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Small semiconductor devices can be separated into regions where the electron transport has classical char-
acter, neighboring with regions where the transport requires a quantum description. The classical transport
picture is associated with Boltzmann-like particles that evolve in the phase-space defined by the wave vector
and real space coordinates. The evolution consists of consecutive processes of drift over Newton trajectories
and scattering by phonons. In the quantum regions, a convenient description of the transport is given by the
Wigner-function formalism. The latter retains most of the basic classical notions, particularly, the concepts for
phase-space and distribution function, which provide the physical averages. In this work we show that the
analogy between classical and Wigner transport pictures can be even closer. A particle model is associated with
the Wigner-quantum transport. Particles are associated with a sign and thus become positive and negative. The
sign is the only property of the particles related to the quantum information. All other aspects of their behavior
resemble Boltzmann-like particles. The sign is taken into account in the evaluation of the physical averages.
The sign has a physical meaning because positive and negative particles that meet in the phase space annihilate
one another. The Wigner and Boltzmann transport pictures are explained in a unified way by the processes
drift, scattering, generation, and recombination of positive and negative particles. The model ensures a seam-
less transition between the classical and quantum regions. A stochastic method is derived and applied to
simulation of resonant-tunneling diodes. Our analysis shows that the method is useful if the physical quantities
do not vary over several orders of magnitude inside a device.
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I. INTRODUCTION

A. The Wigner-Boltzmann-transport

Carrier transport in mesoscopic devices has been widely
investigated in recent years using the Wigner function
formalism.1 A single-particle picture2 is used, where the co-
herent interaction of the electron with the device structure is
determined by the Wigner potential. This approach allows
one to handle, in a natural way, self-consistent open-
boundary systems under stationary, small signal, or transient
conditions.3 Early works investigate the theoretical and nu-
merical properties of the coherent Wigner equation appropri-
ate for ballistic transport.4–8 Dissipative interactions with
phonons have been approached by means of phenomenologi-
cal models based on the relaxation-time approximation.3,9–11

The Boltzmann collision operator, acting upon the Wigner
distribution, has been suggested by Frensley9 as a more gen-
eral model of dissipative processes caused by phonons. Can
the classical collision operator and the quantum Wigner op-
erator reside in a common equation? The answer can be
found by starting from the first-principle equation for the
generalized Wigner function.12,13Along with the electron co-
ordinates, the function depends on the occupation number of
the phonon states in the system. Of interest is the electron, or
reduced, Wigner function obtained from the generalized
Wigner function by a trace over the phonon coordinates. A
closed equation for the reduced Wigner function can be de-
rived after a hierarchy of approximations, which include the

weak scattering limit and assume that the phonon system is
in equilibrium.14 They concern the interaction with the
phonons, while the potential operator remains exact. The
phonon interaction in the resulting equation, being nonlocal
in both space and time, is yet quantum. The Wigner-
Boltzmann equation is obtained after a classical limit in the
phonon term, leading to the Boltzmann collision operator.
The hierarchy of the corresponding transport models is
shown on Fig. 1.

The effects neglected by this limit can be studied from the
homogeneous form of the equation for the reduced Wigner
function. In this case the latter reduces to the Levinson
equation,15 or equivalently to the Barker-Ferry equation16

with infinite electron lifetime. It should be noted that the
Barker-Ferry equation can be alternatively derived17 from the
one-band semiconductor model,18 and inclusion of a finite
lifetime requires a refined set of approximations in the first-
principle equation. Numerical studies19–22 of the Levinson
equation reveal quantum effects of collision broadening, re-
tardation, and the intracollisional field effect. These effects,
related to the finite duration of the collision process, have
been investigated by Ferry and Barker,16,23–26 the Modena
group,13,27–30and others21,31–33for ultrafast and/or high-field
transport in semiconductors and insulators, and Rossi and
Kuhn18,34,35 and others36,37 in photoexcited semiconductors.
The solutions of the Levinson equation demonstrate the es-
tablishment of the classical, energy conserving delta function
for long times. Semiclassically forbidden states are occupied
at early evolution times.18,35,38 At higher times, which are
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above a few hundred femtoseconds for GaAs, the Boltzmann
limit dominates in the carrier evolution. A theoretical analy-
sis supports this result. Ringhoferet al.39 have derived the
classical limit and the first-order correction of the equation
by using a small parameter. The latter requires that the prod-
uct of the time scale and the phonon frequency scale to be-
come much larger than unity, which gives rise to coarse
graining in time. Thus, for long evolution times, the quantum
effects in the electron-phonon interaction can be neglected.
Consequently the intracollisional field effect is not important
in stationary high-field transport in semiconductors when
single-valley transport is considered.33 We note that the
above considerations hold in the weak collision limit, where
the next interaction begins well after the completion of the
current one.

We conclude that an inclusion of the Boltzmann operator
in the Wigner equation requires that the dwell time of the
carriers inside the device, and hence the device itself, must
be sufficiently large. On the contrary, the application of the
Wigner potential operator is reasonable for small device do-
mains, where the potential changes over a region are compa-
rable with the coherence length of the electron. These re-
quirements are not contradictory, as the actual device is
composed of the active quantum domain attached to large
contact regions.

B. Particle models

Particle models are developed for computation of physical
quantities by stochastic or deterministic approaches in the
framework of different quantum-kinetic theories. It has been
recognized that these models, primarily introduced for nu-
merical purposes, can be used to interpret and explain pure
quantum phenomena, such as tunneling and interference. Nu-
merical particle models are based on the convenient ideas of
the classical Boltzmann model. The most simple version of
the latter is built up on the free-electron quasiparticle con-
cepts of effective mass and energy dispersion. Expansion of

the physical model with respect to the band structure,40–42

scattering with lattice imperfections,41,43–45 Pauli exclusion
principle,46,47 and particle-particle48 scattering retain the pic-
ture of developing particles. Below we summarize these
models, starting with the direct application of the classical
picture.

The smoothed effective potential approach49 utilizes clas-
sical particles to account for quantum mechanical size quan-
tization effects. The effective potential is a smoothing of the
real classical potential due to the finite size of the electron
wave packet. It has been shown that the classical trajectories
resulting from the effective potential have important details
in common with the corresponding Bohm trajectories.50 A
further generalization of the approach replaces the action of
the Hamiltonian on the wave function by the action of a
classical Hamiltonian on particles with an appropriately
modified potential. A set of coupled equations is obtained for
the inhomogeneous equilibrium distribution function in the
device and its first-order correction. The effective potential,
defined in terms of a pseudodifferential operator acting on
the device potential, becomes also a function of the momenta
of the classical particles.51,52

Ultrafast phenomena in photoexcited semiconductors are
described by a set of coupled equations, where the distribu-
tions of the electrons and holes and the interband polariza-
tion are treated as independent dynamical variables. The cho-
sen representation utilizes density matrices defined in the
sk ,k8d wave-vector space. If interaction processes are treated
on a semiclassical level, so that all transition functions be-
come positive, the set of equations has the structure of rate
equations that can be solved with a generalized ensemble
Monte Carlo(EMC) scheme.53 The fact that a particle model
is associated with the evolution of the inter-band polariza-
tion, a complex quantity responsible for the coherence in the
photogeneration processes, shows that:(i) the EMC method
has evolved beyond the understanding of the method as a
computer experiment that emulates natural processes; and
(ii ) numerical particles are introduced with the purpose to

FIG. 1. Hierarchy of quantum transport mod-
els. The electron Wigner equation turns into the
Levinson equation for homogeneous conditions
or into the Wigner-Boltzmann equation for clas-
sical electron-phonon interaction. The Boltzmann
equation is obtained with a classical limit in the
Wigner potential term.
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model the dynamics of a quantity with no particle analogy.
Furthermore, the positiveness of the transition functions is
not a necessary condition for a Monte Carlo approach. It has
been shown that the action of the Wigner potential, which is
an antisymmetric quantity, gives rise to a Markov process,
which can be regarded as a scattering of a particle between
consecutive points in the phase-space.54

