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We investigate current fluctuations in a three-terminal quantum dot in the sequential tunneling regime. In the
voltage-bias configuration chosen here, the circuit is operated as a beam splitter, i.e., one lead is used as an
input and the other two as outputs. In the limit where a double occupancy of the dot is not possible, a
super-Poissonian Fano factor of the current in the input lead and positive cross correlations between the current
fluctuations in the two output leads can be obtained, due to dynamical channel blockade. When a single orbital
of the dot transports current, these effects can be obtained by lifting the spin degeneracy of the circuit with
ferromagnetic leads or with a magnetic field. When several orbitals participate in the electronic conduction,
lifting spin degeneracy is not necessary. In all cases, we show that a super-Poissonian Fano factor for the input
current is not equivalent to positive cross correlations between the outputs. We identify the conditions for
obtaining these two effects and discuss possible experimental realizations.
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I. INTRODUCTION

The study of current noise in mesoscopic circuits has be-
come a central subfield of mesoscopic physics because it
allows us to access information not available through mea-
surements of the average currents(for reviews, see Refs. 1
and 2). Current fluctuations can first be probed through the
autocorrelations of the current fluctuations in one branch of
the circuit. For noninteracting conductors with open chan-
nels, the fermionic statistics of electrons result in a suppres-
sion of these autocorrelations below the Poisson limit.3–5 In a
multiterminal circuit, current fluctuations can also be probed
through the cross correlations between two different
branches. Büttiker has shown that in a noninteracting elec-
tronic circuit, the zero-frequency current cross correlations
are always negative provided the leads of the circuit are ther-
mal reservoirs maintained at constant voltage potentials.6 On
the experimental side, negative cross correlations have been
measured very recently by Hennyet al.7 and Oliveret al.8 in
mesoscopic beam splitters. Oberholzeret al. have shown
how the cross correlations vanish in the classical limit.9

Up to now, positive cross correlations have never been
measured in electronic circuits. However, nothing forbids to
reverse the sign of cross correlations if a hypothesis of Büt-
tiker’s proof is not fulfilled(see Ref. 10 for a recent review).
First, it has been shown theoretically that positive cross cor-
relations can be obtained in an electronic circuit by relaxing
the hypotheses of Büttiker regarding the leads, for instance,
by taking one of the leads superconducting11–22 or by using
leads with an imperfect23 or time-dependent24 voltage bias.
Positive cross correlations are also expected at finite frequen-
cies, due to the plasmonic screening currents existing in ca-
pacitive circuits.10,25 It follows from Büttiker’s work that ob-
taining positive cross correlations at zero frequency without
modifying the assumptions on the leads requires to have in-
teractionsinside the device. Safiet al. have considered a
two-dimensional electron gas in the fractional quantum Hall
regime, described by a chiral Luttinger liquid theory.26 Zero-
frequency positive cross correlations can be obtained in this
system in the limit of small filling factors, where the excita-

tions of the chiral Luttinger liquid take a bosonic character.
This leaves open the question whether interactions localized
inside the beam splitter can lead to zero-frequency positive
cross correlations even for a normal fermionic circuit.

Current correlations in a single quantum dot have been
studied in the sequential tunneling limit,27–30in the cotunnel-
ing regime,31,32 and in the Kondo regime.33 In the (spin-
degenerate) sequential tunneling limit, a sub-Poissonian
Fano factor has been found for some two-terminal cases27–29

and, for the three-terminal case, cross correlations are ex-
pected to be always negative when the intrinsic level spacing
DE of the dot is much smaller than temperature.28 However,
a super-Poissonian Fano factor has been predicted for a two-
terminal quantum dot withDE@kBT connected to ferromag-
netic leads.30 In the cotunneling regime, a super-Poissonian
Fano factor can be obtained in the two-terminal case.31 The
extent to which this would lead to positive cross-correlations
for a three-terminal quantum dot was not clear.

This led us to consider, in Refs. 34 and 35, the case of a
three-terminal quantum dot withDE@kBT, operated as a
beam splitter: one contact acts as source and the other two as
drains. We have assumed that only one orbital of the dot, i.e.,
one single-particle level, transports current, and that Cou-
lomb interactions prevent a double occupancy of this orbital.
We have considered both the Fano factorF2 in the input lead,
called the input Fano factor, and the cross correlationsS13svd
between the two output leads, called output cross correla-
tions. We have proposed two different methods to obtain a
super-PoissonianF2 or S13sv=0d.0 in this system, in the
sequential tunneling limit. Both methods rely on lifting spin
degeneracy, either by using ferromagnetic leads34 or by using
paramagnetic leads and applying a magnetic field to the
dot.35 Note that in these works, the leads are biased with
constant voltages and modeled as noninteracting Fermi
gases. Then, with respect to Büttiker’s proof, only the hy-
pothesis of the absence of interactions inside the device itself
is relaxed. Moreover, in contrast to the system studied in Ref.
26, excitations inside the device remain purely fermionic.
Our works34,35give a positive answer to the question whether
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zero-frequency positive cross correlations can occur in a per-
fectly voltage-biased normal fermionic circuit. They never-
theless leave open the question whether lifting spin degen-
eracy is necessary to do so. Eventually, it appears in Refs. 34
and 35 that for certain cases, a super-PoissonianF2 can be
obtained without a positiveS13sv=0d. This calls for a thor-
ough analysis of the relation betweenF2 andS13sv=0d.

To this end, in this article, we investigate in detail the
physical origin of the positive cross correlations found in
Refs. 34 and 35. The essential ingredient is the existence of
Coulomb interactions on the dot.(Note that in a spin valve
connected to ferromagnetic leads, in which there are no
charging effects, the cross correlations where found to be
negative.)36 In the limit where only one(singly occupied)
orbital level of the dot transports current, positive cross cor-
relations are caused by a mechanism of dynamical spin
blockade which can occur when spin degeneracy is lifted.
Simply speaking, up and down spins tunnel through the dot
with different rates. Due to the Coulomb interaction, the
spins which tunnel with a lower rate modulate the transport
through the opposite spin channel, leading to a bunching of
tunneling events. We show how this bunching can lead to a
super-PoissonianF2 or a positiveS13sv=0d. (Table I gives a
summary of the conditions for which these properties can be
obtained.) In the limit of equal polarization of the output
leadsandhigh bias voltage, the electronic transport is unidi-
rectional and the division of current between the two outputs
is the same for the two spin directions. This leads in the
one-orbital case to a simple relation[see Eq.(25)] between
F2 andS13sv=0d: a super-PoissonianF2 is automatically as-
sociated with a positiveS13sv=0d. However, in general, this
relation is not fulfilled even for a one-orbital dot. In particu-
lar, in the case where the leads of the one-orbital dot are
paramagnetic and where spin degeneracy is lifted by a mag-
netic field, a positiveS13sv=0d can only be obtained in an
intermediary voltage range where relation(25) is not valid.

This paper supplements the study of the one orbital case with
an analysis of the effect of the position of the dot orbital
level with respect to the zero-bias Fermi level. In the para-
magnetic case, this parameters turns out to be critical to get a
positiveS13sv=0d. An analysis of the frequency dependence
of S13svd is provided. We also show thatS13sv=0d.0 can
persist in the one orbital case when the leads are magneti-
cally polarizedand a magnetic field applied. Eventually, we
show that there is a direct mapping between this last case and
that of a spin-degenerate quantum dot with two orbital levels
transporting current. This mapping suggests a new way to get
positive cross correlations. In this spin-degenerate two-
orbital case, positive cross correlations stem from the partial
blockade of an electronic channel by another one, thus we
propose to call this effect “dynamical channel blockade.”
This result demonstrates that lifting spin degeneracy is not
necessary for obtaining zero-frequency positive cross corre-
lations due to interactions inside a beam splitter device, even
for a normal fermionic circuit with a perfect voltage bias.

The present article is organized as follows. Section II de-
velops the mathematical description valid for the one-orbital
problem. This one-orbital problem is analyzed for two dif-
ferent configurations. First, the case of ferromagnetic leads
and zero magnetic field is treated in Sec. III. Secondly, the
case of a Zeeman splitting created by a magnetic field is
treated in Sec. IV. In Sec. V, we show how to map the two-
orbital spin-degenerate problem onto the one-orbital prob-
lem.

II. MODEL AND GENERAL DESCRIPTION
FOR THE ONE-ORBITAL CASE

A. Model

We consider a quantum dot connected to three leadsi
P h1,2,3j, through tunnel junctions with capacitancesCi and
net spin-independent tunneling ratesgi (Fig. 1). The leads
are magnetically polarized in collinear directions. We also
assume that the dot is subject to a magnetic fieldB collinear
to the lead polarizations. A voltage biasV is applied to leads
1 and 3 whereas lead 2 is connected to ground. The voltage
V is considered as positive, such that it is energetically more
favorable for electrons to go from the input electrode 2 to the
output electrodes 1 or 3 than in the opposite direction. In this
section, we also assume that

TABLE I. Summary of the different cases of quantum dot cir-
cuits treated in this article. All these circuits have the geometry
shown in Fig. 1. They differ in the number of dot orbitals implied in
the current transport, the magnetic fieldB applied to the dot, and the
magnetic polarizationsPi of the leads. In the cases marked by a
cross, a super-PoissonianF2 or a positiveS13sv=0d can be obtained
for appropriate values of the bias voltageV, the polarizationsPi,
and the tunnel ratesgi. In the one-orbital paramagnetic case, the
position E0 of the dot orbital level with respect to the zero-bias
Fermi level is also critical. Note that a super-PoissonianF2 is not
automatically associated withS13sv=0d.0.

