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We have studied the single-electron transport spectrum of a quantum dot in GaAs/AlGaAs resonant tunnel-
ing device. The measured spectrum has irregularities indicating a broken circular symmetry. We model the
system with an external potential consisting of a parabolic confinement and a negatively charged Coulombic
impurity placed in the vicinity of the quantum dot. The model leads to good agreement between the calculated
single-electron eigenenergies and the experimental spectrum. Furthermore, we use the spin-density-functional
theory to study the energies and angular momenta when the system contains many interacting electrons. In the
high magnetic field regime the increasing electron number is shown to reduce the distortion induced by the
impurity.
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I. INTRODUCTION

The tunability in size, shape, and electron number of
semiconductor quantum dots(QD) provides numerous tech-
nological applications as well as interesting many-electron
physics.1 In actual QD devices, the effects induced by impu-
rities or donor scattering centers may be remarkable. In most
cases, irregularities in samples have only an indirect influ-
ence on the many-body structure, complicating the identifi-
cation of the origin behind the peculiar behavior in the mea-
sured characteristics of QD’s.

A clean quantum dot typically shows single-electron en-
ergy levels reminiscent of the well-known Fock-Darwin en-
ergy spectrum corresponding to a parabolic confining
potential.2 Adding external impurities into the QD breaks the
circular symmetry of the system, leading to avoided cross-
ings and liftings of the degeneracies in the single-electron
energy spectrum. This was demonstrated by Halonenet al.,3

who studied theoretically QD’s distorted by repulsive Gauss-
ian scattering centers. However, even if clear traces of the
Fock-Darwin spectrum have been obtained experimentally in
both lateral4 and vertical5–7 quantum dots, there is, to the best
of our knowledge, no direct experimental evidence of repul-
sive impurities present in QD structures. Instead, states
bound to hydrogenic impurities, probably arising from Si
dopant atoms in the GaAs quantum well, were found already
by Ashoori and co-workers8 in their pioneering single-
electron tunneling experiment. These impurities have been
suggested to be sources of pair-tunneling states, theoretically
analyzed with a superimposed attractive 1/r-type
potential.9,10

Theoretically, the distortion of the circular symmetry
makes the many-electron problem particularly complex to
solve, especially in the presence of an external magnetic
field. In the above-mentioned study, Halonenet al.3 applied
exact diagonalization up to three electrons and focused on
the effects of impurities on the energy levels and optical
absorption spectra. Recently, Güçlü and co-workers11 per-
formed diffusion quantum Monte Carlo calculations on QD’s
distorted by randomly distributed Gaussian scatterers and
studied the energetics up to ten electrons. They found that in

these systems the transitions between the many-body states
are considerably less pronounced than in clean dots. Hirose
and Wingreen12 have used the spin-density-functional theory
(SDFT) to examine the energies and spin states in disordered
QD’s as a function of the interaction strength in zero mag-
netic field. Besides additional scatterers, noncircular QD’s
have attracted general interest in connection with the chaotic
properties13 or the behavior in the high magnetic field limit.14

In this paper we present a measured single-electron trans-
port spectrum where avoided crossings and lifted degenera-
cies are clearly observable. We reproduce the spectrum with
an appropriate model potential, showing that the unexpected
effects in the spectrum result from a negatively charged Cou-
lombic impurity located near the QD. The many-electron
properties studied by the SDFT reflect the strongly distorted
single-electron spectrum. The variation of the impurity loca-
tion shows the stability of the maximum-density droplet
(MDD) and the screening of the impurity by electrons.

The outline of this paper is as follows. In Sec. II we
briefly describe the fabrication of the sample and report the
transport measurement. In Sec. III the theoretical model de-
scribing the physical system is given and the single-electron
calculations are compared to the experiment. In Sec. V the
many-electron properties, i.e., chemical potentials, MDD sta-
bility, and total magnetization are studied with the SDFT.
The paper is summarized in Sec. VI.