In Wigner representation, numerical particles are pointlike
objects, whose temporal evolution determines trajectories in
the sr ,kd phase space. Wigner trajectories can be defined by
modified Hamilton equations, formulated with the help of a
quantum force.55 The latter is manifestly nonlocal in space
and expressed through the Wigner potential, the Wigner
function, and its derivative with respect to the momentum
coordinate.56 Wigner trajectories provide a pictorial explana-
tion of the evolution of the quantum system and, in particu-
lar, nicely illustrate tunneling processes.56,57 When it is pos-
sible to define a quantum force, Wigner trajectories maintain
the values of the Wigner function during the time evolution
and thus satisfy the Liouville theorem. However the quantum
force has singularities at the points where the momentum
derivative of the Wigner function becomes zero. At these
points, trajectories can be created or destroyed.58 In general,
Wigner trajectories remain an auxiliary tool for modeling of
quantum transport, unless the Wigner function in the quan-
tum force term is assumed to be known. An appropriate ap-
proximation for a nearly equilibrium system is a displaced
Maxwell-Boltzmann distribution function. It is easy to see
that such an assumption corresponds to the zeroth-order cor-
rection in the effective potential approach. In this case the
quantum force is defined everywhere except at the phase-
space origin, and gives rise to an effective lowering of the
peaks of the potential barriers.59 The increase of the particle
flow observed through the barriers is associated with tunnel-
ing processes.

The above considerations show that the price for a devia-
tion from classical trajectories is high. Approaches utilizing
zero force, as in the original formulation of the Wigner equa-
tion, or a local force,60 which can be extracted from the
Wigner operator enjoy the properties of the Liouville theo-
rem. The conservation of the phase volume during the par-
ticle evolution is a key property for the method proposed in
this work.

The integral form of the Wigner equation has been used to
introduce a quantum transport model based on Wigner
paths.30,61 It has been shown that a ballistic evolution of a
d-like contribution to the Wigner function carries its value
following a classical trajectory.27 The action of the Wigner
potential operator is interpreted as scattering, which, along
with the scattering by the phonons, links pieces of classical
trajectories to Wigner paths. We note that, in this model, the
phonon interaction is treated fully quantum mechanically,13

according to the first-principle equation. That is, the scatter-
ing with phonons begins with exchange of half of the phonon
momentum and completes after a finite time. During this
time, an arbitrary number of interactions with other phonons
can be initiated and/or completed. In comparison, Levinson’s
equation considers a single interaction with finite duration
while Boltzmann scattering is instantaneous, so that the tra-
jectory changes with the full phonon momentum. During the

evolution particles accumulate a numerical quantity called
weight, which carries the quantum information for the sys-
tem. The weight is taken into account in the computation of
the physical averages. This model should be regarded as a
theoretical achievement, as the practical implementation in-
volves enormous computational burden.13

An operator-splitting method applied to the coherent
Wigner equation gives rise to a picture where an ensemble of
particles drift over classical trajectories. The quantum infor-
mation is carried by a numerical quantity called affinity.62–64

The method consists of consecutive steps of drift over the
trajectories followed by an update of affinity from the
Wigner potential. The approach is numerically tractable and
shows an excellent agreement with deterministic solutions of
the problem.65 Phonon interaction and coupling to a Poisson
solver can be included in a straightforward way,66 so that the
approach appears as a generalization of the Ensemble Monte
Carlo method for solving the Wigner-Boltzmann equation.
Recently a finite collision duration has been included.67 In
this approach the solution is determined by the evolution of
an initial condition.

We propose an approach where the Wigner equation, with
a Boltzmann scattering term, is interpreted as a Boltzmann
equation with a generation term. The interaction with the
Wigner potential gives rise to generation of particle pairs
with opposite sign. The sign is the basic property that out-
lines the introduced numerical particles from classical quasi-
particles. It is an important property because positive and
negative particles annihilate one another. The negative values
of the Wigner function in certain phase-space regions can be
explained in a natural way by the accumulation of negative
particles in these regions. The Wigner-Boltzmann transport
process corresponds to drift, scattering, generation, and an-
nihilation of these particles. The process unifies classical and
quantum regions within a single-transport model. Although
the model proposed is valid for general transport conditions,
it is especially convenient for stationary transport, deter-
mined by the boundary conditions of the problem.

The cogent analogy between the concepts holds in nu-
merical and quasiparticle approaches. Analytical models de-
cipher complicated interactions in solids in terms of quasi-
particles. Some of the real particle characteristics, such as
mass and energy, can be renormalized and/or extra proper-
ties, such as lifetime, can be assigned. A canonical transform
of a given analytical model can give rise to a new type of
quasiparticle, so that even their total number may not be
conserved.68 Numerical models are developed to solve
and/or explain given transport theory, which is built upon a
corresponding quasiparticle model. The numerical particles
can modify some properties of the underlying
quasiparticles69 and add novel features, such as weight or
sign. Within a given numerical model, the properties of the
numerical particles depend on the chosen algorithm so that
their statistics and total number may not be conserved.

The paper is organized as follows. In Sec. II, we consider
three equivalent formulations of the Wigner-Boltzmann
equation. The adjoint integral form of the equation is used to
expand the averaged value of any physical quantity of inter-
est into a series. In Sec. III, the series is analyzed in terms of
random variables. A chain of conditional probability densi-
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ties associated with stochastic events of particle evolution is
obtained. Section IV unifies these events into a particle trans-
port model. Here the particle picture is explored for different
transport regimes. The transport behavior of classical carriers
is recovered for the case of the Boltzmann equation and the
ergodicity of the process is proven. In the coherent case,
governed by the Wigner equation, the transport is character-
ized by generation of positive and negative particles. In the
general case of Wigner-Boltzmann transport, the classical
and coherent models can be constructively unified. Section V
discusses the numerical aspects of the model. An algorithm,
suitable for Monte Carlo simulations of Wigner-Boltzmann
transport, is derived. In Sec. VI, simulation results for the
resonant-tunneling diode are presented and discussed.

II. THE WIGNER-BOLTZMANN EQUATION

We consider the case of stationary transport, where the
physical conditions imposed on the boundaries determine the
device behavior. The Wigner phase-space is composed by the
real space coordinater and the wave vectork. We emphasize
that r andk are independent variables, not adjoint by a Fou-
rier transform, and thus not linked by the uncertainty
relation.9 The device exchanges carriers with two or more
reservoirs through the contacts denoted byb. Open-system
boundary conditions are provided by the Fermi-Dirac distri-
bution functions fbsr b,kd in the contacts.9 The solution
fwsr ,kd of the Wigner-Boltzmann equation is used to obtain
the average values of all physical quantities of interest. The
average valuekAl of a generic physical quantityAsr ,kd, such
as carrier velocity and density, is given by the inner product
sfw,Ad

kAl =E
D

dr E dk fwsr ,kdAsr ,kd = sfw,Ad, s1d

whereD is the device domain. Equation(1) asserts that, in
order to evaluate the averaged value of interestkAl, one
needs to know the solutionfw inside the device. An alterna-
tive expression for the mean valuekAl can be found from the
adjoint integral form of the WB equation. The derivation of
this expression begins with the integrodifferential form of the
equation.

