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Density of states and conductivity of a granular metal or an array of quantum dots
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The conductivity of a granular metal or an array of quantum dots usually has the temperature dependence
associated with variable range hopping within the soft Coulomb gap of density of states. This is difficult to
explain because neutral dots have a hard charging gap at the Fermi level. We show that uncontrolled or
intentional doping of the insulator around dots by donors leads to random charging of dots and finite bare
density of states at the Fermi level. Then Coulomb interactions between electrons of distant dots results in a
soft Coulomb gap. We show that in a sparse array of dots the bare density of states oscillates as a function of
concentration of donors and causes periodic changes in the temperature dependence of conductivity. In a dense
array of dots the bare density of states is totally smeared if there are several donors per dot in the insulator.
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[. INTRODUCTION to begin with. Let us consider a sparse array of dots with the
Conduction of samples where metallic granules are surrdme radiuRk shown on F_|g. 2. Charging energy levels of
such array are shown in Fig. 3. Here we assume that dots are

rounded by some kind of insulatggranular metals have | h h ina b harging lefelR
been studied intensively for decadedIf volume fraction of large enough, so that spacing between charging
s much greater than spacing between quantum levels of the

the metalx is large, metallic granules touch each other andd ith a o h E ks in Fia. 3 d
conductivity is metallic. Wherx decreases and crosses per-d0t With a given charge. Empty peaks in Fig. 3 correspond to

colation thresholdx,, granules become isolated from each energies necessary to charge a neutral dot by the first, sec-

other and granular metal goes through metal-insulator trar2nd. and so on electrons transferring them from the macro-

sition. It is generally observéd that at the insulator side of scopic piece of the same metal. Shadited) peaks corre-

transition the temperature dependence of conductivity obey’?:pond t(_)’ taken with the sign minus, energies necessary_to
extract first, second, and so on electrons from the dot, or in

_ To | M2 other words, this is the density of states of holes. The Fermi

T=008Xp ~ T ' (1) level of the array is at zero between two peaks and coincides

o with the Fermi level of macroscopic piece of the same metal.

Recently, similar temperature dependence was observed in \we want to emphasize that in each dot we are dealing

doped systems of self-assembled germanium quantum doth the ground state at a given number of electrons and
on the silicon surfac® and CdSe nanocrystal thin filmS.  exclude excited stateghigher quantum levejsbecause the

Below we talk about both granular metal and semiconductogyoynd states of dots determine the low temperature hopping

dot structures universally using the word dot for brevity.  transport. Indeed, in the Miller-Abrahams netwraf resis-

In doped semiconductors the temperature dependence gfnces connecting all dots, the exponentially large activation
Eqg. (1) is also widely observed at low temperatufes.is

interpreted as the variable range hopping conductivity be- € N\
tween impurities in the presence of the Coulomb“gdf £
the density of state®OS) and is called the Efros-Shklovskii 2 ~ g(E )
(E9 law. In an-type lightly doped compensated semicon- e

ductor all acceptors are negatively charged and randomly
situated, an equal number of donors are charged positively.
Together all random charges create a random potential shift- -
ing donor levels up and down. This results in finite bare DOS 7\
Jo(w) at the Fermi level. Long range Coulomb interaction 1
of localized electrons then produces the parabolic Coulomb 90 I 2A
gap in DOS

3
gle) = 7—TK382/96 (2

at the Fermi level(Fig. 1) leading to ES law withTy=C
X €2/ k¢, whereC is a constant factork is dielectric con-
stant, andf is the localization length. FIG. 1. The shape of the Coulomb gap in the vicinity of the

In contrary to a doped semiconductor, in an array of neufermi level. Bare density of states in the absence of long range
tral dots the bare DOS at the Fermi lewg(u)=0 and there  Coulomb interaction is shown by the dashed line. Occupied states
is no justification for ES law, which requires a nonzgpOu) are shaded.
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FIG. 2. A sparse array of same size neutral metallic dots sur- _23KeR 3

rounded by an insulator.

factor of each resistance depends on probabilities of occupa- G- 3: The bare density of _grounfd sta_(f_DOG& ofka clean J
tion of a dot by a given number of electrons. ExponentiaISyStem of indentical dots consists of equidistant peaks. Occupie
. e states are shaded.
temperature dependencies of these probabilities, as well as
the partition functions of dots are determined by ground state This leads to an important conclusion that granular metal
energies’ Thus, the density of states of the array we needmay have finite BDOGS)(x) and show ES conductivity
can be called bare density of ground stg®8B0OGS. only if in the ground state of the system granules are
Note that in a lightly doped semiconductor with severalcharged* Formally one can imagine that this happens if
equivalent conduction band minima each donor has excitegranules have different work functiofi§.Several possible
states close to the ground state, i.e., situation is similar tonechanisms of such fluctuations were discussed in literature.
large dots. Still exponential temperature dependence of hop=hui’ suggested that very small dots can charge big dots in
ping conductivity depends only on BDOGS3 the case when the former are so small that their quantum
Let us illustrate the role of BDOGS in a clean sparse arrayeVel spacing exceeds the charging energy. We concentrate
(Fig. 3. In this case, conductivity requires activation of on the system of large enough dots and, therefore, ignore this
electron-hole pairs or in other words, transfer of an electrorpossibility. Cuevaset al® claimed that even in large dots
between two originally neutral dots. Obviously concentra-there are large fluctuations of the Fermi levi: due to
tions of positive and negative dots and the hopping conduclandom positions of neutral impurities in different dots. To
tivity obeys our mind, this possibility can be rejected using - a
simple estimate of typical fluctuation of the average potential
in the metallic dot due to fluctuation of number of impurities
there. For a three-dimensional case one easily @g&s
~ErcY?/(keR)®2, wherec is the relative concentration of
independently of excited stat¢fe same result can be ob- impurities in the dotkg is the Fermi wave vector, and we
tained in Miller-Abrahams resistor network appropaelhere  assume that the size of an impurity is of the ordekdfand
E.=€%/ kR is the charging energy. its potential U~ Eg. At large R this energy is apparently
How then can we explain observation of ES law? Appar-smaller than charging energy/«xR even atc~1, so that
ently BDOGS shown in Fig. 3 should be smeared in thedots remain neutral. Baskin and Erftioonsidered fluctua-
vicinity of the Fermi level due to some kind of disorder.  tions of the surface part of the dot energy as a reason of
A simplest source of disorder is distribution of sizes orionization of dots. Again if we assume that these fluctuations
capacitances of dots. Indeed, charging energies of larger do&e a result of the random distribution of point-like impuri-
are smaller and this can result in the low energy tail of theties located on the dot surface, we come to the conclusion
first empty peak of BDOGS and symmetric high energy tailthat corresponding fluctuation of energy decreases Iil# 1/
of the first occupied peak. Still in a neutral system these taileind cannot compete with the charging energy. Thus, the sim-
do not overlap andg(w) is zero, so that this kind of disorder plest internal mechanisms of fluctuations of the work func-
does not lead to ES law. Shemg al! assumed that in a tion mentioned above are too weak to charge array of three-
reasonably dense system of neutral granules there is a specifiinensional dots.
distribution of distances between granules or their mutual In this paper we study models of arrays of dots affected
capacitances, which can lead to ES law. This assumption wdsy external disorder, where the origin of charging and
found incompatible with other experimert®ut more im-  BDOGSg, is transparent and in some cases controllable. We
portantly it was noticetithat in a system of large granules assume that the insulator between clean dots has a concen-
made of the same metal all granules remain neutral in grounttation of donorsNp with electron energyEy higher than
state at any distribution of mutual and individual capaci-Fermi energyu in dots, so that at low temperatures all do-
tances. Therefore, intergranular excitation of electron-holeors donate an electron to dots and charge them. For a given
pairs has a gap. concentration of dothl (Fig. 2) we can introduce the average

