PHYSICAL REVIEW B 70, 115316(2004

Rashba coupling in quantum dots: An exact solution
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We present an analytic solution to one-particle Schrédinger equation for an electron in a quantum dot with
hard-wall confining potential in the presence of both magnetic field and spin-orbit coupling. Wave-functions,
energy levels, and spin-flip relaxation times are calculated to all orders in the spin-orbit coupling and the
magnetic field. Without the orbital contribution of the magnetic field, we find that the effective gyromagnetic
ratio is strongly suppressed by the spin-orbit coupling. The spin-flip relaxation rate then has a maximum as a
function of the spin-orbit coupling and is therefore suppressed in both the weak- and strong-coupling limits. In
the presence of the orbital contribution of the magnetic field the effective gyromagnetic ratio changes sign in

some cases.
DOI: 10.1103/PhysRevB.70.115316 PACS nuni®er71.70.Ej, 72.25.Rb, 73.21.La
[. INTRODUCTION The outline of the paper is as follows. We define the prob-

In recent years there has been an explosive developmelm in Sec. Il In Sec. lll we present an analytic solution to
of research in spin physics in semiconductors. Most of it isthe problem neglecting the orbital contribution of the mag-
focused on spin-related optical and transport properties df€tic field(orbital effect$, valid for relatively small dots. We
low-dimensional semiconductor structures. In particular, thé/se this solution to calculate the spin-flip relaxation rate.
spin-orbit(SO) interaction has attracted a lot of interest as itNext, in Sec. 1V, we generalize our solution so as to include
enables optical spin orientation and detecfidrhe SO cou- the magnetic field effects on the orbital motion of the elec-
pling is (in most casesresponsible for spin relaxation. Be- tron. A short summary of our results is offered in Sec. V.
sides, it makes the transport and spin phenomena interdepefome more mathematical results, on the comparison of the
dent. exact solution with perturbative series and on the properties

SO interactions can arise in quantum d@@s) by vari-  of wave functions in the presence of the orbital field, are
ous mechanisms related to electron confinement and symmeslegated to Appendixes A and B.
try breaking and are generally introduced in the Hamiltonian
via the Rashbaand Dresselhaus termsThe strength of
these interactions not only depends on the characteristics of

the material but can be controlled by an external electric \we consider a quasi-two-dimensional quantum dot nor-

field. ) o mal to thez axis. The one-particle Hamiltonian describing an
For most experimental realizations, quantum dots can bgjectron in such a dot is of the form

described as effectively two-dimensional systems in a con-
fining potential that is usually modelled as hard-wall or har- p2
monic confinement. In the absence of SO interactions, the H= om +V(X,y) + ar(pyoy — pyoy) + %g,u,BBO'Z, (1)
effect of confinement is easily accounted for by the use of m
the well-known Fock-Darwin basigarmonic potentid) or . ) ) .
by an extension of the Landau problem eigenfuncficios wh.erem is the effective electron masgjs the gyromagnetic
the disk geometryhard-wal).® rat_|o, g 1S the.Bohr magnetpnaR is thg _strength qf the
Most of the existing theoretical studies of the spin-orbitSPin-orbit coupling, and/(x,y) is the confining potential. A
effects in QDs rely on various perturbative schemes or nuconstant magnetic fieldl (parallel to thez axis) is introduced
merical simulation® For zero-magnetic field case and a Via the Zeeman term above and the Peierls substitution,
hard-wall confining potential the exact analytical results have®=—1V —(€/c)A. The Pauli matrices are defined as stanglard
been obtained by Boulgakov and Sadréewollowing the —and we sefi=1. Below we use the axial gaugesp cose,
general theoretical framework of Ref. 9, we shall show inY=p sin ¢, A,=0, andA,=Bp/2. The confining potential is
this paper that in the case of a hard-wall confinement thé@ssumed to be symmetri¥(x,y)=V(p). In this paper we
problem of combined spatial confinement, external magnetighainly consider a hard-wall confining potential, i.&/(p)
field, and the SO interaction also admits an exact analytic0 for p<RandV(p)= for p>R, R being the radius of the
solution. Our solution contains, as limiting cases, thedot, which is neccessary to obtain the exact soluftmrt we
Bychkov-Rashba solutiorino spatial confinemep?1® the  present some perturbative results for gen®fi)].
Bulgakov-Sadreev solution@o external magnetic fie)d We have chosen to include the Rashba term rather
and the Geerincket al. solution(no SO effectys® than the Dresselhaus term, which would be of the form

Il. STATEMENT OF THE PROBLEM
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ap(pyox—pyoy). The two terms transform into each other those are outside the scope of this work. Typical values of

under the spin rotations, <y, o,< -0, S0 our results

the parameters characterizing various quantum dot materials

will only need a trivial modification in the case when a solo are listed in Table I. Besides, values of théactor reported
Dresselhaus term is present. The Rashba interaction usuallgr InGaAs QD$° and InAs QD$° are also given, since they

dominates in quantum dots obtained in
heterostructuré811.12 There are situations when both the
Rashba and the Dresselhaus terms can be inclidmd

h(B) + 30ueB,

H=
e|¢<£+l_i+e_8)
o dp pde 2c’)
where the diagonal term
1({1d{ d) 1d*| i d 1
hB)=——| =—| p— | + 5— | - ~w.— + =mw’p?
®) 2m[pdp<pdp> p2d<p2] 2%dep gl

3

and w,, is the cyclotron frequency.
Hamiltonian(1) and (2) commutes with the projection
of the total momentum operator,

. 1 —
j.=l,+50, |,=-id,

(assuming the axial gaugerhe operatoli, is therefore con-

adiffer strongly from the bulk values.