Case treated in section II III IV IV IV V

Number of dot orbitals 1 1 1 1 1 2

Lead polarizationsPi 0 Þ0 0 0 Þ0 0

Magnetic fieldB 0 0 Þ0 Þ0 Þ0 0

Orbital level positionE0 .0 ,0

Possibility ofS13sv=0d.0
or super-PoissonianF2

Below the high-voltage limit: 3 3 3 3

In the high-voltage limit: 3 3 3

FIG. 1. Electrical diagram of a quantum dot connected to three
leadsi P h1,2,3j with collinear magnetic polarizationsPi, through
tunnel junctions with net tunneling ratesgi and capacitancesCi. A
bias voltageV is applied to leads 1 and 3; lead 2 is connected to
ground. A magnetic fieldB collinear to the lead polarizations is
applied to the dot.
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kBT,mBB,eV! EC,DE, s1d

where the charging energyEC=e2/2C of the dot depends on
C=oiCi, and whereDE is the intrinsic level spacing of the
dot. According to Eq.(1), only one orbital level of the dot,
with energyE0, needs to be taken into account to describe
the current transport, and this level cannot be doubly occu-
pied. In this situation, there are three possible statesc for the
dot: either empty, i.e.,c=0, or occupied with one electron
with spinsP h↑ , ↓ j, i.e.,c=s. The magnetic fieldB induces
a Zeeman splitting of the level according toE↓s↑d=E0+s
−dgmBB/2, wheremB=e" /2m is the Bohr magneton. In this
article, we will assumeBù0, i.e., the up-spin level is ener-
getically lower than the down-spin level in the presence of a
magnetic field. The collinear magnetic polarizationsPj of the
leads are taken into account by using spin-dependent tunnel-
ing rates g j↑=g js1+Pjd and g j↓=g js1−Pjd. In a simple
model, the spin dependence is a consequence of the different
densities of states for electrons with up and down spins in the
leads.37 The rate for an electron to tunnel on/off the dotse
= + /−1d through junctionj is then given by

G js
e = g js/h1 + expfesEs − eVjd/kBTgj, s2d

where V1=V3=−C2V/C and V2=sC1+C3dV/C. Here, we
took the Fermi energyEF=0 for lead 2 as a reference. On the
dot, there can be spin-flip scattering, due for instance to spin-
orbit coupling or to magnetic impurities. According to the
detailed balance rule, we write the spin-flip rates as

G↑↓ = gsf expS+
gmBB

2kBT
D

for the ↓→↑ transition and

G↓↑ = gsf expS−
gmBB

2kBT
D

for the ↑→↓ transition.

B. Master equation treatment

In the sequential-tunneling limit"g js!kBT, electronic
transport through the dot can be described by the master
equation27

d

dt3p↑std
p↓std
p0std

4 = M̂3p↑std
p↓std
p0std

4 , s3d

where pcstd, cP h↑ , ↓ ,0j, is the instantaneous occupation
probability of statec at time t, and where

M̂ = 3− G↑
− − G↓↑ G↑↓ G↑

+

G↓↑ − G↓
− − G↑↓ G↓

+

G↑
− G↓

− − G↑
+ − G↓

+ 4 s4d

depends on the total ratesGs
e =o jG js

e . This master equation
treatment relies on a Markovian approximation valid for fre-
quencies v lower than maxfkBT,mins,isuEs−eViudg /".38

From Eq.(3), the stationary occupation probabilitiesp̄c are

p̄s =
Gs

+G−s
− + Gs,−ssG↑

+ + G↓
+d

g↑g↓ − G↑
+G↓

+ + o
s8

sgs8 + G−s8
+ dGs8,−s8

, s5d

with gs=o jg js, for sP h↑ ,↓j, and

p̄0 = 1 − p̄↑ − p̄↓. s6d

These probabilities can be used to calculate the average
value kI jl of the tunneling currentI jstd through junctionj as
kI jl=oskI j ,sl, wherekI j ,sl=oekI j ,s

e l is the average current of
electrons with spinss, and

kI j ,s
e l = eeG js

e p̄Ass,−ed. s7d

Here,Ass ,«d is the state of the dot after the tunneling of an
electron with spins in the directione, i.e., Ass ,−1d=0 and
Ass , +1d=s.

The frequency spectrum of the noise correlations can be
defined as

Sijsvd =E
−`

+`

dtCi jstdexpsivtd, s8d

where

Ci jstd = kDI istdDI js0dl + kDI is0dDI jstdl s9d

and DI istd= I istd−kI il. Following the method developed in
Ref. 27, we can write this spectrum as

Sijsvd = di jSj
Sch+ Sij

c svd, s10d

with Sj
Sch=osSjs

Sch andSij
c svd=os,s8Sis,js8

c svd. Here,

Sjs
Sch= 2eo

e

ukI j ,s
e lu s11d

is the Schottky noise associated to the tunneling of electrons
with spin s through junctionj and, from Eq.(3),

Sis,js8
c svd

2e2 = o
e,e8

ee8fGis
e8ĜAss,−e8d,Ass8,edsvdG js8

e p̄Ass8,−ed

+ G js8
e8 ĜAss8,−e8d,Ass,eds− vdGis

e p̄Ass,−edg, s12d

with

Ĝsvd = − RefsivÎ + M̂d−1g s13d

and Î the identity matrix. We also define, for later use, the
spin components ofSijsvd:

Sis,js8svd = di jdss8Sis
Sch+ Sis,js8

c svd. s14d

Due to the existence of the stationary solutionM̂p̄0=0, the

matrix M̂ has only two nonzero eigenvaluesl+ andl−, i.e.,

M̂v±=l±v±, given by

l± =
1

2
s− L ± ÎL2 − 4Qd , 0,

with

POSITIVE CROSS-CORRELATIONS DUE TO… PHYSICAL REVIEW B 70, 115315(2004)

115315-3



L = G↑↓ + G↓↑ + g↑ + g↓

and

Q = g↑g↓ + G↑↓sG↓
+ + g↑d + G↓↑sg↓ + G↑

+d − G↑
+G↓

+.

Then, the matrix M̂ can be written in the formM̂

=R̂−1sl+Ê++l−Ê−dR̂, where R̂ is a reversible 333 matrix,

and Ê+s−d is a 333 matrix with the element 1 at the first

(second) row and first(second) column. Accordingly,Ĝsvd
can be written as

Ĝsvd =
Â+

v2 + l+
2 +

Â−

v2 + l−
2 , s15d

with Â±=−l±R̂−1Ê±R̂. Therefore, we have

Sij
c svd = o

s=±

Sij
s

v2 + ls
2 , s16d

whereSij
s follows from Eqs.(12) and(15). The total Schottky

noise Sj
Sch through junction j is a white noise due to the

hypothesis of instantaneous tunneling. For a single junction
biased by a voltage source, one would get only this term.
However, in the spectrumSijsvd, interactions do not come
into play only through the frequency-dependent term(16).
Interactions also modify the values of the termskI js

e l deter-
mining the Schottky noise. Note that at high frequenciesv
@ ul−u, we haveSijsvd=di jSj

Sch. If we furthermore assumeV
@Vmax

sgnsE0d, Sj
Sch=2eukI jlu thusSijsvd becomes Poissonian, i.e.,

Sijsvd=2eukI iludi j .
In the three-terminal case studied here, we will be inter-

ested in the input Fano factor

F2 =
S22sv = 0d

2ekI2l
,

and in the output cross-Fano factor

F13 =
S13sv = 0d

2ekI2l
.

We also define the resonance voltages

V0
− = uE0u

C

eC2

and

V0
+ = uE0u

C

esC1 + C3d
.

Since we considerV.0 only, atB=0, for E0 positive(nega-
tive), the dot orbital arrives at resonance with the Fermi level
of the input(the outputs) whenV.V0

+s−d. If a magnetic field
is applied, each of these voltage resonances is split into two
resonances

V↑s↓d
− = V0

− + s− d
gmBBC

2eC2

and

V↑s↓d
+ = V0

+ − s+ d
gmBBC

2esC1 + C3d
,

associated to the↑s↓d levels, respectively, because we con-
siderB.0 only. We expectF2 andF13 to show strong varia-
tions for V.V↑s↓d

sgnsE0d.

