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Coherent Rashba spin precession along interacting multimode quantum channels is investigated, revisiting
the theory of coupled Tomonaga-Luttinger liquids. We identify susceptibilities as the key parameters to govern
exponents and Rashba precession lengths. In semiconducting quantum wires spins of different transport chan-
nels are found todephasein their respective precession angles with respect to one another, as a result of the
interaction. This could explain the experimental difficulty to realize the Datta Das transistor. In single walled
carbon nanotubes, on the other hand, interactions are predicted to suppress dephasing between the two flavor
modes at small doping.
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I. INTRODUCTION

Rashba precession1 of spins and its manipulation has been
studied intensively2 in recent years, aiming to control the
coherent propagation of electron spins. One goal is to realize
a spin transistor;3 another interesting option could be to
switch between singlet and triplet entangled states for direct-
ing, for example, noise statistics4 or for quantum computing.
Despite major efforts, manipulation of coherent Rashba pre-
cession could not be demonstrated experimentally yet in the
polarizer–analyzer type transport arrangement. Rashba spin
splitting occurs near surfaces in the presence of internal or
externally applied symmetry breaking electric fields perpen-
dicular to the transport direction.1 Spins precess when in-
jected out of the spin-orbit eigendirections. Any dephasing
along the structure limits successful transistor operation. One
important dephasing mechanism in spin-orbit active struc-
tures of more than one dimension arises due to momentum
randomizing scattering events by impurities(elastically), by
phonons(inelastically),5 or by electron-electron scattering
events.6 One-dimensional structures confine the direction of
propagation, thus reducing this source of dephasing
mechanism.7 Already in their original proposal3 Datta and
Das therefore suggested to use clean one-dimensional struc-
tures for the spin-orbit active medium. The current work fo-
cuses on quantum wires and assumes absence of momentum
randomizing scattering events. No spinrelaxingmechanisms
(in the sense that off-diagonal entries of the spin density
matrix decay) will be considered here.

Most quantum wires of current experiments accommodate
more than one transport channel at the Fermi energy. This
holds true also for single walled carbon nanotubes(NT)
where at least two flavor channels carry(spin) current. In NT
spin transport has been established experimentally8 and stud-
ied theoretically.9 Other experimental multichannel systems
consist of arrays of quantum wires fabricated artificially in
parallel at close proximity.10 In any multichannel wire the
interesting question arises whether Rashba-spin phases in-
crease by equal amounts along different channels or not. Pro-
vided the kinetic energy dispersion is strictly parabolic, de-
scribed by a common effective carrier mass in each channel
as in most semiconducting quantum wires, one would expect
equal spin phases in all channels as a result of the linear

splitting by the Rashba energy,3 so that their probabilities to
enter the spin selective drain contact all add up. We shall
demonstrate that Coulomb interactions between charged
electrons affect their spin propagation properties and ulti-
mately destroy the phase relationship of Rashba precessing
spins between channels in quantum wires(QW) fabricated
on the basis of semiconducting material. This limits opera-
tion of the Datta Das spin transistor. In metallic single walled
nanotubes, on the other hand, with their linear kinetic energy
dispersion, spins dephase between modes already without ac-
counting for interactions; remarkably, in this case we find
that the Coulomb interactionsuppressesthis single particle
dephasing between the two flavor modes, particularly at
small doping, thus facilitating coherent spin precession along
NT.

II. INTERACTING MULTIMODE QUANTUM WIRES

Before addressing the effect of spin-orbit coupling let us
first discuss the(possibly screened) Coulomb interactions
within and between transport channels. One-dimensional
systems are particularly susceptible to electron–electron in-
teractions, even when weak.11 Neither in semiconducting
QW12 nor in NT13,14 interactions can be disregarded. Con-
trary to higher dimensions they show up, for example, as
nonuniversal power laws at low energies. The most conve-
nient theoretical framework is the Bosonic Tomonaga–
Luttinger liquid (TL)15 developed since the seminal work by
Haldane.16 However,a priori, it is not clear in how far the
TL-model can be applied to multichannel situations. Strictly
equivalent modes of equal particle densities and interaction
matrix elements, for example, tend to stabilize a gapped
charge or spin density, non-TL low energy phase17 due to the
appearance of relevant(in the sense of a perturbative renor-
malization group treatment) momentum conserving inter-
mode backscattering processes. On the other hand, most real
systems lack such a strict equivalence of modes. In multi-
channel quantum wires particle densities differ at given
Fermi energy, and even systems of Ref. 10 without fine tun-
ing of densities, or the two flavor modes of NT at not exact
zero doping cease to be strictly equivalent. Here, we there-
fore focus on the generic case of unequal modes which are