Hamiltonian(1) rewritten in cylindrical coordinates is of
the form

d id eB
-—+——+

—ip ==
aRe ( dp pde ZCP)

, 2
h(B) - gusB

the Dresselhaus term instead of the Rashba coupling, then
the operatofz—%crZ would have been conserved and the vari-
ables would still separate. In zero field there is an additional
symmetryj,— —j, related to time inversion. The states with
the projections of momenta equal joand 5 are Kramers
doublets> When the spin-orbit coupling is also switched off
then the operators and %oz are conserved separatélyith
eigenvalued ando=%1/2, j=l+0).

The spinor components @) satisfy the following system
of second-order ordinary differential equations:

AB
J

?I./ij + 2m[E - %g,U/BB - V(p)]fl - 2ma/RVEj+1/zgj =0,

served. The physical reason is that both the Rashba interac- 5 L 5
tion and the magnetic field normal to the disk preserve the Aj1,.0; + 2m[E + 39u8B - V(p) |g; - 2maRVy | _1f; =0,

axial symmetry. The eigenfunctions of the total momentum

operator, with a half-integer eigenvaljieare of the follow-
ing form:

ei(j—1/2)<pfj(p)

gl+2egp @

(5

where the spin-orbit operators are

Note that, despite the presence of the spin-orbit coupling, thé"d the operator

variables separate in the cylindrical coordinates. This is due

to the conservation of the momentym If we had included

TABLE |. QD parameters(Bulk material constants ofn/mg

V_E_B):ii_l+e_8p,

) do p 2c
<B>_li< i)_l<-_ﬂ3 2)2
i P AL P

pdp\ dp/ p 2c

is the two-dimensional Laplace operator projected onto the

andg are taken from Ref. 14, the Rashba parameters are taken frostate with a given momentuinin the presence of the mag-

Refs. 15-18 and reported values @ffor QDs are adopted from
Refs. 19 and 20.

QD Material ag(meV nm m/mg g

GaAs 2 0.067 -0.44
InGaAs 16-63F 0.041 -4.5,-0.8QD)
InAs P 0.0231 -15,%QD)
InSb 25 0.0139 -50.6
aRef. 15 dRef. 18

bRef. 16 Ref. 19

‘Ref. 17 fRef. 20

netic field in the axial gauge. In our convention the electron
charge ise=—|e|, so that the cyclotron frequency is defined
as w,=—eB/mc and the magnetic length &=1/c/|e|B.

IIl. SPIN-ORBIT COUPLING AND THE ZEEMAN
TERM

In this section we shall neglect the orbital contribution of
the magnetic field. We leave for next section the discussion
of the magnetic field effects on the orbital motion of the
electron (orbital effecty. Hence,p=-iV and we keep in
Hamiltonian (1) and (2) only the Zeeman term, so that the
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off-diagonal elements in Hamiltonian2) contain no we choose the amplitude ratios &g d;=a, andd,/d;=a_,

B-dependent terms. where
It will be convenient to work with the dimensionless co-

ordinatex=p/R. The system of equation(¥) now becomes

0 ©) (€ Br,N) = ZBLK‘L-
(Aj—1/2+6_h)fj_ﬂRv—,j+1/29j:01 - ki-exh
(Af%+ e+ gy = BrVY) 1f = 0, (6)  we are now able to satisfy the boundary conditions by com-

supplemented by the boundary conditiofjs1)=g;(1)=0. bining these two linearly independent degenerate solutions,
We have introduced two dimensionless parameters,

= 2aqmR h=MQugReB @ {mx) } _ d{wj-uz(mx)} . d_[ Jj1/kx) ]
. . ) . g;(x) Jjs1/2(KiX) a_Jj;12(KX)
characterizing the strength of the spin-orbit coupling and the

i;?nrgg; term, respectively. The energy parametere is Indeed, the requirement th&(1)=g;(1)=0 leads to another
(a) Bulk solution In the absence of the Rashba term andeigenvalue equation

confinement potentidi.e., in the bull, the solutions regular

at the origin are simply f;(x)~Jj_15(kx) and gj(x) adip(K)  Jjmp(ko) [d*} B

ijJ,l,z(kx) with k2=eJ_rh,_ whereJ,(x) are the_ I_Sessel func- Jwake) @ diapk) [ d =0

tions. The Rashba term ii6) simply acts as rising or lower-

ing operator on the Bessel function’s basisce the follow- ) ) . )
ing standard recurrence relations hold: This equation fixes the allowed energy eigenvalues as solu-

tions to the determinant equation

d j+1/2

VR Jj1/2(KX) = kJ_1/2(kX),
X X F(e BrN)Jj-1/2K)Jjr1/2(K0) + Jj_1/2(K)Jjs12(ks) = 0,

10

d j-1/2 (10)

. x Ji—1/2(kX) = = KJ11/2(KX).