C. Time-domain analysis

The correlation functionCi jstd can be obtained from the
inverse Fourier transform of Eqs.(10), (11), and(16):

Ci jstd = di jdstdSj
Sch+ o

s=±

Sij
s

2ulsu
exps− utuulsud. s17d

In the sequential tunneling limit, tunneling events occur one
by one, thus

lim
t→0+

Ci jstd = − 2kI ilkI jl , 0. s18d

Let us first focus on the spin-degenerate case, that is,G j↑
e

=G j↓
e for j P h1,2,3j. In this case, the eigenvectorsv+/− of M̂

correspond to the spin/charge excitations of the system(i.e.,
v+,f1,−1,0g, v−,f1,1,−2g), and l+/− to their relaxation
rates. This is directly connected to the fact that in the spin-
degenerate caseSij

+ =0, thusSijsvd−di jSj
Sch is a Lorentzian

function andCi jstd−di jdstdSj
Sch=Sij

− exps−utuul−ud /2ul−u. This
last equation implies that, for any time,C22std−dstdS2

Sch and
C13std keep the same sign, which is negative according to Eq.
(18). Thus, in the spin-degenerate one-orbital case,F2 is al-
ways sub-Poissonian andF13 always negative. When spin
degeneracy is lifted,v+/− both become a linear combination
of the charge and spin excitations. Thus, havingSij

+ Þ0 is not
forbidden anymore. Equations(17) and (18) altogether with
ul+u, ul−u imply that if Sijsv=0d.di jSj

Sch, one hasSij
− ,0

andSij
+ .0. Therefore, in the one-orbital case, a positive sign

for F2−S2
Sch/2ekI2l andF13 can only be due to terms inl+.

The results obtained forCi jstd can be put in perspective
with some fundamental quantities such as the average dwell
time ts of spinss on the dot and the average delayt0 be-
tween the occupancy of the dot by two consecutive electrons.
These quantities can be calculated forgsf=0 as

ts =
4e2p̄s

o
j

Sj ,s
Sch

s19d

and

t0 =
4e2p̄0

o
j

Sj
Sch

. s20d

The noise reaches its high-voltage limit onceV@Vmax
sgnsE0d

=maxssVs
sgnsE0dd with Vmax

+ =V↓
+ and Vmax

− =V↑
−. In this limit,

the current transport is unidirectional, i.e.,kI2,s
− l=0 and

kI j ,s
+ l=0 and for anyj 3sP h1,3j3 h↑ , ↓ j. Thus, Eqs.(19)

and(20) lead tot0=1/2g2 andts=1/sg1s+g3sd. The average
number
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nb =
S2↑

Sch

S2↓
Sch s21d

of up spins crossing the input junction between two consecu-
tive down spins forgsf=0, which becomesnb= I2↑ / I2↓ for
V@Vmax

sgnsE0d, is also of importance. It can be used to calculate
the average duration

tb = nbt↑ + snb + 1dt0 s22d

between the occupation of the dot by two consecutive down
spins forgsf=0. In Sec. III C, the analysis ofCi jstd will be
supplemented by simulating numerically the time evolution
of the spinsdot of the dot. As expected, these simulations are
in agreement with the results obtained from the master equa-
tion approach, but their interest is to allow a visualization of
sdotstd.

D. Relation betweenF2 and F13

The average input currentkI2l and the input Fano factor
F2 in a three-terminal device correspond to the average cur-
rent and the Fano factor in a two-terminal device where the
output leads 1 and 3 are replaced by an effective output with
a net spin-independent tunneling rategt=g1+g3 and with an
effective polarizationPout=sg1P1+g3P3d /gt. Then, one fun-
damental question to answer is whether there is a simple
relation betweenF2 and F13 in the three-terminal circuit.
Charge conservation and the finite dispersion ofusdotstdu lead
to27

S22sv = 0d = S11sv = 0d + S33sv = 0d + 2S13sv = 0d.

s23d

At high voltagesV@Vmax
sgnsE0d, the unidirectionality of current

transport and the average-currents conservation lead toS2
Sch

=S1
Sch+S3

Sch. In this limit, Eqs.(10) and (23) imply that

S22
c sv = 0d = S11

c sv = 0d + S33
c sv = 0d + 2S13

c sv = 0d.

s24d

Since the voltage bias is the same for leads 1 and 3, we have
G3,s

e /G1,s
e =g1s /g3s for e=±1. Then, in our singly-occupied

one-orbital case, Eqs.(12) and (24) lead to

S22
c sv = 0d = o

s,s8

sg1s + g3sdsg1s8 + g3s8d

g1sg3s8
S1,s,3,s8

c sv = 0d.

If we furthermore assumeP1=P3, the ratiog1s /g3s=g1/g3
is independent ofs and

F13 = sF2 − 1d
g1g3

gt
2 . s25d

In summary, for the one-orbital circuit studied here, there
exists a simple relation betweenF2 andF13 whenP1=P3 and
V@Vmax

sgnsE0d. Note that the derivation of property(25) requires
neither gsf=0, nor B=0. On the contrary, the voltage-bias
configuration used is crucial. Indeed, if the three leads 1, 2,
3, were for instance biased at voltagesV, V/2 and 0, respec-
tively, the current transport would not be unidirectional(i.e.

right to left in Fig. 1) even in the highV limit. When prop-
erty (25) is verified, a super-Poissonian(sub-Poissonian) F2
is automatically associated with positive(negative) zero-
frequency cross correlations. However, Secs. III and IV,
which also treat this one-orbital case, illustrate that when
P1ÞP3 or V&Vmax

sgnsE0d, property(25) is not valid anymore,
and in particular a super-PoissonianF2 can be obtained with-
out a positiveF13. In Sec. IV B,F2 andF13 even show varia-
tions which arequalitativelydifferent:F13 displays a voltage
resonance not present inF2. Thus, even for the one-orbital
quantum dot circuit studied here, the three-terminal problem
is in general not trivially connected to the two-terminal prob-
lem.

The main ingredients for deriving Eq.(25) are the unidi-
rectionality of current transport and a division of current be-
tween the two outputs identical for the two spin directions.
One can wonder whether any tunnel-junction circuit with a
geometry analogous to that of Fig. 1 satisfies property(25)
for V@Vmax

sgnsE0d andP1=P3. Indeed, it is sometimes the case.
For instance, Börlinet al. have studied atT=0 a normal-
metal island too large to have charging effects, connected,
through tunnel junctions, to one superconducting or normal
input lead and to two normal output leads withP1=P3=0
placed at the same output potential.17 For this system, in both
the hybrid and the normal cases, a relation analog to Eq.(25)
is fulfilled, providedg1/g3 is replaced byg1/g3, whereg1
andg3 are the conductances of the output junctions. In spite
of this, Eq. (25) is not universal even for spin-degenerate
tunnel-junction circuits. This can be shown by considering
the circuit of Fig. 1, withB=0, P1=P2=P3=0 and a two-
orbital dot (Sec. V). In this case, the division of currents
between the two outputs will generally depend on the orbital
considered, because of the different spatial extensions of the
orbitals and of the asymmetric positions of the output leads
with respect to them.39 One has to assume that the division of
currents between leads 1 and 3 is independent of the orbital
considered in order to recover property(25) at V@Vmax

sgnsE0d.

E. Influence of screening currents at non-zero frequencies

The total instantaneous currentI j
totstd passing through

branch j includes the tunneling currentI jstd but also the
screening currents needed to guarantee the electrostatic equi-
librium of the capacitors after a tunneling event through any
junction i P h1,2,3j. However, screening currents contribute
neither to the average valuekI j

totl of the total currentI j
totstd,

i.e., kI j
totl=kI jl, nor to the low frequency part of the total

current correlationsSij
totsvd, i.e., Sij

totsvd=Sijsv=0d for uvu
! ul+u, because, in average, the screening currents due to
tunneling through the different junctions compensate each
other at zero frequency(see, for instance, Ref. 1). Screening
currents contribute toSij

totsvd only onceSijsvd deviates from
its zero-frequency limit. In the following, we will assume
that the cutoff frequencyul+u is much larger than the inverse
of the collective response times associated to the charging of
the capacitors. This is equivalent to assuming that, on the
time scale on whichsdotstd varies, any charge variation of the
dot triggers instantaneously the screening currents needed for
its compensation:
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I j
totstd = I jstd −

Cj

C
o

i

I istd. s26d

According to this approximation, the total current correla-
tions Sij

totsvd, including screening currents, can be written as

Sij
totsvd = o

n,m
Sdin −

Ci

C
DSd jm −

Cj

C
DSnmsvd. s27d

The sign of these total current cross-correlations is not
trivial. This problem is addressed in Sec. III E.

III. ONE-ORBITAL QUANTUM DOT CONNECTED TO
FERROMAGNETIC LEADS, IN THE ABSENCE

OF A MAGNETIC FIELD

Here, we focus on the one-orbital case introduced in Sec.
II, for B=0 and magnetically polarized leads. In the absence
of a magnetic field, one single resonance is expected in the
voltage characteristics, forV.V0

sgnsE0d. Figures 2–7 show
curves for a constant value of the polarization amplitudes
uP1u= uP2u= uP3u=0.6. This corresponds, for instance, to hav-
ing the different leads made out of the same ferromagnetic
material.

