transport, unless the Wigner function in the quanWigner potential gives rise to generation of particle pairs
tum force term is assumed to be known. An appropriate apwith opposite sign. The sign is the basic property that out-
proximation for a nearly equilibrium system is a displacedlines the introduced numerical particles from classical quasi-
Maxwell-Boltzmann distribution function. It is easy to see particles. It is an important property because positive and
that such an assumption corresponds to the zeroth-order caregative particles annihilate one another. The negative values
rection in the effective potential approach. In this case thef the Wigner function in certain phase-space regions can be
quantum force is defined everywhere except at the phasexplained in a natural way by the accumulation of negative
space origin, and gives rise to an effective lowering of theparticles in these regions. The Wigner-Boltzmann transport
peaks of the potential barrietThe increase of the particle process corresponds to drift, scattering, generation, and an-
flow observed through the barriers is associated with tunnelrihilation of these particles. The process unifies classical and
ing processes. guantum regions within a single-transport model. Although
The above considerations show that the price for a deviathe model proposed is valid for general transport conditions,
tion from classical trajectories is high. Approaches utilizingit is especially convenient for stationary transport, deter-
zero force, as in the original formulation of the Wigner equa-mined by the boundary conditions of the problem.
tion, or a local forcé€® which can be extracted from the  The cogent analogy between the concepts holds in nu-
Wigner operator enjoy the properties of the Liouville theo-merical and quasiparticle approaches. Analytical models de-
rem. The conservation of the phase volume during the paripher complicated interactions in solids in terms of quasi-
ticle evolution is a key property for the method proposed inparticles. Some of the real particle characteristics, such as
this work. mass and energy, can be renormalized and/or extra proper-
The integral form of the Wigner equation has been used tdies, such as lifetime, can be assigned. A canonical transform
introduce a quantum transport model based on Wigneof a given analytical model can give rise to a new type of
paths3%6% |t has been shown that a ballistic evolution of a quasiparticle, so that even their total number may not be
&like contribution to the Wigner function carries its value conserved® Numerical models are developed to solve
following a classical trajectory/. The action of the Wigner and/or explain given transport theory, which is built upon a
potential operator is interpreted as scattering, which, alongorresponding quasiparticle model. The numerical particles
with the scattering by the phonons, links pieces of classicatan modify some properties of the underlying
trajectories to Wigner paths. We note that, in this model, thejuasiparticle¥ and add novel features, such as weight or
phonon interaction is treated fully quantum mechanicglly, sign. Within a given numerical model, the properties of the
according to the first-principle equation. That is, the scatternumerical particles depend on the chosen algorithm so that
ing with phonons begins with exchange of half of the phonortheir statistics and total number may not be conserved.
momentum and completes after a finite time. During this The paper is organized as follows. In Sec. Il, we consider
time, an arbitrary number of interactions with other phononghree equivalent formulations of the Wigner-Boltzmann
can be initiated and/or completed. In comparison, Levinson’gquation. The adjoint integral form of the equation is used to
equation considers a single interaction with finite durationexpand the averaged value of any physical quantity of inter-
while Boltzmann scattering is instantaneous, so that the traest into a series. In Sec. lll, the series is analyzed in terms of
jectory changes with the full phonon momentum. During therandom variables. A chain of conditional probability densi-
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ties associated with stochastic events of particle evolution ia(k)=/Sk,k’)dk’ is the phonon out-scattering rate. The
obtained. Section IV unifies these events into a particle transd/igner potential at point is defined by the Fourier trans-
port model. Here the particle picture is explored for differentform of the central difference of the device potenthal
transport regimes. The transport behavior of classical carriergroundr
is recovered for the case of the Boltzmann equation and the
ergodicity of the process is proven. In the coherent case,
governed by the Wigner equation, the transport is character-

ized by generation of positive and negative particles. In the
general case of Wigner-Boltzmann transport, the classical % (V(r _§> —V(r +§>>. (3)
and coherent models can be constructively unified. Section V 2 2

discusses the numerical aspects of the model. An algorithm

suitable for Monte Carlo simulations of Wigner-Boltzmann The Liouville operator in(2), which for time-dependent
transport, is derived. In Sec. VI, simulation results for theProblems must be augmented by a time derivative, corre-

resonant-tunneling diode are presented and discussed. ~ SPONds to an unaccelerated free-streaming motion. The op-
erator can be augmented by a force term, due to the follow-

ing property of(3).”° The Fourier transform df(r) -s, where
F is an arbitrary function, gives rise to the ter‘vf'j,(r K’

We consider the case of stationary transport, where thek)=-F(r)-V;,8(k’—k). The latter, inserted in(2) and
physical conditions imposed on the boundaries determine thgansferred to the left-hand side of the equation, completes
device behavior. The Wigner phase-space is composed by théth the Liouville operator, a force term. The definition of
real space coordinateand the wave vectdt. We emphasize the Wigner potential is modified according Y,=V,,—VF,
thatr andk are independent variables, not adjoint by a Fou-which results in an additional tern=r) -s in the brackets of
rier transform, and thus not linked by the uncertainty(g)_ For potentia|s up to quadratiE’ can be chosen to com-
relation? The device exchanges carriers with two or morepensate the potential difference in the bracketpand has
reservoirs through the contacts denotedthyOpen-system g meaning of electrical forcds=-VV. In this caseV,,=0
bOUndary conditions are prOVided by the Fermi-Dirac diStri'and (2) becomes the classical Boltzmann equation_ For gen-
bution functions fy(r,,k) in the contactS. The solution grg| potentials F can be selected from physical
fw(r,k) of the Wigner-Boltzmann equation is used to obtainconsideratiorf$7°In this case, the Wigner potentis(, must
the average values of all physical quantities of interest. Th@e understood as a generalized function.