where the functiorf is defined by

This is a crucial property which allows to obtain an exact

analytical solution. Indeed, the following ansatz: B2k
Fle,frh)=-— — :
{fj(x) ] i {d@;-ﬂkx)} © (€ = e+ h)(€ - e=h)
g;i(®) daJj1/2(kX) We wish to remark that in the energy regioh<e<h,

solves the bulk problem in the presence of the spin-orbith® momentumk_ becomes purely imaginary. One should

coupling, provided that the coefficierds , satisfy the eigen- then replacé —ix., x- being a real number. The respective
value equation: ' Bessel function becomes a modified omes_x). We have

found numerically that such solutions do indeed exist. These
kK?—e+h —fBgk di | are interesting states which cannot be reached with a pertur-
-Bk  K-e-h]ld, ]|~ 0. ©  pative expansion irBg. _ o
For completeness we first discuss the zero-field limit al-
(b) Disk solution When considering the electron confined ready considered in Ref. 9. Indeed, in the absence of the
to the disk, it is seemingly impossible to impose the vanishzeeman term we hav&=\r’e+3§/4iBR/2 and df = +d
ing boundary conditions on the ans&# as Bessel functions  (j ¢ F=1), so that Eq(10) simplifies to
with different indices are involved. Note, however, that as

long as eitheBg or h is nonzero, the bulk spectrum has two
branches: Ji—12(Ke)Jj1/a(KD) + Jj1 /oK) Jjiapa(ky) =0, (11)

— L2 | 21,2 2
€=k VBRk™+ h". which is the equation obtained by Bulgakov and SadPfeev.
Therefore for a given value of there are, in fact, two non- This equation is invariant under the charjge —j reflecting

trivial solutions for the momenturk, the Kramers degeneracy. 4z=0 all states withl #0 are
fourfold degenerate, while=0 states are doubly degenerate.
o, (2e+ B3) £\ g+ depi+ 4n? According to the standard analySishe spin-orbit coupling
k= 2 ' splits all thel # 0 states into two Kramers doublets with
=1+1/2 andj=I1-1/2, while =0 states naturally remain

wherek, corresponds to a spin-down state=-1/2) andk-  Kramers doublets. The specifics of the Rashba term is that, at
corresponds to a spin-up state=1/2) in the Bg— 0 limit. small Bg, the spin-orbit splittinglor Rashba splittingstarts
In order to trace the evolution of states with increasiyg  at the orderga.
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FIG. 2. Rashba splittings dF1 andl=2 levels: energy differ-
29 encesE(1/2,1)-E(3/2,0 andE(3/2,1)-E(5/2,0 as a function
of Bg. Dashed lines correspond to the same quantities calculated at
the second order of perturbation theaifg=10 nm,B=0.)

As a useful consistency check, we have verified that the
,BR contribution to the energy levels calculated from the exact
solution coincides with that obtained via the standard pertur-
bation theory:

€j= |+1/2n—f|n (| +1)B3, €j=1- 1/2,n—€|n 2(' 1) B,
(12

2.6 3 3.4 where ¢ are the energy levels gz=0, that is € =k?,
Ji(k =0 and the index1=1,2,...numbers the zeros of the
I's function in the increasing orde(rWe leave the details of
the calculation for Appendix A.A comparison of the exact
splittings to the perturbative result&2) is shown in Fig. 2.
As one can see from this figure, the first-ordier ,8%) per-
oturbation theory seriously overestimates Rashba splittings
(by 20-30% for Bz~ 2. Note that, e.g., for the Rashba pa-
rameterag=60 meV (realized in InGaAs dots, see Tablg |
We have analyzed Eq10) numerically, labeling the en- Bg=R(nm)/13, so that the perturbation theory in this case is
ergy eigenstates &$,n) wheren is a non-negative integer valid in small dots withR=13 nm only.
such that; ,<E; .1 at Bg=0. The evolution of the first few Upon inclusion of the Zeeman term, all Kramers doublets
energy levels with the parametgg is shown in Fig. 1(See  are also split so that all the degeneracy is completely lifted.
also Ref. 9, where quite a similar evolution was foynd. Because of inherently small values of the gyromagnetic ratio
In the limit Bg— 0 the energy states shown in these fig-g in most semiconductor quantum dgsee Table), the pure
ures are traced as followg1/2,0 corresponds td=0  Zeeman splittings are smdll0"1-10"2 meV) in comparison
(ground statg (3/2,0 and (1/2,1) correspond tol=1, to the characteristic energy separation between the levels of a
(5/2,0 and(3/2,1) corresponds tb=2, and(1/2,2 again  few tens of meV. AiBg# 0 therefore all thgeffective) Zee-
corresponds tb=0 (excited state As one can see from Fig. man splittings can be still regarded as linear in the magnetic
1, the levels with highej go down in energy while the levels field,
witr_1 lower j (originating from the state V\_/it_h th_e sanheat S€(Br) = 2hF,(Br),
Br=0) go up. The neighboring levels originating from the
state with differeni go towards each other, e.g., the levelswhere the functionF;(8r) [F(0)=1] plays the role of the
(d) and(c) in Fig. 1. The same occurs for the levely and  effective gyromagnetic ratio,ges=gF(Bgr), which non-
(f) at Bg<3. For Bz~ 3, these levels are very close and theytrivially depends on the Rashba coupling. Indeed, expanding
diverge for largerBgr manifesting an avoided crossing, see Eq. (10) in h, we find the following analytic formula for the
the right-hand side in Fig. 1. gyromagnetic factofj > 0):

FIG. 1. Dimensionless energyas a function of3y for the states
(j,m (nis a non-negative-integer such ttgt, <E; .1 at Bg=0):
(1/2,0 (a) (corresponds td=0); (3/2,0 (b) and(1/2,1) (c) (cor-
respond td=1); (5/2,0 (d) and(3/2,1) (e) (correspond td=2);
and(1/2,2 (f) (excited-state corresponding g 0). Rashba split-
tings ofl # 0 levels into Kramers doublets arise purely from the S
coupling in zero magnetic fielB=0).