o =0 exd— EJ2kgT] (3)
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FIG. 4. A “super-dense” array of dots. Only one donor is shown
by + and electron donated by it is shown by
number of extra electrons per dot Npy/N, which by anal- FIG. 5. BDOGSg(e) at a certain filling factor. Occupied states

ogy with quantum Hall effect can be called the filling factor. are shaded.

The maximum number of electrons which can be added to a

dot is Nay= (Ep— )/ (€°/ kR). We assume that<npa, SO other hand, av=1 the Fermi levej is in a tail between two

that all donors lose their electrons. In the semiconductor lanBDOGS peaks, andy(u) tends to be much lower. Actually

guage we are dealing with compensapetype semiconduc-  the total dependence of(x) on v is somewhat more com-

tor where dots play the role of multicharged acceptors.  piicated and consists of three parts, the growing part, the
In Sec. Il we summarize our main results for BDOGS atoscillating part, and the saturation pafig. 6). The first

the Fermi levelgy(w) as a function of the filling factor. In (growing) part takes place at sma# where the situation is

Sec. lll the sparse three-dimensio@D) array of dotFig.  similar to p-type semiconductors at a low degree of

2) is discussed. In Sec. IV we extend this discussion to th@ompensatioﬁ? We get BDOGS growing |inear|y withy
2D array. In Sec. V we study in detail the super-dense 3D

array shown in Fig. 4, which is the other extreme, and then g-(u) ~ kNP3 (v<1). (4)
comment on the realistic moderately dense afi@ig. 14).

We also see how the properties of sparse 3D arrays crogg the second(oscillating part, « typically dwells in
over to dense arrays. After studying different arrays one caBDOGS peaks,

see that external doping brings about nonzggu) and

leads to ES law. N2/3y . .
~ (1< v <.
gmaX(ILl') 2,413 ( v Vs) (5
Il. SUMMARY OF RESULTS When v is very close to integers, the Fermi level drop into

We start from sparse three-dimensional arrays of dots ofinima of g(e) where
the same radiuR, which are randomly situated in space with
concentratiolN < (47wR%/3)™1. We assume that the dots are g,(w
big enough so that Coulomb effect over-weights quantum
level spacing. For sparse arrays of dots, doping introduces 4
two types of charges: positive, empty donors and negatively ( (5)
charged dots. Both are randomly situated and create random
potentials growing withv. These charges result in two effects N (7)
(Fig. 5). First, thes-shaped peaks in BDOG&)(c) become e2/1< R/
somewhat smeared, since the energy it takes to bring an elec- .-
tron to a dot is affected by the random potengtak effect is - '(6)
similar to that of gedanken random gate poteitidk a re- -t
sult, each peak gets tails. Second, electrons coming from 0 1 2 3
donors fill some dot states and hence move the position of
the Fermi level up. FIG. 6. BDOGS at the Fermi levgh(u) of a sparse 3D array as

As a resultgy(xw) may oscillate withv. For example, at  a function of filling factor(solid line). The reference to the equation
v=1/2 theFermi level u is in the middle of the BDOGS appropriate for a part of the curve is shown next to it. Dashed lines
peak and for that reasagy(w) can be rather large. On the describe locations of minima and maxima of the oscillating part.

Vs v
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FIG. 7. Ranges of ES and Mott's laws alternating with growth ~ FIG. 8. BDOGS at the Fermi leveo(n) of a “super-dense”
of filling factor » at a given low temperature. array as a function of filling factow.
BI3N5/3R2 consistent calculations of BDOGS. One can also measure
Omin(k) ~ @R (1<v<wy. (6)  BDOGS at the Fermi level with the help of extremely low

temperaturélower than typical quantum level spacingpe-
Here vs~ 1/(NR®)Y4>1 is the filling factor at which oscil- cific heat and microwave absorpt
lations become relatively small and the thisdturation part Until now we talked about 3D arrays of dots. In Sec. IV
starts over. This happens because fluctuations of the Cole consider an arrays of dots located in a 2D plane. In a 2D

lomb potential are so big that BDOGS is almost uniformarray dots can be charged by donors located in parallel to the
everywhere plane(s-layen.’%18In the 2D case, however, there is a more

practical way to charge dots using a metallic gate parallel to
the plane of dots. Ab>1, results forgy(u) are almost inde-
pendent on the way of charging, because most of the random
potential is created by dot charges. Dependenag@f) on

in 2D qualitatively looks similar to the 3D case discussed
bove, but quantitatively it is somewhat differgsee Sec.