V(r,k) = st exp(—-ik - s)

_1
ih(2m)3

Il. THE WIGNER-BOLTZMANN EQUATION

average valuéA) of a generic physical quanti#(r ,k), such We utilize definitions(2) and (3), where the characteris-
as carrier velocity and density, is given by the inner productics of the Liouville operator are Newton trajectories without
(fw,A) the acceleration term

A= f dr f ki (TOATK) = (TA), (D) r=r+vikt k) =k. @)
D

We note that the notions derived below do not make use of
whereD is the device domain. Equatiqil) asserts that, in the particular form of4) and thus remain valid for the modi-
order to evaluate the averaged value of intexg@st one fied definitions. As discussed in Appendix A, a stationary
needs to know the solutiofy, inside the device. An alterna- trajectory(r(t),k(t)) can always be initialized by the phase-
tive expression for the mean val(®) can be found from the space pointr k) at time 0. Equatiori2) can be reformulated
adjoint integral form of the WB equation. The derivation of Py @ decomposition of the antisymmetric Wigner potential
this expression begins with the integrodifferential form of theinto two complementary parts as follows:
equation.
Vi1, k) = Vi(r k) = Vi(r, = k), 7(r)=Jdev+v(r,k)-
A. Integrodifferential form

The stationary form of the equation states that the actiorrhe functionV;, equalsV,, if the Wigner potential is positive
of_the differential LIOUVI|!e operator is the joint action 01_‘ the andis zero otherwisa/, =V, £(V,,) with & the Heaviside step
Wigner and Boltzmann integral operators on the solufign  fynction. The meaning of the functiopis discussed in the

next section. By adding(r)f,(r k) to both sides of2) the
v(k) -V, f,(r,k) :f dk"V,(r, k" =k)f,(r,k) equation becomes

+fdk’fw(r,k’)S(k’,k)—fw(r,k))\(k)_ [v(k) -Vr+u(r,k)]fw(r,k)=fdk’F(r,k,k’)fW(r,k’),
) (5)
Here v(k)=7k/m and m are the quasiparticle velocity and

effective mass, respectivelg(k’, k) is the rate for scattering L(r k', k) = Vilr k= k) = Vy(r .k —k") + Sk’ k)
from state(r ,k’) to state(r k) due to phonon interaction. + y(k)ok —k'), (6)
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p(r,K) = N(K) + Ar). )

In Appendix B, Eq.(5) is transformed into an integral equa-
tion with the help of(4).

0
K(r’,k’,r,k)=f at'r(r’,k’,k(t"))

0
X exp(—f u(r(y),k(y))dy)ﬁ[f’
"

The integral form of the WBE is formulated by using of —r(t)]6p(r"). (10)
the backward trajectorir ,(t'),k(t’)), initialized by (r ,k)

B. Integral form

The indicator function of the simulation doma#i ensures
the proper lower bound,(r,k) of the time integral. The
adjoint equation has the same kernel(8sbut the integra-
tion is carried out over the unprimed variables. The free term
is chosen to be the physical quantity of interAst

0
f(r,k):fdk’f f(rt'),kHC(rt’),k’,k(t"))
t

0
XeXp(— f u(r(y),k(y))dy> +fo(r,k),
t/
g(r’,k’):fdrfdkK(r’,k’,r,k)g(r,k)+A(r’,k’).

0
fo(r,k) = fb(f(tB),k(tﬂ))eXP(— f M(r(Y),k(y))dY) : (11)
t
o ° The solutiong depends on the free ter#, which is not
ty = to(k,r). (8 explicitly written for simplicity of the notations. Equation

The equation can be understood in analogy with the integrd[Ll) @Ssumes a backward parametrization of the trajectories.
form of the Boltzmann equation. The latter is obtained by’ Orward trajectories are introduced by first changing the in-
formally setting the Wigner potential to zero. Then, the ex-{€gration variables from, k to r”=r(t’), k"=k(t’) back in
ponent in(8) becomes the probability for a particle to drift ime over the trajectory initialized by, k. Applying (A3)
without scattering by phonons during the time interitaj0) ~ @nd (A4), the adjoint equatior1l) is obtained in forward
on the proper trajectory3(r ,k), which arrives at(r k). parametnzaﬂop.T_he integration ofi can Pe achleved,usmg
There are two contributions to the value bfin the point the_ deltq function irk. A r_eplacement oK b_y k'and 4’ by
(r,k). fg is the value of the boundary functiofy, which t gives rise to the following compact form:

survives ong despite the action of the phonons. The other o

term gives cumulative contributions from previous timés g(r',k") :fdkf dtop(r)I'(r' k' k)

values off located atr (t') scatter, according t§, from ev- 0

erywhere in the wave-vector space to the prdpgf). The t

particular value$S are further multiplied by the exponent to X exP(‘f ,u(r’(y),k(y))dy)g(r’(t),k(t))
filter out the part that is scattered out Bfby the phonons. 0

This picture can be maintained when the Wigner potential is +Ar' k'] (12

switched on. TheNV, in (6) has a clear meaning of scattering , , . L

due to the Wigner potential. The functiop can be inter- Here, (r'(0),k(t) is a forward trajectory initialized by
preted as an out-scattering rate due to the Wigner potential iff +K)- The equation has the desired property that integration
strict analogy with the phonon out-scattering rathenys IS carried out over final states and that the time variable is
becomes a self-scattering function. The major difference bePositive. The solution 0f12) can be expressed as a series,
tweenS andT' comes from the fact that while the former is Obtained by an iterative replacement of the equation into
strictly non-negative, there is a minus sign(8). This sign  itself. It is convenient to consider first the series for the for-

precludes a direct probabilistic treatment of the equation ivard equation(11), which gives rise tq12) after the spatial
terms of classical particles. integration. By introducind)=(r ,k) the equation is written

After this step, the boundary conditiofig appear explic- formally as
itely in (8). fog, along with the solutiong of an equation
adjoint to (8), give rise to the desired expression for the g(Q):f dQ'K(Q,Q")g(Q") + AQ).
physical averages.

C. The adjoint equation The solution is expanded into a Neumann series

[

AQ-Q)+ X K'(Q,Q) |AQ")

n=1

Equation(8) can be formally written in the standard form
of a Fredholm integral equation of the second kind 9(Q) :f dQ’

f(r,k):fdr’Jdk’f(r’,k’)K(r’,k’,r,k)+f0(r,k). =(1-K)™A, (13

where | is the identity operator andK"(Q,Q’)
O = 1dQ,K(Q,Q)K™(Q,,Q"). The iterative series ofL?) is
The kernelK has been augmented to account for then-  equivalent to(13), but with the difference that all space in-
tegration by a spatial delta function tegrations in the consecutive terms are performed. The space
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integration leading tq12) links the independent variables, .-

which makes it impossible to formulate a self-contained re- (A =[b,(I =K) Al =[v, fp, (1 = K)TA] = X (A);.
cursive relation for the expansion of this equation. It is im- i=0

portant that the consecutive terms of the series(f@ are (18)

equal to the corresponding terms(it),
a P g o The second term is reformulated to facilitate further analysis.

