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The conductivity of a granular metal or an array of quantum dots usually has the temperature dependence
associated with variable range hopping within the soft Coulomb gap of density of states. This is difficult to
explain because neutral dots have a hard charging gap at the Fermi level. We show that uncontrolled or
intentional doping of the insulator around dots by donors leads to random charging of dots and finite bare
density of states at the Fermi level. Then Coulomb interactions between electrons of distant dots results in a
soft Coulomb gap. We show that in a sparse array of dots the bare density of states oscillates as a function of
concentration of donors and causes periodic changes in the temperature dependence of conductivity. In a dense
array of dots the bare density of states is totally smeared if there are several donors per dot in the insulator.

DOI: 10.1103/PhysRevB.70.115317 PACS number(s): 73.63.Kv, 72.80.Tm, 73.21.La, 73.23.Hk

I. INTRODUCTION

Conduction of samples where metallic granules are sur-
rounded by some kind of insulator(granular metals) have
been studied intensively for decades.1–9 If volume fraction of
the metalx is large, metallic granules touch each other and
conductivity is metallic. Whenx decreases and crosses per-
colation thresholdxc, granules become isolated from each
other and granular metal goes through metal-insulator tran-
sition. It is generally observed1–3 that at the insulator side of
transition the temperature dependence of conductivity obeys

s = s0 expF− ST0

T
D1/2G . s1d

Recently, similar temperature dependence was observed in
doped systems of self-assembled germanium quantum dots
on the silicon surface10 and CdSe nanocrystal thin films.11

Below we talk about both granular metal and semiconductor
dot structures universally using the word dot for brevity.

In doped semiconductors the temperature dependence of
Eq. (1) is also widely observed at low temperatures.4 It is
interpreted as the variable range hopping conductivity be-
tween impurities in the presence of the Coulomb gap4,12 of
the density of states(DOS) and is called the Efros-Shklovskii
(ES) law. In a n-type lightly doped compensated semicon-
ductor all acceptors are negatively charged and randomly
situated, an equal number of donors are charged positively.
Together all random charges create a random potential shift-
ing donor levels up and down. This results in finite bare DOS
g0smd at the Fermi levelm. Long range Coulomb interaction
of localized electrons then produces the parabolic Coulomb
gap in DOS

gs«d =
3

p
k3«2/e6 s2d

at the Fermi level(Fig. 1) leading to ES law withT0=C
3e2/kj, whereC is a constant factor,k is dielectric con-
stant, andj is the localization length.

In contrary to a doped semiconductor, in an array of neu-
tral dots the bare DOS at the Fermi levelg0smd=0 and there
is no justification for ES law, which requires a nonzerog0smd

to begin with. Let us consider a sparse array of dots with the
same radiusR shown on Fig. 2. Charging energy levels of
such array are shown in Fig. 3. Here we assume that dots are
large enough, so that spacing between charging levelse2/kR
is much greater than spacing between quantum levels of the
dot with a given charge. Empty peaks in Fig. 3 correspond to
energies necessary to charge a neutral dot by the first, sec-
ond, and so on electrons transferring them from the macro-
scopic piece of the same metal. Shaded(filled) peaks corre-
spond to, taken with the sign minus, energies necessary to
extract first, second, and so on electrons from the dot, or in
other words, this is the density of states of holes. The Fermi
level of the array is at zero between two peaks and coincides
with the Fermi level of macroscopic piece of the same metal.

We want to emphasize that in each dot we are dealing
with the ground state at a given number of electrons and
exclude excited states(higher quantum levels) because the
ground states of dots determine the low temperature hopping
transport. Indeed, in the Miller-Abrahams network13 of resis-
tances connecting all dots, the exponentially large activation

FIG. 1. The shape of the Coulomb gap in the vicinity of the
Fermi level. Bare density of states in the absence of long range
Coulomb interaction is shown by the dashed line. Occupied states
are shaded.
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factor of each resistance depends on probabilities of occupa-
tion of a dot by a given number of electrons. Exponential
temperature dependencies of these probabilities, as well as
the partition functions of dots are determined by ground state
energies.14 Thus, the density of states of the array we need
can be called bare density of ground states(BDOGS).

Note that in a lightly doped semiconductor with several
equivalent conduction band minima each donor has excited
states close to the ground state, i.e., situation is similar to
large dots. Still exponential temperature dependence of hop-
ping conductivity depends only on BDOGS.4,13

Let us illustrate the role of BDOGS in a clean sparse array
(Fig. 3). In this case, conductivity requires activation of
electron-hole pairs or in other words, transfer of an electron
between two originally neutral dots. Obviously concentra-
tions of positive and negative dots and the hopping conduc-
tivity obeys

s = s0 expf− Ec/2kBTg s3d

independently of excited states(the same result can be ob-
tained in Miller-Abrahams resistor network approach) where
Ec=e2/kR is the charging energy.

How then can we explain observation of ES law? Appar-
ently BDOGS shown in Fig. 3 should be smeared in the
vicinity of the Fermi level due to some kind of disorder.

A simplest source of disorder is distribution of sizes or
capacitances of dots. Indeed, charging energies of larger dots
are smaller and this can result in the low energy tail of the
first empty peak of BDOGS and symmetric high energy tail
of the first occupied peak. Still in a neutral system these tails
do not overlap andg0smd is zero, so that this kind of disorder
does not lead to ES law. Shenget al.1 assumed that in a
reasonably dense system of neutral granules there is a special
distribution of distances between granules or their mutual
capacitances, which can lead to ES law. This assumption was
found incompatible with other experiments.5 But more im-
portantly it was noticed6 that in a system of large granules
made of the same metal all granules remain neutral in ground
state at any distribution of mutual and individual capaci-
tances. Therefore, intergranular excitation of electron-hole
pairs has a gap.