N
Os e2/(KR) (v> Vs)- (7)
The number of large oscillations is big only when dots are
far from each other. Here and below we often omit numericag
coefficients. V).
For less ideal arrays where the dots have slightly different Dependence offo(x) on » in 2D should lead to oscilla-
sizes, the distribution of sizes can wash away the oscillationﬁons of conductivity. Some oscillation were observed in
to a certain extent, making the line of maxima lower and theexperimentslo'lg But t.here are additional ways to measure
line of minima higher. As a result the two lines approach j

. Lo . ) this dependence in a gated 2D structure. Eftstpe can
;z;(:;other fastgivg is smallej than the situation of identical study the change of conductivity where the gate voltage

_— - . charges dots. Secod@pne can study inverse small sighal ac
Oscillations ofgg(w) lead to periodic transitions between 9 ° y 9

h | d s | . | capacitance of unit area €/ which is related to the two-
the ES law and Mott's law at a given low temperature asyimensional screening radius of the dot systerg

shown in Fig. 7. This happens becayse in the very vicinity O,—K/(27-rgoe2) by equation
u the long range Coulomb interaction creates the parabolic
Coulomb gap(not shown in Fig. % The width of the Cou- 1/C = Amw(do+r19), (10)
lomb gap as follows from Eq2) and Fig. 1 depends agy
% 3 whered, is the distance from gate to the plane of dots. This
A~ VGo()€ . ® method is similar to magnetocapacitance measurements in

At large g, the Coulomb gap is widéA > kgT) and the con-  quantum Hall effect?
ductivity obeys the ES lafEq. (1)], which does not depend Until now we talked about the sparse arrays of dots. For a

smaller tharksT and becomes irrelevant for conductivity. In iS measurable only when the tunneling length in insulator is
this case we arrive at Mott's law region large enough. This probably can be achieved in some cases

in narrow gap semiconductors. Otherwise conductivity is so
B 4 small that it cannot be measured. In this case, thermody-
0= 09X exp - Oo()a3T ©) namic measurements of oscillating quantities may be more
convenient.
with strong dependence ogy(x). Here g is a numerical It is much easier to measure conductivity in a dense array
coefficient? of dots. Actually most of cited the experiments are done at
Oscillations of BDOGSgy(u) with v lead to oscillations NR®~1. In Sec. V we study clean metallic cubes separated
of other measurable quantities. It was shéWihat in sys- by thin layers of an insulator doped by donors in the “super-
tems with the Coulomb gap, BDOGH(u«) plays the role of dense” limitd<R (Fig. 4). It is assumed that the tunneling
the thermodynamic density of statés/du, wheren is con-  conductance between two cub®s<e?/h. We show that in
centration of electrons, so that it determines the screeninthe dense array BDOGS as a function of the average number
radius of the system,=(4mg.e?/ k)22 used below for self- of donors per dotv behaves as shown in Fig. 8. At<1,
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BDOGS is very small and grows super-linearly witt(like r
»®), and atv~1 it saturates at the valli~ x/(e?RDd). S B
I1l. BDOGS IN SPARSE THREE-DIMENSIONAL H N '
ARRAYS -

A. Saturation of BDOGS

With enough impurities the BDOGS is strongly smeared
and it approaches an averaged value given by(Exq.This
happens when the fluctuation of potentjais large enough,
namely

> ekR. (12)
FIG. 9. The origin ofgya, The solid horizontal line is the Fermi

In order to find the criticals of the saturation BDOGS,  |evel, the dashed line is the fluctuating potential energy. Two peaks
let us Study the fluctuation of electric potential. For a givenof BDOGS of the array are shown, as well as two corresponding
quantum dot, all the charges within a distance of the screenevels of four dots.
ing radiusrg contribute into a collective Coulomb potential.

There are two kinds of charges, positive donors and negative
dots. Let us compare the charge fluctuations made by them. = ——.
The average number of impurities withig is Nur, with a VATGmad W€ K

typical charge fluctuatiom'erﬁ. For the charged dots, the At 1<, < ve Egs. (12), (15), and (16) self-consistently de-

typical fluctuation of dot number iy is \s’Nrg, and each dot  tarmine all three unknowns: the BDOGS,.( 1), the screen-

carries a charge adv on average, so the typical charge fluc- jng radius, and the typical fluctuation of the potential energy.

tuation isveyNr2. At v> 1, the charge fluctuations produced Wwe arrive at Eq(5) and
by charged dots are larger than that of donors, so that the o 13 s
fluctuation of the potential energy of an electron is mostly re~ v”INYS > N3, (17)

related to charge fluctuations of dots

L (16)

y~ VN3 k. (18)

It is clear from Eq.(5) that gax arrives at the value
_ ~N/(€?/kR) when v~r,=1/(NR)Y*>1. Note that the
On the other hand, the BDOGS at the Fermi leggtls)  theory of this subsection is similar to Ref. 21.
determines the linear screening radius due to redistribution
of electrons between dots

ve?
Y~ —\'\T@ (12)

Kl g

C. Line of minima of oscillating BDOGS

re= ; ~ 1_ (13 Whenv is close to an integdvl the Fermi level lies in the
VAmg(n)elk - NR tail between theMith and(M + 1)th peaks in the BDOGS of
With the help of Eqs(12) and(13), the requirementl1l)  dots. Due to the low BDOGS at tails, screening of the long-
becomes range fluctuations is weak and strongly nonlinear. The ran-
5 Ui dom potential fluctuation grows until it reache3/2«R,
y~ €vNIRY Yk > €/kR. (14)  where levels of some dots cross the Fermi le@t. 10).