* ) The multipliers in each term of the sufb,(I-K)™*A] are
— nap — - ~
9Q = ZOK A=(-K)7A. (14) formally regrouped. NowK is the repeating term in the pat-
" tern, which is obtained fror after absorbing the exponent
Denoting the reduced kernel if12) by K(r’,k’,k,t), we  on the left and releasing the exponent to the right for the next

write explicitly the second term il4), K. In this wayA is assigned with the last exponent to become
A. The zero-order termA),=(v, f,,A) is given by the right-
K(Z)A:fdtlf dklf dtzfdsz(r',k’,kl,tl) hand side of17), with A(r(to),kp(ty)) in the place ofy. The
first term is

XK(r(ty),ky(ty) Ko, ) A(r(tp)  Ko(t) . (15)

Equation(15) outlines the evolution of the space coordinate (A= 5&0 do(ry) or dkbfo dtof dk,
r, which is now a passive variable, not taking part in the

integration: The trajectory(r4(t),k4(t)) is initialized by *
(' k) and (r,(t), ky(1)) is initialized by (r(t,),ks). X ) dulv, (ko)lfo(rb.kb)

t
D. Physical averages x exp(— f Ou(rbw),kb(y))dy)
Multiplying (9) by g and (11) by f, integrating over 0
unprimed and primed variables respectively, and subtracting X Op(r p(to) T (ry(to), Kp(to) k1)
the two equations leads to the equalifyA)=(fy,g). In this ty
way, the average value of the physjcal quantityis ex- xexp(— J ,u(r1(y),kl(y))dy)A(rl(tl),kl(tl)).
pressed through the boundary conditidpsnd the solution 0

B _ _ Here the trajectoryr4(t),k4(t)) is initialized by (ry(t) k).
(A= fD dr f dk (1 (), k() The next term(A), is derived with the help of15). Eq.(19)
is augmented by integrals dt, andt,, and A is replaced

0 .
X eXp(-J u(r(y),k(y))dy)g(k,r), (16) with 6I'. The product
t

~ t
A=exp - ro(y),k dy |A(r,(t),k5(15)),
wheret, and the backward trajectorfy (t),k(t)) are deter- 2 p< fo #r2y) koY) y) (a(tz) kalt)

mined by(r,k). (20)
Sincefy is defined only at the bounda#p, a transforma-
tion is needed that leads from a volume to a boundary inteappears at the end of the expression(#y, as an integrand
gral. A phase-space poift k) is bijectively mapped onto on the timet,. Higher order terms in(18) are derived by
[k(ty),rp=r(t,] by the boundary tim¢, (Ref. 73). This im-  induction.
plies that the transformation must replace one of the space The series expansiaii8) is the key quantity in the treat-
integrals by a time integral. One can formally augmg)  ment of the boundary value problem. It proves that knowl-
by a time integralfdt’ S(t' —t,) in the limits (0, —¢). After a  edge of the boundary distribution is sufficient to determine
rearrangement of the integrals, shown in AppendixX®) is  arbitrary volume integrals defined ) and, therefore, to
transformed into determine(A) uniquely. Only the subspade, of boundary
statesk,, having an inward-directed velocity component
y appears if(17), and thus determines the boundary condition.
(A) :§ do'(rb)f dkbf dto|v | (Kp)|fo(r ., Kp) The complementary part is@iori unknown and comes out
as a result of the transport process. The series expafis3pn

D P 0 will be analyzed in terms of probability densities.

to
X exp< - f w(rp(y), kb(Y))dY> 9(rp(to) . Kp(to)).
0

(17)
. . _ . _ The basic particle methods used to date for simulation of
By replacingg with the iteration serieg14), (A) may be  semiconductor devices were originally devised by consider-
expanded into the series ations where the simulation was an emulation of the physical

lll. ANALYSIS OF (A)
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process: the transport picture has been used to establish ttime with the limits(0,»). p; generates a value ¢fassoci-
corresponding stochastic method. The link between suchted with a free flight time of a particle which drifts over a
physically based methods and the numerical methods gfiece of a Newton trajectory between the initial statgk’)
Monte Carlo integration has been established &&fHere, and(r’(t),k’(t)), and which, as can be seen from what fol-
we follow the opposite approach: the numerical Monte Carldows, has a meaning of a before-scattering state. It is used as
theory is used to propose a common particle picture of thein input in the conditional probabilities composing the re-
Wigner and Boltzmann transport processes. In Appendix Onaining terml(r’(t),k’(t),k)/ u(r’(t) ,k’(t)) to generate the
we show that this approach requires all integral€lid) to be  output value ok:

decomposed into probability densities and random variables.

A great advantage is provided by the common structure of

these integrals, which are built by the boundary tdrnthe T(r' k' k)

~ — L ’ L Lo +7 1
consecutive applications df, and end up with the quantity i = PA(r K )Ppr(K’ k) + p(r' k) X (5pi(r K
A. It is then sufficient to extract from each of these three 1., N1 ,
quantities the proper probability densities. As these quanti- —k) =3Ptk =k") + 3psk =k"))3  (22)
ties appear i(19), we focus on that equation.

A. Injection from the boundaries L AK") D wr')
. o PA(r' k') === py(r' k) = ——= =
The boundary term allows a simple probabilistic interpre- plr’,k’) plr’,k’)
tation. For the purpose of normalization we introduce the
integrals
) ) , Sk’,k) ., Vi(r' k)
JL(rb) = b, dk|VL(k)|fb(krrb)v d= %{;D Ji(r)do'(r): pph(k ’k) = )\(k’) ! pw(l' 'k) = V;/(r r) '
(21)

which represent the normal component of the incidentHere the time argument has been omitted, @Qep;, is

particle current density and the total incident-particle currentintroduced for convenience. According (@), p, andp, are
Then the quantity two complementary probabilities, which can be used to se-

) lect eitherp,, or the term in the brackets i22). The first
oo(F p,Kp) = i1 (rp) [V (kp)|fi(rp kp) branch occurs with the probability, which selects the type
’ @ ji(ry)

of interaction to be scattering with phonons. The application
has the proper normalization of a conditional probability

of the probability density,, is readily understood as a gen-

) . eration of the phonon after-scattering stété k). The sec-
Qensny.pb generates a.p_hase-space.pomt on the pogndary b(ynd branch can be interpreted as a generation of an after-
flrst_selectmg the positiom,, proportional to the |_nC|dent- scattering state due to interaction with the Wigner potential.
particle current densityk,, is then selected according to the Itis comprised of the three terms enclosed in the brackets
velocity-weighted equilibrium distributio,,. In this way, h ; : ; A