This leads to an important conclusion that granular metal
may have finite BDOGSg0smd and show ES conductivity
only if in the ground state of the system granules are
charged.4–9 Formally one can imagine that this happens if
granules have different work functions.4,6 Several possible
mechanisms of such fluctuations were discussed in literature.
Chui7 suggested that very small dots can charge big dots in
the case when the former are so small that their quantum
level spacing exceeds the charging energy. We concentrate
on the system of large enough dots and, therefore, ignore this
possibility. Cuevaset al.8 claimed that even in large dots
there are large fluctuations of the Fermi leveldEF due to
random positions of neutral impurities in different dots. To
our mind, this possibility can be rejected using fordEF a
simple estimate of typical fluctuation of the average potential
in the metallic dot due to fluctuation of number of impurities
there. For a three-dimensional case one easily getsdEF
,EFc1/2/ skFRd3/2, where c is the relative concentration of
impurities in the dot,kF is the Fermi wave vector, and we
assume that the size of an impurity is of the order ofkF

−1 and
its potential U,EF. At large R this energy is apparently
smaller than charging energye2/kR even atc,1, so that
dots remain neutral. Baskin and Entin9 considered fluctua-
tions of the surface part of the dot energy as a reason of
ionization of dots. Again if we assume that these fluctuations
are a result of the random distribution of point-like impuri-
ties located on the dot surface, we come to the conclusion
that corresponding fluctuation of energy decreases like 1/R2

and cannot compete with the charging energy. Thus, the sim-
plest internal mechanisms of fluctuations of the work func-
tion mentioned above are too weak to charge array of three-
dimensional dots.

In this paper we study models of arrays of dots affected
by external disorder, where the origin of charging and
BDOGSg0 is transparent and in some cases controllable. We
assume that the insulator between clean dots has a concen-
tration of donorsND with electron energyED higher than
Fermi energym in dots, so that at low temperatures all do-
nors donate an electron to dots and charge them. For a given
concentration of dotsN (Fig. 2) we can introduce the average

FIG. 2. A sparse array of same size neutral metallic dots sur-
rounded by an insulator.

FIG. 3. The bare density of ground states(BDOGS) of a clean
system of indentical dots consists of equidistant peaks. Occupied
states are shaded.
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number of extra electrons per dotn;ND /N, which by anal-
ogy with quantum Hall effect can be called the filling factor.
The maximum number of electrons which can be added to a
dot is nmax.sED−md / se2/kRd. We assume thatn,nmax so
that all donors lose their electrons. In the semiconductor lan-
guage we are dealing with compensatedp-type semiconduc-
tor where dots play the role of multicharged acceptors.

In Sec. II we summarize our main results for BDOGS at
the Fermi levelg0smd as a function of the filling factorn. In
Sec. III the sparse three-dimensional(3D) array of dots(Fig.
2) is discussed. In Sec. IV we extend this discussion to the
2D array. In Sec. V we study in detail the super-dense 3D
array shown in Fig. 4, which is the other extreme, and then
comment on the realistic moderately dense array(Fig. 14).
We also see how the properties of sparse 3D arrays cross
over to dense arrays. After studying different arrays one can
see that external doping brings about nonzerog0smd and
leads to ES law.

II. SUMMARY OF RESULTS

We start from sparse three-dimensional arrays of dots of
the same radiusR, which are randomly situated in space with
concentrationN! s4pR3/3d−1. We assume that the dots are
big enough so that Coulomb effect over-weights quantum
level spacing. For sparse arrays of dots, doping introduces
two types of charges: positive, empty donors and negatively
charged dots. Both are randomly situated and create random
potentials growing withn. These charges result in two effects
(Fig. 5). First, thed-shaped peaks in BDOGSg0s«d become
somewhat smeared, since the energy it takes to bring an elec-
tron to a dot is affected by the random potential(the effect is
similar to that of gedanken random gate potential). As a re-
sult, each peak gets tails. Second, electrons coming from
donors fill some dot states and hence move the position of
the Fermi level up.

As a resultg0smd may oscillate withn. For example, at
n=1/2 theFermi level m is in the middle of the BDOGS
peak and for that reasong0smd can be rather large. On the

other hand, atn=1 the Fermi levelm is in a tail between two
BDOGS peaks, andg0smd tends to be much lower. Actually
the total dependence ofg0smd on n is somewhat more com-
plicated and consists of three parts, the growing part, the
oscillating part, and the saturation part(Fig. 6). The first
(growing) part takes place at smalln, where the situation is
similar to p-type semiconductors at a low degree of
compensation.15 We get BDOGS growing linearly withn

g,smd , knN2/3/e2 sn ! 1d. s4d

In the second(oscillating) part, m typically dwells in
BDOGS peaks,

gmaxsmd ,
N2/3k

e2n4/3 s1 , n , nsd. s5d

When n is very close to integers, the Fermi level drop into
minima of g0s«d where

FIG. 4. A “super-dense” array of dots. Only one donor is shown
by 1 and electron donated by it is shown by2.

FIG. 5. BDOGSg0s«d at a certain filling factor. Occupied states
are shaded.

FIG. 6. BDOGS at the Fermi levelg0smd of a sparse 3D array as
a function of filling factor(solid line). The reference to the equation
appropriate for a part of the curve is shown next to it. Dashed lines
describe locations of minima and maxima of the oscillating part.
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gminsmd ,
n8/3N5/3R2

e2/skRd
s1 , n , nsd. s6d

Here ns,1/sNR3d1/4@1 is the filling factor at which oscil-
lations become relatively small and the third(saturation) part
starts over. This happens because fluctuations of the Cou-
lomb potential are so big that BDOGS is almost uniform
everywhere

gs ,
N

e2/skRd
sn . nsd. s7d

The number of large oscillationsns is big only when dots are
far from each other. Here and below we often omit numerical
coefficients.

For less ideal arrays where the dots have slightly different
sizes, the distribution of sizes can wash away the oscillations
to a certain extent, making the line of maxima lower and the
line of minima higher. As a result the two lines approach
each other faster(ns is smaller) than the situation of identical
sizes.