A. Integrodifferential form

The stationary form of the equation states that the action
of the differential Liouville operator is the joint action of the
Wigner and Boltzmann integral operators on the solutionfw

vskd ·¹r fwsr ,kd =E dk8Vwsr ,k8 − kdfwsr ,kd

+E dk8fwsr ,k8dSsk8,kd − fwsr ,kdlskd.

s2d

Here vskd="k /m and m are the quasiparticle velocity and
effective mass, respectively.Ssk8 ,kd is the rate for scattering
from statesr ,k8d to statesr ,kd due to phonon interaction.

lskd=eSsk ,k8ddk8 is the phonon out-scattering rate. The
Wigner potential at pointr is defined by the Fourier trans-
form of the central difference of the device potentialV
aroundr

Vwsr ,kd =
1

i"s2pd3 E ds exps− ik ·sd

3 SVSr −
s

2
D − VSr +

s

2
DD . s3d

The Liouville operator in(2), which for time-dependent
problems must be augmented by a time derivative, corre-
sponds to an unaccelerated free-streaming motion. The op-
erator can be augmented by a force term, due to the follow-
ing property of(3).70 The Fourier transform ofFsr d ·s, where
F is an arbitrary function, gives rise to the termVw

Fsr ,k8
−kd=−Fsr d ·¹"kdsk8−kd. The latter, inserted in(2) and
transferred to the left-hand side of the equation, completes
with the Liouville operator, a force term. The definition of
the Wigner potential is modified according toVw8 =Vw−Vw

F,
which results in an additional term −Fsr d ·s in the brackets of
(3). For potentials up to quadratic,F can be chosen to com-
pensate the potential difference in the brackets of(3) and has
a meaning of electrical force,F=−¹V. In this case,Vw8 =0
and (2) becomes the classical Boltzmann equation. For gen-
eral potentials F can be selected from physical
considerations66,70 In this case, the Wigner potentialVw8 must
be understood as a generalized function.

We utilize definitions(2) and (3), where the characteris-
tics of the Liouville operator are Newton trajectories without
the acceleration term

r std = r + vskdt, kstd = k . s4d

We note that the notions derived below do not make use of
the particular form of(4) and thus remain valid for the modi-
fied definitions. As discussed in Appendix A, a stationary
trajectorysr std ,kstdd can always be initialized by the phase-
space pointsr ,kd at time 0. Equation(2) can be reformulated
by a decomposition of the antisymmetric Wigner potential
into two complementary parts as follows:

Vwsr ,kd = Vw
+sr ,kd − Vw

+sr ,− kd, gsr d =E dkVw
+sr ,kd.

The functionVw
+ equalsVw if the Wigner potential is positive

and is zero otherwise:Vw
+ =VwjsVwd with j the Heaviside step

function. The meaning of the functiong is discussed in the
next section. By addinggsr dfwsr ,kd to both sides of(2) the
equation becomes

fvskd ·¹r + msr ,kdgfwsr ,kd =E dk8Gsr ,k,k8dfwsr ,k8d,

s5d

Gsr ,k8,kd = Vw
+sr ,k8 − kd − Vw

+sr ,k − k8d + Ssk8,kd

+ gskddsk − k8d, s6d
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msr ,kd = lskd + gsr d. s7d

In Appendix B, Eq.(5) is transformed into an integral equa-
tion with the help of(4).

B. Integral form

The integral form of the WBE is formulated by using of
the backward trajectorysr ,st8d ,kst8dd, initialized by sr ,kd

fsr ,kd =E dk8E
tb
−

0

fsr st8d,k8dGsr st8d,k8,kst8dd

3expS−E
t8

0

msr syd,ksydddyD + f0sr ,kd,

f0sr ,kd = fbsr stb
−d,kstb

−ddexpS−E
tb
−

0

msr syd,ksydddyD ;

tb
− = tb

−sk,r d. s8d

The equation can be understood in analogy with the integral
form of the Boltzmann equation. The latter is obtained by
formally setting the Wigner potential to zero. Then, the ex-
ponent in(8) becomes the probability for a particle to drift
without scattering by phonons during the time intervalst8 ,0d
on the proper trajectorybsr ,kd, which arrives atsr ,kd.
There are two contributions to the value off in the point
sr ,kd. f0 is the value of the boundary functionfb, which
survives onb despite the action of the phonons. The other
term gives cumulative contributions from previous timest8:
values off located atr st8d scatter, according toS, from ev-
erywhere in the wave-vector space to the properkst8d. The
particular valuesfSare further multiplied by the exponent to
filter out the part that is scattered out ofb by the phonons.
This picture can be maintained when the Wigner potential is
switched on. ThenVw

+ in (6) has a clear meaning of scattering
due to the Wigner potential. The functiong can be inter-
preted as an out-scattering rate due to the Wigner potential in
strict analogy with the phonon out-scattering ratel. Thengd
becomes a self-scattering function. The major difference be-
tweenS andG comes from the fact that while the former is
strictly non-negative, there is a minus sign in(6). This sign
precludes a direct probabilistic treatment of the equation in
terms of classical particles.

After this step, the boundary conditionsf0 appear explic-
itely in (8). f0, along with the solutiong of an equation
adjoint to (8), give rise to the desired expression for the
physical averages.

C. The adjoint equation

Equation(8) can be formally written in the standard form
of a Fredholm integral equation of the second kind

fsr ,kd =E dr 8E dk8fsr 8,k8dKsr 8,k8,r ,kd + f0sr ,kd.

s9d

The kernelK has been augmented to account for ther 8 in-
tegration by a spatial delta function

Ksr 8,k8,r ,kd =E
−`

0

dt8Gsr 8,k8,kst8dd

3 expS−E
t8

0

msr syd,ksydddyDdfr 8

− r st8dguDsr 8d. s10d

The indicator function of the simulation domainuD ensures
the proper lower boundtb

−sr ,kd of the time integral. The
adjoint equation has the same kernel as(9) but the integra-
tion is carried out over the unprimed variables. The free term
is chosen to be the physical quantity of interestA

gsr 8,k8d =E dr E dkKsr 8,k8,r ,kdgsr ,kd + Asr 8,k8d.

s11d

The solutiong depends on the free termA, which is not
explicitly written for simplicity of the notations. Equation
(11) assumes a backward parametrization of the trajectories.
Forward trajectories are introduced by first changing the in-
tegration variables fromr , k to r 9=r st8d, k9=kst8d back in
time over the trajectory initialized byr , k. Applying (A3)
and (A4), the adjoint equation(11) is obtained in forward
parametrization. The integration onr 9 can be achieved using
the delta function inK. A replacement ofk9 by k and −t8 by
t gives rise to the following compact form:

gsr 8,k8d =E dkE
0

`

dtuDsr 8dGsr 8,k8,kd

3 expS−E
0

t

m„r 8„yd,ksyd…dyCg„r 8„td,kstd…

+ Afr 8,k8g. s12d

Here, sr 8std ,kstdd is a forward trajectory initialized by
sr 8 ,kd. The equation has the desired property that integration
is carried out over final states and that the time variable is
positive. The solution of(12) can be expressed as a series,
obtained by an iterative replacement of the equation into
itself. It is convenient to consider first the series for the for-
ward equation(11), which gives rise to(12) after the spatial
integration. By introducingQ=sr ,kd the equation is written
formally as

gsQd =E dQ8KsQ,Q8dgsQ8d + AsQd.

The solution is expanded into a Neumann series

gsQd =E dQ8FdsQ − Q8d + o
n=1

`

KnsQ,Q8dGAsQ8d

= sI − Kd−1A, s13d

where I is the identity operator and KnsQ,Q8d
=edQ1KsQ,Q1dKn−1sQ1,Q8d. The iterative series of(12) is
equivalent to(13), but with the difference that all space in-
tegrations in the consecutive terms are performed. The space
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integration leading to(12) links the independent variables,
which makes it impossible to formulate a self-contained re-
cursive relation for the expansion of this equation. It is im-
portant that the consecutive terms of the series for(12) are
equal to the corresponding terms in(13),

gsQd = o
n=0

`

KnA = sI − Kd−1A. s14d

Denoting the reduced kernel in(12) by Ksr 8 ,k8 ,k ,td, we
write explicitly the second term in(14),

Ks2dA =E dt1E dk1E dt2E dk2Ksr 8,k8,k1,t1d

3K„r 1st1d,k1st1d,k2,t2…A„r 2st2d,k2st2d…. s15d

Equation(15) outlines the evolution of the space coordinate
r , which is now a passive variable, not taking part in the
integration: The trajectory(r 1std ,k1std) is initialized by
(r 8 ,k1) and (r 2std ,k2std) is initialized by sr 1st1d ,k2d.