PHYSICAL REVIEW B 70, 115313(2004)

1098-0121/2004/70(11)/115313(6)/$22.50 ©2004 The American Physical Society70 115313-1



expected to stay in the gap-less low energy TL phase.
In this phase Matveev and Glazman(MG) have computed

a power law for the density of states of spin-less electrons at
the end of thenth mode:18

nnsvd , vbn, s1d

generalizing the single channel case.11,16,19MG obtained the
exponentsbn within a pure plasmon model by modeling the
charge density fluctuations as coupled harmonic strings.
Plasmon velocitiess, and the normalized eigenmodesgn,, as
obtained from the dynamical matrix, determine18

bn
MG = − 1 +o

,

ugn,u2s,/vn, s2d

vn is the Fermi velocity in thenth channel. This approach
merely accounts for long wave length charge properties and
can shown to be equivalent to the random phase approxima-
tion (RPA) to plasmon velocities20 generalized to coupled
modes.21 It has been pointed out22 that the RPA result de-
serves improvement at small particle densities. Moreover, it
disregards exchange processes and spin, and tacitly presumes
“super” Galilei invariance of every channel individually, as
discussed below. Spin properties and exchange are known to
depend on short wavelength properties of the interaction.23

For given microscopic interaction the parameters of the
single channel TL model, and therewith sound velocities and
exponents, have been obtained from homogeneous and static
susceptibilities,22 exploiting exact thermodynamic
relations.16,15,24These susceptibilities, in turn, can be com-
puted to high accuracy by standard many-body techniques
from the underlying Fermion model, beyond the RPA or per-
turbative accuracies. This way the asymptotic behavior of
correlation functions has been determined in the 1D Hubbard
model from the Bethe Ansatz ground state energyE0.

24 In the
Galilei invariant charge sector of QW only the compressibil-
ity k=fLs]2E0/]N2dg−1 is required(N is the particle number
and L the system length) to fix the exponent parameterKr

=ÎpkvF /2. In spin sector SU(2) spin rotation invariance en-
forcesKs=1 (cf., e.g., Refs. 15 and 25). As a further impor-
tant property of one dimension charge and spin density wave
excitations are expected to separate and move at different
velocities.16 Evidence for this has been found in recent
experiment.10 Spin velocities of QW have been deduced
from quantum Monte Carlo magnetic susceptibilities.26 Here
we generalize thisa priori exact thermodynamic approach to
coupled channels. Spins can be incorporated as separates
=± modes which allows to account even for non-SU(2) in-
variant situations, as it arises for example in the presence of
a Zeeman field.27

From the microscopic point of view we consider the 1D
system

H = o
n,k,s

enskdcn,k,s
† cn,k,s +

1

2L o
k,s,k8,s8,q

cn1,k−q,s
† cn2,k8+q,s8

†

3Vn1n2n3n4
sqdcn3,k8,s8cn4,k,s. s3d

Fermi annihilation operatorscn,k,s refer to wave vectork and
spin s of moden. Assuming electron wave functions of the

product form,wnsx'deikx/ÎL (for a discussion of this prod-
uct assumption cf. Ref. 22) we obtain

Vn1n2n3n4
sqd =

2e2

«
E dx'E dx'8 wn1

* sx'dwn2

* sx'8 d

3wn3
sx'8 dwn4

sx'dK0suquux'8 − x'ud, s4d

from the 3D–Coulomb interaction between electrons,« is the
dielectric constant of the material surrounding the wire. The
Vn1n2n3n4

can be expressed analytically for many cross sec-
tions of physical relevance.28,29 Some of theVn1n2n3n4

vanish
by symmetry: for example, angular momentum conservation
on a cylinder surface of NT requiresn1+n2=n3+n4, or oi ni
must be even in QW of mirror symmetric cross section.
“Direct” terms may be approximated asVnn8n8n