Oscillations ofg0smd lead to periodic transitions between
the ES law and Mott’s law at a given low temperature as
shown in Fig. 7. This happens because in the very vicinity of
m the long range Coulomb interaction creates the parabolic
Coulomb gap(not shown in Fig. 5). The width of the Cou-
lomb gap as follows from Eq.(2) and Fig. 1 depends ong0

D , Îg0smde6/k3. s8d

At largeg0 the Coulomb gap is widesD@kBTd and the con-
ductivity obeys the ES law[Eq. (1)], which does not depend
on g0. At a very smallg0 the width of the Coulomb gap is
smaller thankBT and becomes irrelevant for conductivity. In
this case we arrive at Mott’s law region

s = s0 3 expF− S b

g0smda3T
D1/4G , s9d

with strong dependence ong0smd. Here b is a numerical
coefficient.4

Oscillations of BDOGSg0smd with n lead to oscillations
of other measurable quantities. It was shown16 that in sys-
tems with the Coulomb gap, BDOGSg0smd plays the role of
the thermodynamic density of statesdn/dm, wheren is con-
centration of electrons, so that it determines the screening
radius of the systemrs=s4pg0e

2/kd−1/2 used below for self-

consistent calculations of BDOGS. One can also measure
BDOGS at the Fermi level with the help of extremely low
temperature(lower than typical quantum level spacing) spe-
cific heat and microwave absorption4,17

Until now we talked about 3D arrays of dots. In Sec. IV
we consider an arrays of dots located in a 2D plane. In a 2D
array dots can be charged by donors located in parallel to the
plane(d-layer).10,18 In the 2D case, however, there is a more
practical way to charge dots using a metallic gate parallel to
the plane of dots. Atn@1, results forg0smd are almost inde-
pendent on the way of charging, because most of the random
potential is created by dot charges. Dependence ofg0smd on
n in 2D qualitatively looks similar to the 3D case discussed
above, but quantitatively it is somewhat different(see Sec.
IV ).

Dependence ofg0smd on n in 2D should lead to oscilla-
tions of conductivity. Some oscillation were observed in
experiments.10,18 But there are additional ways to measure
this dependence in a gated 2D structure. First,10 one can
study the change of conductivity where the gate voltage
charges dots. Second,19 one can study inverse small signal ac
capacitance of unit area 1/C, which is related to the two-
dimensional screening radius of the dot systemrs
=k / s2pg0e

2d by equation

1/C = 4pksd0 + rsd, s10d

whered0 is the distance from gate to the plane of dots. This
method is similar to magnetocapacitance measurements in
quantum Hall effect.20

Until now we talked about the sparse arrays of dots. For a
sparse array of dots the variable range hopping conductivity
is measurable only when the tunneling length in insulator is
large enough. This probably can be achieved in some cases
in narrow gap semiconductors. Otherwise conductivity is so
small that it cannot be measured. In this case, thermody-
namic measurements of oscillating quantities may be more
convenient.

It is much easier to measure conductivity in a dense array
of dots. Actually most of cited the experiments are done at
NR3,1. In Sec. V we study clean metallic cubes separated
by thin layers of an insulator doped by donors in the “super-
dense” limitd!R (Fig. 4). It is assumed that the tunneling
conductance between two cubesG!e2/h. We show that in
the dense array BDOGS as a function of the average number
of donors per dotn behaves as shown in Fig. 8. Atn!1,

FIG. 7. Ranges of ES and Mott’s laws alternating with growth
of filling factor n at a given low temperature.

FIG. 8. BDOGS at the Fermi levelg0smd of a “super-dense”
array as a function of filling factorn.
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BDOGS is very small and grows super-linearly withn (like
n3), and atn,1 it saturates at the valueg̃s,k / se2RDdd.

III. BDOGS IN SPARSE THREE-DIMENSIONAL
ARRAYS

A. Saturation of BDOGS

With enough impurities the BDOGS is strongly smeared
and it approaches an averaged value given by Eq.(7). This
happens when the fluctuation of potentialg is large enough,
namely

g . e2/kR. s11d

In order to find the criticalns of the saturation BDOGS,
let us study the fluctuation of electric potential. For a given
quantum dot, all the charges within a distance of the screen-
ing radiusrs contribute into a collective Coulomb potential.
There are two kinds of charges, positive donors and negative
dots. Let us compare the charge fluctuations made by them.
The average number of impurities withinrs is Nnrs

3, with a
typical charge fluctuationeÎNnrs

3. For the charged dots, the
typical fluctuation of dot number inrs is ÎNrs

3, and each dot
carries a charge ofen on average, so the typical charge fluc-
tuation isneÎNrs

3. At n@1, the charge fluctuations produced
by charged dots are larger than that of donors, so that the
fluctuation of the potential energy of an electron is mostly
related to charge fluctuations of dots

g ,
ne2

krs

ÎNrs
3. s12d

On the other hand, the BDOGS at the Fermi levelg0smd
determines the linear screening radius due to redistribution
of electrons between dots

rs =
1

Î4pgsmde2/k
,

1
ÎNR

. s13d

With the help of Eqs.(12) and(13), the requirement(11)
becomes

g , e2nsN/Rd1/4/k . e2/kR. s14d

Therefore only atn.ns;1/sNR3d1/4 can we have big
enough potential fluctuation. Atn.ns, BDOGS is smeared
so strongly that at a givenn BDOGSgs«d,gs at all energies,
andg0smd does not depend on the position ofm any longer.

B. Line of maxima of oscillating BDOGS

When n is close to a half-integerM −1/2 (M is an inte-
ger) the Fermi level is in the middle of theMth peak in the
BDOGS of dots(Fig. 9).

The single dot charging levels vary with the electric po-
tential energy. The typical fluctuation of the potential energy
is determined by Eqs.(12), which broadens the BDOGS
peak(Fig. 9). The BDOGS at the peak is

gmaxsmd , gpeaks«d ,
N

g
. s15d

In such a situation the linear screening radius is

rs =
1

Î4pgmaxsmde2/k
. s16d

At 1,n,ns Eqs. (12), (15), and (16) self-consistently de-
termine all three unknowns: the BDOGSgmaxsmd, the screen-
ing radius, and the typical fluctuation of the potential energy.
We arrive at Eq.(5) and

rs , n2/3/N1/3 @ N−1/3, s17d

g , e2n4/3N1/3/k. s18d

It is clear from Eq.(5) that gmax arrives at the valuegs
,N/ se2/kRd when n,ns;1/sNR3d1/4@1. Note that the
theory of this subsection is similar to Ref. 21.