. X ) ; as been introduced with the purpose of selecting which one
the boundary term is factorized into a productpgfwith the Purp 9

s . of the three densitiep, p,, and ps; generates an after-
normalization constantb. The selection of the boundary : W : :

. i . ; scattering stat¢r’,k). In this way, the action of the Wigner
point follows the classical rules used in the device MC 9 e k) Y g

. . : ; Co otential is realized by a scattering generated by either of
mteotr;ﬁg 323i;thus associated with a particle that is injecte ese three probability densities. They will be discussed in

detail in the next section. Here, we conclude that the con-
secutive application of the conditional probabilities compris-

B. Probability factors in K ing K generates a transition betweér ,k’) and (r'(t),k)
which is associated with a particle which undergoes a free
flight followed by a scattering event.

What remains for the random variable associated Kith
I'(r'(t),k’(t),k) is the termwép=(+3) 6. The poweri depends on the type
w(r' ),k (t) of the interaction:i =0 andw=1 if the scattering is due to
phonons. If the Wigner potential is selected as a scattering
t sourcej=1 andw=(+3), where the minus sign appliespj,
Py = M(f'(t),k'(t))eXD(—J w(r'(y),k’(y))dy). in (22) is selected. The quantity is called a weight factor.
0 The domain indicatof)y is unity if the particle is inside the
The structure of the first termp, is well known from the device at the end of the free flight and is zero otherwiSe.
classical MC method; it is the probability for a drift without factorizes into a product of the random variable and an evo-
scattering provided that the scattering frequencyisThe  lution operator composed by conditional probability densi-
normalization to unity is readily proven by integration over ties.

= Ppa(rp)Po2(r b, Kp)

K is augmented by a multiplication and a division hay
which gives rise to the product

K(r' k' ,k,t) = pt,r', k") op(r' (1)
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C. Recording averages This allows one to formally seg=0, u=X\ in (7). The right-
hand side of(22) reduces top,. It is easily seen that the
numerical trajectories coincide with the real trajectories of
A(r (),k(1)) the Boltzmann carriers evolving in the device. Indeed, the
w(r(®),k(t)’ gene_ratipn of the initie_ll point o_f the trajectory corresponds to
an injection of a classical particlg; becomes the usual clas-
The random variable, associated with the physical quan- sjcal probability for the free-flight duration due to phonons.
tity Ais the termA/u evaluated at the end of the free flight. The scattering is determined by the phonon scatteringSate
It must be noted that, as we are interested in physical avethroughpyy, in (22). The weightW, in (24) remains unity for
ages in a given regiof) inside the device domai con- gl n. The domain indicator takes into account only the tra-
tains implicitly the indicatoré, of that region. If the end jectories that are inside the device. Thus, numerical particles
point of the free flight is outsid€l, the random variable is contribute to the averages in the same way as Boltzmann
zero. Another way to express the random varialleean be  carriers in the Single-Particle MC method. We conclude that

The integrand20) can be written as follows:

R=pt(t,r,k)

obtained by integration by parts of thentegral the resulting particle picture coincides with the picture of
B t classical particles that is emulated by the the device MC
A=pt(t,r,k)f dyA(r (y),k(y)). (23)  method.
0 An important property follows from this equivalence. Ac-

cording to the classical transport theory, the distribution
function f is given by the relative numbem,/Np of the
particles in any given unit phase-space voluthevith indi-

The value ofy, is identified as the path integral over
Actually, due to the indicatof,, only the part of the path

belonging toQ) contributes to the integral. The two function- cator f,. HereNp is the number of all carriers, so thais

als of A are known In the classical Single-particle MC normalized to unity in the device. This is, in fact, the basis of
techniqued® y 9 obtaining the physical averages by the Ensemble Monte

So far we are ready to state the stochastic approach fCarIo met_hod. Undgf conditions of stationary transport, and
evaluation of(19). Numerical trajectories are built up with cgy assuming ergodicity, the ensemble average is replaced by
' - S - ~ a time average over a single particfeis given by the rela-
the help ofpy, th.e' conditional probab|I|§|es identified frold  tjve time spent by the particle i€). This is the basis for
and the probabilityp,. The random variable/;=®6(+3)'/a  obtaining averages by the Single Particle MC method. We
is calculated for each trajectory. The sample m@a2) over  show that this result follows from the present approach. In-
N trajectories estimateA);. A generalization for theith  deed,N independent trajectories can be regarded as having
term in (18) is straightforward. Numerical trajectories are been obtained bil consecutive reinjections of a single par-
built up with the help ofpy, n consecu~tive iterations of the ticle that evolves in the device until exiting. By settirg
conditional probabilities identified frord, and the probabil- =61, from (23), (24), and(D2), it follows thatng=(®/N)tg,
ity p.. The corresponding random variahlgis given by the  wheret, is the total time spent by the particle & Accord-
product ingly, Np=(®/N)Tp, whereTy is the total time spent by the
n particle in the device. Then the distribution functidn
_ W _ =nqo/Np=to/Tp is estimated by the relative time spent(n
¢n‘¢g O, (£3)" 4 = PWaifi, ¢<A>—En o 249 \we conclude that the ergodicity is not required to be as-
sumed, as it follows from the stationary conditions of the
We first note that a given trajectory can be used to evaluatgansport.
all terms with order lower than. Trajectories, which leave
the device domain aftdciterations, give zero contribution to
the sample mea(D2) for any term withn> k. Nevertheless, ) )
such trajectories are counted as independent realizations in The coherent transport, which considers only events of
the denominatoN of the sample mean. It follows that a quantum interaction, is obtained by setting0, =y in (7).
given trajectory can be used for evaluation of all terms inAccording to the term in brackets {@2), these are scattering
(18): a trajectory that begins at a domain boundary and endgvents that change the statistical weight(2#). One can
at a domain boundary becomes an independent realization §ftimate the mean accumulated weighitfrom the mean

the random variabley,, in (24). The sample mean ovéd ~ time T a trajectory spends in the device.is given by the
such trajectories estimatéa). sum of all free-flight times. The numberof the scattering

events is them=Ty, andW is estimated as

B. Coherent transport

2y\" 29T\"
IV. THE PARTICLE MODEL W= +(3)"= (1 +7> = (1 + T) = exp(2yT).