QW sqd
<se2/«deq̃K0sq̃d or Vnn8n8n

NT sqd<s2e2/«dI0sr uqudK0sr uqud at q−1

larger than the diameter(QW) d or the radiusr (NT). At
small q both reveal the same logarithmic increase which
eventually will be screened by remote metallic gates. In the
above formulas In and Kn are Bessel functions and
q̃=d2q2/8. “Exchange” terms between the lowest two
modes of parabolically confined QW areV1212

QW sqd
=se2/«dq̃eq̃fK1sq̃d−K0sq̃dg (Ref. 28) while in NT the two
lowest degenerate flavor modes have angular momentum
zero and interact,V1111

NT sqd.
The Boson model,16 describing gapless excitations of fer-

mions in a 1D wire of lengthL (periodic boundary condi-
tions) in the vicinity of the Fermi energy, takes the form

H = o
qÞ0

sHq
s1d + Hq

s2dd +
p

4L
sNW vNNW + JWvJJWd, s5d

when generalized toM modes. Bold letters indicateM 3M
matrices and the components of vectors refer to modes 1
ønøM. In Eq. (5)

Hq
s1d =

p

Lo
r=±

%W rsqdSv +
Vs1d

p
D%W rs− qd

Hq
s2d =

p

Lo
r=±

%W rsqdSVs2d

p
D%W −rs− qd, s6d

describe excitations of right/leftsr = + /−d going Bosonic
density fluctuations%rnsqd at wave numbersqÞ0. Topologi-
cal excitations[last term in Eq.(5)] describe changes in the
ground state energy when particlesNn or currentsJn are
added to moden at q=0. This second part of Eq.(5) is
important in the present context and is governed by general-
ized homogeneous and static compressibilities and(Drude)
conductivities:

svNdnn8 =
2L

p

]2E0

] Nn ] Nn8
and svJdnn8 =

2L

p

]2E0

] Jn ] Jn8
,

s7d

respectively. They generalize corresponding TL parameters
for single channels15 (E0 is the ground state energy of the
interacting electron system) and govern the complete low
energy physics. As in the single channel case16 vN andvJ are
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related to the interactions between density fluctuations in Eq.
(6), moving in the same

Vs1d/p = svN + vJd/2 − v, s8d

or opposite

Vs2d/p = svN − vJd/2 s9d

directions, assumingenskd=ens−kd and thus Fermi velocities
svdnn8=vndnn8 of equal magnitudes at either Fermi point.

Importantly, all entries ofvN and vJ are observable, at
leastin principle, and must therefore agree in bosonic(5) or
fermionic [Eq. (3) together with(7)] representation. This al-
lows deductionVs1d and Vs2d by standard many-body tech-
niques from the given microscopic interaction(4) through
Eqs.(7)–(9). ThereforevN andvJ (and not exponents as of-
ten assumed for single channel quantum wires) are the prin-
ciple parameters governing the low energy physics in the
multichannel case. They establish the quantitative link to the
microscopic Fermion model(3). For real quantum wires self-
consistent Hartree-Fock,22,30diagrammatic,23 or Monte Carlo
techniques26 were used to deduce TL parameters from a mi-
croscopic model for electron-electron interaction potential.
As a first approach to multichannels we rely on the pertur-
bative approximation below, which, when including the Fock
term (as crucial in spin sector), proves already as superior to
the often used random phase approximation20 to TL
parameters.22

The matricesvN andvJ reflect symmetries of the system
under permutations of modes. One important case are
equivalent modes whensvdnn8=vdnn8 in Eq. (6), andvN and
vJ both are cyclic matrices. Then Eq.(5) can be diagonalized
and the Bogoliubov transformation solving for plasmon ve-
locities and exponents can be carried out separately in each
of the resulting independent “normal mode” TL(two equiva-
lent channels, for example, can be separated trivially into
independent%1+%2 and %1−%2 modes). Another symmetry
is Galilei invariance(observed in QW and NT) for which
Tr vJ=onvn (Ref. 31) stays independent of interactions. The
higher symmetry, where the ground state energy changes
only by the trivial kinetic part, independently of the interac-
tion strength, under boosting any individual channel,Jn
→Jn+dn, we call “super” Galilei invariance. It impliesvJ
=v, i.e., Vs1d=Vs2d which in general is not observed by Eq.
(3) though tacitly assumed often in theoretical work.