II. EXPERIMENT

The heterostructure consists of a 10 nm wide GaAs quan-
tum well sandwiched between two Al0.3Ga0.7As-tunneling
barriers of 5 and 8 nm, see Fig. 1. The contacts are formed
by 0.5mm thick GaAs layers highly doped with Si up to 4
31017 cm−3 and separated from the active region by 7 nm
thin spacer layers of undoped GaAs. Our sample was defined
as a mesa of 40mm size. We carried out direct-current mea-
surements of the current-voltagesI-Vd characteristics in a
He3-refrigerator at 350 mK base temperature in magnetic
fields up to 14 T.
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Figure 2 shows the resulting transport spectrum of a quan-
tum dot formed in a local potential minimum. The black
lines Vn,l correspond to high differential conductanceG
=dI /dV. They trace the position of the single-electron energy
statesEn,l of the spectrum according to a relation

Vn,l = V0 + 1/seadEn,l , s1d

where the energy-voltage conversion factora equals 0.4, de-
termined from measurements of the broadening of the step
edge with temperature, and the onset voltage is fitted to be
V0=172 mV. The energy levelsVn,l in the transport spectrum
can be interpreted as single-electron energies of a local, pre-
sumably a growth-induced potential minimum in the GaAs
quantum well of our device. Several energy levels are cleary
visible in Fig. 2. In contrast to ordinary Fock-Darwin energy
levels, we are able to observe broken energy degeneracies at
B=0 T and strong anticrossing effects in the spectrum.

III. MODELING THE QUANTUM DOT

We expect the quantum well confined in the GaAs layer to
have a negligible degree of freedom for electrons in the ver-
tical direction. Our model system is thus strictly two-
dimensional(2D) and defined to be located on thexy plane.
The single-electron Hamiltonian is written as

hsr d =
1

2m* fp + eAsr dg2 + Vconfsr d + Vimpsr d, s2d

where we use the effective-mass approximation(EMA) with
m* =0.067me, which is the typical value for electrons mov-
ing in GaAs. In a symmetric gauge the vector potential reads
as A =B/2s−y,x,0d, giving the external magnetic fieldB
=Bẑ perpendicular to the QD plane. The Zeeman energy is
omitted in Eq.(2) since the spin splitting15 is not visible in
the energy levels shown in Fig. 2 for the magnetic fields
applied.

The confining potentialVconfsr d is expected to be para-
bolic near the center of the dot. However, we soften the
edges of the dot by changing the sign of the paraboloid at a
certain cusp radiusrc, giving

Vconfsr d =5
1

2
m*v0

2r2, r ø rc

m*v0
2Fssr − rcd2 − rcS rc

2
− rDG , r . rc,

s3d

where the parameters defines the strength of the rounding
term. As shown below, the softening of the confinement is
crucial in obtaining a good agreement with the experimental
energy spectrum.

We expect the impurity to be described by a negatively
charged particle located in the vicinity of the quantum well.
The impurity potential can thus be written in a Coulombic
form as

Vimpsr d =
euqu

4pe0eÎsr − Rd2 + d2
, s4d

whereq is the (negative) charge of the impurity particle,e
=12.7 is the dielectric constant for GaAs, andR andd are the
lateral and vertical distances of the impurity from the QD
center, respectively. Figure 3 shows the total external con-
finement of the model system,Vext=Vconf+Vimp, and a sketch
of the expected configuration.

To calculate the single-electron spectrum, we solve the
discretized eigenvalue problemhci =eici numerically on a
two-dimensional(2D) point grid using a Rayleigh quotient
multigrid method.16 Figure 4 shows the resulting spectrum
(dashed lines) compared to the experimental data(repeated
from Fig. 2). The energies are converted to voltages accord-
ing to Eq.(1), and the model parameters are adjusted(see the
discussion below) until the agreement between the experi-
ment and the model is as good as possible. The simulation
places the avoided crossings between the energy levels very
close to the correct positions. There are still considerable
deviations in the 5th and 6th levels but, for example, the 7th
level agrees almost perfectly through the magnetic-field re-
gime presented. The differences at high fields between the

FIG. 1. Sketch of the heterostructure of our sample.

FIG. 2. Top: GsV,Bd plot of the transport spectrum of our
sample. Bottom:I-V characteristics forB=0 T.
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experimental data and the simulation result from the shift of
the chemical potential of the emitter to higher energies with
increasing magnetic field.

In calculating the energy spectrum shown in Fig. 4, we
optimize the potential parameters corresponding to the best
possible fit to the experimental data. The confinement is then
defined by"v0=13.8 meV, rc=15.5 nm, ands=−0.2, and
the impurity parameters are given byq=−2 e, R=14.5 nm,
andd=2 nm. There is naturally some uncertainty in the pa-
rameters due to the rather similar scaling ofVext with respect
to uqu andd. In addition, the exact value fore describing the
screening of the impurity is not known. We used the simplest
assumption, i.e., the same value fore that is applied with the
EMA to screen the electron-electron interactions for the 2D
electron gas in GaAs. This fixation yieldsq=−2 e for the
best fit. In reality, however, the screening may be reduced so
that a single impurity charge is also possible.