This picture is similar to the model of compensated semicon-
ductor and we treat it below following ideas of Chap. 13 of

Ref. 4. Let us defineg as nonlinear screening radius. Then

all space can be divided into blocks of sizgwith fluctuat-

ing excess charges~ ve\r'W@‘ which create potentiaj(rs)

B. Line of maxima of oscillating BDOGS ~ VeZ/KrS\"Nrg. This requires

Therefore only atv>wv,=1/(NR)Y* can we have big
enough potential fluctuation. At> v, BDOGS is smeared
so strongly that at a givenBDOGSg(e) ~ g, at all energies,
andgy(u) does not depend on the position @fany longer.

When v is close to a half-integeM—-1/2 (M is an inte- ve? —
gen the Fermi level is in the middle of thElth peak in the /KR~ y(rg) ~ F\"Nrs (19
BDOGS of dots(Fig. 9). s
The single dot charging levels vary with the electric po-and we arrive at
tential energy. The typical fluctuation of the potential energy

is determined by Eqgs(12), which broadens the BDOGS rSNL_ (20)
peak(Fig. 9. The BDOGS at the peak is N»2R?
N The potential fluctuation forms wells and hunigg. 10).
Omax( ) ~ Opea &) ~ —. (15  Electrons fall into wells and holes fall into humps. We will
Y discuss the wells and electrons, although our discussion is
In such a situation the linear screening radius is equally applicable to humps and holes. Inside a well of size
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L e vy> €%/ kR. Therefore the nonlinear screening crosses over to
linear screening at~ v.. At the same time the fluctuation of
—Tg— potential energyy is big enough to smear the BDOGS. It can
M A be checked thag,,,, and g,.x merge togs at v=wvs.
W =
M ﬂ 4 M
alone (0-compley, and some donors are accompanied by
two charged dot$2-compley. Charge conservation requires
— No=N,, where N, and N, are concentrations of 0- and
2-complexes.

FIG. 10. The origin ofy,. The meandering line represents the At v<1 nearly all donors are independent, axgl N,
fluctuating potential energy as a function of coordinate. The region&nd N, are proportional tov. Therefore the Fermi level re-
of the shortest size-| where dots are completely filled with elec- mains a constant and the BDOGS grows linearly witht
trons or holes are shown with thicker lines. The solid horizontal liney<< 1.
in the middle is the Fermi level, the other two horizontal lines  The details of this problem is the same as in a weakly

correspond to the nearest peaks of an isolated dot. Two peaks gbmpensated doped semiconductor. It has been studied
BDOGS of the array are shown, as well as two corresponding levelguantitatively!®> counting the numbers of 0- and

D. Growing part of BDOGS

When concentration of impurities is rather loms<1, an
electron released by a donor would like to stay on a dot close
to the donor. The common situation is a donor accompanied
by one charged dofl-compley, while some donors stay

of seven dots. 2-complexes. The quantitative results are

4w N
rsthere are other humps and wells of shorter range. Electrons No=Nvexp - — 5/ (25)
inside wells find themselves in wells of smaller scale and so 3 «lu|

on until they reach the shortest scale

The shortest rangk can be determined by the fact that A Am\2 [ ENVE\©
each dot accepts only one electron. The excess number of Np=7.14X 107 3 N P A (26)
charges inside such a well is of the ordemI®. The maxi-
mum number of electrons in the well is of the same order, 1= — 0.9%NY . @27)

otherwise the well turns into a hump. On the other hand the
maximum number of electrons NI® so thatNI*~»/NI3.  As the concentration of impuritieBlz=Ny+N;+N, is not

This gives changed, the concentration of electrons on dots is controlled
|~ (L2IN)H3 21) by the Fermi levelu, therefore
for the characteristic size of the shortest scale well, and g-(u) = Z—NZ - ?’ = 0.2«<vN?3/€?. (28)
o o
ve =3 i - P ;
W) ~ —I\JNI ~ VNV (22 We kept all coefficients in this subsection because they are
K
known.
for the characteristic depth. It can be checked that, as Thusg_(w) is proportional tov and follows Eq(4). This
long asv<<vg, in accordance with our assumption. picture works well atv<<1. At v=1 each dot is typically

As we said, in a cube of size, the fluctuation of extra affected by more than one impuirity. It is straightforward to
charge isq~ veyNrZ, which is balanced by the screening check that Eq(4) matches Eq(5) at v~ 1.
chargeANrge (AN is concentration of dots participating in

screening E. Periodic array of dots
ANre ~ veyNr2, (23) Above we have discussed sparse arrays in which the dots
are situated randomly. Now we turn to a question, what if the
therefore dots are arranged periodically in space?
AN ~ *N2R3. (24) The qualitative picture in Fig. 6 is still mostly correct. At

v>1 there are still the oscillations dy(w) with v. One

With the help of Eqs(22) and(24), one can estimate the should notice that the strongly charged periodic dots do not
BDOGS at the Fermi level agmin() ~ AN/ (1), and arrive  contribute to the fluctuations of electric potential and only
at Eq.(6). For peaks ofg(e) at e=+€?/2«xR we haveg(s)  donors produce the fluctuations. As we discussed above these
~0s> Omin() (See Fig. 10 fluctuations are weaker than in the random sparse array.

At v~ g the shortest scale of wells and humpsp-  Therefore more donors are needed to smear BDOGS to the
proaches the longest scale of wells and humpsind each  same extent. In other words, the lines of maxima and minima
dot can accept more than one electrons or holes becau#ethis case converge slower and the valuevois larger.
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The linear growth of BDOGS at<1 shown in Fig. 6 is N  NY2¢
not valid in a periodic array, since 0- and 2-complexes origi- Omad ) ~ — ~ 2,
nate from the random distribution of dots in space. In peri- Y
odic array a typical donor donates an electron to the nearestere we dropped the logarithmic factor and therefqrdis-
dots and forms an electric dipole. It takes additional energyppeared from the equations. In this approximation unlike
to take an electron out of a dipole and put it near anotheBD situations, we do not need the self-consistent method. As
dipole. Therefore a hard gap is formed at the vicinity of thea resultgm.{«) decreases witlr much slower than in 3D.
Fermi level. Only the rare cases where several donors are Both Egs.(35 and (31) reach g(u) ~N/(€?/kR) at v
close to each other can produce nonzero BDOGS at the »,=1/VNR?, where the distinction between peaks and val-
Fermi level. As a resulgy(x) does not grow linearly withy,  leys disappears.
but with higher power. The similar situation will be studied  Up to now we discussed the charging of two-dimensional
more thoroughly in the dense array of Sec. V. Therefore, herarray of dots by donors or a gate situated outside of dots. In
we gave only a brief description of the result. some two-dimensional systems electrons may be provided to
a dot by donors located close to the dots. This can be done,
for example, by creating a two-dimensional gas with the help
of a close layer of donors parallel to its plane and then by