D. Physical averages

Multiplying (9) by g and (11) by f, integrating over
unprimed and primed variables respectively, and subtracting
the two equations leads to the equalitysf ,Ad=sf0,gd. In this
way, the average value of the physical quantityA is ex-
pressed through the boundary conditionsf0 and the solution
of (12),

kAl =E
D

dr E dk fbsr stb
−d,kstb

−dd

3 expS−E
tb
−

0

msr syd,ksydddyDgsk,r d, s16d

where tb
− and the backward trajectory(r std ,kstd) are deter-

mined bysr ,kd.
Sincefb is defined only at the boundary]D, a transforma-

tion is needed that leads from a volume to a boundary inte-
gral. A phase-space pointsr ,kd is bijectively mapped onto
fkstbd ,r b=r stbdg by the boundary timetb (Ref. 71). This im-
plies that the transformation must replace one of the space
integrals by a time integral. One can formally augment(16)
by a time integraledt8dst8− tbd in the limits s0,−`d. After a
rearrangement of the integrals, shown in Appendix C,(16) is
transformed into

kAl =R
]D

dssr bdE
P+

dkbE
0

`

dt0uv'skbdufbsr b,kbd

3expS−E
0

t0

m„r bsyd,kbsyd…dyDgsr bst0d,kbst0dd.

s17d

By replacingg with the iteration series(14), kAl may be
expanded into the series

kAl = fb,sI − Kd−1Ag = fv'fb,sI − K̃d−1Ãg = o
i=0

`

kAli .

s18d

The second term is reformulated to facilitate further analysis.
The multipliers in each term of the sumfb,sI −Kd−1Ag are

formally regrouped. NowK̃ is the repeating term in the pat-
tern, which is obtained fromK after absorbing the exponent
on the left and releasing the exponent to the right for the next

K̃. In this wayA is assigned with the last exponent to become

Ã. The zero-order termkAl0=sv'fb,Ãd is given by the right-
hand side of(17), with A(r bst0d ,kbst0d) in the place ofg. The
first term is

kAl1 =R
]D

dssr bdE
P+

dkbE
0

`

dt0E dk1

3E
0

`

dt1uy'skbdufbsrb,kbd

3 expS−E
0

t0

m„r bsyd,kbsyd…dyD
3uD„r bst0d…G„r bst0d,kbst0d,k1…

3expS−E
0

t1

m„r 1syd,k1syd…dyDA„r 1st1d,k1st1d….

s19d

Here the trajectorysr 1std ,k1stdd is initialized by sr bst0d ,k1d.
The next term,kAl2 is derived with the help of(15). Eq. (19)
is augmented by integrals onk2 and t2, and A is replaced
with uG. The product

Ã2 = expS−E
0

t2

m„r 2syd,k2syd…dyDA„r 2st2d,k2st2d…,

s20d

appears at the end of the expression forkAl2 as an integrand
on the timet2. Higher order terms in(18) are derived by
induction.

The series expansion(18) is the key quantity in the treat-
ment of the boundary value problem. It proves that knowl-
edge of the boundary distribution is sufficient to determine
arbitrary volume integrals defined by(1) and, therefore, to
determinekAl uniquely. Only the subspaceP+ of boundary
stateskb having an inward-directed velocity componentv'

appears in(17), and thus determines the boundary condition.
The complementary part is apriori unknown and comes out
as a result of the transport process. The series expansion(18)
will be analyzed in terms of probability densities.

III. ANALYSIS OF ŠA‹

The basic particle methods used to date for simulation of
semiconductor devices were originally devised by consider-
ations where the simulation was an emulation of the physical
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process: the transport picture has been used to establish the
corresponding stochastic method. The link between such
physically based methods and the numerical methods of
Monte Carlo integration has been established later.72–77Here,
we follow the opposite approach: the numerical Monte Carlo
theory is used to propose a common particle picture of the
Wigner and Boltzmann transport processes. In Appendix D
we show that this approach requires all integrals in(18) to be
decomposed into probability densities and random variables.
A great advantage is provided by the common structure of
these integrals, which are built by the boundary termb, the

consecutive applications ofK̃, and end up with the quantity

Ã. It is then sufficient to extract from each of these three
quantities the proper probability densities. As these quanti-
ties appear in(19), we focus on that equation.

A. Injection from the boundaries

The boundary term allows a simple probabilistic interpre-
tation. For the purpose of normalization we introduce the
integrals

j'sr bd =E
P+

dk uv'skdufbsk,r bd, F =R
]D

j'sr ddssr d,

s21d

which represent the normal component of the incident-
particle current density and the total incident-particle current.
Then the quantity

pbsr b,kbd =
j'sr bd

F

uv'skbdufbsr b,kbd
j'sr bd

= pb1sr bdpb2sr b,kbd

has the proper normalization of a conditional probability
density.pb generates a phase-space point on the boundary by
first selecting the positionr b proportional to the incident-
particle current density.kb is then selected according to the
velocity-weighted equilibrium distributionpb2. In this way,
the boundary term is factorized into a product ofpb with the
normalization constantF. The selection of the boundary
point follows the classical rules used in the device MC
method and is thus associated with a particle that is injected
into the device.

B. Probability factors in K̃

K̃ is augmented by a multiplication and a division bym,
which gives rise to the product

K̃sr 8,k8,k,td = ptst,r 8,k8duDsr 8stdd
Gsr 8std,k8std,kd
msr 8std,k8stdd

,

pt = msr 8std,k8stddexps−E
0

t

msr 8syd,k8sydddyd.

The structure of the first termpt is well known from the
classical MC method; it is the probability for a drift without
scattering provided that the scattering frequency ism. The
normalization to unity is readily proven by integration over

time with the limitss0,`d. pt generates a value oft associ-
ated with a free flight time of a particle which drifts over a
piece of a Newton trajectory between the initial statesr 8 ,k8d
and sr 8std ,k8stdd, and which, as can be seen from what fol-
lows, has a meaning of a before-scattering state. It is used as
an input in the conditional probabilities composing the re-
maining termGsr 8std ,k8std ,kd /msr 8std ,k8stdd to generate the
output value ofk:

Gsr 8,k8,kd
msr 8,k8d

= plsr 8,k8dpphsk8,kd + pgsr 8,k8d 3 s 1
3pw

+sr 8,k8

− kd − 1
3pw

−sr 8,k − k8d + 1
3pdsk − k8dd3 s22d

plsr 8,k8d =
lsk8d

msr 8,k8d
, pgsr 8,k8d =

gsr 8d
msr 8,k8d

,

pphsk8,kd =
Ssk8,kd
lsk8d

, pw
±sr 8,kd =

Vw
+sr 8,kd
gsr 8d

.

Here the time argument has been omitted, andpw
− =pw

+ is
introduced for convenience. According to(7), pl andpg are
two complementary probabilities, which can be used to se-
lect eitherpph or the term in the brackets in(22). The first
branch occurs with the probabilitypl, which selects the type
of interaction to be scattering with phonons. The application
of the probability densitypph is readily understood as a gen-
eration of the phonon after-scattering statesr 8 ,kd. The sec-
ond branch can be interpreted as a generation of an after-
scattering state due to interaction with the Wigner potential.
It is comprised of the three terms enclosed in the brackets.p2
has been introduced with the purpose of selecting which one
of the three densitiespw

+, pw
−, and pd generates an after-

scattering statesr 8 ,kd. In this way, the action of the Wigner
potential is realized by a scattering generated by either of
these three probability densities. They will be discussed in
detail in the next section. Here, we conclude that the con-
secutive application of the conditional probabilities compris-

ing K̃ generates a transition betweensr 8 ,k8d and sr 8std ,kd
which is associated with a particle which undergoes a free
flight followed by a scattering event.