C. Line of minima of oscillating BDOGS

Whenn is close to an integerM the Fermi level lies in the
tail between theMth andsM +1dth peaks in the BDOGS of
dots. Due to the low BDOGS at tails, screening of the long-
range fluctuations is weak and strongly nonlinear. The ran-
dom potential fluctuation grows until it reachese2/2kR,
where levels of some dots cross the Fermi level(Fig. 10).
This picture is similar to the model of compensated semicon-
ductor and we treat it below following ideas of Chap. 13 of
Ref. 4. Let us definers as nonlinear screening radius. Then
all space can be divided into blocks of sizers with fluctuat-
ing excess chargesq,neÎNrs

3 which create potentialgsrsd
,ne2/krs

ÎNrs
3. This requires

e2/kR, gsrsd ,
ne2

krs

ÎNrs
3 s19d

and we arrive at

rs ,
1

Nn2R2 . s20d

The potential fluctuation forms wells and humps(Fig. 10).
Electrons fall into wells and holes fall into humps. We will
discuss the wells and electrons, although our discussion is
equally applicable to humps and holes. Inside a well of size

FIG. 9. The origin ofgmax. The solid horizontal line is the Fermi
level, the dashed line is the fluctuating potential energy. Two peaks
of BDOGS of the array are shown, as well as two corresponding
levels of four dots.
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rs there are other humps and wells of shorter range. Electrons
inside wells find themselves in wells of smaller scale and so
on until they reach the shortest scalel.

The shortest rangel can be determined by the fact that
each dot accepts only one electron. The excess number of
charges inside such a well is of the ordernÎNl3. The maxi-
mum number of electrons in the well is of the same order,
otherwise the well turns into a hump. On the other hand the
maximum number of electrons isNl3 so thatNl3,nÎNl3.
This gives

l , sn2/Nd1/3 s21d

for the characteristic size of the shortest scale well, and

gsld ,
ne2

kl
ÎNl3 , n4/3N1/3e2/k s22d

for the characteristic depth. It can be checked thatl ! rs as
long asn!ns, in accordance with our assumption.

As we said, in a cube of sizers, the fluctuation of extra
charge isq,neÎNrs

3, which is balanced by the screening
chargeDNrs

3e (DN is concentration of dots participating in
screening)

DNrs
3e, neÎNrs

3, s23d

therefore

DN , n4N2R3. s24d

With the help of Eqs.(22) and(24), one can estimate the
BDOGS at the Fermi level asgminsmd,DN/gsld, and arrive
at Eq. (6). For peaks ofgs«d at «= ±e2/2kR we havegs«d
<gs@gminsmd (see Fig. 10).

At n,ns the shortest scale of wells and humpsl ap-
proaches the longest scale of wells and humpsrs, and each
dot can accept more than one electrons or holes because

g.e2/kR. Therefore the nonlinear screening crosses over to
linear screening atn,ns. At the same time the fluctuation of
potential energyg is big enough to smear the BDOGS. It can
be checked thatgmin andgmax merge togs at n=ns.

D. Growing part of BDOGS

When concentration of impurities is rather low,n!1, an
electron released by a donor would like to stay on a dot close
to the donor. The common situation is a donor accompanied
by one charged dot(1-complex), while some donors stay
alone (0-complex), and some donors are accompanied by
two charged dots(2-complex). Charge conservation requires
N0=N2, where N0 and N2 are concentrations of 0- and
2-complexes.

At n!1 nearly all donors are independent, andN0, N1,
and N2 are proportional ton. Therefore the Fermi level re-
mains a constant and the BDOGS grows linearly withn at
n!1.

The details of this problem is the same as in a weakly
compensated doped semiconductor. It has been studied
quantitatively,15 counting the numbers of 0- and
2-complexes. The quantitative results are

N0 = Nn expS−
4p

3

e2N

kumu3D , s25d

N2 = 7.143 10−4S4p

3
D2

NnSe2N1/3

km
D6

, s26d

m = − 0.99e2N1/3/k. s27d

As the concentration of impuritiesNn=N0+N1+N2 is not
changed, the concentration of electrons on dots is controlled
by the Fermi levelm, therefore

g,smd =
dN2

dm
−

dN0

dm
= 0.2knN2/3/e2. s28d

We kept all coefficients in this subsection because they are
known.

Thusg,smd is proportional ton and follows Eq.(4). This
picture works well atn!1. At nù1 each dot is typically
affected by more than one impurity. It is straightforward to
check that Eq.(4) matches Eq.(5) at n,1.

E. Periodic array of dots

Above we have discussed sparse arrays in which the dots
are situated randomly. Now we turn to a question, what if the
dots are arranged periodically in space?

The qualitative picture in Fig. 6 is still mostly correct. At
n@1 there are still the oscillations ofg0smd with n. One
should notice that the strongly charged periodic dots do not
contribute to the fluctuations of electric potential and only
donors produce the fluctuations. As we discussed above these
fluctuations are weaker than in the random sparse array.
Therefore more donors are needed to smear BDOGS to the
same extent. In other words, the lines of maxima and minima
in this case converge slower and the value ofns is larger.

FIG. 10. The origin ofgmin. The meandering line represents the
fluctuating potential energy as a function of coordinate. The regions
of the shortest size,l where dots are completely filled with elec-
trons or holes are shown with thicker lines. The solid horizontal line
in the middle is the Fermi level, the other two horizontal lines
correspond to the nearest peaks of an isolated dot. Two peaks of
BDOGS of the array are shown, as well as two corresponding levels
of seven dots.
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The linear growth of BDOGS atn!1 shown in Fig. 6 is
not valid in a periodic array, since 0- and 2-complexes origi-
nate from the random distribution of dots in space. In peri-
odic array a typical donor donates an electron to the nearest
dots and forms an electric dipole. It takes additional energy
to take an electron out of a dipole and put it near another
dipole. Therefore a hard gap is formed at the vicinity of the
Fermi level. Only the rare cases where several donors are
close to each other can produce nonzero BDOGS at the
Fermi level. As a resultg0smd does not grow linearly withn,
but with higher power. The similar situation will be studied
more thoroughly in the dense array of Sec. V. Therefore, here
we gave only a brief description of the result.