The go(u) as a function ofv in 2D looks similar to 3D  etching outside dots both the gas and the donor layer. If such
(Fig. 6). It also has growing part, oscillating part, and satu-dots are essentially two-dimensional and heavily doped, in-
ration part. However, in 2D oscillations survive longer thanternally induced fluctuations can cause their charging, con-
in 3D, because the collective potential in 2D is much weakertrary to what we said in the Introduction about three-
Indeed, the fluctuation of potential energy in 3D grows withdimensional dots. Indeed, in this case, fluctuations of the
rs as a power law number of electrons in the dot and correspondingly of the

Fermi level decrease inversely proportional to the dot radius.
_ ﬁz INE o 12 (29) This decay is similar to the charging energy, so that the ratio
3D Kfs\ sTis of these energies is just proportional to the ratio of kinetic
and potential energies of electron in the éot.
while in 2D the long-range fluctuation of potential energy

grows slower than logarithmically with V. DENSE THREE-DIMENSIONAL ARRAYS OF DOTS

1<v<p=1WNR. (35

IV. BDOGS IN A SPARSE TWO-DIMENSIONAL ARRAY

s 12 Until now we dealt with sparse arrays of dots where
ve?\? YRR NRE<1 as shown in Fig. 2. Let us di what happen
Yop ~ Z ) Nrdr| = In(UNry). (30) as sho g. 2. Let us discuss what happens
_\ KT when the small paramet&R® grows. The saturation filling
1NN factor vs=(NR®)"Y4 decreases, which means the number of
Therefore the line of minima of oscillating part in 2D is oscillations decreases as well. The oscillations disappear at

quite different from that of 3D. The tail in the(e) versuse ~ ¥»s~1 whenNR*~1, i.e., when the typical separation be-
curve is produced here by Coulomb interaction of nearesiveen dots is of the order of the dot size.

neighbor dots, and the minimum value@fppears to béat Let us now concentrate on the other extretheg. 4)
1<v<r=1/\NR) where say cubic dots are closely packed in a cubic lattice

with the periodR and the widthd of an insulator between
Omin ~ N2(vek)le|s— 2 m) ~ V"N?R3k/€?.  (31)  dots is small(d<R). The insulator is uniformly doped by
) ) ) ] donors. We show below that at a large enough average num-
The 2D linear screening radius produceddayy, is ber of donors per doty>1, the BDOGS is smeared. On the
1 other hand atv<<1 typical donors do not contribute to
= K ~ i (32) BDOGS at the Fermi level but rare clusters of donors result
2mGmine”  VNR® in a small BDOGS.
For the system of metallic cubic dofg separated by a
clean insulator, potentialg; and charge$); of dots are re-
lated by linear equations

l's

One can verify using Eq30) that y,p<€?/ kR for suchr,
and therefore long-range contribution can be neglected.

The growing part av<<1/2 can be studied in the similar
way as in 3D. That is, one can use the idea about 0-complex, &= P Ne) (36)
1-complex, and 2-complex to find the Fermi level g

w~—eNY? (33) and
and BDOGS at the Fermi levéat v<1) Q=2 Cie;, (37
j
g-(u) ~ kvNY3/e?. (34

where Pj; is the reciprocal matrix of the capacitance matrix

For the maximum line of oscillating part, the collective C;;. The coefficients satisf; =P;;, 0= P;; <P; and depend
typical fluctuation of potential energy is given by E80)  on the relative positions dfand| only. Without donors the
and BDOGS at the Fermi level is Hamiltonian can be written as
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-

Ta

get only an integer number of extra electransThe neutral-
ity of the whole system requirese=n;=2Q,. For a given
fractional sefQ,p} the integer sefn;} minimizes the Hamil-

—e .- tonian
_v Pi 2,5 Pi
R H—Z ?(QiD_nie) +> > (Qip —Me)(Qjp — n;je).

LB <
1#]

1 | | | (40)

FIG. 11. Two-dimensional cross section through a daméth 1 hiS energy is calculated from the reference point of the sum

charge &) located between dots A and B for the system shown inOf €nergies of neutral groups around each donor, which does
Fig. 4. The group within the dashed circle is neutral altogether andlot depend om;. If each donated electron were shared by
does not affect the energy levels of dots A and B. Dot A gets arflots this fractional charge would neutraligg, and make
electron donated by the donor because the donor is closer to itd=0 and all¢;=0. This is equivalent to what would happen
border. if all grain are grounded. Discreteness mpfmakes finding
the ground stat@e, nontrivial. It is clear that in the globally
neutral system the chemical potential lies in the same
1 1 , 1 place as for a system of neutral dots, ig=0. In the ground
H= 5% PijQiIQ; = 52 PiQy + EZ“J PiQQ- (38  giate we can introduce “one-dot” energies of an empty dot
state above the Fermi level assuming that charges of other

|
0
45
—
e

Of course, it has minimum when &;,=0. dots are fixed
In order to understand the role of ionized donors let us 1
study an isolated donor between the dots A angd-ig. 11). Si(e> =H(n,+1) -H(n)=—-eg¢ + Ep“e{ (41)

The positive donor is completely screened by negative
chargesy, andqgg appearing of the surface of A and B, i.e.