€+ Bal4 410K Jjr1/2(K)
Bre  I_1/ak) oK) + Jjo1jo(K ) spolks) + (ke o ko)

Fj(BR) = (13

115316-4



RASHBA COUPLING IN QUANTUM DOTS: AN EXACT... PHYSICAL REVIEW B 70, 115316(2004

of its bare value, indicating that there is a polarizable in-
o plane degree of freedom even in the case of a strong SO
“‘~~L‘;;';;-;-- ,,,,,,,, _ coupling.

" We now turn to an application of our method and calcu-
late the spin-flip relaxation rate. The SO coupling is the main
intrinsic mechanism for electron spin-flip transitions in
J QDs!® In previous calculations of the spin-flip rates, the
spin-orbit coupling was considered as a perturbation, so that

geff /g

05 1 15 2 the electron spin and angular momentum were assumed to be
Spin—orbit coupling p, independentl_y cqnserve_q. In _the full theory this is not the
case. The spin-flip transitions in fact occur between the states
FIG. 3. Effective gyromagnetic factor as a functionggfor the | and - with opposite signs of the total momentum quantum
states(1/2,0) (full line), (3/2,0 (dotted ling, (1/2,1) (dashed Nnumbers. No such transition is possible within a degenerate
line). (R=10 nm,B=1T.) Kramers doubletVan Vleck cancellation In the external

magnetic field, the statgsand - are split by the Zeeman
interaction. The SO coupling allows then for phonon assisted

expand the above function iBr. So, for such states that transitions between the Zeeman subleyefsa given Kram-

i>0 corresponds tar=1/2 (which include the ground 'S doublet _ ,
state, the result is In what follows, we concentrate on the most interesting

case and calculate the rate of the spin-flip transition between

wheree andk, are solutions to Eq.11). It is not difficult to

el(%)+2|2—2 5 the Zeeman sublevels of the ground stgte+1/2). Such
FieaaBr) =1~ 60 Br- (14 transition is accompanied by emissi@bsorption of a pho-
n non. Acoustic phonons dominate these processes at low tem-
In particular, for the ground state=0, peratures. Since the Zeeman energies are small, we consider
0 _ only piezoelectric interaction between the electrons and the

F1(Br =1-AB: A= 60,0(0)220_11_ (15)  acoustic phonons. The coupling to the piezophonons is
2 6€y 0 known to be the most effective one in polar crystals for a

small energy transfét Note also that we use the conven-

™ tional model of bulk phonons, since the two materials in

Fy's do) from F1(0)=1 vanishing at largg8s. Note thatFL  guantum dot systems usually have similar acoustic

=1/2whenpgr=2.3. The function§;(Br) are plotted in Fig.  properties’? For the phonon modga (q is the phonon mo-

3 for the first few levels. The fact that increasig sup- mentum,a=I for a longitudinal mode and=t for a trans-

presses the Zeeman splitting is hardly surprising. The physiverse modg the deformation potential applied to thgs

cal explanation is as follows. The SO coupling entangles th&ourier component of the electron density is giveR'by

The universal functior’F%(,BR) decreases monotonicaligll

spin degree of freedom with the orbital one making it more

difficult to polarize the Kramers doublets, which become U :i_ |_h eA dar

completely rigid at large values . W N 2pp0g, ’
As a useful consistency check, we observe that the Zee-

man splittings can alternatively be calculated in perturbation Aqa =& G Bug éﬁw

theory inh (first-order correction We then obtain
N whereZ=q/q (q=|q|), e is the polarization(unit) vector, py
, - _ ) [2 is the mass densityy,,=S,q is the phonon dispersion rela-
9¢(Br) Zh(l 47Tf0 X d%gj(x)l ) (16 tion, 5,5 are the(long?itudinal and transverssound veloci-
] _ ties. For crystals of interest without an inversion cexéass
whereg;(x) are zero-field wave functions. Formul6) con- 1) the piezotensoBy; has only one independent component
stitutes an alternative definition of the functibj(g) and so Bikj=hya,i #k# . At zero temperature, the rate for the one-

it must be equivalent to Eq13). For generaf3g this equiva-  phonon transition within Zeeman sublevels is given by the
lence translates into a rather complicated statement abo®ermi golden rule:

intergals of Bessel function; we prove it, to the orderdaf )
in Appendix A. _£T * 2 _

When the magnetic field is applied parallel to the dot Wer= zq%|<<D—1/2(Z’ﬁ)|Uqa|‘D1/2(Z,ﬁ)>| NAEz -~ fiwgy),
plane,j, is not covserved and there(i® our knowledggno '
exact solution. Perturbation theory in the field still works and (18)
after an elementary calculation leads to the following resultivhere AE, is the energy difference between the states in-

Se () = 1 +F(8r)] (17) volved. For GaAs-type structuréwith typical Zeeman split-
PR PR tings of 10'-102 meV), the dipole approximatior(€'d"
For small B8 the SO correction to thg factor is therefore ~1+igr) can be used in the calculation of the electron-
twice smaller than in the case of the perpendicular fieldphonon interaction matrix element entering Etf). Indeed,
Notice also that for larg the effectiveg factor is one-half because of energy conservation, the matrix element in Eq.