IV. BDOGS IN A SPARSE TWO-DIMENSIONAL ARRAY

The g0smd as a function ofn in 2D looks similar to 3D
(Fig. 6). It also has growing part, oscillating part, and satu-
ration part. However, in 2D oscillations survive longer than
in 3D, because the collective potential in 2D is much weaker.
Indeed, the fluctuation of potential energy in 3D grows with
rs as a power law

g3D ,
ne2

krs

ÎNrs
3 ~ rs

1/2, s29d

while in 2D the long-range fluctuation of potential energy
grows slower than logarithmically withrs

g2D , 1 E
1/ÎN

rs

Sne2

kr
D2

Nrdr2
1/2

~ ÎlnsÎNrsd. s30d

Therefore the line of minima of oscillating part in 2D is
quite different from that of 3D. The tail in thegs«d versus«
curve is produced here by Coulomb interaction of nearest
neighbor dots, and the minimum value ofg appears to be(at
1!n,ns=1/ÎNR2)

gmin , uN2sne2/kd2/«u«,e2/skRd , n2N2R3k/e2. s31d

The 2D linear screening radius produced bygmin is

rs =
k

2pgmine
2 ,

1

n2N2R3 . s32d

One can verify using Eq.(30) that g2D!e2/kR for suchrs
and therefore long-range contribution can be neglected.

The growing part atn,1/2 can be studied in the similar
way as in 3D. That is, one can use the idea about 0-complex,
1-complex, and 2-complex to find the Fermi level

m , − e2N1/2/k s33d

and BDOGS at the Fermi level(at n!1)

g,smd , knN1/2/e2. s34d

For the maximum line of oscillating part, the collective
typical fluctuation of potential energy is given by Eq.(30)
and BDOGS at the Fermi level is

gmaxsmd ,
N

g
,

N1/2k

e2n
1 ! n , ns = 1/ÎNR2. s35d

Here we dropped the logarithmic factor and thereforers dis-
appeared from the equations. In this approximation unlike
3D situations, we do not need the self-consistent method. As
a resultgmaxsmd decreases withn much slower than in 3D.

Both Eqs. (35) and (31) reach gssmd,N/ se2/kRd at n
,ns=1/ÎNR2, where the distinction between peaks and val-
leys disappears.

Up to now we discussed the charging of two-dimensional
array of dots by donors or a gate situated outside of dots. In
some two-dimensional systems electrons may be provided to
a dot by donors located close to the dots. This can be done,
for example, by creating a two-dimensional gas with the help
of a close layer of donors parallel to its plane and then by
etching outside dots both the gas and the donor layer. If such
dots are essentially two-dimensional and heavily doped, in-
ternally induced fluctuations can cause their charging, con-
trary to what we said in the Introduction about three-
dimensional dots. Indeed, in this case, fluctuations of the
number of electrons in the dot and correspondingly of the
Fermi level decrease inversely proportional to the dot radius.
This decay is similar to the charging energy, so that the ratio
of these energies is just proportional to the ratio of kinetic
and potential energies of electron in the dot.22

V. DENSE THREE-DIMENSIONAL ARRAYS OF DOTS

Until now we dealt with sparse arrays of dots where
NR3!1 as shown in Fig. 2. Let us discuss what happens
when the small parameterNR3 grows. The saturation filling
factor ns=sNR3d−1/4 decreases, which means the number of
oscillations decreases as well. The oscillations disappear at
ns,1 when NR3,1, i.e., when the typical separation be-
tween dots is of the order of the dot size.

Let us now concentrate on the other extreme(Fig. 4)
where say cubic dots are closely packed in a cubic lattice
with the periodR and the widthd of an insulator between
dots is smallsd!Rd. The insulator is uniformly doped by
donors. We show below that at a large enough average num-
ber of donors per dot,n.1, the BDOGS is smeared. On the
other hand atn!1 typical donors do not contribute to
BDOGS at the Fermi level but rare clusters of donors result
in a small BDOGS.

For the system of metallic cubic dotshij separated by a
clean insulator, potentialsfi and chargesQi of dots are re-
lated by linear equations

fi = o
j

PijQj s36d

and

Qi = o
j

Cijf j , s37d

wherePij is the reciprocal matrix of the capacitance matrix
Cij . The coefficients satisfyPij =Pji , 0ø Pij ø Pii and depend
on the relative positions ofi and j only. Without donors the
Hamiltonian can be written as
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H =
1

2o
i j

PijQiQj =
1

2o
i

PiiQi
2 +

1

2o
iÞ j

PijQiQj . s38d

Of course, it has minimum when allQi =0.
In order to understand the role of ionized donors let us

study an isolated donor between the dots A and B(Fig. 11).
The positive donor is completely screened by negative
chargesqA andqB appearing of the surface of A and B, i.e.,
qA +qB+e=0. These charges leave compensating positive
charges −qA and −qB in the dots A and B. IfxA andxB are
distances from the donor to dots A and B, respectively,
then

qAxB = qBxA . s39d

One can easily arrive at Eq.(39) imagining that the donor for
a moment is replaced by the uniformly charged plane parallel
to the faces of cube A and B(with the samexA andxB), and
minimizing the sum of Coulomb energies of two emerging
plane capacitors with distances between planesxA andxB as
a function ofqA. Note that atd!R all points of the charged
plane are in the same conditions and the plane fields are just
a superposition of fields of these charges. This means Eq.
(39) should also hold for a point charge of this plane or just
for a donor. Equation(39) means that potentials of dots A
and B are equal. In other words, the group made of the posi-
tive donor, qA and qB produces an electric field which is
confined in the vicinity of the donor. The group does not
affect the electric potential of any dot. Therefore the group
can be totally forgotten when we study the charges and po-
tentials of the dots, or in other words it can be totally ignored
in the Hamiltonian.

On the other hand, the compensating positive charges −qA
and −qB cannot be ignored. One can say that the donor’s
charge is split into two fractional parts −qA and −qB. Charges
−qi are uniformly distributed between 0 ande.