A. Classical transport and ergodicity It follows that the mean weight, and thus the variance, grows

In the case of Boltzmann transport, the Wigner potentialexponentially with the magnitude of the Wigner potential
completes the Liouville operator with a force term. The tra-and the dwell timeT. This result is in accordance with the
jectories have the general for(Al). On the right-hand side exponential growth with time of the variance of the MC
of (2), only the two terms related to the phonons remain.approach to Feynman path integr&df the device dimen-
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sions are larger than ten nanometdrds commonly larger on a single trajectory throughout the device, but are scattered
than a picosecond, whilg= 10 s™* for a 0.3 eV potential to different trajectory pieces after each process of drift. Ac-
barrier. This precludes the application of the approach taording to(22), the events of phonon and quantum interac-
mesoscopic devices. This version of the approach has beeions are complementary. The action of the Wigner potential
applied to tunneling through one-order-of-magnitude-smalleon the interacting particle is equivalent to a self-scattering
potential barrier§® event, as it does not change the trajectory. From this analogy,

An alternative interpretation is needed in order to solveit follows that the duration of the free flight on a given tra-
the problem with the accumulated weight. We explore thgectory depends only ok. The after-scattering state is se-
idea of particle splitting, which is an established apprdch, lected by the phonon rat through Ppr- We conclude that
for statistical enhancement in classical Monte Carlo simulaparticles have the same Boltzmann-like behavior in both
tions. A particle entering a rarely visited region of the phase-<classical and quantum regions. The quantum character of the
space can be split into subparticles, each of which carries tansport is marked by the generation process and the sign of
fraction of the particle weight. This can be achieved by setthe particles.
ting p,=1 in (22). This modification changes entirely the  The possibility to annihilate particles with opposite sign
interpretation of the quantum term. Now, the stafg  also remains true. The reason is that the evolution does not
=(r',k’), which enters the interaction, gives rise to threechange its Markovian character in the case of phonons. Par-
states, so that the Wigner potential is understood as a geticles at a given phasespace point still have a common proba-
erational term. After the interaction, the initial particle sur- bilistic future, and the considerations from the previous sec-
vives in the same state, due to the delta function in the brackion apply. A condition for this is that the phonons are treated
ets of (22). Two additional particles are generated fifyin  in a classical way. If the interaction is quantum, this property
statesQ*=(r’,k*).82 The trajectory now branches so that the is not generally true because of the memory character of the
weight carried by any branch keeps a constant magnitudevolution.
and can change only the sign. It can be seen f(d8) that We note that other interpretations conserving the absolute
the branching corresponds to a splitting of the integral intoveight on a trajectory are possible. The interaction with the
three integrals. Hence each branch continues with a fre#vigner potential can be chosen twice as rare on the expense
flight to contribute to the sample mean @¢f. One of the that four particles are created per such event. A reformulation
contributions carries the minus sign gf. It is beneficial to  of (22) can lead to events where quantum and phonon inter-
assign a sign to the particle associated to each trajectorfictions occur in the same instané&3he proposed particle
Then the following transport process can be imagined. Apicture is the most straightforward one, which follows from
positive particle is injected from the device boundaries. Itthis approach.
drifts over a trajectory4) until the interaction time generated
accordingp; is reached. The particle does not “feel” the V. NUMERICAL ASPECTS
Wigner potential, because after the interaction it remains in . L .
the same state. The next drift process continues on the same T_he practical app“C?“O” .Of the abov_e mode| is not
trajectory. The action of the potential is realized through aStaightforward. The trajectories can be simulated only se-
creation of two new particles in two phase-space states. Th
particle related t@y, (p,) has the saméhe oppositgsign as
the primary particle. The created particles follow the sam
evolution process over their own trajectories.

After each individual interaction, any positiyeegative

uentially so that the generated particles must be stored for
urther processing. This is a step common with the classical
esplit algorithm. In the latter, the stored subparticles are re-
moved in a subsequent simulation step and reinjected from
the boundaries. This is not possible with quantum particles.

: ; . : A single particle injected from the boundaries creates, during
I h h +(=)® . . : ! .
particle contributes o the estimator gfa, ith +(-) Py the evolution throughout the device, a first generation of

Two particle; that are in the same phase_—spa_ce point foIIqw &tored particles. The subsequent removal of the stored par-
common trajeptory. If they have opposite Signs, they IV&icles gives rise to a second generation, etc. The process can
°Pp°5'te contributions _t?<A>' Moreover.such particles create be infinitely continued; the steps of injection and removal
with the same probability for any point of the phase-spacgannot be deduced from Heuristic considerations.

particles with the opposite sign. The net contribution of such  The selution is given by an algorithm based on decompo-
particles to the physical averages as_well asto the genergtlosr?tion of K=L+M into two operatord. and M,
process is zero. It follows that particles with the opposite
sign that meet in the phasespace can be annihilated. The L =piOo(P\Pph* P,Py), M :pthpy(p\jv_p;V), (25)
coherent transport is characterized by processes of genera-

tion and annihilation of positive and negative particles. !N L, we recognize the Boltzmann evolution operator ac-
counting for a phonon interaction augmented by a self-

scattering term. The self-scattering process does not affect

the physical picture; it can be switched on and off without
The above two limiting cases of the Wigner-Boltzmann affecting the shape of the trajectories. Usually the process is

transport can be combined without interference into a genused in the device MC method for computational conve-

eral picture of quantum transport with dissipation. The pho-nience. Thud gives rise to a classical evolution of the tra-

non interaction is inserted on top of the coherent picture angectories.

affects the dynamics of the particles. They no longer remain The above operators obey the equéfity

C. Quantum transport with dissipation
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_K)yl=(1—-1)1 _ )1 _1)1 d
(-RZ=0-L7 e 0 -RMa- L™ 26 P =IPuQIIPI. P= 1 [ Qo
Equation(26) is proved by multiplication byl-L) from the !
left and(l _R) from the right. A substitution of26) into (18), If N, is chosen to be equal to the number of all stored par-

and regrouping the terms of the series leads to ticles given by the last integral abou@0) becomes
= ® . o
~ 1 _ 13 -~ i (1) Do)
A= fo (1= KR = 3 (v, (0 =M= LA ()2 Nl% sigrPy QI T 6Bk (3D)