' where
gpt+ggte=0. These charges leave compensating positive
charges ¢, and —gg in the dots A and B. lix, andxg are b= P;(Qj—nje) (42
distances from the donor to dots A and B, respectively, i
then is the electrostatic potential of the diot For an occupied
OaXg = OsXa- (39)  state in the similar way
One can easily arrive at E(B9) imagining that the donor for 8i<0) =H(n) -H(n - 1) =-e¢ - %p”eZ_ (43

a moment is replaced by the uniformly charged plane parallel
to the faces of cube A and Bvith the samex, andxg), and
minimizing the sum of Coulomb energies of two emerging
plane capacitors with distances between plageandxg as

In the absence of donors when all dots are neutral, ¢e.,
=0, we gets\®=+1P,e? and&”=-1P; €% The single elec-
tron BDOGS for neutral dots looks the same as in Fig. 3

a funct|on.oqu. Note that ap_< R all points of the_charged. except the separation of peaks or the level spacing is smaller
plane are in the same conditions and the plane fields arewggw 2P, — &2/ k4R~ €2d/ kRZ (the calculation ofP; is in
i eff ™ ii

a superposition of fields of these charges. This means E .
(39) should also hold for a point charge of this plane or just(ilhe Appendiy. Here
for a donor. Equatior{39) means that potentials of dots A Keff = kR/d (44)

a_md B are equal. In other words, the group m_ade of t_he POSIS the effective dielectric constant of the array. For charged
tive donor, g, and gz produces an electric field which is

confined in the vicinity of the donor. The group does notdOtS (S(f)ab“itz of the global ground state requiﬂé§>,u:0
affect the electric potential of any dot. Therefore the groupnde; <x=0. _
can be totally forgotten when we study the charges and po- Let us study the BDOGS in the case when there are more

tentials of the dots, or in other words it can be totally ignoregth@n one donor per ddw>1). In order to find BDOGS we
in the Hamiltonian. neglect the interaction terms in EG0) and consider only

On the other hand, the compensating positive charggs — diagonal terms. As a result the ground state of the system is
and -gs cannot be ignored. One can say that the donor'dealized by such a set ¢fy} that -e/2<Qp-ne<e/2. So
charge is split into two fractional partsjz and -qg. Charges ~ effective charges on different dots in the ground state of the
—q; are uniformly distributed between 0 aed array are ur)lformly distributed fromef2 to e/2. This gives

When there are more than one donor around a dot A wéhe energy independent BDOGS
can simply add them uRap=-0a1—0az—" - to get the total 1
positive charge induced by donors on dot A. Os(e) ~ 2P (45)

Each donor also donates an electron to the array of dots. f
We assume thail>a, wherea is the tunneling length of Consider now the role of nondiagonal terms. At a big dis-
electrons in the insulator so that the conducta@deetween  tancer;;> R the coefficientsP;; have the Coulomb forn®;
two dots is much smaller thaaf/h. In this case each dot can ~1/kentij. They, therefore, result in a density of ground
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states(DOGS with the Coulomb gap at the Fermi level, £
which in turn leads to ES law.
The finite BDOGS at the Fermi level and ES law iat

>1, originates from random distribution of charg€y,

which in turn is related to the fact that several donors con-

tribute into eaclQ,p. Even for nearest neighbor da@y, and

Qjp are independent since they include contributions of dif- 1 ))

ferent donors. 8

We turn now to the case of a small density of donors

<1 and first deal with typical donors isolated from each

other. As discussed above for such an isolated donor between

dots A and B, the charges induced by the donor are related by

Qup+Qgp=+e. If the donor is closer to dot A,

Qup >e/2>Qgp>0. If we neglect interaction between dots

A and B in Egs(41) and(43) we arrive at finite BDOGS of n

isolated donors at the Fermi level. States at the Fermi level 2(g)

are provided by dots wher®gp=1/2-6 with §<1. Then

dot B has a state just above the Fermi level and A has a state

just below it. The fact that these states are so closely corre-

lated in space leads to their elimination by the interaction

between dots A and B. Indeed, in the ground state the elec-

tron donated by the donor is on dot A. The total charges on A ((

and B isQa=Qap-e=—Qgp andQg=Qgp. The electric po- -1 ey v 4

tential on B is ¢pg=PggQg+PgaQa and according to Eq. A

(41) all the levels on B are moved down leyg. Using the

fact 0<Qgp=<e/2, we have FIG. 12. BDOGS of isolated donors at 1. Energye is mea-
0= ey = (1 - a)Pege?2, (46) Zl:;ﬁ?]c;ntﬁgllt:se?rfﬁﬁgsz.z. There is a hard gap of the wid#P;€?

where a=Pg,/Pxs=0.34+£0.01 represents the interaction
between nearest neighbor d@ee the calculation af inthe  only three electrons on the cluster of four donors so that the
Appendiy. According to Eq(41) the lowest vacant level of cluster has a net charget is effectively shared by the five
dot B is at leastP;;€?/2 above the Fermi level. Similarly, dots, each gettinge/5. According to Eq(41) the addition
according to Eq(43) the highest filled level on dot A is of the fourth electron to this cluster costs
moved up by €@, with 0<-e¢p, <(1-a)Ppa€?/2 and it is
at leastaP;€?/2 below the Fermi leve(Fig. 12). £® = [_ 1(40( +1)+ }] P. &2~ 0.0P; (47)
Thus, we showed that for<1 typical isolated donors ' 5 2] " e
haveasul_astantial hard gap of widtl; €? in their density_of where a=P,,/P,;, and as shown in the Appendix
states. This gap cannot be destroyed by long range mterag—0 3405. This means that©®> =0 and the positivel
tions of such donors because they form neutral complexes ™ ' i T P y
and weakly interact with each other at long distances.
One can also think of a donor in the neutral complex with

electron of the neighboring dot A as a hydrogen-like donor in 1/5

a semiconductor. Then the hard gap obtained above is similar

to the Hubbard gap. The electric dipole made of a donor and _ + —
an electron in principle can accept another electron with a 16 +

weak binding energy, but the energy difference or Hubbard 15 |13 -3 1/5

gap between the two electronic levels makes sure that only
the lower level is filled in the ground state.
Up to now we talked about typical isolated donorsvat
< 1. In fact there are rare configurations that make a nonzero 1/5
BDOGS at the Fermi level. Let us show how this happens.
Consider, for example, a cluster of four donors around

one dot(Fig. 13. The charges of donors are shared by five 1 || || | [
dots in such a way that the charge of each donor is effec-
tively split into 4e/5 going to the central dot aref5 going FIG. 13. An example of rare configurations leading to the finite

to its nearest neighbor. The middle dot has effective charggpoGs at the Fermi level at<1. The cluster of five dots and four
Qip=16e/5 and each of the four neighbor dots h@yp  donors is effectively positively charged in the ground state. Charges
=e/5. Let us show that in the ground state of the clusier of five dots are shown in units &f All the other dots in the vicinity