What remains for the random variable associated withK̃
is the termwuD=s±3diuD. The poweri depends on the type
of the interaction:i =0 andw=1 if the scattering is due to
phonons. If the Wigner potential is selected as a scattering
source,i =1 andw=s±3d, where the minus sign applies ifpw

−

in (22) is selected. The quantityw is called a weight factor.
The domain indicatoruD is unity if the particle is inside the

device at the end of the free flight and is zero otherwise.K̃
factorizes into a product of the random variable and an evo-
lution operator composed by conditional probability densi-
ties.
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C. Recording averages

The integrand(20) can be written as follows:

Ã = ptst,r ,kd
A„r std,kstd…
m„r std,kstd…

.

The random variablecA associated with the physical quan-
tity A is the termA/m evaluated at the end of the free flight.
It must be noted that, as we are interested in physical aver-
ages in a given regionV inside the device domain,A con-
tains implicitly the indicatoruV of that region. If the end
point of the free flight is outsideV, the random variable is
zero. Another way to express the random variablecA can be
obtained by integration by parts of thet integral

Ã = ptst,r ,kdE
0

t

dyA„r syd,ksyd…. s23d

The value ofcA is identified as the path integral overy.
Actually, due to the indicatoruV, only the part of the path
belonging toV contributes to the integral. The two function-
als of A are known in the classical Single-Particle MC
method as synchronous ensemble and time integration
techniques.78

So far we are ready to state the stochastic approach for
evaluation of(19). Numerical trajectories are built up with

the help ofpb, the conditional probabilities identified fromK̃
and the probabilitypt. The random variablec1=Fus±3dicA

is calculated for each trajectory. The sample mean(D2) over
N trajectories estimateskAl1. A generalization for thenth
term in (18) is straightforward. Numerical trajectories are
built up with the help ofpb, n consecutive iterations of the

conditional probabilities identified fromK̃, and the probabil-
ity pt. The corresponding random variablecn is given by the
product

cn = Fp
k=1

n

uDk
s±3dikcA = FWncA, ckAl = o

n

cn. s24d

We first note that a given trajectory can be used to evaluate
all terms with order lower thann. Trajectories, which leave
the device domain afterk iterations, give zero contribution to
the sample mean(D2) for any term withn.k. Nevertheless,
such trajectories are counted as independent realizations in
the denominatorN of the sample mean. It follows that a
given trajectory can be used for evaluation of all terms in
(18): a trajectory that begins at a domain boundary and ends
at a domain boundary becomes an independent realization of
the random variableckAl in (24). The sample mean overN
such trajectories estimateskAl.

IV. THE PARTICLE MODEL

A. Classical transport and ergodicity

In the case of Boltzmann transport, the Wigner potential
completes the Liouville operator with a force term. The tra-
jectories have the general form(A1). On the right-hand side
of (2), only the two terms related to the phonons remain.

This allows one to formally setg=0, m=l in (7). The right-
hand side of(22) reduces topph. It is easily seen that the
numerical trajectories coincide with the real trajectories of
the Boltzmann carriers evolving in the device. Indeed, the
generation of the initial point of the trajectory corresponds to
an injection of a classical particle.pt becomes the usual clas-
sical probability for the free-flight duration due to phonons.
The scattering is determined by the phonon scattering rateS
throughpph in (22). The weightWn in (24) remains unity for
all n. The domain indicator takes into account only the tra-
jectories that are inside the device. Thus, numerical particles
contribute to the averages in the same way as Boltzmann
carriers in the Single-Particle MC method. We conclude that
the resulting particle picture coincides with the picture of
classical particles that is emulated by the the device MC
method.

An important property follows from this equivalence. Ac-
cording to the classical transport theory, the distribution
function f is given by the relative numbernV /ND of the
particles in any given unit phase-space volumeV with indi-
catoruV. HereND is the number of all carriers, so thatf is
normalized to unity in the device. This is, in fact, the basis of
obtaining the physical averages by the Ensemble Monte
Carlo method. Under conditions of stationary transport, and
by assuming ergodicity, the ensemble average is replaced by
a time average over a single particle:f is given by the rela-
tive time spent by the particle inV. This is the basis for
obtaining averages by the Single Particle MC method. We
show that this result follows from the present approach. In-
deed,N independent trajectories can be regarded as having
been obtained byN consecutive reinjections of a single par-
ticle that evolves in the device until exiting. By settingA
=u1, from (23), (24), and(D2), it follows thatnV=sF /NdtV,
wheretV is the total time spent by the particle inV. Accord-
ingly, ND=sF /NdTD, whereTD is the total time spent by the
particle in the device. Then the distribution functionf
=nV /ND= tV /TD is estimated by the relative time spent inV.
We conclude that the ergodicity is not required to be as-
sumed, as it follows from the stationary conditions of the
transport.

B. Coherent transport

The coherent transport, which considers only events of
quantum interaction, is obtained by settingl=0, m=g in (7).
According to the term in brackets in(22), these are scattering
events that change the statistical weight in(24). One can
estimate the mean accumulated weightW from the mean
time T a trajectory spends in the device.T is given by the
sum of all free-flight times. The numbern of the scattering
events is thenn=Tg, andW is estimated as

W= ± s3dn = S1 +
2g

g
Dn

= S1 +
2gT

n
Dn

. exps2gTd.

It follows that the mean weight, and thus the variance, grows
exponentially with the magnitude of the Wigner potential
and the dwell timeT. This result is in accordance with the
exponential growth with time of the variance of the MC
approach to Feynman path integrals.79 If the device dimen-
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sions are larger than ten nanometers,T is commonly larger
than a picosecond, whileg.1015 s−1 for a 0.3 eV potential
barrier. This precludes the application of the approach to
mesoscopic devices. This version of the approach has been
applied to tunneling through one-order-of-magnitude-smaller
potential barriers.80

An alternative interpretation is needed in order to solve
the problem with the accumulated weight. We explore the
idea of particle splitting, which is an established approach,81

for statistical enhancement in classical Monte Carlo simula-
tions. A particle entering a rarely visited region of the phase-
space can be split into subparticles, each of which carries a
fraction of the particle weight. This can be achieved by set-
ting p2=1 in (22). This modification changes entirely the
interpretation of the quantum term. Now, the stateQ8
=sr 8 ,k8d, which enters the interaction, gives rise to three
states, so that the Wigner potential is understood as a gen-
erational term. After the interaction, the initial particle sur-
vives in the same state, due to the delta function in the brack-
ets of (22). Two additional particles are generated bypw

± in
statesQ±=sr 8 ,k±d.82 The trajectory now branches so that the
weight carried by any branch keeps a constant magnitude
and can change only the sign. It can be seen from(19) that
the branching corresponds to a splitting of the integral into
three integrals. Hence each branch continues with a free
flight to contribute to the sample mean ofc1. One of the
contributions carries the minus sign ofpw

−. It is beneficial to
assign a sign to the particle associated to each trajectory.
Then the following transport process can be imagined. A
positive particle is injected from the device boundaries. It
drifts over a trajectory(4) until the interaction time generated
according pt is reached. The particle does not “feel” the
Wigner potential, because after the interaction it remains in
the same state. The next drift process continues on the same
trajectory. The action of the potential is realized through a
creation of two new particles in two phase-space states. The
particle related topw

+ spw
−d has the same(the opposite) sign as

the primary particle. The created particles follow the same
evolution process over their own trajectories.