A. Zero-frequency results for E0.0

We first consider the case in which the orbital levelE0 is
above the Fermi level of the leads at equilibriumsE0.0d.

The typical voltage dependence of the average input current
kI2l is shown in the left panel of Fig. 2. This current is
exponentially suppressed at low voltages, increases around
the voltageV0

+ and saturates at higher voltages. The width on
which kI2l varies is of the order ofDV,10kBTC/esC1

+C3d. The high-voltage limit ofkI2l depends on the polariza-
tions Pi and ratesgi but not on the capacitancesCi because
the tunneling rates saturate at high voltages[see Eq.(2)]. For
the paramagnetic case, this limit is

egp = e
2g2gt

gt + 2g2
. s28d

In this last expression,g2 is weighted by a factor 2 to ac-
count for both the populations of up and down spins arriving
from the input lead. The rategt=g1+g3 is not weighted by
such a factor because there can be only one electron at a time

FIG. 2. Left panel: Current-voltage characteristic of the circuit
of Fig. 1, for E0.0, C1=C2=C3, g1=g2/50=g3/10, kBT/ uE0u
=0.1, B=0, and different values of lead polarizations. The average
current kI2l through lead 2 is plotted in units of its paramagnetic
high voltage limitegp=2eg2gt / sgt+2g2d with gt=g1+g3; the volt-
age in units of the resonance voltageV0

+ (see Sec. II B). For P1

=P2=P3 (squares), kI2l coincides with the paramagnetic case(dia-
monds). In the other cases, the high-voltage limit ofkI2l can be
larger or smaller than the paramagnetic value, depending on the
lead polarizations. The inset shows the electrochemical potentials in
the circuit. NotationEF refers to the Fermi level in lead 2.(In all the
plots, potentials are shown for the case where the dot is empty.)
Right panel: Influence of spin-flip scattering in the high-voltage
limit V@V0

+. Here, the spin-flip scatterring rategsf is expressed in
units of gt. Spin-flip scattering makes thekI2lsVd curve tend to the
paramagnetic one.

FIG. 3. Input Fano factorF2=S22sv=0d /2eI2 (left panel) and
output cross-Fano factorF13=S13sv=0d /2eI2 between leads 1 and 3
(right panel) as a function of the bias voltageV for gsf=0. The
curves are shown for the same circuit parameters as in Fig. 2. When
P1=P2=P3 (squares), F2 is different from that of the paramagnetic
case (diamonds) in contrast to what happens forkI2l. At high
enough voltages, the cross correlations are positive in the cases
P1=−P2=P3=0.6 (circles) andP1=P2=P3=0.6. Note that the sign
of the cross correlations can be reversed by changing the sign ofP1.
The case −P1=P2=P3=0.6 (triangles) illustrates that having a
super-PoissonianF2 is not sufficient to obtain a positiveF13.

FIG. 4. Zero-frequency cross correlationsS13sv=0d between
leads 1 and 3 as a function of the bias voltageV for gsf=0 (left
panel) and as a function ofgsf for V@V0

+ (right panel). The curves
are shown for the same circuit parameters as in Fig. 2. In the para-
magnetic case(diamonds), spin-flip scattering has no effect. In the
limit of large gsf, cross correlations tend to the paramagnetic value.
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on the dot, which can tunnel to the output leads with the total
rate gt. For a sample with magnetic contacts, the high-
voltage limit ofkI2l can be higher or lower thanegp, depend-
ing on the parameters considered. Indeed, forV@V0

+, we
have I2sP1,P2,P3d− I2s0,0,0d=egpPoutksdotl, where Pout

=sP1g1+P3g3d /gt is the net output lead polarization, and
where ksdotl=nsP2−Poutd is the average spin of the dot.
Here,n is a positive function of the polarizations, tunneling
and scattering rates, which tends to 0 at largegsf. For P1
=P2=P3, the current is the same as in the paramagnetic case
because the populations of spin are matched between the
input and the output, thusksdotl=0. Having a saturation cur-
rent different from the paramagnetic case requiresPoutÞ0
and ksdotlÞ0. When uPoutu. uP2u, the high-voltage limit of
kI2l is lower than that of the paramagnetic case because the
spins in minority at the output block the dot, which leads to
a ksdotl with the same sign as −Pout. In this case,kI2l can
show negative differential resistance aboveV0

+, due to the
deblockade of the dot by thermal fluctuations which can send
back the blocking spins to electrode 2 forV.V0

+ (Ref. 30)
(see the caseP1=−P2=P3=0.6 in Fig. 2). Spin-flip scattering
modifies thekI2l sVd curve oncegsf is of the order of the
tunneling rates. It suppresses spin accumulation and makes
the kI2l sVd curve tend to the paramagnetic one.

Figure 3 showsF2 andF13 as a function ofV for gsf=0.
We also show in Fig. 4 the zero-frequency cross correlations
S13sv=0d because it is the signal measured in practice. Well
below V0

+, S13sv=0d is exponentially suppressed similar to
kI2l because there are very few tunneling events. In this re-
gime, the dot is empty most of the time, and when an elec-
tron arrives on the dot, it leaves it with a much higher rate:
the electronic transport is limited only by thermally activated
tunneling through junction 2. Tunneling events are thus un-
correlated andF2 is Poissonian, with a unitary plateau fol-
lowing the thermal divergence 2kBT/eV occurring atV=0.
For the same reasons,F13 displays a zero plateau after a
polarization-dependent thermal peak atV=0. Around V
.V0

+, F2, F13, andS13sv=0d strongly vary. The high-voltage
limit depends on tunneling rates and polarizations. In the

paramagnetic case, the high-voltage limit ofF2 lies in the
interval f1/2,1g, and that ofF13 in f−1/8,0g. In the ferro-
magnetic case, the high-voltage limit ofF2 can be either sub-
or super-Poissonian, as already pointed out in the two-
terminal case.30 Spin accumulation is not a necessary condi-
tion for having a super-PoissonianF2, as can be seen for
P1=P2=P3, whereksdotl=0. Negative differential resistance
is not necessary either(see caseP1=P2=P3=0.6 in Figs. 2
and 3). Cross correlations can be either positive or negative
depending on the parameters considered, as shown by Figs. 3
and 4. Interestingly, the sign of cross correlations can be
switched by reversing the magnetization of one contact. The
caseP1=P2=P3=0.6 of Figs. 3 and 4 corresponds to a super-
PoissonianF2 and a positive F13. The case −P1=P2=P3
=0.6 shows that a super-PoissonianF2 is not automatically
associated with positive output cross correlations. In this
case, the cross correlations are even more negative than in
the paramagnetic case. This will be explained physically in
Sec. III C.

The effect of spin-flip scattering onS13sv=0d is shown in
the right panel of Fig. 4. In the paramagnetic case, spin-flip
scattering has no effect onS13sv=0d. In the ferromagnetic
case, whengsf is of the order of the tunneling rates,S13sv
=0d is modified. In the high-gsf limit, cross correlations tend

FIG. 6. Input Fano factorF2 and cross-Fano factorF13 as a
function of the bias voltageV. The curves are shown for the same
circuit parameters as in Fig. 5.

FIG. 7. Zero-frequency current cross correlationsS13sv=0d be-
tween leads 1 and 3 as a function of the bias voltageV. The curves
are shown for the same circuit parameters as in Fig. 5.

FIG. 5. Current-voltage characteristic of the circuit of Fig. 1 for
E0,0. The polarizations, tunnel rates, capacitances, and reduced
temperaturekBT/ uE0u used are the same as in Fig. 2, plotted for
E0.0. The results differ from the caseE0.0 only for V.V0

−.
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to the paramagnetic case for any value of the polarizations.
Thus, strong spin-flip scattering suppresses positive cross
correlations. However, in practice, it is possible to make
quantum dots connected to ferromagnetic leads with spin-flip
rates much smaller than the tunneling rates(see for instance
Ref. 40). Hence, spin-flip scattering should not be an ob-
stacle for observing positive cross correlations in the
quantum-dot circuit studied here.

B. Zero-frequency results for E0,0

We now discuss the case in which the orbital levelE0 is
below the Fermi level of the leads at equilibriumsE0,0d.
First, in the low voltage limit in which very few electrons
can flow through the device,kI2l andS13sv=0d exponentially
tend to zero as in the caseE0.0 (Figs. 5 and 7). However,
for F2 andF13, the results differ(Fig. 6). Above the 2kBT/eV
thermal peak, the low voltage plateau ofF2 is always super-
Poissonian forPoutÞ0. Above a polarization-dependent ther-
mal peak,F13 displays a low voltage plateau which is either
negative or positive. This features indicate a correlated trans-
fer of charges in spite of the thermally activated limit. In
fact, for V!V0

−, the dot is occupied most of the time and the
electronic transport is limited by thermally activated tunnel-
ing through the output junctions 1 and 3. In these conditions,
contrarily to what happens forE0.0, the polarization of the
output leads comes into play even forV→0. Indeed, when
PoutÞ0, the spins in minority at the output have less chances
to leave the dot under the effect of thermal fluctuations. In
the intermediate voltage rangeV.V0

−, the quantitieskI2l, F2,
F13, andS13sv=0d differ from the caseE0.0. However, at
V@V0

−, they take the same values as forE0.0 andV@V0
+.