(27) The algorithm discharges the device from the stored par-
) , _ ticles; the number of trajectories that initiate fra® and
We now derive an algorithm that evaluates E?e consecutiVgheir initial sign corresponds to the number and sign of the
terms in(27). The first term(A);=[v, fy,(I-L)™A] can be  giored particles inside. The value of each contribution to the
evaluated by classical means; particles are consecutively sym in(31) is calculated in the classical way and multiplied

inje(_:ted from the boundaries and simulated throughout th%y the sign of the corresponding particle. At this step, we can
device. The sample mean fok); can be formulated with the gy 1uate the function

help of (D2) and (24
elp of (D2) and (24) P(Q) =[P1.(1 -L)M)(Q). (32)

d o
(A)y = N_E IT e (28) By repeating the arguments used Ry it is seen thaP, is
tinon the density of the secondary stored particles multiplied by
The second tert),=[v , f,,(1-L)"M(l _L)—lg] canbe re- P/Ni. The third term in(27) is then expressed as an inner

formulated by introducing a delta function product with Po: (A)3=[P,,(I-L)™'A]. The step used for
(A), can be repeated fq\);, and so forth. An iterative al-

(A), =[Py, (I - L)-l"A], gorithm is obtained, which computes the consecutive terms
of the serieg27) by an initial injection ofN; particles from
P.(Q) =[v, f,, (1 -L)"Ms(Q). (29)  the boundary and consecutive steps of storing and removing

) particles from the device. Since the estimators of the con-
We show thatP;, up to a prefactor, ha_slthe_meanlng of den-secutive terms in the series have to be summed at the end,
sity of stored particles. The serigis-L)""Mé'is obtained by  only a single estimator is necessary for the evaluatioffpf
a replacement oA=p, i, by M in the consecutive terms of The prefactolC=®/N; appears in the estimators of all terms
(1-L)~*A. This is actually equivalent to replacing, by  and can be determined in the manner discussed in Sec. IV A.
py(pl—p) 8, which corresponds to a generation with prob- ~ The numbem, of the boundary particles must be chosen
ability p, of two particles in state©* and Q~. The delta sufficiently large in order to attain a reliable approximation
function at the end gives rise to a projection to the phase®f the first term in(27). The evaluation of all remaining
space pointQ, which is achieved by the random variable terms depends on this choice. In order to be less dependent
5= 8(Q-Q") - S(Q-Q"). We first note that botkA), andP, N the initial guess of this value, the algorithm can be modi-
can be sampled over common classical trajectories coried s follows. A moderate value & is chosen. The steps
structed with the help of. The generation of the particles of injection from the boundaries alternate with the steps of

for P, occurs at the same instances with the self-scattering:,SChfirge of the device. Particles stored from a boundary
events. Secondj; dQis 1,(-1) if a particle is generated into jection are added to the particles stored from the previous

A (O B injection in the device. This process of accumulation of the
a pointQ*, (Q7) that belongs to the domaidQ aroundQ. Injec ) X
SinceQ* + Q- the case where both points belongd@ can particles in the device follows the scheme
be avoided by the limitlQ— 0. The estimator oP; is (28) b—s b—s
with ;5 in the place of. It follows thatP; is the densityw, b— Wplj(wpﬁwpz)j(wpl+ Wp2 +Wp3) ...,

of stored particles multiplied by the prefact®rN,;. We note

that the annihilation of positive and negative particles in ayhereb— means boundary injection, which gives risentg)

givenQ is formally proven by this approach. in all brackets. The rest of the terms, in each bracket is
The averagdA), in (29) differs from (A); only by the  obtained from the previous step of discharging the device,

boundary term, which is now replaced By. It can be evalu-  which is denoted by the bottom arrow. After tReh bound-

ated with minor modifications of the algorithm: the trajecto- ary injection, the number of stored particlesd® aroundQ

ries should now begin from the device volume. The estimatofs approximatelyEEzlwpk(Q)dQ, which can be proven by

depends on the choice of the densityfor selection of the jnduction. The subsequent step of injection from the device

initial trajectory pointsQ: completes the estimation of the functiofff*X(A),. We take
1 — P,(OW o the mean of these estimates at st@ps, ... Ras an approxi-
(A), = N_E pl((g(,-)))l_[ ARTAS (300  mation of the functionakA). Since the functionalA), is
2 j,n n

summedR-k times and the ratigR—k)/R tends to 1 afR

Here, N, is the number of trajectories used. A convenienttends to infinity, our estimate dofA) is asymptotically cor-
choice forp is rect. The modified algorithm assists the process of annihila-
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FIG. 2. Electron concentration and mean electron energy at T

=300 K and 0.1 V bias. FIG. 3. Pair generation ratey(x) caused by the Wigner
potential.
tion and suppresses the development of rare events that can
degrade the statistics. Phonon scattering strongly affects the current-voltage
characteristics, as can be seen in Fig. 4. In comparison to the
coherent case, the scattering leads to an increase of the valley
current and a shift of the resonance voltage. This effect is
due to a repopulation of the electron states in the emitter.
The proposed particle method has been investigated bjnelastic scattering events dissipate the energy of the elec-
simulations of benchmark resonant tunneling dio@®ED).  trons entering from the left-hand reservoir. Propagating elec-
The features and relevance of the method with respect tgons fall into the lower energy states in the potential notch
processes of tunneling and dissipation is studied. The methagh the left-hand side of the barrigFig. 2) and contribute to
has been successively compared to the comprehensive solfie current. The large difference in the valley current can be
NEMO-1D based on nonequilibrium Green’s functi6A®\  explained with the electron concentration in off-resonance
common physical model is applied. The carrier transport inconditions(Fig. 5). The scattering with phonons leads to sig-
the RTDs is cosidered one-dimensional; the phase space fficantly higher concentration in the notch. A quasibound
defined by the single device coordinate and the completgtate is formed, and the injection in the double barrier is
three-dimensional space of wave vectors. The numericghcreased. In resonance conditions, where the applied voltage
counterpart of the definitio(8) is given by a discrete Fourier s |ower, such a bound state does not form and very similar
transform defined in the intervatL./2,L./2) whereL; is  electron concentrations are observed for the coherent and
called coherence length. The standard analytical band scatoncoherent case, which is shown in Fig. 6.
tering model used for the simulated RTDs includes polar These effects cannot be accounted for by elementary tun-

optical and acoustic deformation potential scattering, assunheling theories, which assume the notch states to be in equi-
ing parameter values for GaAs. The position-independent ef-

fective mass is 0, 06,

Device I, which is shown in Fig. 2, has been taken from
Shifren et al%? The two barriers are 0.3 eV high and 3 nm
thick; the well width is 5 nm. A linear voltage drop is as-
sumed in a region from 10 nm before the emitter barrier to
19 nm after the collector barri¢a total distance of 40 njn
In the contact regions, the doping is#@m 3. The coher-
ence length used in the simulations lis=80 nm. The
Wigner generation rate reaches fairly high values in this
structure(Fig. 3) and is used to distinguish between classical
and quantum regions. Comparing this rate with the much
smaller phonon scattering rate is a quantitative measure of
the fact that quantum-interference effects are dominant.