When there are more than one donor around a dot A we
can simply add them upQAD =−qA1−qA2−¯ to get the total
positive charge induced by donors on dot A.

Each donor also donates an electron to the array of dots.
We assume thatd@a, where a is the tunneling length of
electrons in the insulator so that the conductanceG between
two dots is much smaller thane2/h. In this case each dot can

get only an integer number of extra electronsni. The neutral-
ity of the whole system requires −eoni =oQiD. For a given
fractional sethQiDj the integer sethnij minimizes the Hamil-
tonian

H = o
i

Pii

2
sQiD − nied2 + o

iÞ j

Pij

2
sQiD − niedsQjD − njed.

s40d

This energy is calculated from the reference point of the sum
of energies of neutral groups around each donor, which does
not depend onni. If each donated electron were shared by
dots this fractional charge would neutralizeQiD and make
H=0 and allfi =0. This is equivalent to what would happen
if all grain are grounded. Discreteness ofni makes finding
the ground stateni nontrivial. It is clear that in the globally
neutral system the chemical potentialm lies in the same
place as for a system of neutral dots, i.e.,m=0. In the ground
state we can introduce “one-dot” energies of an empty dot
state above the Fermi level assuming that charges of other
dots are fixed

«i
sed = Hsni + 1d − Hsnid = − efi +

1

2
Piie

2, s41d

where

fi = o
j

PijsQj − njed s42d

is the electrostatic potential of the doti. For an occupied
state in the similar way

«i
sod = Hsnid − Hsni − 1d = − efi −

1

2
Piie

2. s43d

In the absence of donors when all dots are neutral, i.e.,fi

=0, we get«i
sed= + 1

2Piie
2 and«i

sod=−1
2Piie

2. The single elec-
tron BDOGS for neutral dots looks the same as in Fig. 3
except the separation of peaks or the level spacing is smaller
now e2Pii ,e2/keffR.e2d/kR2 (the calculation ofPii is in
the Appendix). Here

keff . kR/d s44d

is the effective dielectric constant of the array. For charged
dots stability of the global ground state requires«i

sed.m=0
and«i

sod,m=0.
Let us study the BDOGS in the case when there are more

than one donor per dotsn@1d. In order to find BDOGS we
neglect the interaction terms in Eq.(40) and consider only
diagonal terms. As a result the ground state of the system is
realized by such a set ofhnij that −e/2øQiD −nieøe/2. So
effective charges on different dots in the ground state of the
array are uniformly distributed from −e/2 to e/2. This gives
the energy independent BDOGS

g̃ss«d ,
1

e2PiiR
3 . s45d

Consider now the role of nondiagonal terms. At a big dis-
tancer ij @R the coefficientsPij have the Coulomb formPij
<1/keffr ij . They, therefore, result in a density of ground

FIG. 11. Two-dimensional cross section through a donor(with
charge +e) located between dots A and B for the system shown in
Fig. 4. The group within the dashed circle is neutral altogether and
does not affect the energy levels of dots A and B. Dot A gets an
electron donated by the donor because the donor is closer to its
border.
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states(DOGS) with the Coulomb gap at the Fermi level,
which in turn leads to ES law.

The finite BDOGS at the Fermi level and ES law atn
@1, originates from random distribution of chargesQi,
which in turn is related to the fact that several donors con-
tribute into eachQiD. Even for nearest neighbor dotsQiD and
QjD are independent since they include contributions of dif-
ferent donors.

We turn now to the case of a small density of donorsn
!1 and first deal with typical donors isolated from each
other. As discussed above for such an isolated donor between
dots A and B, the charges induced by the donor are related by
QAD +QBD= +e. If the donor is closer to dot A,
QAD .e/2.QBD.0. If we neglect interaction between dots
A and B in Eqs.(41) and(43) we arrive at finite BDOGS of
isolated donors at the Fermi level. States at the Fermi level
are provided by dots whereQBD=1/2−d with d!1. Then
dot B has a state just above the Fermi level and A has a state
just below it. The fact that these states are so closely corre-
lated in space leads to their elimination by the interaction
between dots A and B. Indeed, in the ground state the elec-
tron donated by the donor is on dot A. The total charges on A
and B isQA =QAD −e=−QBD andQB=QBD. The electric po-
tential on B is fB=PBBQB+PBAQA and according to Eq.
(41) all the levels on B are moved down byefB. Using the
fact 0øQBDøe/2, we have

0 ø efB ø s1 − adPBBe2/2, s46d

where a; PBA /PAA =0.34±0.01 represents the interaction
between nearest neighbor dots(see the calculation ofa in the
Appendix). According to Eq.(41) the lowest vacant level of
dot B is at leastaPiie

2/2 above the Fermi level. Similarly,
according to Eq.(43) the highest filled level on dot A is
moved up by −efA with 0ø−efA ø s1−adPAAe2/2 and it is
at leastaPiie

2/2 below the Fermi level(Fig. 12).
Thus, we showed that forn!1 typical isolated donors

have a substantial hard gap of widthaPiie
2 in their density of

states. This gap cannot be destroyed by long range interac-
tions of such donors because they form neutral complexes
and weakly interact with each other at long distances.

One can also think of a donor in the neutral complex with
electron of the neighboring dot A as a hydrogen-like donor in
a semiconductor. Then the hard gap obtained above is similar
to the Hubbard gap. The electric dipole made of a donor and
an electron in principle can accept another electron with a
weak binding energy, but the energy difference or Hubbard
gap between the two electronic levels makes sure that only
the lower level is filled in the ground state.

Up to now we talked about typical isolated donors atn
!1. In fact there are rare configurations that make a nonzero
BDOGS at the Fermi level. Let us show how this happens.