After each individual interaction, any positive(negative)
particle contributes to the estimator ofckAl with +s−dFcA.
Two particles that are in the same phase-space point follow a
common trajectory. If they have opposite signs, they give
opposite contributions tockAl. Moreover such particles create
with the same probability for any point of the phase-space
particles with the opposite sign. The net contribution of such
particles to the physical averages as well as to the generation
process is zero. It follows that particles with the opposite
sign that meet in the phasespace can be annihilated. The
coherent transport is characterized by processes of genera-
tion and annihilation of positive and negative particles.

C. Quantum transport with dissipation

The above two limiting cases of the Wigner-Boltzmann
transport can be combined without interference into a gen-
eral picture of quantum transport with dissipation. The pho-
non interaction is inserted on top of the coherent picture and
affects the dynamics of the particles. They no longer remain

on a single trajectory throughout the device, but are scattered
to different trajectory pieces after each process of drift. Ac-
cording to(22), the events of phonon and quantum interac-
tions are complementary. The action of the Wigner potential
on the interacting particle is equivalent to a self-scattering
event, as it does not change the trajectory. From this analogy,
it follows that the duration of the free flight on a given tra-
jectory depends only onl. The after-scattering state is se-
lected by the phonon rateS throughpph. We conclude that
particles have the same Boltzmann-like behavior in both
classical and quantum regions. The quantum character of the
transport is marked by the generation process and the sign of
the particles.

The possibility to annihilate particles with opposite sign
also remains true. The reason is that the evolution does not
change its Markovian character in the case of phonons. Par-
ticles at a given phasespace point still have a common proba-
bilistic future, and the considerations from the previous sec-
tion apply. A condition for this is that the phonons are treated
in a classical way. If the interaction is quantum, this property
is not generally true because of the memory character of the
evolution.

We note that other interpretations conserving the absolute
weight on a trajectory are possible. The interaction with the
Wigner potential can be chosen twice as rare on the expense
that four particles are created per such event. A reformulation
of (22) can lead to events where quantum and phonon inter-
actions occur in the same instances.83 The proposed particle
picture is the most straightforward one, which follows from
this approach.

V. NUMERICAL ASPECTS

The practical application of the above model is not
straightforward. The trajectories can be simulated only se-
quentially so that the generated particles must be stored for
further processing. This is a step common with the classical
split algorithm. In the latter, the stored subparticles are re-
moved in a subsequent simulation step and reinjected from
the boundaries. This is not possible with quantum particles.
A single particle injected from the boundaries creates, during
the evolution throughout the device, a first generation of
stored particles. The subsequent removal of the stored par-
ticles gives rise to a second generation, etc. The process can
be infinitely continued; the steps of injection and removal
cannot be deduced from Heuristic considerations.

The solution is given by an algorithm based on decompo-

sition of K̃=L+M into two operatorsL andM,

L = ptuDsplpph + pgpdd, M = ptuDpgspw
+ − pw

−d. s25d

In L, we recognize the Boltzmann evolution operator ac-
counting for a phonon interaction augmented by a self-
scattering term. The self-scattering process does not affect
the physical picture; it can be switched on and off without
affecting the shape of the trajectories. Usually the process is
used in the device MC method for computational conve-
nience. ThusL gives rise to a classical evolution of the tra-
jectories.

The above operators obey the equality84
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sI − K̃d−1 = sI − Ld−1 + sI − K̃d−1MsI − Ld−1. s26d

Equation(26) is proved by multiplication bysI −Ld from the

left andsI −K̃d from the right. A substitution of(26) into (18),
and regrouping the terms of the series leads to

kAl = sv'fb,sI − K̃d−1Ãd = o
k=0

`

sv'fb,ssI − Ld−1MdksI − Ld−1Ãd.

s27d

We now derive an algorithm that evaluates the consecutive
terms in (27). The first termsAd1=fv'fb,sI −Ld−1Ag can be
evaluated by classical means;N1 particles are consecutively
injected from the boundaries and simulated throughout the
device. The sample mean forsAd1 can be formulated with the
help of (D2) and (24)

sAd1 .
F

N1
o
j ,n

p
n

uDn
s jd cAn

s jd . s28d

The second termsAd2=fv'fb,sI −Ld−1MsI −Ld−1Ãg can be re-
formulated by introducing a delta function

sAd2 = fP1,sI − Ld−1Ãg,

P1sQd = fv'fb,sI − Ld−1MdgsQd. s29d

We show thatP1, up to a prefactor, has the meaning of den-
sity of stored particles. The seriessI −Ld−1Md is obtained by

a replacement ofÃ=ptcA by Md in the consecutive terms of

sI −Ld−1Ã. This is actually equivalent to replacingcA by
plspw

+ −pw
−dd, which corresponds to a generation with prob-

ability pl of two particles in statesQ+ and Q−. The delta
function at the end gives rise to a projection to the phase-
space pointQ, which is achieved by the random variable
cd=dsQ−Q+d−dsQ−Q−d. We first note that bothsAd1 andP1

can be sampled over common classical trajectories con-
structed with the help ofL. The generation of the particles
for P1 occurs at the same instances with the self-scattering
events. Second,cd dQ is 1, (−1) if a particle is generated into
a point Q+, sQ−d that belongs to the domaindQ aroundQ.
SinceQ+ÞQ−, the case where both points belong todQ can
be avoided by the limitdQ→0. The estimator ofP1 is (28)
with cd in the place ofcA. It follows thatP1 is the densitywp
of stored particles multiplied by the prefactorF /N1. We note
that the annihilation of positive and negative particles in a
given Q is formally proven by this approach.

The averagesAd2 in (29) differs from sAd1 only by the
boundary term, which is now replaced byP1. It can be evalu-
ated with minor modifications of the algorithm: the trajecto-
ries should now begin from the device volume. The estimator
depends on the choice of the densityp for selection of the
initial trajectory pointsQ:

sAd2 .
1

N2
o
j ,n

P1sQs jdd
psQs jdd p

n

uDn
s jd cAn

s jd . s30d

Here, N2 is the number of trajectories used. A convenient
choice forp is

psQd = uP1sQdu/iP1i, iP1i =
F

N1
E uwpsQdudQ.

If N2 is chosen to be equal to the number of all stored par-
ticles given by the last integral above,(30) becomes

sAd2 .
F

N1
o
j ,n

signP1sQs jddp
n

uDn
s jd cAn

s jd . s31d

The algorithm discharges the device from the stored par-
ticles; the number of trajectories that initiate fromdQ and
their initial sign corresponds to the number and sign of the
stored particles inside. The value of each contribution to the
sum in(31) is calculated in the classical way and multiplied
by the sign of the corresponding particle. At this step, we can
evaluate the function

P2sQd = fP1,sI − Ld−1MdgsQd. s32d

By repeating the arguments used forP1 it is seen thatP2 is
the density of the secondary stored particles multiplied by
F /N1. The third term in(27) is then expressed as an inner
product with P2: sAd3=fP2,sI −Ld−1Ag. The step used for
sAd2 can be repeated forsAd3, and so forth. An iterative al-
gorithm is obtained, which computes the consecutive terms
of the series(27) by an initial injection ofN1 particles from
the boundary and consecutive steps of storing and removing
particles from the device. Since the estimators of the con-
secutive terms in the series have to be summed at the end,
only a single estimator is necessary for the evaluation ofkAl.
The prefactorC=F /N1 appears in the estimators of all terms
and can be determined in the manner discussed in Sec. IV A.