Of central importance is the single particle density matrix
kcnsxdcn8

† s0dl which can be evaluated from Eq.(5) using
Boson operators anq=Î2p /Luquor Qsrqd%rnsqd with
fanq,an8q8

† g=dnn8dqq8, generalizing the single channel
case.16,15 New Boson operatorsbnq eventually diagonalize
Hq

s1d+Hq
s2d. They are obtained via a Bogoliubov transforma-

tion reading in the multicomponent cases aW †

aW
d=s u v

v u
ds bW†

bW
d.

Here, the M 3M matrices u and v must satisfy
fwfvuv−1swvuv−1dt−vswvdtggll8=dll8 where w=svuv−1u
−v2d−1 and t indicates the transpose. This condition is ful-
filled when

u = R c R and v = R s R, s10d

provided R is orthogonal, andcll8=dll8 coshql and sll8
=dll8 sinh ql are diagonal matrices, 1ø l , l8øM. The
1
2MsM −1d real parameters ofR and theM anglesql are
found from the1

2MsM +1d equations

sc sdS Ṽs2d/p ṽ + Ṽs1d/p

ṽ + Ṽs1d/p Ṽs2d/p
DSc

s
D = 0. s11d

Here, the tilde connotes rotated symmetric matrices,Ã
=R−1AR=Ãt.

Finally, theM eigenvalues of

sc sdSṽ + Ṽs1d/p Ṽs2d/p

Ṽs2d/p ṽ + Ṽs1d/p
DSc

s
D , s12d

with the outcome of Eq.(11) inserted forc, s, andR, are the
(generalized) plasmon velocities ofoqÞ0 sHq

s1d+Hq
s2dd. The

same sequence of transformations does not, in general, diag-
onalize the topological excitations which explains why
coupled TLs cannot necessarily be decomposed into inde-
pendent “normal mode TLs.”

Equations(7)–(12) calculate the(asymptotic) power law
behavior of any Fermion function[cf. Eq. (18) below]. This
completes the solution for low energy properties in multi-
mode electron liquids in 1D. In the(super-Galilei invariant)
special casesVs1ddnn8=sVs2ddnn8=V0 for all n andn8, the en-
suing open boundary exponent as well as the plasmon veloci-
ties Eq. (12) agree with the results of Ref. 18. As stated
above, the present approach includes spins through separate
modess= ±1.

With SU(2) spin rotation invariance charge-spin separa-
tion continues to occur in multichannel systems, so that in-
troducing the additional indexn=r ,s for the charge and spin
sector, respectively, rendersvN and vJ block diagonal. Fur-
thermore, the chiral SUs2d3SUs2d symmetry of the fermi-
onic model at low energies provide separate spin rotation
invariance of right and left movers, giving rise tovNs=vJs in
spin sector. Very strong spin-orbit coupling will spoil charge-
spin separation in general. In QW, however, charge and spin
are mixed only to the orderOsa5d (Ref. 32) which therefore
is rarely expected to be of importance[cf. Eq. (13) below,a
is the spin-orbit coupling parameter]. In NT, on the other
hand, charge-spin separation is already broken to the order
Osad. Here, the very small value ofa, expected from the
small carbon mass, leaves this breaking less important and
justifies calculating Rashba precession lengths to the leading
order ina. With charge-spin separation Rashba precession is
controlled solely by the spin sectorn=s where, from now
on, the indexn runs only overM spatial modes.