In this high-voltage limit, the effect of spin flip scattering is
identical to that of the caseE0.0. In particular, the right
panels of Figs. 2 and 4 are also valid forE0,0.

C. Interpretation of these zero-frequency results:
Dynamical spin blockade

In this section, we provide a physical explanation for the
results of Secs. III A and III B, in the high-voltage limitV
@V0

sgnsE0d, where the sign ofE0 does not matter. This analysis
relies on the evaluation of quantities defined in Secs. II A
and II B (Table II), on numerical simulations of the temporal
evolution of the spinsdot of the dot(Fig. 8) and on plots of

TABLE II. Top: Zero-frequency output cross correlationsS13sv=0d and its spin contributionsS1s,3s8sv
=0d, division I1s / I3s of spin currents between leads 1 and 3, and average numbernb of up spins crossing the
input junction between two consecutive down spins, for the high-voltage limitV@V0

sngsE0d of the cases
studied in Secs. III A and III B(Figs. 2–7). Bottom: Probabilitiespc and comparison of the different times-
cales of the system, for the same parameters.[The summation rules(6) and (10) are not exactly verified by
the values given in this table because of the limitation in the number of digits.]

case S13/e2gp S1↑,3↑ /e2gp S1↓,3↓ /e2gp S1↑,3↓ /e2gp S1↓,3↑/e2gp I1↑ / I3↑ I1↓ / I3↓ nb

l −0.030 −0.007 −0.007 −0.007 −0.007 0.1 0.1 1

j 0.121 0.149 −0.013 −0.007 −0.007 0.1 0.1 4

m −0.048 0.026 −0.029 −0.003 −0.042 0.025 0.4 4

P 0.011 0.005 −0.001 0.008 0.008 0.1 0.1 0.25

case p↑ p↓ p0 gpt↑ gpt↓ gpt0 tbgp gp/ ul−u gp/ ul+u

l 0.450 0.450 0.100 0.90 0.90 0.10 1.10 0.09 0.90

j 0.450 0.450 0.099 0.56 2.25 0.10 2.75 0.09 1.46

m 0.516 0.378 0.106 0.60 1.77 0.10 2.91 0.09 1.31

P 0.056 0.895 0.049 0.563 2.25 0.10 0.26 0.09 0.68

FIG. 8. Numerical simulation of the spinsdot of the dot as a
function of time in the limitV@V0

sngsE0d, for the different cases
considered in Figs. 2–7.
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the correlation functionsC13std (Fig. 9).
Let us first focus on the caseP1=P2=P3=0.6 (squares in

Table II). For these values of lead polarization, up spins are
in the majority at the output. Thus, the dwell times of down
spins on the dot is longer than that of up spins(t↓. t↑ in
Table II). However, one hasp̄↓= p̄↑ thus ksdotl=0. This is
becauset↓. t↑ is perfectly compensated by the fact that, due
to P2.0, up electrons are in the majority inI2std. Property
t↓. t↑ suggests that the up spins can flow through the dot
only in short time windows where the current transport is not
blocked by a down spin. This situation of “dynamical spin
blockade” is responsible for a bunching of the tunneling
events associated to the up spins, as confirmed by the nu-
merical simulations ofsdotstd (Fig. 8). The average number
of up spins grouped in a “bunch” corresponds to the quantity
nb given in Table II (see Ref. 41). On the one hand, the
phenomenon of up spins bunching is very strong since, here,
nb=4. On the other hand, one can see that the positive sign
of S13sv=0d stems from the up-up correlations[see
S1↑,3↑sv=0d.0 in Table II]. Therefore, one question to an-
swer is whether the positive sign ofS13sv=0d can be attrib-
uted to this bunching of up-spin tunneling events. For that
purpose, we have plotted the correlation functionC13std (Fig.
9) and compared it to the characteristic time scales of the
electronic transport. The correlation functionC13std is nega-
tive for times shorter than(approximately) the average delay
t0 between the occupancy of the dot by two consecutive elec-
trons. Then,C13std becomes positive and reaches a maximum
at a time comparable to the average delayt0+ t↑ between the
passage of two up spins on the dot. Eventually,C13std is
strongly decreased at times of the order of the average dura-
tion tb of the “bunch” of spins. Hence, the time dependence
of C13std allows us to attribute the positive value ofS13sv
=0d to the bunching of tunneling events caused by dynamical
spin blockade. The same reasoning can be made to explain
the super-Poissonian value ofF2 (data not shown).

In the case −P1=P2=P3=0.6 (triangles in Table II), the
temporal evolution ofsdot (see Fig. 8) is qualitatively similar
to that of the caseP1=P2=P3=0.6, thus up-up correlations

caused by dynamical spin-blockade lead again to a super-
PoissonianF2. However, less up electrons flow through lead
1 than in the previous case because the polarizationP1 has
been reversed(seeI1↑ / I3↑ in Table II). Hence, the positive
term S1↑,3↑sv=0d is not large enough to lead to a positive
S13sv=0d.

In the caseP1=−P2=P3=0.6 (circles in Table II), there is
still dynamical spin blockade, as shown byt↓. t↑ in Table II.
This dynamical spin blockade induces again a bunching of
the tunneling of up spins[seeS1↑,3↑sv=0d.0 in Table II].
However, the up-up correlations are much weaker than in the
P1=P2=P3=0.6 case due to the minority of up spins at the
input. Another positive contribution to the cross correlations
stems from the up-down terms[see S1s,3−ssv=0d.0 in
Table II]. In fact, since the average numbernb=0.25 of up
spins passing consecutively through the dot is very low,41 we
havetb, t↓. Then, each up spin is positively correlated to the
first down spin preceding him(see Fig. 9). As a result, dy-
namical spin-blockade now produces a bunching of tunnel-
ing events responsible for up-up and up-down correlations.
The correlation functionC13std differs from that of the case
P1=P2=P3=0.6 in the sense that it decreases more quickly
after its maximum, due to the smaller value oftb. However,
contrarily to the caseP1=P2=P3=0.6, the decay time of
C13std is much larger thantb, due to large fluctuations in the
number of spins per bunch with respect tonb=0.25(Fig. 8).
In conclusion, we have seen that in all the cases treated here,
the super-Poissonian value ofF2 and the positive sign ofF13
can be explained from the dynamical spin-blockade mecha-
nism which induces a bunching of the tunneling events.

D. Effect of tunneling asymmetry

We now address the problem of how to choose parameters
that favor the observation of positive cross correlations in the
ferromagnetic case treated here. First, from Sec. II C, finite
lead polarizations are necessary. However, it is possible to
get positive cross correlations even ifP2=0, provided the
output of the device is sufficiently polarized. For instance, in
the high-voltage limitV@V0

sgnsE0d, choosingP1=P3, P2=0,
andgsf=0 leads to

S13sv = 0d =
16e2g1g2

2g3s1 − P1
2dfP1

2s2g2 + gtd − gtg
gtf2g2 + s1 − P1

2dgtg3 .

s29d

In this limit, the currentkI2l is not spin polarized, i.e.,
kI2,↑l=kI2,↓l, because up and down spins have the same prob-
ability to enter the dot, regardless of what happens at the
output. The case where the three electrodes are polarized in
the same direction leads to a higher positiveS13sv=0d be-
cause spin accumulation is suppressedsksdotl=0d. Indeed, in
the high-voltage limit, choosingP1=P2=P3 andgsf=0 leads
to

S13sv = 0d =
16e2g1g2

2g3fP1
2s2g2 + gtd − gtg

gts2g2 + gtd3s1 − P1
2d

. s30d

The asymmetry between the tunneling ratesgi has a strong
influence on the cross correlations. From Eq.(30), the case

FIG. 9. Time dependence ofC13std in the limit V@V0
sngsE0d, for

the different cases considered in Figs. 2–7. Note thatC13std is given
in units of −C13st=0d=2kI1lkI3l, which depends on the polarization
values.
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of symmetric output junctions, i.e.,g1=g3, is the most favor-
able configuration for getting a largeS13sv=0d.0 when
P1=P2=P3.

42 In addition, choosing large values ofg2/gt de-
creasesp̄0, which allows to extend the domain of positive
cross correlations to smaller values of polarizations(Fig. 10).
This is important because ferromagnetic materials are usu-
ally not fully polarized(see, for instance, Ref. 43).