115316-5
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FIG. 4. The ground-state spin-flip relaxation r&g; as a func-
tion of Br: exact calculationgdotted ling, perturbative calculations
(dashed ling

(18) is evaluated at the phonon momentagmAE,/%s. For
typical values of s~5x10°cm/s and AE,
~101-102 meV, we haveis/AE;~30-300 nm, whileR
is usually about 10—20 nigthe height_, of a quantum dot is
normally much smaller thaR, about 2—3 nm

Averaging over the orientation of thevector and sum-
ming overq then yields

_(e hy R AE)
p0ﬁ435

wheres™®=3/25°+1/s’, K=8/1057, and

W F2K, (19)

21 1 ,
F2 = ‘ f f COS¢ lﬁil/z(x, d)) wl/Z(X; ¢)X2 dx d¢ )
0 0

PHYSICAL REVIEW Br0, 115316(2004

the transition rate as a function of the spin-orbit coupling.
The physical explanation is that while the Zeeman energy
splitting decreases witBg, the electron-phonon matrix ele-
ment saturates.

Needless to say that the orbital effects of the magnetic
fields may become importagfor small or moderat@’s) in,
e.g., determining the ground-state splitting, see the next sec-
tion. On the other hand, the orbital effects can be excluded
by applying the magnetic field in they plane. Note also
that for the case of high magnetic fiel@sg., aB=10 T for
GaAs structures the dipole approximation is not valid. In
this case the oscillatory behavior of the integrand in the ma-
trix element Eq(18) results in a suppression of the spin-flip
rate?® An analytic calculation of the spin-flip transition rate
in the presence of the orbital effects and beyond the dipole
approximation is an interesting problem, which we shall ad-
dress in a separate publicatith.

IV. LANDAU-RASHBA PROBLEM IN DISK GEOMETRY

So far we have neglected the orbital contribution of the
magnetic field which is not necessarily justified for many
experimental setups. Fortunately, because of the very nature
of the Peierls substitution, which has to be performed both in
the kinetic energy term and in the spin-orbit term, the above
analytic solution can be generalized to this case. In this sec-
tion we proceed with such generalization.

(@) Bulk solution It will be convenient to write the
Schrodinger equatio(b) in terms of the dimensionless vari-
able £=p?/(2a3),

~ E m Pml,ag~
(20) Aj_lfj+<——g—>fj S YTRIRG 1g,=0,
2 hw,  4mg h T2
Checking the limiting case wheh and B are small, we
obtain that the matrix element in EQO) is iin(.ear overh and - E gm \;Em|baR~
Brs SO that the transition rate M/;~h°gg, in accordance Aj.lg+ T am )9 Tvﬂj‘%fi =0, (21
with the perturbative result of Refs. 15 and 22. We  2Me
The evolution of the spin-flip transition rate given by Eq. where we have introduced the operators
(18) with the parameteBg (at B=1.5 T) is shown in Fig. 4. ) ) ) ]
(Values of ehy,=1x 10" eV/cm, s=5x10° cm/s, andpg Z.:gd_+i_(1 +&) v _=\F§<+i_l__}>
=5.3 g/cn? are used.Dashed line in Fig. 4 presgnwsf as 17542 de ag 0 M Tdé o2& 2
a function of B calculated in the first ordein Bg) of the . )
perturbation theory, while the exact calculations are pre- The structure of Eg(21) suggests the following ansatz:
sented by a dotted line. As one can see from Fig. 4, the f(é) d;P(ey,j, 9
perturbation theory overestimates the transition rates for the (© = dD(ey+1,+1,8) | (22
realistic values of the parametgg. An interesting new fea- 9 2P(€T LT L
ture of the exact solution is the emergence of a maximum inhere
|
IN'e+1) \2 1 §<21‘1)’4exp<—§>M<j—}—eo,j+};§), j>o0,
\e-i+8)) G- 2"\ 2T eI
(I)(eO!Jag) = 1"( . 3) 1 412 (23)
Q-i+5 )2(—1)'1 i1a p( f) ( .3 ) -
( Feptd) ) (cj+ipt AT Mmi*5id
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HereM(a,c;¢) is the confluent hypergeometric series satis-
fying éM”+(c-éM’-aM=0 (see Ref. 25 The prefactors

in (23) are inspired by those occurring in the standard Lan-
dau problerd but it should be noted that the eigenfunctions
are not normalized. The energy parametgyris to be deter-
mined.

Clearly (23) solves(21) without the Rashba term. The

basic property which allows a simple solution is again that

the operatorsVH _12 and V_,+1,2, involved in the Rashba — @
term, act as rising and lowering operators on the proposed ; . ; : '4 : ;
eigenfunctions. Indeed, as shown in Appendix B, M s
agnetic field (T)
Vi j-12P(€0,),6) =~ Vep + 10(gp + 1,j + 1,6), FIG. 5. The energy spectrum calculated by using E2f).

Energy as a function of magnetic fieRifor the stategdegenerate

6__+ Dey+1,j+1,8)=— e+ 1d(ey,j,&). 24 at B=0): (1/2,0 (@l and (-1/2,0 (a2, (3/2,0 (bl and
jrPE+ Li+ 1.8 = Ve +10(e), ). (249 (=3/2,0 (b2), (1/2,1) (c1) and(-1/2,1) (c2), (5/2,0 (d1) and
Therefore in the basi€2) and(23), the Schrodinger equa- (-5/2,0 (d2), (3/2,1) (e} and(-3/2,1) (e2), and(1/2,2) (f1)

tion (21) reduces to an algebraic system, and(-1/2,2 (f2). (R=50 nm, 8z=3.35)

e-e-s lep+1 \(d i “P (e i

( Qs e )(dl)zo_ 25 \P(g):( A (e}, ],£) + Arb(e5, ) )

yWetl e-e+s—1/\d; dyd(eh+1,j+1,8) +dyP(eg+1,j +1,6)