The numberN1 of the boundary particles must be chosen
sufficiently large in order to attain a reliable approximation
of the first term in(27). The evaluation of all remaining
terms depends on this choice. In order to be less dependent
on the initial guess of this value, the algorithm can be modi-
fied as follows. A moderate value ofN1 is chosen. The steps
of injection from the boundaries alternate with the steps of
discharge of the device. Particles stored from a boundary
injection are added to the particles stored from the previous
injection in the device. This process of accumulation of the
particles in the device follows the scheme

b → wp1
b→
→ swp1 + wp2d

b→
→ swp1 + wp2 + wp3d . . . ,

whereb→ means boundary injection, which gives rise towp1
in all brackets. The rest of the termswpi in each bracket is
obtained from the previous step of discharging the device,
which is denoted by the bottom arrow. After theRth bound-
ary injection, the number of stored particles indQ aroundQ
is approximatelyok=1

R wpksQddQ, which can be proven by
induction. The subsequent step of injection from the device
completes the estimation of the functionalok=1

R+1sAdk. We take
the mean of these estimates at steps0,1, . . . ,R as an approxi-
mation of the functionalkAl. Since the functionalsAdk is
summedR−k times and the ratiosR−kd /R tends to 1 asR
tends to infinity, our estimate ofkAl is asymptotically cor-
rect. The modified algorithm assists the process of annihila-
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tion and suppresses the development of rare events that can
degrade the statistics.

VI. SIMULATION RESULTS AND DISCUSSIONS

The proposed particle method has been investigated by
simulations of benchmark resonant tunneling diodes(RTD).
The features and relevance of the method with respect to
processes of tunneling and dissipation is studied. The method
has been successively compared to the comprehensive solver
NEMO-1D based on nonequilibrium Green’s functions.85 A
common physical model is applied. The carrier transport in
the RTDs is cosidered one-dimensional; the phase space is
defined by the single device coordinate and the complete
three-dimensional space of wave vectors. The numerical
counterpart of the definition(3) is given by a discrete Fourier
transform defined in the intervals−Lc/2 ,Lc/2d whereLc is
called coherence length. The standard analytical band scat-
tering model used for the simulated RTDs includes polar
optical and acoustic deformation potential scattering, assum-
ing parameter values for GaAs. The position-independent ef-
fective mass is 0,067m0.

Device I, which is shown in Fig. 2, has been taken from
Shifren et al.62 The two barriers are 0.3 eV high and 3 nm
thick; the well width is 5 nm. A linear voltage drop is as-
sumed in a region from 10 nm before the emitter barrier to
19 nm after the collector barrier(a total distance of 40 nm).
In the contact regions, the doping is 1016 cm−3. The coher-
ence length used in the simulations isLc=80 nm. The
Wigner generation rateg reaches fairly high values in this
structure(Fig. 3) and is used to distinguish between classical
and quantum regions. Comparing this rate with the much
smaller phonon scattering rate is a quantitative measure of
the fact that quantum-interference effects are dominant.

The electron concentration and the mean energy are
shown in Fig. 2. These are nearly constant in the contact
regions. A smooth transition between classical and quantum
regions is demonstrated despite the strong onset ofg, shown
in Fig. 3 for two values of the applied bias.

Phonon scattering strongly affects the current-voltage
characteristics, as can be seen in Fig. 4. In comparison to the
coherent case, the scattering leads to an increase of the valley
current and a shift of the resonance voltage. This effect is
due to a repopulation of the electron states in the emitter.
Inelastic scattering events dissipate the energy of the elec-
trons entering from the left-hand reservoir. Propagating elec-
trons fall into the lower energy states in the potential notch
on the left-hand side of the barrier(Fig. 2) and contribute to
the current. The large difference in the valley current can be
explained with the electron concentration in off-resonance
conditions(Fig. 5). The scattering with phonons leads to sig-
nificantly higher concentration in the notch. A quasibound
state is formed, and the injection in the double barrier is
increased. In resonance conditions, where the applied voltage
is lower, such a bound state does not form and very similar
electron concentrations are observed for the coherent and
noncoherent case, which is shown in Fig. 6.

These effects cannot be accounted for by elementary tun-
neling theories, which assume the notch states to be in equi-

FIG. 2. Electron concentration and mean electron energy at T
=300 K and 0.1 V bias. FIG. 3. Pair generation rategsxd caused by the Wigner

potential.

FIG. 4. Influence of phonon scattering on the I/V characteristics
of the RTD.
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librium with the right-hand reservoir.9 From these consider-
ations, it follows that the effect of phonons should be
negligible in a device having a flat potential on the left-hand
side of the barrier. Tsuchiyaet al.86 have investigated such an
RTD, assuming a linear potential drop only across the central
device. The two 2.825 nm barriers are 0.27 eV high, and the
well width is 4.52 nm. The doping level in the contacts is
231018 cm−3. The I/V characteristics of Device II with and
without phonon scattering are shown on Fig. 7. Consistently,
phonons cause only a small effect on the device behavior.

The I/V coherent characteristics of Device II, as obtained
by the particle method(QMC) and NEMO, are shown in Fig.
8. Compared to NEMO, a slightly higher peak current is
obtained by the particle method. The results show a good
qualitative agreement.

The coherence lengthLc has to be selected carefully in
Wigner transport simulations. A comparative study, the re-
sults of which are plotted in Fig. 9, shows that only a suffi-
ciently large value gives realistic results. The finite differ-
ence(FD) result is taken from Tsuchiya.86 A too small value

for Lc leads to an overestimation of the valley current. The
requirement that the coherence length must be chosen suffi-
ciently large can be linked to the completeness relation of the
discrete Fourier transform:Dkx=p /Lc. A smallLc results in a
coarse grid in the momentum space so that resonance peaks
are likely not resolved properly. A largeLc can create prob-
lems for the finite difference methods. The sparsity pattern of
the matrix related to the Wigner potential is very poor. An
increase of the matrix dimension, evaluated byLc/Dx, can
lead to prohibitive memory requirements. The stochastic ap-
proach does not require operations with matrices, so that the
number of points can be easily increased. In this work, the
Wigner potential is discretized using approximately 103

points. Moreover, the particle method accounts for dissipa-
tion processes at a rigorous kinetic level. As compared to
tools based on tunneling theories, or a coherent Wigner func-
tion, this method avoids the usual relaxation time approxi-
mation.

Figure 10 shows the carrier distribution for different bias
points in a third type of RTD. The 4 nm well of Device III is

FIG. 5. Electron concentration in off-resonance conditions.

FIG. 6. Electron concentration in resonance conditions.

FIG. 7. Phonon scattering has a small effect on the device
characteristics.

FIG. 8. Coherent I/V characteristics obtained by the particle
method(QMC) and NEMO.
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enclosed by 3 nm barriers with 0.49 eV height. The relevant
simulation domain is 300 nm, the quantum domain of
120 nm corresponds toLc=60 nm. 1200kx points are used
and the spacing in thex direction isDx=0.5 nm. At the reso-
nance voltage of 1.2 V, the concentration in the quantum
well is considerably higher than in the off-resonance condi-
tion at 1.6 V. The concentration in the depletion region left
of the barriers depend on the injected current from the right
and thus correlates with the concentration in the well. The
1.6 V curve provides an instructive example illustrating the
numerical noise in the region where the carrier density drops
more than three orders of magnitude.

The numerical noise of the stochastic approach poses a
natural limit for the resolution of the simulated averages.
Physical conditions, where physical quantities vary over sev-
eral orders of magnitude, are unattainable by this method.
High-performance devices with a high peak/valley ratio are
beyond the scope of the particle approach. Therefore, it is
concluded that the present method can bridge the gap be-
tween classical device simulations and pure quantum-
ballistic simulation. This method provides a relevant descrip-
tion of the stationary carrier transport in nanostructures at
moderate physical conditions. Effects of tunneling and dissi-
pation are incorporated with equal numerical accuracy and
the results agree with other rigorous simulation tools.