Thus, for this particular sample we determine the follow-
ing characteristic features of the system from the model po-
tential Vext: (i) The impurity is presumably an ionized single

or double-acceptor distorting the QD, possibly a substitu-
tional or interstitial Si atom migrated through the relatively
thin spacer layer;(ii ) the impurity is located very close to the
QD plane, probably lying in the 10 nm thick GaAs layer(see
Fig. 1). This could lead to the above mentioned reduced
value for the reale; (iii ) the confinement strength"v0 is
approximately three times larger than the values typically
useds3–5 meVd for modeling parabolic QD’s. This is due to
the growth-induced formation of the QD in the absence of
gates around the sample; and(iv) for the same reason, the
confinement becomes softer toward the edges of the dot.
Hence, the rounding atr ù rc in Vconf is required to compress
the highest states in agreement with the experimental spec-
trum.

We remark that until now we have analyzed several
samples showing a, Fock-Darwin-like spectrum6 and found
only two spectra with clear level repulsion. In this paper, we
focused on this particular sample due to the high quality of
the transport spectrum.

IV. SHAPE DEPENDENCE

To clarify the sensitivity of the single-electron spectrum
on the shape of the model potential, we compare in Fig. 5 the
eigenenergies given by the chosen model(thick lines) to
those of a model QD without the rounded edges(thin lines)
and to those of a corresponding clean model dot withoutVimp
but with the rounding term(dashed lines). The level repul-
sion is clearly induced by the Coulombic impurity that
breaks the circular symmetry of the QD and couples the con-
figurations corresponding to different levels. A statistical
analysis of the energy-level spacings would enlighten the
quantum chaotic properties17 of the system but it is not in-
cluded in this study. It should be noticed that the sequence of
the avoided crossings seen in the spectrum(Figs. 4 and 5) is
determined by the distance of the distortion from the QD
center. In the high-field limit, however, the system becomes

FIG. 3. (a) Profile of the external potential used in the simula-
tion. (b) Sketch of the expected configuration of the QD-impurity
system.

FIG. 4. Measured transport spectrum(repeated from Fig. 2) of a
GaAs/AlGaAs QD and the calculated single-electron energies
(dashed lines) corresponding to the model potential shown in Fig.
3(a).

FIG. 5. Lowest noninteracting single-electron eigenenergies cal-
culated for an impurity-containing QD with(thick lines) and with-
out (thin lines) the rounding of the edges. The dashed lines show the
corresponding eigenenergies(lifted by +14 meV for clarity) for a
clean dot.
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integrable and the eigenstates condense into Landau levels.
The rounding term inVconf has the strongest influence on

the levels with the highest angular momenta, and the cusp at
rc induces also a weak decoupling of the degeneracies atB
=0 T. We remark that the eigenenergies for the clean case
are lifted in Fig. 5 by 14 meV for clarity. The Coulombic
impurity in the vicinity of the QD thus has a strong effect on
the eigenenergies. This tendency is also apparent in the
many-electron properties studied below.

V. MANY-ELECTRON PROPERTIES

Next we study situations that the quantum dot described
by the best fitting parameters above contains up to six inter-
acting electrons. Even if the many-electron case has not yet
been experimentally realized for this particular QD, we find
it important to predict how the increasing electron number
changes the effects of the impurity on the ground-state prop-
erties.

The problem is now described by theN-electron Hamil-
tonian

H = o
i=1

N

fhi + g*mBBsz,ig + o
i, j

N
e2

4pe0eur i − r ju
, s5d

where the single-electron parthi is given by Eq.(2) and the
Zeeman energy is taken into account withg* =−0.22 for the
effective gyromagnetic ratio in GaAs. This has been mea-
sured to be a realistic value for a similar system.18

We apply the SDFT according to the self-consistent
Kohn-Sham(KS) scheme to obtain the total energies and
spin densities of the system. The local spin-density approxi-
mation used for the exchange-correlation energy is based on
the magnetic-field-independent formulation by Attaccaliteet
al.19 According to our experience, it is the most accurate
parametrization for finite 2D electron systems in the zero-
field limit.20 We solve the discretized KS equations in real
space without implicit symmetry restrictions, which allows
us a total freedom in shaping the external potential. The nu-
merical process of solving the effective single-electron
Schrödinger equation is accelerated with the Rayleigh quo-
tient multigrid method.16

Our earlier calculations for rectangular21 and parabolic20

QD’s show that our SDFT scheme produces energies in a
good accordance with the quantum Monte Carlo results. We
have also noticed that the current-spin-density-functional
theory (CSDFT) does not represent a qualitative improve-
ment over the SDFT in small quantum-dot systems. A de-
tailed comparison between the SDFT and CSDFT for a six-
electron QD can be found in Ref. 20.