The determinant equation of the form The ratios of the amplitudes in the above equation are fixed
by Eg.(25) as
(e-e-se-ats-D-Yle+rn=0 (25 = &

follows. We have introduced dimensionless parameters d_i = 7@
=E/w,—1/2 for the energy (not to be confused with the d; ‘e-e+s

electron charge y=ar(2m/ w,)*? for the spin-orbit coupling
(note that this parameter is different frofg previously de-
fined), ands=gm/(4m,) for the Zeeman coupling. Herg, is
the electron mass, while is the effective electron mass for
the mat_erial in question. _ o _ &+ l)%
Now in the bulk, a normalizable solution is obtained only e‘go_ — sq)(e‘; &) D(eg+ 1,1 +1,&)

still leaving two amplitudes arbitrary. Imposing the disk
boundary condition¥(&;)=0 gives yet another eigenvalue
equation, the determinant of which is

whenM(a,c; ¢ reduces to gLaguerre polynomial, that is

whena=-n,, n, being a non-negative integer. The energy 1
parameteey is therefore fixed asy=n,+j~1/2 forj >0 and (eo 1)2
g=n, for j<O0. It is easy to see that the energy spectrum is

then parametrized by a single positive integere,+1 and

g CHL Eo)P(eg+11+1,6)=0. (28)

the determinant equatiaf26) reduces to the expression This equation is exact and providésnplicitly) all the
information about the energy spectrum of the problem. We
e=e,=n- 5 + \,( ) Y2, (27) have investigated E@28) numerically for some characteris-
tic values of the parameters. For the valuegghf0.44, m
in full agreement with the known resdft.Note also thas  =0.067n,, andBg=3.35, the evolution of the first few energy

=1/2 is thesupersymmetric point of the Landau problem. levels with the magnetic field is shown in Fig. 5. The energy
(b) Disk solution Next we consider the disk geometry, states shown in this figure are traced similarly as in the case

i.e., the boundary conditiofy(&;)=g;(&)=0 [§O:R2/(2a§)] of Fig. 1. The main features of the energy spectrum in the

replaces the bulk requirement that the wave functions be nomagnetic field are the following. The Kramers doublet split-

malizable. There is therefore no simple restriction on theting is pronounced even for the ground stet® [labeled as

parametee,. We can still proceed as in Sec. Ill because, forthe level (a) in Fig. 5. The splitting energy in this case

a given value of the energg; there are two nontrivial solu- reaches the value 6f£0.5 meV atB=1 T and strongly ex-

tions for g, of the determinant equatiqi26): ceeds the pure Zeeman splitting equal tg|ugB/2
~0.03 meV(for |g|=0.44 andB=1 T). In the absence of the
. 26— 1+ \(P+1)2+4ey’+ 4 -9 spin-orbit coupling, however, the only one reason to split the
€= 2 ' ground state is the Zeeman interaction. Indee@zat0 there

is no orbital contribution of the magnetic field for the states
Hence, in the bulk, there are two degenerate solutions of thaith 1=05 One can see in Fig. 5 also that for the levels
Schrddinger equation that must be combined in the generalriginating from the same+ 0 (at 8g=0), the Kramers dou-
solution blets splittings are different by values, which is not the case
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again atBg=0. For example, the levels labeled @, (b1), B=0. Expanding this system of equations iz one can
(b2) and(c), (c1), (c2) in this figure correspond tb=1, with  show that at the first order
approximately 2 times larger splitting for the latter level than
for the former ongat B=1 T). It is therefore the combined gi(x) = 'B_RXf@(X), (33
effect of the Rashba term and the orbital contribution of the 2!
magnetic field that_li_fts the Kramers degeneracy and leads t\(R/here f@(x) is the h=/8,=0 solution of the problem with
the above pecularities for the energy spectrum. So, the Ogrbitrar V(p). Therefore
bital contribution can clearly not be neglected in this case. yVvip).
The SO effects on the pure Zeeman splitting were inves- 1
tigated in the preceding section, here we consider the split- 1-Fi(Br) =Ri(Br) = Wﬁ?zf X3 dx {202
tings resulting from the orbital contribution of the magnetic 0
field. General analytic results can be obtained at the firs{g the order Oflng_
order in the magnetic field, to which case we restrict the For the particular case of the hard-wall potential,
following calculations. Let us write down the part of the
Hamiltonian linear in the magnetic field, f59}+1/2(x) _ k)

“J/_ J k H
1 1 |e|B . N |+l( I,n)
Hg = EgMBBo'z"' Ewclz_ ZaRP(O'x Cos@+ oy Sin ®). ﬂé 1
JI2+1(kI,n) 0

The above perturbation results in the splitting betweenjthe \yhere J,(k )=0. As a result, for weak SO coupling the
and - states, which is linear in the magnetic field. Its mag-¢ctor expénds according to E(L5)

nitude is simply determined by the matrix elementsHyf

(29) Rizi+1/2(Br) = X dx Pl x), (34

with respect to the zero-field wave functio@, 1
P o Gef(Br) = 9[1 - (4_5 + 1>AB§] : (35
_ h h .