Consider, for example, a cluster of four donors around
one dot(Fig. 13). The charges of donors are shared by five
dots in such a way that the charge of each donor is effec-
tively split into 4e/5 going to the central dot ande/5 going
to its nearest neighbor. The middle dot has effective charge
QiD =16e/5 and each of the four neighbor dots hasQjD
=e/5. Let us show that in the ground state of the clusterni
=3 for the central dot andni =0 for all others, i.e., there are

only three electrons on the cluster of four donors so that the
cluster has a net charge +e. It is effectively shared by the five
dots, each getting +e/5. According to Eq.(41) the addition
of the fourth electron to this cluster costs

«i
sed = F−

1

5
s4a + 1d +

1

2
GPiie

2 < 0.03Piie
2, s47d

where a=P12/P11, and as shown in the Appendixa
=0.3405. This means that«i

sed.m=0 and the positively

FIG. 13. An example of rare configurations leading to the finite
BDOGS at the Fermi level atn!1. The cluster of five dots and four
donors is effectively positively charged in the ground state. Charges
of five dots are shown in units ofe. All the other dots in the vicinity
of the cluster remain neutral.

FIG. 12. BDOGS of isolated donors atn!1. Energy« is mea-
sured in units ofaPiie

2/2. There is a hard gap of the widthaPiie
2

around the Fermi level.
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charged cluster of Fig. 13 is stable with respect of bringing
the fourth neutralizing electron. The physical reason for such
stability is uniform smearing of the net charge over five dots
which diminishes potential of the clusterfi at the central dot
attracting the fourth electron[the first term in the right side
of Eq. (47)].

We have shown above an example of a positive “donor-
like” cluster. Moving each of the four donors away from the
central dot in the direction of the neighbor dot one can con-
struct an “acceptor-like” cluster in which charge −e is evenly
shared by five dots. Such a cluster accepts an electron re-
leased by the cluster in Fig. 13. Thus, some clusters charge
themselves by “self-compensation” similar to amphoteric
impurities in semiconductors. Of course, there are also neu-
tral clusters and tuning positions of donors between dots one
can continuously go from a neutral cluster to the charged
one. This means that BDOGS at the Fermi level created by
clusters is finite.

Using coefficientsPij calculated in the Appendix, it is
easy to find that the smallest charged cluster in the ground
state is the cluster of four dots with three donors between
them. Therefore, atn!1 the BDOGS at the Fermi level
grows asg0smd~n3 and it begins to be significant atn,1
(see Fig. 8).

The structure of self charging clusters discussed above is
similar to the mechanism which provides a nonzero bare
density of states in a system of quasi-one-dimensional elec-
tron crystals at low impurity concentration.23 There is also
similarity to self-compensation of clusters of several donors
in uncompensated semiconductor near the insulator-metal
transition.24

As we saw above in the “super-dense” array of dots with
d!R, a large enough concentration of donors can easily
smear BDOGS. This is a natural explanation of the experi-
ments, where the ES law is observed. Let us consider param-
eter T0 of the ES law[Eq. (1)] for a dense array of dots at
n@1. According to Ref. 4T0,e2/ skeffjd, where j is the
localization length for tunneling to distances much larger
thanR. When an electron tunnels through insulator it accu-
mulates dimensionless actiond/a, wherea is the tunneling
decay length in the insulator. On the distancex electron ac-
cumulatesx/R such actions. Thus, its wave function decays
as exps−xd/Rad=exps−x/jd, where the localization length
j=aR/d. This enhancement of localization length is similar
to the one derived for disordered granular system near per-
colation threshold.25 It leads to

T0 ,
e2d

keffaR
=

e2d2

kR2a
. s48d

We see that with decreasingd the temperatureT0 decreases
asd2. This continues until conductance of the insulator layer
G=se2/"dsRkFd2e−2d/a reaches the quantum limitG,e2/",
i.e., while d.dc;a lnsRkFd. At d!dc the characteristic ES
temperatureT0sdd should vanish whend→0, but the way
this happens is still unknown (see also recent
publications26,27 concerned with the caseG@1).

In the above calculation of the localization length we as-
sumed that tunneling through a metallic dot does not accu-

mulate more action. Actually a dirty dot provides logarithmic
contribution to the tunneling action.28 We assume that it is
much smaller than 2d/a resulting from crossing the insula-
tor.

Until now we discussed only the “super-dense” array
shown in Fig. 4. Let us consider what happens in the system
of almost densely packed metallic spheres(Fig. 14), where
insulator occupies a larger fraction of space than in Fig. 4.

One can show that in such a system BDOGS as a function
of the number of donors per dotn behaves qualitatively simi-
lar to Fig. 8. At smallern only a cluster of donors around a
dot can create a finite BDOGS, while atn@1 donors easily
smear BDOGS. In this case, characteristic temperature of ES
law is T0<e2d/aR. It loses one power ofd/R because the
dielectric constant of such systems does not diverge atd
→0. When distance between dotsd grows and exceedsR,
we get sparse periodic array and recover oscillations of
BDOGS atn@1. At n!1 there is a smooth cross-over be-
tween two super-linear growths of BDOGS related to rare
donor clusters in the vicinity of some dots.

Although we arrived atn@1 as the universal criterion of
substantial smearing of BDOGS for both dense arrays(Figs.
4 and 14) and sparse arrays(Figs. 2), we should understand
that the required concentration of donorsND in the insulator
grows while volume fraction of insulator decreases from the
arrays on Fig. 2 and to the one on Fig. 14 and then to the one
on Fig. 4.

In some cases metallic granules are first coated by the
layer of a doped insulator(for example, the metal’s oxide)
and then compressed into the bulk array with a clean insula-
tor of a different kind of filling or just air filling empty space
(Fig. 15). For simplicity we assume the dielectric constant of
the coating insulator is close to that of the filling space be-
tween dots.

We would like to consider BDOGS for such a model of
granular metal in order to understand cross-over between the
above-studied case of donors residing outside dots and those
on the dot surface or inside dots. In the latter case, donors are
screened and act as short range neutral impurities. According
to the introduction such impurities cannot charge a neutral
array of dots. Thus, effect of donors in the layer of the width
w!R should decrease asw vanishes.