E. Finite frequency results

Equation(16) gives the frequency dependence ofS13svd.
The spectrumS13svd deviates from its zero frequency limit
for v* ul+u. In the caseS13sv=0d.0, propertiesul+u, ul−u,
C13st=0d,0, S13

+ .0 andS13
− ,0 (see Sec. II C) imply that

cross correlations always turn to negative whenv increases.
Then, for frequencies larger thanul−u, S13svd tends to zero
(see Fig. 11).

Equation (27) gives the expression of the total current
cross correlationsS13

totsvd measured in practice, including the

contribution of screening currents. The spectrumS13
totsvd dif-

fers from S13svd only for v* ul+u. At large frequenciesv
@ ul−u, S13

totsvd become a linear mixture of the Schottky
noises through the three junctions. If we furthermore assume
V@V0

sgnsE0d, current conservation leads to

S13
totsvd
2e

=
I1C3

C2 sC1 − C2 − C3d +
I3C1

C2 sC3 − C1 − C2d.

This limit depends on the values ofCi considered, in contrast
to what happens forSijsvd. It can be positive as well as
negative depending on the values of parameters. ForP1
=P2=P3=0.6, g1=g2/50=g3/10, C1=C2=C3, and V
@V0

sgnsE0d, one has a crossover from positive to negative
cross-correlations asv increases[S13

totsv=0d /e2gp. +0.121
andS13

totsv@ ul−ud /e2gp.−0.222]. But the opposite situation
is also possible. For instance, withP1=P2=P3=0, g1

=g2/50=g3/10, C1=C2=C3/5, and V@V0
sgnsE0d, one has

S13
totsv=0d /e2gp.−0.030,0 and S13

totsv@ ul−ud /e2gp

. +0.019.0. For other positive cross correlations due to
screening currents, see Ref. 25. We recall that the results
shown in this section are valid if the Markovian approxima-
tion holds, i.e., here"v,minisuE0−eViud.38 The results for
the correlations ofI j

totstd are furthermore valid only forv
larger than the characteristic frequencies associated to the
charging of the capacitors(see Sec. II E).

F. Comments

In spite of the large variety of proposals for getting posi-
tive cross correlations in mesoscopic systems, this effect has
not been observed experimentally yet. We believe that the
mechanism proposed in Sec. III can be implemented with
present techniques. Forg1=g2/10=g3, the polarizationsP1
=P2=P3=0.4 typical for Co(Ref. 43) lead to positive cross
correlations of the order ofS13/e2gtot.0.08. With gp
.5 GHz, this corresponds to a current noise level of
10−29 A2 s. The maximum differential conductance of the
sample depends on temperature:dkI2l /dV,e2gpsC1

+C3d /5kBTC. Assuming thatT=20 mK andC1=C2=C3, one
obtains sdkI2l /dVd−1,h/e2. This leads to a voltage noise
level measurable with existing voltage noise-amplification
techniques.29,44

One difficulty of this experiment is connecting three leads
to a very small structure. We believe that a multiwall carbon
nanotube(MWNT) contacted by ferromagnetic leads could
be an interesting candidate for implementing a three-terminal
device. The question of whether a MWNT splits into two
quantum dots when three contacts are evaporated on top it is
still open. However, given that the intrinsic level spacing of
a MWNT connected to two leads seems to be determined by
its total length rather than by the separation between the
leads,45 a three-terminal quantum dot structure seems fea-
sible. In addition, it has been demonstrated experimentally
that contacting ferromagnetic leads to a MWNT is possible.46

Interestingly, a different mechanism, proposed by Sauret
and Feinberg, can also lead to positive current cross correla-
tions in a quantum-dot circuit connected to ferromagnetic
leads.47 This work also considers current transport through

FIG. 10. Influence of the asymmetry betweeng2 and gt on
S13sv=0d, for V@V0

sgnsE0d, P1=P3=P3, g1=g3, andgsf=0. Accord-
ing to Eq. (30), for these parameters,S13sv=0d is always positive
for high enough values ofP1. Large ratiosg2/ g̃ favor positive cross
correlations by extending the positivity domain to lower polariza-
tion values. In the limitg2@gt, the curve tends toS13sv=0d
=4g1g3P1

2e2/gts1−P1
2d.

FIG. 11. Frequency dependence ofS13svd in the high-voltage
limit V@V0

sgnsE0d, for the different cases considered in Figs. 2–7.
The inset shows the same data for a larger frequency scale.
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one single orbital of the dot. For certain bias voltages large
enough to allow a double occupation of this orbital, the Pauli
principle induces positive correlations between up and down
spins. This so-called mechanism of “opposite-spin bunching”
is antagonist to our mechanism of dynamical spin blockade
which requires that the orbital can be only singly occupied.
However, with both mechanisms, positive cross correlations
can be obtained only when the two spin channels do not
transport current independently, i.e., when charging effects
are relevant.48 We point out that in the three-terminal geom-
etry of Fig. 1, the opposite-spin bunching proposed by Sauret
et al. allows us to get positive output cross correlations in
spite of a sub-Poissonian input Fano factor. This feature,
added to our findings, shows that positive output cross cor-
relations and a super-Poissonian input Fano factor can be
obtainedseparatelyfor a quantum dot connected to ferro-
magnetic leads. Nevertheless, the opposite-spin bunching
proposed by Sauretet al. can lead to positive cross correla-
tions between the total currents through leads 1 and 3 only
when the output leads arestronglypolarized in opposite di-
rections, in order to filter the weak up-down positive cross
correlations induced by this effect. In practice, this is very
difficult to achieve with usual ferromagnetic materials.43

Note that the dynamical spin blockade studied in this ar-
ticle is unrelated with another mechanism called “spin block-
ade,” observed in many semiconductor quantum dots experi-
ments(see Ref. 49, and references therein). This other spin-
blockade refers to the suppression of peaks expected in the
I −V characteristics of a quantum dot for independent single
electron states, but not observed due to quantum mechanical
spin selection rules.

IV. ONE-ORBITAL QUANTUM DOT IN A MAGNETIC
FIELD, CONNECTED TO THREE

PARAMAGNETIC LEADS

In view of the experimental difficulties for connecting fer-
romagnetic leads to semiconductor quantum dots,50 the ques-

tion of whether it is possible to obtain positive cross corre-
lations without using ferromagnetic leads is of great interest.
We thus consider in Secs. IV A and IV B the one-orbital case
introduced in Sec. II, withP1=P2=P3=0 andBÞ0.

At BÞ0, two resonances are expecteda priori in the
voltage characteristics, forV.V↑

sgnsE0d and V.V↓
sgnsE0d. The

limit V@Vmax
sgnsE0d and gsf=0 is the same as in theB=0 case

because the tunneling rates saturate at high voltages. In par-
ticular, from Eqs.(25), (28), and(30), we have in this limit

F2 =
4g2

2 + gt
2

sgt + 2g2d2 ,

F13 = −
4g1g2g3

gtsgt + 2g2d2 . s31d

This means that here, a super-PoissonianF2 and positive
cross correlations can appear only at lower voltages, for
which the casesE0.0 andE0,0 differ significantly. Note
that due toP1=P2=P3=0, one obtains from Eqs.(4) and
(12):

S13 =
g1g3

gt
FSg2

gt
,
g↑↓
gt

,
g↓↑
gt

,
E0

T
,
V

T
,
B

T
D . s32d

According to Eq.(32), for a constant value ofgt, g1=g3
allows to maximizeuS13u. Therefore, in this section, we will
plot curves forg1=g3.

A. Zero-frequency results for E0.0

We first briefly comment the case in which the two Zee-
man sublevels are above the Fermi energy at equilibrium
(i.e., E↑s↓d.0). The current and noise voltage characteristics
obtained in this situation were already discussed in Ref. 51
for the two-terminal case. As in Sec. III A, forV,V↑

+, kI2l

FIG. 12. Average currentkI2l as a function of the bias voltageV
for E0.0, P1=P2=P3=0, C1=C2=C3, g1=g3, kBT/ uE0u=0.05,
gmBB/ uE0u=1, and different values ofg2/gt. These curves display
two steps, forV.V↑

+ andV.V↓
+. The inset shows electrochemical

potentials in the circuit.