S€j(Br) = 2hFi(Br) + 2_5[1 —Fi(Br)] - gRi(IBR) + g(l -1/2), For g<0 (small Bg), the Zeeman and th@ull) orbital

contributions are both negative and sagis(8g). |9er( Br)]
(30 increases or decreases wiy depending on the material
where(j >0) parameters being less or greater than 1/4. At1/4,
. Oeii( Br) is (almosy independent of3g. In addition, whens
. . <1, the characteristic scale of the SO coupling, over which
Ri(Br) = 7Br f x* A ()g;(%) + g (0 f(x)]. (3D Uert(Br) changes fast, iBz~ \s/A. Note that the parameters
0 . . .
used in Fig. 5 are such thatis very small,s~0.03, and the
Therefore the total ground-statefactor, involving both the bareg factor is negativdg=-0.44. For this case therefore
pure Zeeman and the orbital contributions, and exact to allg.y| increases withgg resulting in a large effective Zeeman

orders in the SO coupling, is of the form splitting of the ground state=0 discussed above. Fgr>0
the Zeeman and the orbital contributions compete. The or-
— 9 9 bital contribution is smaller than the Zeeman one at siBgll
=gFL +—|1-F1 -—R1 , . o - . .
Oetf Pr) =9 2(’8R) 45[ 2(’8'?):| 2s Z(BR) but always prevails with increasingg resulting in the

(32) change of sign ofje(Br). The change of sign occurs gt
=25 fors~1 and atBg~ \Vs/A for s<1.

where the ratiog/(4s)=mg/m is positive while the bare Note that if we include the Dresselhaus term instead of
g-factor g can have either sign. The first term {82) de-  the Rashba term, then the unitary transformation
scribes the suppression of the matrix elements-0by the
SO coupling as discussed in the preceding section. The sec- U= ir(oﬁ o)
ond term in(32) is a standard orbital contributigwanishing |2 Y
at Br=0) to theg factor and it is positive. This is because the
Rashba coupling mixes the stdte0,0=1/2) with the state
(I=1,0=-1/2) and the statél=0,0=-1/2) with the state
(I=-1,0=1/2) and therefore the average momentum
(1/2]1,)1/2)>0, while (-1/2|I,]-1/2)<0. The third term in
(32) is a mixed contribution to thg factor resulting from an
interplay between the orbital effect and SO coupling. The _ g g
mixed contribution turns out to be negative. In fact, for small Qert(Fp) = gF%('BD) B 4_3[1 B F%('BD)] * z_sR%(BD)’
Br, the mixed contribution is exactli~2) times the orbital (36)
contribution thus effectively changing sign of the full orbital
term. This statement is true for any confining potential. In-where B8p=2apmR As mentioned above our solution fails
deed, the zero-field functiong and g; satisfy Eq.(5) with  when both the Rashba and the Dresselhaus terms are present.

of Hamiltonian (1) with the Rashba term results into the
Hamiltonian UHUT which now involves the Dresselhaus
type term (ar— ap) but the sign of the Zeeman term is
reversed. Therefore, in the presence of the solo Dresselhaus
term, formula(32) reads
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It is clear, however, that there are no processes mixing therthat our method can be used in future research for obtaining
up to and including the third order of perturbation theory infurther interesting results on the spin-orbit effects in quantum
Brp, SO We may write dots; in particular, it would be interesting to investigate spin-

flip transitions in high magnetic fields.

et Br, Bp) = g[l - (i + 1)A/3§z+ (i - 1)%%} :
4s 4s

(37)

) . ) ) i The authors are grateful to Levitov, who has indepen-
This perturbative formula is universal in the sense that onl)ﬁenﬂy arrived at a similar solution with Rash#sfor inter-
the dimesionless consta#t depends on the shape of the esting discussions and to Sadreev for calling our attention to
confining potential. Similar dependence of the effectye Ref. 9. The research by G.L. and A.O.G. is supported by the
factor on the Rashba and the Dresselhaus coupling strengfpsrc of the UK under Grants Nos. GR/N19359 and GR/
was obtained in Ref. 23 for a parabolic confining potential. R70309 and the EU training network DIENOW. The re-

We close this section by performing a consistency checksearch by E.T. is supported by the Center for Functional

Let us compare the exact result H§0) with the standard  Nanostructure§CFN) of the Deutsche Forschungsgemein-
perturbation theory. We calculated the correctioinandh gchaft(DFG) within project A2.

to the energy levels by means of the standard perturbative
expansion and found
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APPENDIX A: PERTURBATIVE EXPANSION IN  Bgr AND h

€=si-1/2n= €9 —h(1 -~ 8BRS ) * I2_ + %Bﬁ(' 71 In this appendix we elaborate on the perturbative results
S for the Rashba splittings. We recall that, gt=h=0, the
+2 oh energy Ievels,ef%:kﬁn, are determined from the equation
'BRSSH' Ji(k; n)=0, where the indexi=1,2,...numbers the zeros of
thel’s Bessel function in increasing order.
h 1 At h=0, expanding Eq(11) up to second order irBg
€jsir1izn= €0 +N(1 - 8B5S )+ — 7 ~ BRI+ 1) leads to Eq(12) for the perturbative corrections to the eigen-
2s 2 states. Notice that the second-order correction does not de-
,h pend onn. Also, the levels with highej go down in energy
- ZﬂRgs,n' (38)  while the levels with lowej (originating from the state with
the samel at Bzr=0) go up, the Rashba splitting being
where the object €i=1-1/2n— €=1+1/2n=| Ba-
L0 4 o2_ o On the other hand, employing the standard perturbation
—Sn 2 theory, one can easily see that the effective second-order
" 48 6|(’(,)1) ’ secular equation has only diagonal matrix elements involving

is calculated in Appendix A. The resulting energy splittingsthe standard Lommel’s integrals with the Bessel functions

coincide with those given by formulgB0) when expansion and thus obtafff
(14) is used and with formul@l2) at h=0. o 2 2
(0) 2 I(I,nkltl,m
€j=lx1/2n " €n = 4/3RE 2 _ 12 3’ (A1)
m=1 (kl,n - I(IJ_rl,m)
V. CONCLUSIONS
r{or h=0. Furthermore, at the first order im (still second