Indeed, one can calculate the fluctuation of the average,
potential of the donor layer of the widthw which plays the

FIG. 14. An almost densely packed array of metallic spheres
sd!Rd. A donor is shown by1 and electron donated by it is shown
by 2.
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role of fluctuation of work function of dots. It can be esti-
mated as a potential created by the layer of the widthw by
fluctuating concentrationsNDwR2d1/2/wR2. One can imagine
that, correction to the work function is created by an effec-
tive random double layer. Such a correction to the work
function is of ordere2sNDw3d1/2/kR. It becomes larger than
the charging energy only atNDw3@1.29 This condition of
BDOGS smearing is obviously much stronger than “one do-
nor per dot” condition valid for a uniform insulator. Whenw
approaches the lattice constant the role of donors is so much
weakened that in order to smear BDOGS one needs the rela-
tive concentration of donors to be of the order of 50%. At the
surface, donors and their images are still forming dipoles
with fluctuating dipole moments, which create fluctuating
double layer potential. On the other hand, when donors enter
inside the dot, each donor becomes exponentially screened
from all sides, the dipoles and the random double layer dis-
appear. This diminishes the role of donors further so that as
we said in the introduction even a large concentration of
impurities inside the whole three-dimensional dot can not
charge the dot.

VI. CONCLUSION

This paper addresses the problem of explaining of the
temperature dependence of the conductivity observed in
granular metals and arrays of quantum dots. We show that
ES law is the most natural explanation for this dependence
(in spite of recently expressed doubts30). For this purpose we
present a simple model with random charging of clean me-
tallic dots in both sparse and dense arrays of dots. In both
cases we assume that the insulator separating the dots is uni-
formly doped by donors, which donate their electrons to
dots. Random positions of dots in the sparse case(Fig. 1) and
random positions of donors in the dense periodic model(Fig.
5) lead to random charging of dots in the global ground state
and to filling of the gap of the bare density of individual dots
at the Fermi level. The long range Coulomb interaction cre-
ates a soft Coulomb gap on the background of the finite bare
density of ground states in the vicinity of the Fermi level. At
a low enough temperature this leads to the ES variable range
hopping conductivity, in agreement with multiple experimen-
tal observations.

We concentrate on the dependence of the bare density of
states on a number of donors per dot. Such dependence for

the sparse and dense models are shown in Figs. 7 and 9 are
qualitatively different. The sparse random model shows lin-
ear growth of BDOGS at weak doping and oscillations of the
density of states at strong doping. On the other hand the
dense model shows a very small density of states at weak
doping and no oscillations at stronger doping. The bare den-
sity of states determines the width of the Coulomb gap and
the characteristic temperature of transition from ES law to
Mott’s law with increasing temperature. It determines many
thermodynamic properties of the array as well.

For dense arrays we have calculated characteristic tem-
peratureT0 of ES law in the case, when tunneling conduc-
tance between granules is small. The challenging question of
the calculation ofT0 in the case of even closer dots will be
addressed in the next publication. Another interesting ques-
tion left beyond the scope of this paper is the origin of ES
law in isotropic and anisotropic arrays of strongly aniso-
tropic (elongated) granules, for example, nanotubes.

In this paper we concentrated on ohmic hopping conduc-
tivity. However, our results can be applied to nonohmic con-
ductivity, too. It was shown31 that at low temperatures a
strong electric fieldE replaces temperatureT in the exponen-
tial temperature dependence of the variable range hopping by
the effective temperatureTE=eEj /2kB. As a result nonohmic
ES law readsj = j0 expf−sE0/Ed1/2g with E0=2T0/ej. This
dependence was observed in granular metals and nanocrystal
thin films.1,11
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APPENDIX: MATRIX ELEMENTS Pij

FOR NEIGHBORING DOTS

Here we study the coefficientsPij in Eq. (36). We know
the diagonal termPii ,1/keffR, and for distant neighbors
r ij @R one can show thatPij ,1/keffr ij . But the coefficients
between close neighbors require further consideration.

The dense array of periodic dots is equivalent to the lat-
tice of identical capacitors connecting adjacent dots. Such a
system can be studied in the language of an equivalent resis-
tor network. Imagine a cubic lattice network with an identi-
cal resistance between every nearest neighbor sites. Suppose
that currentI goes into a lattice site A and travels out through
the network to infinity. Label the potential of site A to beV,
the potential of nearby dots B, C, D,…, to beaABV, aACV,
aADV, …,. What are the values of theaAB, aAC, aAC, and so
on? Here we are using the dimensionless coefficients such as
aAB ; PAB /PAA, and we know all of them are between 0
and 1.

A standard numerical calculation uses the fact that the
current going into a site equals the current going out of it
(Kirchhoff law), which means the potential of a site equals
the average potential of its nearest neighbors. Using lattices
of N3N3N sites and keeping the potential at central cite to

FIG. 15. An array of coated dots. The width of coating insulator
is w. A donor is shown by1 and electron donated by it is shown
by 2.
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be 1 and that of boundaries to be 0, one adjusts the potential
values of the other sites so that the potential of each site is
very close to the average potential of its nearest neighbors.
Using lattices with N up to 97 we find a;a01
=0.34±0.005, a02=0.166±0.005, a03=0.106±0.005, a11
=0.216±0.005, anda111=0.17±0.005(here 111 represents
the vector between the two dots measured in the units of the
lattice constant).

There is also an analytic way to find the coefficients.32

Imagine the situation when there is chargeQ0 on the central
dot while all the other dots remain neutral, one can use the
equation similar to Kirchhoff law mentioned above

fsrWd −
1

6o
r8

fsr8W d =
Q0d

6kR2d0W,rW, sA1d

where rW8 are six nearest neighbor of the siterW, andfsrWd is
defined only on the discrete sitesrW=snxR,nyR,nzRd. Equa-
tion (A1) can be solved using discrete Fourier transform

fkW −
1

6
fkWscoskxR+ coskyR+ coskzRd =

Q0d

6kR2 . sA2d

One can findfkW and

fsrWd =
dQ0

2kR2E
BZ

d3k

s2pd3

R3cosskW · rWd
3 − coskxR− coskyR− coskzR

,

sA3d

where the integration is over the Brillouin zonekx,ky,kzP s
−p /R,p /Rd. One can use numerical integration to find

P00 ;
fs0Wd
Q0

=
0.2527d

kR2 , a ; a01 =
P01

P00
= 0.3405,

a02 = 0.1697,a03 = 0.1089,a11 = 0.2183 sA4d

and so on. These results agree with the results of the first
method.
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