FIG. 13. Zero-frequency current cross correlationsS13sv=0d be-
tween leads 1 and 3 as a function of the bias voltageV for the same
circuit parameters as in Fig. 12. Inset: Fano factorF2. These curves
display two steps, forV.V↑

+ andV.V↓
+. Above the thermal peak,

for gsf=0, one hasF2ø1 andS13sv=0dø0 for any values of the
parameters.
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and S13sv=0d are exponentially small andF2 is Poissonian
with a thermal peak atV→0, followed by a unitary plateau
(Figs. 12 and 13). Then, the curveskI2l, F2 and S13sv=0d
show two steps corresponding toV.V↑

+ and thenV.V↓
+. We

have verified analytically that, above the thermal peak, for
gsf=0, one hasF2ø1 andF13ø0 for any values of the pa-
rameters. ForV,V↓

+, the currentkI2l is spin polarized, an
effect which allows to do spin filtering with a nearly 100%
efficiency.52,53

B. Zero-frequency results for E0,0

Below, we focus on the case in which the two Zeeman
sublevels are below the Fermi energy at equilibrium(i.e.,
E↑s↓d,0). To our knowledge, the current noise in this con-
figuration has never been studied before, even for a two-
terminal device. We will first study analytically what hap-
pens above the thermal peak, i.e.,eV@kBT. In this limit, one
can write the tunneling rates asG2s

+ =g2, G2s
− =0, G1s3d↑

−

=xg1s3d, G1s3d↑
+ =s1−xdg1s3d, G1s3d↓

− =yg1s3d, and G1s3d↓
+

=s1−ydg1s3d, where x=1/h1+expf−sE↑−eV1d /kBTgj and y
=1/h1+expf−sE↓−eV1d /kBTgj. The hypothesisB.0 implies
that x,y. First, for V,V↓

−, we havex→0 andy→0. Then,
the parametersx and y go from 0 to 1 while the voltage
increases. ForV=V↓

− i.e., y=1/2, theupper Zeeman sublevel
is at resonance with the Fermi level of the output leads 1 and
3. Then, forV=V↑

− i.e. x=1/2, thelower Zeeman sublevel is
at resonance with the outputs, as represented by the level
diagram in Fig. 14.

The assumptions made on the rates lead to

F13 =
g1g3

g2gt
2fg2sF2 − 1d + gtsx + y − 2dg. s33d

In Sec. II, we have shown that relation(25) betweenF2 and
F13 is always valid at high voltages(i.e, x,y,1 here) for the
single-orbital problem withP1=P2=P3. But this demonstra-

tion does not take into account the symmetries that the prob-
lem takes for certain particular cases. Here, from Eq.(33),
P1=P2=P3=0 implies that property(25) is also valid at any
V above the thermal peak wheng2@gt.

The inequalityt↓=1/ygtÞ t↑=1/xgt for xÞy suggests the
possibility of obtaining again dynamical spin blockade. To
study the situation accurately, we will consider the simple
limit kBT!gmBB, i.e., the up-spins channel starts to conduct
for voltages such that down spin can flow only from the right
to the left. This means that for the first voltage transitionV
.V↓

− (i.e., y.1/2), we havex!1 and it is enough to con-
sider low order developments ofkI2l, F2, and F13 with re-
spect tox:

kI2l =
2eg2gtx

g̃ + g2

+ osxd2, s34d

F2 =
gt + 3g2

gt + g2
+ osxd, s35d

and

F13 =
g1g3fs2g2

2 − gtsgt + g2ds2 − ydg
sgt + g2dg2gt

2 + osxd s36d

for gsf=0. Transport through the upper level is energetically
allowed for y.1/2. However, since we have assumedx
!1, from Eq. (34), kI2l remains very small throughout the
V.V↓

− transition: the dot is blocked by up spins, thus down
spins cannot cross the dot. Even if the current is very low,
this leads to dynamical spin blockade and thus to a super-
PoissonianF2, except in the limitgt@g2 [see Eq.(35)]. Ac-
cordingly, F13 can be positive for certain tunneling rate
asymmetries[Eq. (36)]. The factorF13 shows a step around
V.V↓

−, due to they dependence in Eq.(36), whereasF2 is
constant throughout theV.V↓

− transition. This implies a re-
distribution of the zero-frequency noise betweenS11sv=0d,
S33sv=0d, and S13sv=0d when the thresholdV=V↓

− is
crossed[see Eq.(23)]. The absence of step forF2 can be
attributed to the unidirectionality of tunneling through junc-
tion 2. Indeed,x→0 means thatF2 depends only onp0 and
G0,↑s↓d [see Eqs.(7) and (12)]. Now, for V.V↓

−, the contri-
bution of these terms is independent ofy (and thus onV) at
first order inx, becausep̄0 andG0,↑s↓d are already forced to
very low values due to thex→0 hypothesis. On the contrary,
F13 also depends onp̄↑,↓ and Gs,0 with sP h↑ , ↓ ,0j. For x
→0, these last terms depend strongly ony.

For kBT!gmBB, the second possible voltage transition
V.V↑

− (i.e., x.1/2) can be described by taking the limity
=1, where

kI2l =
2exg2gt

gt + g2s1 + xd
, s37d

F2 = 1 +
2g2fgts1 − 3xd + s1 − xd2g2g

fgt + g2s1 + xdg2 s38d

and

FIG. 14. Current-voltage characteristic of the circuit of Fig. 1
for E0,0, P1=P2=P3=0, C1=C2=C3, g1=g3, kBT/ uE0u=0.05,
gmBB/ uE0u=1, and different values of the asymmetryg2/gt between
the input and the output. These curves display only one step, for
V.V↑

−. The inset shows the electrochemical potentials in the
circuit.
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F13 =
g1g3

gt
2

1

g2fgt + s1 + xdg2g2f2s1 − xd2g2
3

+ s1 − 7x + x2 + x3dg2
2gt − 2s1 − x2dg2gt

2 − s1 − xdgt
3g
s39d

for gsf=0. Around V.V↑
−, the blockade of the dot by up

spins is partially lifted and transport through both levels is
allowed. The average input currentkI2l thus increases with
voltage(i.e., with x) [see Eq.(37)]. On the opposite of what
happens in Sec. IV A, the average currentkI2l is not spin
polarized because up and down spin have the same probabil-
ity to enter the dot. The factorsF2 andF13 both show a step
through theV.V↑

− transition(as indicated by theirx depen-
dency) and tend at high voltages to the usual sub-Poissonian
values.

We now turn to the discussion of the general results dis-
played in Figs. 14–17, obtained from an exact treatment of
the full Master equation. Figure 14 shows the full voltage
dependence ofkI2l. As expected from Eqs.(34) and(37), this
current shows a single step atV.V↑

−, an effect observed
experimentally.54–56The width on whichkI2l varies is of the
order ofDV,10kBTC/eC2, whereas the position of the step
varies only slightly with the asymmetry of the junctions(the
maximal variation is aboutDV8,0.7kBTC/eC2).

The left panel of Fig. 15 shows the voltage dependence of
F2. The low-voltage divergence ofF2 is again a result of the
dominating thermal noise in the limitkBT*eV. As expected
from Eqs. (35) and (38), F2 shows one single step atV
.V↑

−, surrounded by two plateaus, and the low voltage pla-
teau of F2 is super-Poissonian becauset↓. t↑ induces dy-
namical spin blockade(except in the limitgt@g2). The right
panel of Fig. 15 shows the voltage dependence ofF13. As
expected from Eqs.(36) and (39), F13 shows two steps at
V.V↓

− and thenV.V↑
−, andF13 can be positive at low volt-

ages, due again tot↓. t↑. The first plateau displayed byF13 is
positive for g2.gts1+Î5d /2 and the second forg2.gt, as
can be seen from Eq.(36). The high-voltage plateau ofF13 is

negative becauset↑ and t↓ tend to the same value. Note that
the caseg2/gt=1/2 andV↓

−,V,V↑
− is one more illustration

that it is possible to haveF2 super-Poissonian andF13,0.
It is also interesting to look atS13sv=0d which is the

signal measured in practice(Fig. 16). Similar to kI2l, the
cross correlationsS13sv=0d are exponentially small forV
.V↓

−, thus the first voltage step ofF13 is not visible on the
scale of Fig. 16. Cross correlations have a significant varia-
tion around the voltageV.V↑

−, for which the blockade of the
dot by up spins is partially lifted. Wheng2.gt, this variation
consists of a positive peak consistent with the positive pla-
teau found forF13. The maximum positiveS13sv=0d ob-
tained at this peak is of the same order as the maximum
S13sv=0d predicted in the ferromagnetic case for comparable
junction asymmetries(see Sec. III F). Note that the height of
the peak is independent of temperature as long as Eq.(1) is
fulfilled, whereas its width, which is approximatelyDV, de-
pends on temperature. At high voltagesS13sv=0d is always

FIG. 16. Zero-frequency current cross-correlationsS13sv=0d
between leads 1 and 3 as a function of the bias voltageV, for the
same circuit parameters as in Fig. 14 and different values of junc-
tion asymmetry. The inset shows the effect of a magnetic fieldB for
g2/gt=5 andgsf=0.

FIG. 17. Effect of spin flip scattering on the current cross cor-
relations between leads 1 and 3 for the same circuit parameters as in
Fig. 16 andg2/gt=5.

FIG. 15. Input Fano factorF2 (left panel) and output cross-Fano
factor F13 (right panel) as a function of the bias voltageV, for the
same circuit parameters as in Fig. 14. In all curvesgsf=0. The Fano
factor F2 shows only one step forV.V↑

− whereasF13 shows two
steps, forV.V↓

− and V.V↑
−. F2 can be super-Poissonian andF13

positive for certain values ofg2/gt andV (see text).