III. RASHBA-SPIN PRECESSION LENGTH

We address the physical situations referred to in Sec. I by
studying two model systems: QW for quantum wires and NT
for nanotubes. In QW the single particle kinetic energy dis-
persion may be regarded asen

QWskd=en+k2/2me whereen are
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subband energies andme is the effective mass. The Rashba
spin-orbit energy

Hso= assxkz − szkd, s13d

deemed as independent of the mode index, adds a linear
contribution ±ak and splitsen

QWskd into two equal parabolas
intersecting at the origin(this statement holds strictly true
only for not unrealistically strong spin orbit coupling
strengths,a!vn, as discussed above32,33). Both branches are
indexed by the electron spin projection perpendicular to the
wire axes, taken as thez direction for convenience(the x
axes points along the wire). Within each mode, at the Fermi
energy, the spin splitting yields a finite difference of Fermi
momentakn↑−kn↓=2ame which, as important property of the
QW case, does not depend onn. Spins initially polarized
along the x axes therefore precess once over a length
4p / ukn↑−kn↓u=2p /ame, equal in all channels.

The other system we consider are metallic carbon nano-
tubes(NT). Here, spin-orbit coupling34 arise predominantly
from the curvature of the tube surface, cf. Ref. 35; in flat
graphite layers it vanishes by mirror symmetry. The kinetic
energy dispersion may be taken asen

NTskd= ± hen+vFfukF

−kuQskd+ ukF+kuQs−kdgj, disregarding, for simplicity, para-
bolic parts of the dispersion close to the subband bottoms at
en. Here,kF denotes the Fermi momentum at zero doping and
vF the Fermi velocity. For everyn there exist two different
flavor branchesb= ±1, depending on the magnitudeuku .

, ukFu,
of opposite velocities at given sign ofk. AddingHso from Eq.
(13) yields differences kn↑−kn↓=2aseF−en+bvFkFd / svF

2

−a2d at the Fermi energy, and therefore Rashba precession
lengths, depending now onn and, additionally, onb.

So far we considered independent electrons for QW and
NT. It has been shown recently that electron–electron inter-
actions influence and actually enhance Rashba precession in
2D structures36 and in single transport channels.32 To calcu-
late Rashba lengths on the basis of the multichannel TL-
model(5) requires expressing Eq.(13) in Bose variables. As
in single channels32 Hso is found to be proportional to the
spin currentsJn,s. The expressions:

Hso
QW = − ameo

n
vnJn,s s14d

and

Hso
NT = − avF o

n

en,ueFu

eF − en + bvFkF

vF
2 − a2 Jn,s, s15d

however, differ in the two cases, QW and NT, as can be
checked in the limit of vanishing interaction, whensvNsdnn8
=svJsdnn8=vndnn8 in Eq. (5) reproduces the Rashba preces-
sion lengths 2p / ukn↑−kn↓u in individual QW or NT channels,
respectively(Hso is a single particle operator and does not
depend on the Coulomb interaction).

With Eqs. (14) and (15) we are now in the position to
calculate

fsLd =
1

Mo
nn8

kfcn↑sLd + cn↓sLdgfcn8↑
† s0d + cn8↓

† s0dgl,

s16d

employing the well known Boson representation for Fermi
operatorscnssxd.16 In the spirit of the Datta-Das setup3 the
quantity fsLd can be interpreted as the probability amplitude
to measure an electron atx=L with its initial spin polariza-
tion parallel to thex axes, provided it was injected atx=0
with equal probability amplitudes into all occupied channels.
The result can be represented as

fsLd = o
nn8

gnn8sLdcosspL/lnd. s17d

As indicated in the previous section the asymptotic power
law decay of the two point functiongnn8sxd,uxu−bnn8 can be

expressed through the solutions of Eq.(11) for R andqW :

bnn8 = dnn8 + 2o
j

RnjRn8 j sinh2 q j . s18d

Equation(18) generalizes the known result for the electron
Green function of single channels.11,16 By virtue of confor-
mal invariance the time dependence can be deduced, yielding
the open boundary exponent

bn = − 1 +o
n8

Rnn8
2 e−2qn8, s19d

for the density of states[Eq. (1)].
Equation (17) allows to read off the inverse precession

lengths

1

ln
QW =

ame

p
o
n8

svJs
−1dnn8vn8 s20d

and

1

ln
NT =

avF

p
o
n8

en8,ueFu

svJs
−1dnn8

eF − en8 + bvFkF

vF
2 − a2 , s21d

after which spins reverse their polarization in channeln. We
see that theln are governed by the matricesvJs of spin
conductivities. Without electron–electron interaction
svJsdnn8=vndnn8 so thatln

QW=l stay equal in all channels of
QW [Eq. (20)]. This would yield optimum transistor opera-
tion as discussed before. Interactions, however, alter the di-
agonal entries and, additionally, generate off-diagonal entries
in vJs, describing the coupling between channels. In general
ln

QW becomen dependent so that different channels dephase.
Remarkably, as demonstrated now, interactionsreducespin
dephasing in the two lowest flavor modes of single walled
NT [Eq. (21)], compared to its magnitude in the absence of
interactions.