The electron concentration and the mean energy are
shown in Fig. 2. These are nearly constant in the contact
regions. A smooth transition between classical and quantum
regions is demonstrated despite the strong onset shown
in Fig. 3 for two values of the applied bias.

VI. SIMULATION RESULTS AND DISCUSSIONS
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FIG. 4. Influence of phonon scattering on the I/V characteristics
of the RTD.
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FIG. 7. Phonon scattering has a small effect on the device
FIG. 5. Electron concentration in off-resonance conditions.  characteristics.

librium with the right-hand reservoirFrom these consider- for L. leads to an overestimation of the valley current. The
ations, it follows that the effect of phonons should berequirement that the coherence length must be chosen suffi-
negligible in a device having a flat potential on the left-handciently large can be linked to the completeness relation of the
side of the barrier. Tsuchiyet al® have investigated such an discrete Fourier transfornik,=7/L.. A smallL. results in a
RTD, assuming a linear potential drop only across the centratoarse grid in the momentum space so that resonance peaks
device. The two 2.825 nm barriers are 0.27 eV high, and thare likely not resolved properly. A larde. can create prob-
well width is 4.52 nm. The doping level in the contacts islems for the finite difference methods. The sparsity pattern of
2Xx 108 cmi 3. The I/V characteristics of Device Il with and the matrix related to the Wigner potential is very poor. An
without phonon scattering are shown on Fig. 7. Consistentlyincrease of the matrix dimension, evaluated lyAx, can
phonons cause only a small effect on the device behavior. lead to prohibitive memory requirements. The stochastic ap-
The 1I/V coherent characteristics of Device I, as obtainedproach does not require operations with matrices, so that the
by the particle methoQMC) and NEMO, are shown in Fig. number of points can be easily increased. In this work, the
8. Compared to NEMO, a slightly higher peak current iswigner potential is discretized using approximately® 10
obtained by the particle method. The results show a googoints. Moreover, the particle method accounts for dissipa-
qualitative agreement. tion processes at a rigorous kinetic level. As compared to
The coherence length, has to be selected carefully in tools based on tunneling theories, or a coherent Wigner func-
Wigner transport simulations. A comparative study, the retion, this method avoids the usual relaxation time approxi-
sults of which are plotted in Fig. 9, shows that only a suffi-mation.
ciently large value gives realistic results. The finite differ- Figure 10 shows the carrier distribution for different bias
ence(FD) result is taken from Tsuchiy®.A too small value  points in a third type of RTD. The 4 nm well of Device Ill is
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FIG. 8. Coherent I/V characteristics obtained by the particle
FIG. 6. Electron concentration in resonance conditions. method(QMC) and NEMO.
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800 — T T T T VII. CONCLUSIONS
—— Lc=34nm FD
 e—olcoasimme [ -J00K coherent A particle method has been associated with Wigner-
so0k o2 e = 62nm MC Boltzmann transport in small semiconductor devices. This

. method accounts for dissipation and interference phenomena
by two alternative processes of transport of quasiparticles.
Dissipation caused by interaction with phonons appears as
consequence of both drift and scattering processes corre-
sponding to semiclassical Boltzmann transport. Interference
] effects due to the Wigner potential are associated with gen-
eration of couples of particles having statistical weight 1. In
( this picture, the Wigner equation with a Boltzmann scattering
term has been interpreted as a Boltzmann equation aug-
mented by a generation term.
Ly For sufficiently smooth potentials, the Wigner operator
0.05 0.1 0.15 02 0.25 can be approximated by a classical force term, which is in-
voliage (V) cluded in the Liouville operator. The present particle method
FIG. 9. Effect of the coherence length in Wigner simulations.  Simplifies gradually to the classical MC method when the
classical limit is approachéd A seamless transition between
classical and quantum regions results. It has been shown that
enclosed by 3 nm barriers with 0.49 eV height. The relevanthe ergodicity of the classical transport process follows from
simulation domain is 300 nm, the quantum domain ofthe assumed stationary transport conditions.
120 nm corresponds th,=60 nm. 120, points are used In the regions of quantum transport, the challenge of em-
and the spacing in thedirection isAx=0.5 nm. At the reso-  ploying the method is to handle the avalanche of the particles
nance voltage of 1.2 V, the concentration in the quantunproperly. The problem has been solved for stationary condi-
well is considerably higher than in the off-resonance conditions: Particles of opposite sign and a sufficiently small dis-
tion at 1.6 V. The concentration in the depletion region lefttance in phase space annihilate one another in the course of a
of the barriers depend on the injected current from the righsimulation. Positive or negative particles can accumulate in
and thus correlates with the concentration in the well. Thephase space domains. The accumulation of negative particles
1.6 V curve provides an instructive example illustrating theis in accordance with the negative values which characterize
numerical noise in the region where the carrier density dropghe Wigner function especially in the regions of strong po-
more than three orders of magnitude. tential variations. The approach is suitable for moderate
The numerical noise of the stochastic approach poses physical conditions of mixed coherent and dissipative trans-
natural limit for the resolution of the simulated averages.port.
Physical conditions, where physical quantities vary over sev-
eral orders of magnitude, are unattainable by this method.
High-performance devices with a high peak/valley ratio are APPENDIX'A
beyond the scope of the particle approach. Therefore, it is The freedom of the choice of the initialization time di-
concluded that the present method can bridge the gap beectly follows from the fact that the wave vectorremains
tween classical device simulations and pure quantumconstant in time for an unaccelerated trajectory. Actually this
ballistic simulation. This method provides a relevant descripproperty is valid for a general Liouville operator with a force
tion of the stationary carrier transport in nanostructures aferm that does not depend explicitely on time. A useful rela-
moderate physical conditions. Effects of tunneling and dissitjon, which follows from the stationarity assumed, will be
pation are incorporated with equal numerical accuracy angerived.
the results agree with other rigorous simulation tools. Atrajectory is initialized by a phase space pdixtr) and
a timet,

current density (103A/cm2)
'
3
T

™
g

D o e e S S e e B e t

L 1 R(t;tO!r!k) =r +f V(K(y, . ))dy1

to

t

K(t;to,r,k)=k+f F(R(y; -))dy. (A1)

fo

. -3
electron concentration (cm ")