POSITIVE CROSS-CORRELATIONS DUE TO… PHYSICAL REVIEW B 70, 115315(2004)

115315-13



negative, in agreement with the behavior ofF13.
Since the positive cross correlations found in this work

are due to dynamical spin blockade, we expect a strong de-
pendence on the magnetic field. The inset of Fig. 16 shows
the voltage dependence ofS13sv=0d around the stepV↑

−, for
a fixed temperature, a tunneling asymmetryg2/gt=5, and
various magnetic fields. The amplitude of the positive peak
first increases withB and then saturates once the Zeeman
splitting of the levels is much larger than the thermal smear-
ing of the resonances(i.e.,gmBBù8kBT). The peak then sim-
ply shifts to larger bias voltagesV while B increases. Figure
17 shows the effect of spin-flip scattering on the cross cor-
relations. Spin flips modify the positive peak ofS13sv=0d
when G↑↓=gsf expsgmBB/2kBTd,gi, see Eq. (4). As ex-
pected, a strong spin-flip scattering suppresses all spin ef-
fects and turns the positive cros correlations to negative. It is
thus preferable to use aB not larger than 8kBT when spin flip
scattering is critical.

C. Comments

There is a strong qualitative difference between the ferro-
magnetic case of Sec. III and theBÞ0 case of Sec. IV: in
Sec. IV we have obtained positive cross correlations in the
form of a peak around a resonance voltage whereas in Sec.
III, positive cross correlations reach their maximum above
the resonance voltage.

In practice, we can imagine to tune the bias voltageV
such that different orbital levels will transport current suc-
cessively while the gate voltage of the dot is swept, leading
to an effectiveE0 oscillating between positive and negative
values. In this situation, the results of Secs. IV A and V B
indicate the possibility of having the sign ofS13sv=0d which
oscillates with the gate voltage.

MWNT’s could be possible candidates for observing this
effect. However, lateral semiconductor quantum dots seem
even more attractive. The fabrication technology of lateral
semiconductor quantum dots allows to engineer more than
two leads just by adjusting a lithography pattern(see, for
instance, Ref. 39). Another advantage of these structures is
that the asymmetry of the tunnel junctions, which is very
critical for getting dynamical spin blockade, can be con-
trolled just by changing the voltage of the gates delimiting
them. In addition, it has been shown that the spin-flip rate
can be very low in semiconductor quantum dots.56,57 How-
ever, implementing the model of Sec. IV requires that the
leads can be considered as unpolarized, which is not obvious
in these systems if the magnetic field is not applied locally to
the dot but to the whole circuit. In certain cases, the magnetic
field can induce a significant spin polarization at the edges of
the two-dimensional electron gas, leading to different net
tunneling ratesg j ,↑ andg j ,↓ for up and down spins.53,58,59In
an extremely simplified approach, we have taken this effect
into account with finite polarizationsP1=P2=P3 with the
same sign asB (see Fig. 18). The positive peak ofS13sv
=0d is suppressed whileP1 increases because the tunneling
rates of spins which blocked the dot forP1=P2=P3=0 in-
crease. However, this positive peak is replaced by a high-
voltage positive limit simply identical to that of Sec. III for

the corresponding polarizations. Note that for semiconductor
quantum dots in the few electron regime, the time evolution
of usdotu can be measured by coupling the dot to a single
electron transistor or a quantum point contact.60–63 In the
high-voltage limit where current transport is unidirectional,
studying the statistics ofusdotstdu would give a direct access
to S22svd for currents too low to be measured with standard
techniques.

V. TWO-ORBITAL SPIN-DEGENERATE QUANTUM
DOT CIRCUIT

A. Mapping onto the one-orbital non-spin-degenerate case

We now consider the quantum dot circuit of Fig. 1 with
V.0, connected to paramagnetic leadssP1=P2=P3=0d and
with no magnetic fieldsB=0d. We assume that two different
orbitals levelsa and b of the dot are accessible for current
transport (see Fig. 19), but we still consider that the dot
cannot be doubly occupied. We defineg j ,orb as the net tun-
neling rate between leadj and the orbital orbP ha,bj. This

FIG. 18. Zero-frequency current cross correlations between
leads 1 and 3 as a function of the bias voltage for the same circuit
parameters as in Fig. 16,g2/gt=5 andgsf=0. The full line corre-
sponds to the caseP1=P2=P3=0 shown in Fig. 16 and the dashed
lines to finite values ofP1=P2=P3.

FIG. 19. Electrochemical potentials for a quantum dot con-
nected to three paramagnetic leads and subject to no magnetic field,
with two different orbitals levelsa and b accessible for current
transport.
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problem is spin degenerate and can thus be treated without
the spin degree of freedom, which is replaced by the orbital
degree of freedom. The rate for an electron to tunnel between
lead j and the orbital level “orb” in directione is G j ,orb

e

=g j ,orb/ s1+expfesEorb−eVjd /kBTgd, whereEorb is the intrin-
sic energy of the orbital level “orb.” This problem can be
treated in the sequential tunneling limit with a Master equa-
tion analog to Eq.(3). There is in fact a direct mapping
between this problem and that described in Sec. II. We will
assume thatEa,Eb, so that the orbitalsa andb will play the
roles of the Zeeman sublevels↑ and ↓ of Sec. II, where
B.0. One has to replace the parameters of the previous
problem by

E↑s↓d → Easbd,

g j →
g j ,a + g j ,b

2
, s40d

Pj → P̃j =
g j ,a − g j ,b

g j ,a + g j ,b
,

g↑↓s↓↑d → gabsbad.

This mapping shows that one can obtain a super-
PoissonianF2 or a positiveF13 in this two-orbital system.
This result demonstrates that interactions can lead to zero-
frequency positive cross correlations in a normal quantum
dot circuit even without lifting spin degeneracy. Note that in
practice,g j ,a=g j ,b is not obvious because of the different
spatial extensions of the orbitals(see, for instance, Refs. 39
and 53). This problem is thus equivalent to a one-orbital
problem with BÞ0 and with finite effective polarizations

P̃1, P̃2, P̃3 which can be close to ±1. Positive cross correla-
tions can be expected either at the resonance associated to
level b (for Eb,0) or in the plateau following this reso-
nance, depending on the parameters(see, for instance, Figs.
18).

B. Comments

In the one-orbital ferromagnetic case, we have shown that
the simple relation(25) betweenF2 and F13 is valid in the
high-voltage limit only whenP1=P3. Therefore, according to
the mapping indicated in Sec. V A, in the two-orbital case,

relation (25) is valid in the high-voltage limit only ifP̃1

= P̃3, i.e.,g1,a/g3,a=g1,b/g3,b. Hence, the conditions of valid-
ity of property (25) found in Sec. II D for the one-orbital
system(i.e., same polarization for the two output leads and
high-voltage limit) cannot be generalized to the two-orbital
case.

In the spin-degenerate case treated here, positive cross
correlations stem from the partial blockade of an electronic
channel by another one, thus we suggest to call this effect

dynamical channel blockade. This effect should be observ-
able in semiconductor quantum dots. The advantage of tak-
ing B=0 is that the problem of spurious lead polarization
evoked in Sec. IV is suppressed. When eV@ uEb+ECu and
gsf=0, the two channels conduct current independently, thus
dynamical channel blockade is suppressed and the positive
cross correlations disappear[see, Eq.(40) and Ref. 48].
WhenDE!kBT, cross correlations are always negative in a
spin-degenerate three-terminal quantum dot placed in the se-
quential tunneling limit.28 Therefore, our hypothesisDE
@kBT is also necessary to obtain positive cross correlations
in this device. In fact, whenDE!kBT, the electron leaving
the dot at a given time is not necessarily the one which
entered the dot just before, in spite of eV!EC: channel ef-
fects are suppressed.

Note that a super-Poissonian Fano factor can also be ob-
tained in a spin-degenerate circuit based on two biterminal
quantum dots(or localized impurity states) placed in parallel
and coupled electrostatically to each other.64–66 If one of the
dots is charged, the other cannot transport current because of
the Coulomb repulsion. The dot which changes its occu-
pancy with a lower rate modulates the current through the
other one, which leads to a dynamical channel-blockade
analogous to what we found. The possibility to get positive
cross correlations in these systems was not investigated, but
Sec. V of the present article suggests it.

VI. CONCLUSION

We have considered noise in a three-terminal quantum dot
operated as a beam splitter. In this system, a super-
Poissonian input Fano factor is not equivalent to zero-
frequency positive output cross correlations. We have studied
three different ways to get these two effects, due to the
mechanism of dynamical channel blockade. The first two
strategies consist in involving only one orbital of the dot in
the electronic transport and lifting spin degeneracy, either by
using ferromagnetic leads or by applying a magnetic field to
the dot. We have furthermore shown that lifting spin degen-
eracy is not necessary anymore when two orbitals of the dot
are involved in the current transport. These results show that
one can get zero-frequency positive cross correlations due to
interactions inside a beam splitter circuit even if this is a
spin-degenerate normal fermionic circuit with a perfect volt-
age bias.
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