IV. PERTURBATIVE ESTIMATE

Sufficiently weak interactions can justify the perturbative
estimate tovJs. Crucial is the magnitude of nonzero Fourier
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components, which even in metallic NT are small compared
to the Fermi velocity, since the(large) q=0 component of the
interaction does not affect the spin sector and is properly
accounted for on the RPA level. Imposing SU(2) symmetry
[naive low order perturbation theory violates SU(2)
invariance22] results in

svNsdnn8 = svJsdnn8

= fvn − hVnnnns2knd + o
jÞn

Vnjnjskn + kjd

− Vnjnjskn − kjdj/2pgdnn8

− fVnn8nn8skn − kn8d/2pgs1 − dnn8d. s22d

Here,kn denotes the Fermi momentum of moden.37

Figure 1(a) shows the resulting differenceul2−l1u /ls0d of
Rashba lengths relative to this lengthls0d in the absence of
interactions in a two-channel QW of widthd=aB/Î2 (aB is
the Bohr radius). This phase difference can exceed 30% and
decreases only wheneF and the carrier density increase so
that the interaction strength diminishes. We see that dephas-

ing never vanishes within the regime of validity of the per-
turbational approach at not too small carrier densities in the
second subband,eF*1.15v0 [note that for harmonic confin-
ing potential the third subband(not included here) becomes
occupied aboveeF /v0.2]. Experimentally, it might be pos-
sible to disentangle two Rashba periods and thus, by moni-
toring their dependence on the interaction strength(carrier
density), verify the predicted dephasing mechanism when
two channels are occupied. For the Datta Das transistor
based on semiconductor QWs this result clearly suggests to
use only the lowest subband.

In Fig. 1(b) the difference of Rashba lengths of the two
lowest(degenerate) flavor modes of metallic single wall arm
chair sm,md NT is seen form=5 [subband energiese1=e2

=0, the Fermi momentakh1
2
j=m/Î3r ±eF /vF, r is the tube

radius, ande2/evF<2.7 (Ref. 14), relative to the splitting
ls0d at zero doping. Dephasing can be shown to be sup-
pressed logarithmically,eF / fc1−c2lnseF /v0dg+OseF

3d at
small doping(c1 and c2 depend on the tube radius andc2
vanishes with the interaction), compared to the interaction
free case(dashed) wherec1=m/2. This suggests the use of
single walled NT close to the neutrality point38 for coherent
Rashba precession along both flavor channels.39

V. SUMMARY

We have calculated Rashba spin precession lengthsln in
multimode quantum wires, accounting for electron-electron
interactions, using the Bosonization method. To this end we
have developed an, in principle, exact description for the TL
phase of coupled quantum channels that allows the inclusion
spin. Generalized charge and spin compressibilities and con-
ductivities are identified as the key parameters to determine
the power law exponents and to establish quantitative contact
with the underlying interacting electron model. In semicon-
ducting wires, characterized by a parabolic kinetic energy
dispersion, we find that theln becomen dependent, giving
rise to doubts whether multichannel systems can be used as
an active part of the Datta-Das transistor. This result could
explain the up to date lack of successful transistor operation
and clearly suggests to use single channel quantum wires. In
metallic single walled carbon nanotubes, on the other hand,
we find that dephasing between the two flavor modes, arising
due to the linear kinetic energy dispersion, is suppressed by
the electron–electron interaction, particularly at small dop-
ing, which could make these systems interesting for coherent
spin transport.
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FIG. 1. Differenceul2−l1u /ls0d vs Fermi energyeF /v0 in units
of the subband energyv0 for two channels. In QW(a) interactions
always cause dephasing between both modes while in single walled
NT (b) dephasing between the two flavor modes can be significantly
suppressed at small doping compared to the noninteracting case
(dashed).
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