VII. CONCLUSIONS

A particle method has been associated with Wigner-
Boltzmann transport in small semiconductor devices. This
method accounts for dissipation and interference phenomena
by two alternative processes of transport of quasiparticles.
Dissipation caused by interaction with phonons appears as
consequence of both drift and scattering processes corre-
sponding to semiclassical Boltzmann transport. Interference
effects due to the Wigner potential are associated with gen-
eration of couples of particles having statistical weight ±1. In
this picture, the Wigner equation with a Boltzmann scattering
term has been interpreted as a Boltzmann equation aug-
mented by a generation term.

For sufficiently smooth potentials, the Wigner operator
can be approximated by a classical force term, which is in-
cluded in the Liouville operator. The present particle method
simplifies gradually to the classical MC method when the
classical limit is approached.87 A seamless transition between
classical and quantum regions results. It has been shown that
the ergodicity of the classical transport process follows from
the assumed stationary transport conditions.

In the regions of quantum transport, the challenge of em-
ploying the method is to handle the avalanche of the particles
properly. The problem has been solved for stationary condi-
tions: Particles of opposite sign and a sufficiently small dis-
tance in phase space annihilate one another in the course of a
simulation. Positive or negative particles can accumulate in
phase space domains. The accumulation of negative particles
is in accordance with the negative values which characterize
the Wigner function especially in the regions of strong po-
tential variations. The approach is suitable for moderate
physical conditions of mixed coherent and dissipative trans-
port.

APPENDIX A

The freedom of the choice of the initialization time di-
rectly follows from the fact that the wave vectork remains
constant in time for an unaccelerated trajectory. Actually this
property is valid for a general Liouville operator with a force
term that does not depend explicitely on time. A useful rela-
tion, which follows from the stationarity assumed, will be
derived.

A trajectory is initialized by a phase space pointsk ,r d and
a time t0

Rst;t0,r ,kd = r +E
t0

t

vsK sy; · dddy,

K st;t0,r ,kd = k +E
t0

t

FsRsy; · dddy. sA1d

The order of t0 and t is irrelevant. A trajectory is called
forward if the evolution time is greater than the initialization
time t. t0. Otherwise the trajectory is called backward. The
limits of the time integration in(A1) can be exchanged by
changing the sign of the integrals. To describe a time-
invariant system an absolute time scale is not needed. Only

FIG. 9. Effect of the coherence length in Wigner simulations.

FIG. 10. Electron concentration profiles in Device III.
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the time difference between two consecutive events is impor-
tant. Invariance under time translation can be proven

Rst + t;t0 + t,r ,kd = Rst;t0,r ,kd,

K st + t;t0 + t,r ,kd = K st;t0,r ,kd. sA2d

This property will be used to conveniently adjust the time
referencet0=0 for each trajectory. A shortcut notationr std
=Rst ;0 ,r ,kd andkstd=Kst ;0 ,r ,kd is introduced. A particu-
larly useful relation is obtained from(A2)

E drdkE
−T

0

dtf„r ,k,r std,kstd…

=E dr 8dk8E
0

T

dtf„r 8std,k8std,r 8,k8…. sA3d

Here r std, kstd is a backward trajectory initialized byr ,k,
while r 8std ,k8std is a forward trajectory initialized byr 8 ,k8.
The relation is proven by introducing new integration vari-
ablesr 8=Rst ;0 ,r ,kd, k8=K st ;0 ,r ,kd. Then

r = Rs0;t,r 8,k8d = Rs− t;0,r 8,k8d,

k = K s0;t,r 8,k8d = K s− t;0,r 8,k8d.

According to the Liouville theorem the phase volume is in-
variant under this transformation:dr 8dk8=drdk. The last
step is to reverse the time by switching the sign oft and to
recall thatRst ;0 ,r 8 ,k8d and K st ;0 ,r 8 ,k8d are forward tra-
jectories initialized bysr 8 ,k8d and denoted byr 8std ,k8std. In
particular, for a given functionm it follows that

E
−T

0

m„r syd,ksyd…dy=E
0

T

m„r 8syd,k8syd…dy. sA4d

APPENDIX B

To obtain the integral form of the stationary Wigner-
Boltzmann equation, we consider a given phase space point
sr ,kd. This point determines uniquely a phase space trajec-
tory, (r std ,kstd) in backward parametrization,tø0. Consider
the parametrized Eq.(5):

fvskstdd ·¹r std + msr std,kstddgfwsr std,kstdd

=E dk8Gsr std,kstd,k8dfwsr std,k8d. sB1d

If both sides of(B1) are multiplied by the integrating factor
expf−et

0msksyd ,r sydddyg, the left-hand side represents a total
time derivative

d

dt
expS−E

t

0

m̂syddyD f̂std = expS−E
t

0

m̂syddyDĜffgstd.

sB2d

Here Ĝffgstd denotes the right-hand side of(B1) and m̂syd
=msksyd ,r sydd, f̂std= fwsr std ,kstdd. This equation can be in-

tegrated straightforwardly. The upper bound of integration

should bet=0 to obtain f̂s0d= fsk ,r d, the value off at the
given phase space point. The lower-time bound has to be
chosen such that the functionsK std andRstd take on values
at which the distribution function is known. In the steady
state the distribution function is known only at the device
boundary. An appropriate lower time bound is therefore the
time, saytb

−, at which the trajectory crosses the simulation
domain boundary. Apparently, this time depends on the point
k, r under consideration. For trajectories closed inD the
time tb is −`. Integration of(B2) in the time bounds dis-
cussed above results in the integral form of the stationary
Wigner-Boltzmann equation(8).

APPENDIX C

We first introduce the functionBsr d=0, which defines the
domain boundary. This gives an implicit definition of the
boundary time as a root ofBsr st8dd=0. The equality

dst8 − tbd = dfB„r st8d…gu¹rBsr bduuv'skstbddu sC1d

follows directly from the properties of thed function. The
normal velocity componentv' appears since the gradient of
B is normal to the domain boundary in the crossing point
with the trajectory. Using the right-hand side of(C1) in the
augmented equation(16) gives

kAl =E
−`

0

dt8E
D

dr E dkdfB„r st8d…gu¹rBsr bduuv'„kstbd…u

3 fb„r stb
−d,kstb

−d…expS−E
tb
−

0

msr syd,ksydddyDgsk,r d.

The variablessk8 ,r 8d are changed toskb=kst8d, r 9=r st8d and
(A3) is applied. Ther 9 integral is accounted with the aid of
the delta function

E
D

dsBsr 9ddfsr 9ddr 9 =R fsr bd
u¹rBsr bdu

dssr bd,

wheref is a test function.88 This accomplishes the change
from volume to boundary integration leading to(17).

APPENDIX D

Consider a random variablec which takes valuescsyd
with probability densitypcsyd. Herey is a multidimensional
point. The expectation valueEc of c is given by

Ec =E dypcsydcsyd. sD1d

The simplest Monte Carlo method evaluatesEc by perform-
ing N independent realizations of the probability densitypc.
Generated areN pointsy1, . . . ,yN, called sampling points for
the random variablec. The sample meanh estimates the
expectation valueEc
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Ec . h =
1

N
o
i=1

N

csyid sD2d

with a precision that depends on the number of independent
realizationsN and the variance ofsc of the random variable.
According to the “rule of the three sigma”:89

PHuEc − hu ø
3sc

ÎN
J . 0.997 sD3d

the probability forh to be inside the interval 3sc /ÎN around
Ec is very highs0.997d.

The concept of the Monte Carlo approach for evaluation
integrals is to present a given integral as an expectation value

I =E fsyddy=E psyd
fsyd
psyd

, psyd ù 0, E psyddy= 1

sD4d

of the random variablec= f /p. The probability density func-
tion p can be arbitrary, but admissible forf: pÞ0 if f Þ0.
Different random variables can be introduced, depending on
the choice ofp. All of them have the same expectation value
I but different variance and higher moments. It can be shown
that the lowest variance is obtained ifp is chosen propor-
tional to uf u.
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