The order ofty andt is irrelevant. A trajectory is called
forward if the evolution time is greater than the initialization
7 N B R PR B time t>t,. Otherwise the trajectory is called backward. The

10 . . . . .
0 %0 1 mce oy 20 limits of the time integration ir(A1) can be exchanged by
changing the sign of the integrals. To describe a time-
FIG. 10. Electron concentration profiles in Device IIl. invariant system an absolute time scale is not needed. Only

115319-13



NEDJALKOQV et al. PHYSICAL REVIEW B 70, 115319(2004

the time difference between two consecutive events is importegrated straightforwardly. The upper bound of integration
tant. Invariance under time translation can be proven should bet=0 to obtainf(o):f(k’r)' the value off at the
R(t+ 7ty + 7,1, K) = R(t:t,r k) given phase space point. The lower-time bound has to be
chosen such that the functiokqt) andR(t) take on values
. _ ) at which the distribution function is known. In the steady
K(t+ 7o+ 7r,K) =K(Gtor k). (A2) state the distribution function is known only at the device
This property will be used to conveniently adjust the timeboundary. An appropriate lower time bound is therefore the
referencet,=0 for each trajectory. A shortcut notatiatit) time, sayt,, at which the trajectory crosses the simulation
=R(t;0,r,k) andk(t)=K(t;0,r k) is introduced. A particu- domain boundary. Apparently, this time depends on the point

larly useful relation is obtained frofA2) k, r under consideration. For trajectories closedDnthe
time t, is —o. Integration of(B2) in the time bounds dis-
° cussed above results in the integral form of the stationary
fdrdkf diep(rk,r (1), k(D) Wigner-Boltzmann equatio(B).
T
:fdr dk fo dtep(r'(t),k’(t),r',k"). (A3) APPENDIX C
Herer(t), k(t) is a backward trajectory initialized by,k, We first introduce the functioB(r) =0, which defines the
while r’(t),k’(t) is a forward trajectory initialized by’ k. domain boundary. This gives an implicit definition of the
The relation is proven by introducing new integration vari- Poundary time as a root d&(r (t'))=0. The equality
ablesr’=R(:0.r. k), k’=K(t:0.r. k). Then St~ ty) = B DIV, BIrp|V. (Kt (C)
r=RO;tr" k) =R(=t0r"k", follows directly from the properties of thé function. The
normal velocity component, appears since the gradient of
k=K(0;t,r' k") =K(=t;0,r',k’). B is normal to the domain boundary in the crossing point

with the trajectory. Using the right-hand side @1) in the

According to the Liouville theorem the phase volume is m-augmented equatiofi6) gives

variant under this transformatiomr’dk’=drdk. The last
step is to reverse the time by switching the sigrt aehd to
recall thatR(t;0,r’,k’) andK(t;0,r’,k’) are forward tra- _ , ,

jectories initialized by(r’,k’) and denoted by’ (t),k’(t). In (Ay= [ at' | dr [ dke[B(r(t')D]IViB(ro)llv. (k(ty))]
particular, for a given functiom it follows that -= Db

T

0
f‘) () k(y)dy = f AWK )y, (Ad) xfb<r<tg>,k<tg>>exp(— f_mr(y),k(y))dy)g(k,r).
-T 0 t

The variablegk’,r’) are changed t&k,=k(t’), r"=r(t’) and
(A3) is applied. The” integral is accounted with the aid of
APPENDIX B the delta function

To obtain the integral form of the stationary Wigner-
Boltzmann equation, we consider a given phase space point J 5(B(r”))¢(r”)dr”:j€ (ry) ————do(ry),
(r,k). This point determines uniquely a phase space trajec- D |V B(ry)|
tory, (r(t),k(t)) in backward parametrizatiobs 0. Consider

the parametrized Ed5):
[V(K() - Vi + alr (1), k() Ifu(r (B), k(1)

where ¢ is a test functiorf® This accomplishes the change
from volume to boundary integration leading (tb7).

:fdk’F(r(t),k(t),k’)fw(r(t),k’). (B1) APPENDIX D
Consider a random variablg which takes valuesi(y)
If both sides of(B1) are multiplied by the integrating factor with probability densityp,(y). Herey is a multidimensional
exg— ft,u(k(y) r(y))dy], the left-hand side represents a total point. The expectation valug, of  is given by
time derivative

E,= J dypy(y)Uy). (D1)
—eXP( f u(y)dy>f(t) exp( f ,LL(y)dy)F[f](t)

The simplest Monte Carlo method evaluakgsby perform-
(B2) ing N independent realizations of the probability dengify
N . ] . Generated ardl pointsyy, ... Yy, called sampling points for
Here I'[f](t) denotes the right-hand side @1) and i(y)  the random variabley. The sample meam estimates the
=u(k(y),r(y)), f(t) fu(r(t),k(t)). This equation can be in- expectation valué,,
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1 N
E,= 7= NEI ) (D2)

with a precision that depends on the number of independent f v)dy Py)

realizationsN and the variance af, of the random variable.
According to the “rule of the three sigm&?:

3
P{|Ew— = iﬁ} ~0.997 (D3)
V

the probability fory to be inside the intervalg,/ YN around
E, is very high(0.997.

PHYSICAL REVIEW B 70, 115319(2004

The concept of the Monte Carlo approach for evaluation
integrals is to present a given integral as an expectation value

N
o)’ p(y) =0, p(y)dy=1

(D4)

of the random variablg=f/p. The probability density func-
tion p can be arbitrary, but admissible fér p#0 if f+#0.
Different random variables can be introduced, depending on
the choice ofp. All of them have the same expectation value

| but different variance and higher moments. It can be shown
that the lowest variance is obtainedpgfis chosen propor-
tional to|f|.
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