=3 for the central dot and,=0 for all others, i.e., there are of the cluster remain neutral.
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charged cluster of Fig. 13 is stable with respect of bringing d

the fourth neutralizing electron. The physical reason for such —| |=—

stability is uniform smearing of the net charge over five dots

which diminishes potential of the clustéy at the central dot

attracting the fourth electrofthe first term in the right side

of Eq. (47)]. +
We have shown above an example of a positive “donor-

like” cluster. Moving each of the four donors away from the

central dot in the direction of the neighbor dot one can con-

struct an “acceptor-like” cluster in which charge is evenly

shared by five dots. Such a cluster accepts an electron re-

leased by the cluster in Fig. 13. Thus, some clusters charge FIG. 14. An almost densely packed array of metallic spheres

Fhemsglves by “;elf-compensation” similar to amphOte“C(d< R). A donor is shown by+ and electron donated by it is shown
impurities in semiconductors. Of course, there are also neys,, _

tral clusters and tuning positions of donors between dots one

can continuously go from a neutral cluster to the chargegnyjate more action. Actually a dirty dot provides logarithmic
one. This means that BDOGS at the Fermi level created byontribution to the tunneling actidi.We assume that it is

clusters is finite. . ~ much smaller than @ a resulting from crossing the insula-
Using coefficientsP;; calculated in the Appendix, it is gy,

easy to find that the smallest charged cluster in the ground yntil now we discussed only the “super-dense” array
state is the cluster of four dots with three donors betweernown in Fig. 4. Let us consider what happens in the system
them. Therefore, a’v/<1_ the _BDOGS at th_e_ Fermi level of aimost densely packed metallic sphe(Bag. 14), where
grows asgo(u) = »* and it begins to be significant a~1  jhsylator occupies a larger fraction of space than in Fig. 4.
(see Fig. & One can show that in such a system BDOGS as a function

The structure of self Charging clusters discussed above |§f the number Of donors per do'[‘behaves qua”tative'y simi_
similar to the mechanism which provides a nonzero bargar to Fig. 8. At smaller only a cluster of donors around a
density of states in a system of quasi-one-dimensional elegiot can create a finite BDOGS, while 2% 1 donors easily
tron crystals at low impurity concentratidh.There is also  smear BDOGS. In this case, characteristic temperature of ES
similarity to self-compensation of clusters of several donorgay is T,~e?d/aR It loses one power ofl/R because the
in uncompensated semiconductor near the insulator-metgjielectric constant of such systems does not divergd at
transition?* —0. When distance between daisgrows and exceedg,

As we saw above in the “super-dense” array of dots withye get sparse periodic array and recover oscillations of
d<R, a large enough concentration of donors can easil3pDOGS aty>1. At v<1 there is a smooth cross-over be-
smear BDOGS. This is a natural explanation of the experitween two super-linear growths of BDOGS related to rare
ments, where the ES law is observed. Let us consider paramdpnor clusters in the vicinity of some dots.
eter Ty of the ES law[Eq. (1)] for a dense array of dots at  Although we arrived av>1 as the universal criterion of
v>1. According to Ref. 4To~ €/ (kené), where ¢ is the  gybstantial smearing of BDOGS for both dense ar(&ygs.
localization length for tunneling to distances much larger4 and 14 and sparse array§igs. 2, we should understand
thanR. When an electron tunnels through insulator it accu-that the required concentration of dond{s in the insulator
mulates dimensionless actiaia, wherea is the tunneling  grows while volume fraction of insulator decreases from the
decay length in the insulator. On the distanxcelectron ac-  arrays on Fig. 2 and to the one on Fig. 14 and then to the one
cumulates</R such actions. Thus, its wave function decayson Fig. 4.
as exj-xd/Ra)=exp(-x/§), where the localization length  |n some cases metallic granules are first coated by the
£=aR/d. This enhancement of localization length is similar layer of a doped insulataifor example, the metal’s oxide
to the one derived for disordered granular system near peend then compressed into the bulk array with a clean insula-

colation threshold® It leads to tor of a different kind of filling or just air filling empty space
5 (Fig. 15. For simplicity we assume the dielectric constant of
_ ed — ed (48) the coating insulator is close to that of the filling space be-
kef@dR  kR%a’ tween dots.

We would like to consider BDOGS for such a model of

We see that with decreasinjthe temperaturd, decreases granular metal in order to understand cross-over between the
asd?. This continues until conductance of the insulator layerapove-studied case of donors residing outside dots and those
G=(e?/h)(Rk:)%e"> reaches the quantum lim&~e*/%,  on the dot surface or inside dots. In the latter case, donors are
i.e., whiled>d.=aln(Rk:). At d<d, the characteristic ES screened and act as short range neutral impurities. According
temperatureTy(d) should vanish wheml— 0, but the way to the introduction such impurities cannot charge a neutral
this happens is still unknown (see also recent array of dots. Thus, effect of donors in the layer of the width
publicationg®?” concerned with the cagg> 1). w<R should decrease as vanishes.

In the above calculation of the localization length we as- Indeed, one can calculate the fluctuation of the average,
sumed that tunneling through a metallic dot does not accupotential of the donor layer of the widtlr which plays the
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w the sparse and dense models are shown in Figs. 7 and 9 are
qualitatively different. The sparse random model shows lin-

’ ear growth of BDOGS at weak doping and oscillations of the
density of states at strong doping. On the other hand the

dense model shows a very small density of states at weak
Y Y doping and no oscillations at stronger doping. The bare den-
sity of states determines the width of the Coulomb gap and
the characteristic temperature of transition from ES law to
Mott’s law with increasing temperature. It determines many
thermodynamic properties of the array as well.