We presented an analytic solution to the problem of a brder in ) one finds Eq(38) for the energy corrections,

electron in a quantum dot in the presence of both the ma

netic field and the spin-orbit coupling. The method rests o ere

the observation that there are in this problem two degenerate o )
eigenfunctions in the bulk that can be combined to satisfy the § = > Kiz1m
boundary conditions for both spinor components. o (K=Kl

We calculated the energy levels, the real-space wave func-
tions, and various quantities of physical interest. The Rashba 1
energy splittings are overestimated in the first—ordar,BZR) k J
perturbation theory. There is a strong suppression of effective . K o © TElm 0
gyromagnetic ratio by the spin-orbit couplifwithout the  Ri,= 23 ’k 2. 122 K
orbital contribution of the magnetic fieldThe spin-flip re- 1K) ey (Kiz1.m = Kin) Jrer21(kisr o)
laxation rate has a maximum as a function of the spin-orbit (A2)
coupling. Inclusion of the orbital effects gives rise to quite
rich magneto-optical spectra. In particular, the combined efit turns out (see below that SIH:SEHES,M, Rl’fn:R[n
fect of the orbital contribution and the Rashba term results ir=e R, , andR; =S| p.
a large splitting of the ground state. The effectiydactor Thus, the technical problem here is to analytically per-
changes sign witlBg if the bareg factor is positive. We hope form the summation over zeros of the Bessel functions. This

X% dX Ja1(Kisg mX) (K oX)
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can be achieved by using the product representation formula zZ
for the Bessel functioitsee, e.g., Ref. 37 ho(ze,m) = > In(l _k_> ho(z.) = E ﬁ)”
mn
2= 4 11 ( _i) (A3) with z, satisfyingJ,.1(z.)=0 andp being a positive integer.
2"C(m+ 1) kﬁm ’ Upon repeated differentiation imof formula (A3) and sub-
sequent usage of Bessel functions’ recurrence relations, it is
whereJ(ky,n)=0. Indeed, define easy to see that

1 sm+m* 1

+ +—
472 248 a8

ﬁ 1 m
hy(z,,m) =0, hz(L,m)=z, h3(2+,m)=—4—zi—§+, hy(z.,m) =

m 1 m m 1 m m 6-5m+m* 1
h(z,m==, hl(zm=-—-—, hzm=—=-—7F+—7, hzm=-5+ + .
M=z MM EME g g MBI T e
[
Expressing the right-hand-sides of E@él) and (A2) as Finally, note that the following representation for the
linear combinations of's found above, we immediately ob- Bessel function holds:
tain
7+ 2(|2 )7
i k|2¢1,n' #l+1 _ —2+22+kﬁn (9= Iz )f X dx F() = » (AB)

= - , SY =
n’ (kﬁn_ I(Izil,n’)3 8k|2,n " 48kﬁn _ . . .
where J(2)=0. Straightforward calculationéby using the

which justifies the results, Eqgl2) and(38), quoted in the Lommel's integral®) proof expression/A6). In particular

main text. case ofi=0,1,2,3,e.g., one obtains
Using the summation representation formula for the S o2 4 .
Bessel functior(see, e.g., Ref. 28 To(2) = S L@=%, @)= =

o KnnJn(Kna?)
In(k2) = 20K X T (A4)
" " n=1 (kmn_ kz)erl(km,n) 7 ( ) A+ 1622
2)= .
whereJ;,(kp,,) =0, we obtain : 6

Rin= 872 (K n)f x dx F (k) (AS) APPENDIX B: WAVE FUNCTIONS FOR THE

LANDAU-RASHBA PROBLEM
which justify the result, Eq(34), quoted in the main text.
Performing the integration overin Eq. (A5), for the ground
statel=0 we obtain

In this appendix we supply more details of the solution of
the Landau-Rashba problem. Upon the substitution

k(z),()_ 2 fJ — e—§/2 g‘j_lIZIIZFj (Bl)
482, gl dirvang, |
,0 | i

which is in accordance with expressi@ib) in the main text.  the Schrddinger equation becomes, explicitly

__ 1 ! 3 _
Ro,0= 8Ji(k0,o)fo x> dx ch)(ko,ox)—

[d—2+<'+}— )E— +1+ ]F+ {£+'+}]G—O
b\ E i rers Ry 6 +i+5|6=0,

{d_z ( 3. )__ T }G_ {i_l}F_o
for j>0, and
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[fd—2+(—'+§—§>ﬂe—s}F + EG =0
d2 T\ 1578 g T Y=
{gd_z(_.g_g)gmﬂ]e_ [gg_-+1_4F_o
a2 \ 1278 e AT i

for j<0. Using standard relations satisfied by the confluent hypergeometric fun¢semdkef. 2bwe obtain the following
identities for the basis wave function:

T N
dé J 2 eO;J 21 - J+1/2 J 2 eO;J 216 ’

R VN TR M
deZ Jze()alzy—lzlzeo,lzyf,

1 3
>=—LM<—%J +-;§>,

EM(— —1—'+1-§
de\ ST HTIT Y 2

2
{E_-ﬁ_ ]M(_ _-+§.)__-+1,2M(_ _1_-+z.)
§d512§ eo,12,§—(1 ) eo,12,§-

These identities, together with the definitig2B), lead to the basic proper{24) that allows for the solution of the Landau-
Rashba problem.
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