FIG. 15. An array of coated dots. The width of coating insulator ~FOr dense arrays we have calculated characteristic tem-
is w. A donor is shown by+ and electron donated by it is shown PeratureTo of ES law in the case, when tunneling conduc-
by —. tance between granules is small. The challenging question of

the calculation ofT, in the case of even closer dots will be

addressed in the next publication. Another interesting ques-
role of fluctuation of work function of dots. It can be esti- tion left beyond the scope of this paper is the origin of ES
mated as a potential created by the layer of the widthy  law in isotropic and anisotropic arrays of strongly aniso-
fluctuating concentratiofNpwR?)2/wR. One can imagine tropic (elongated granules, for example, nanotubes.
that, correction to the work function is created by an effec- In this paper we concentrated on ohmic hopping conduc-
tive random double layer. Such a correction to the worktivity. However, our results can be applied to nonohmic con-
function is of ordere?(Npw®)2/ kR. It becomes larger than ductivity, too. It was show# that at low temperatures a
the charging energy only aipw®s>12° This condition of  strong electric fieldE replaces temperatufiein the exponen-
BDOGS smearing is obviously much stronger than “one dotial temperature dependence of the variable range hopping by
nor per dot” condition valid for a uniform insulator. Whan the effective temperaturB-=eE£/ 2kg. As a result nonohmic
approaches the lattice constant the role of donors is so mudkS law readsj=jq exd—(Eqo/E)Y?] with Eq=2Ty/eé. This
weakened that in order to smear BDOGS one needs the reldependence was observed in granular metals and nanocrystal
tive concentration of donors to be of the order of 50%. At thethin films 11!
surface, donors and their images are still forming dipoles
with fluctuating dipole moments, which create fluctuating
double layer potential. On the other hand, when donors enter
inside the dot, each donor becomes exponentially screened The authors are grateful to M. V. Entin, M. M. Fogler, Yu.
from all sides, the dipoles and the random double layer disM. Galperin, A. Kamenev, and A. |. Larkin for helpful dis-
appear. This diminishes the role of donors further so that asussions. This work was partially supported by NSF No.
we said in the introduction even a large concentration ofDMR-9985785.
impurities inside the whole three-dimensional dot can not
charge the dot.
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APPENDIX: MATRIX ELEMENTS Py
VI. CONCLUSION FOR NEIGHBORING DOTS

This paper addresses the problem of explaining of the Here we study the coefficienf; in Eq. (36). We know
temperature dependence of the conductivity observed ithe diagonal termP; ~1/kR, and for distant neighbors
granular metals and arrays of quantum dots. We show that; >R one can show tha®;; ~ 1/«qr;;. But the coefficients
ES law is the most natural explanation for this dependencéetween close neighbors require further consideration.

(in spite of recently expressed douljsFor this purpose we The dense array of periodic dots is equivalent to the lat-
present a simple model with random charging of clean metice of identical capacitors connecting adjacent dots. Such a
tallic dots in both sparse and dense arrays of dots. In botRystem can be studied in the language of an equivalent resis-
cases we assume that the insulator separating the dots is uti+ network. Imagine a cubic lattice network with an identi-
formly doped by donors, which donate their electrons tocal resistance between every nearest neighbor sites. Suppose
dots. Random positions of dots in the sparse ¢Bigg 1) and  that current goes into a lattice site A and travels out through
random positions of donors in the dense periodic mogigl.  the network to infinity. Label the potential of site A to be

5) lead to random charging of dots in the global ground statéhe potential of nearby dots B, C, D.,., to beaxgV, axcV,

and to filling of the gap of the bare density of individual dots @apV, ...,. What are the values of the\g, aac, aac, and so

at the Fermi level. The long range Coulomb interaction cre-on? Here we are using the dimensionless coefficients such as
ates a soft Coulomb gap on the background of the finite bareag =Pag/Paa, and we know all of them are between 0
density of ground states in the vicinity of the Fermi level. At and 1.

a low enough temperature this leads to the ES variable range A standard numerical calculation uses the fact that the
hopping conductivity, in agreement with multiple experimen-current going into a site equals the current going out of it
tal observations. (Kirchhoff law), which means the potential of a site equals

We concentrate on the dependence of the bare density tifie average potential of its nearest neighbors. Using lattices
states on a number of donors per dot. Such dependence fof N X N X N sites and keeping the potential at central cite to
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be 1 and that of boundaries to be 0, one adjusts the potential
values of the other sites so that the potential of each site is
very close to the average potential of its nearest neighbors.
Using lattices with N up to 97 we find a=ay,  One can findg; and
=0.34+0.005, a(,=0.166+0.005, ¢y3=0.106+0.005, ay; .
=0.216+0.005, andy;;;=0.17+0.005(here 111 represents _dQ, [ d% R’cogk - )

2kR?) (2m)*3 - cosk,R — cosk,R— cosk,R’

BZ

Qod
6xR%

1
bi- . di(coskR+ cosk R+ cosk,R) = (A2)

$(1)

the vector between the two dots measured in the units of the
lattice constant

There is also an analytic way to find the coefficiefits. (A3)
Imagine the situation when there is chaf@gon the central ] o o
dot while all the other dots remain neutral, one can use th¥here the integration is over the Brillouin zokg ky,k; & (
equation similar to Kirchhoff law mentioned above -m/R,7/R). One can use numerical integration to find

Qud $(0) _ 0252

1 - — — — —
_ = N — - Pyo= , A= =—=0.3405,
¢(F) 6; Hr) = b (A1) ©TQ T kR YT Ty,
wheref” are six nearest neighbor of the siteand ¢(f) is 2= 0.1697,003=0.1089,,,=0.2183  (Ad)
defined only on the discrete sités (n,R,nR,n,R). Equa- and so on. These results agree with the results of the first

tion (A1) can be solved using discrete Fourier transform  method.
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