A. Energies

Figure 6 shows the chemical potentialsmsNd=EsNd
−EsN−1d, calculated in clean(dashed lines) and impurity-
containing(solid lines) QD’s up to six electrons. Due to the
spin-degeneracy, the chemical potentials shift generally in
adjacent pairs with increasingB corresponding to the well-
known even-odd effect of experimental current peaks.7 In the

clean case, however, occasional pairing ofmsN+1d and
msN−1d is clearly observable, e.g., withN=3 and 5, and
with N=4 and 6 atB&1 T. This is caused by Hund’s rule,
i.e., near a degenerate point it is energetically favorable to
have parallel spins between the electrons due to the exchange
interaction. This leads to partial spin polarizationsS=0
→1d in the clean dot withN=4 andN=6 atBø0.84 T and
2.5 TøBø3.5 T, respectively. In the impurity-containing
dot those states are missing due to the avoided level cross-
ings in the single-electron spectrum(see Fig. 5). Generally,
the impurity smoothes the behavior of the chemical potential,
reflecting the flattening of the single-electron energies stud-
ied above. This is in agreement with the results by Güçlüet
al.11 for randomly distributed impurities.

As seen in Fig. 6 the impurity does not affect considerably
the onset for the full spin polarization(dotted lines). As N
increases, however, this point in the clean QD shifts to
higherB than in the impurity-containing dot. Simultaneously,
the m spacings decrease relatively more rapidly in the latter
case than in the clean dot. The reason is the fact that the
impurity pushes the electrons to the soft-confinement region
near the edges, whereas the clean dot represents a more com-
pact state with higher addition energies.

B. Angular momentum

In the description above, the impurity is kept in a fixed
position atR=14.5 nm laterally from the dot center. Next,
we consider changes in the total angular momentum asR is

FIG. 6. Calculated chemical potentials for a clean(dashed lines,
lifted by +14 meV for clarity) and impurity-containing(solid lines)
quantum dot up to six electrons. The dotted lines denote the borders
for the full spin polarization. The other spin-state domains are also
marked above and below the curves corresponding to the clean and
impurity-containing cases, respectively.
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varied (while d is kept constant) in magnetic fields corre-
sponding to the MDD state. In a circularly symmetric QD,
the MDD has the occupation on the single-particle states
with angular momentum eigenvaluesl =0,−1, . . . ,−N+1,
giving Lz=−1

2NsN−1d for the total angular momentum.22 In
the case of a broken circular symmetry, the onset for the
MDD can be defined from the last cusp in the chemical po-
tential indicating the full spin polarization(see Fig. 6). This
is consistent with the experimental identification of the MDD
phase by measuring the magnetic field evolution of the Cou-
lomb blockade peaks.23 Since the angular momentuml is not
a good quantum number for a noncircular confinement, we
computeLz in the following as a sum of the expectation
values for the single-electron angular momentum operator,

l̂ z=−i"fxs] /]yd−ys] /]xdg. The summation is over all the oc-
cupied KS states.

In Fig. 7 we present how the six-electron MDD atB
=20 T is affected by the impurity shifted through the whole
QD region. Except for the kink atR,8 nm, corresponding
to the radius at which the impurity penetrates the edge of the
QD, uLzu increases smoothly from 15 to 21, i.e., from the
MDD to a quantum ring withl =−1, . . . ,−6 states occupied.
The stability is also visualized in the density insets of Fig. 7
corresponding to different impurity locations. The dashed
line shows the equivalent evolution atB=25 T, still corre-
sponding to the MDD region in the clean dot. AsR→0,
however, we find a transition to the next quantum-ring state
with l =−2, . . . ,−7 states occupied. The rounded edges of the
QD clearly make the ring-like states sensitive to the mag-
netic field. In contrast, the MDD remains as a rather compact
state spread across the highly confined central region as the
magnetic field is varied.

C. Magnetization

Finally, we investigate the tendency of the many-electron
structure to screen the external impurity. For that purpose,

we consider the total magnetization, defined at zero tempera-
ture asM =−]Etot/]B. In Fig. 8 we plotM as a function ofB
for six-electron, fully polarized QD’s in both noninteracting
and interacting cases and with the impurity locationsR=0
and 5 nm laterally from the QD center. The noninteracting
energy is computed directly as a sum of the six lowest
single-electron energies. As the impurity is shifted off the dot
center, the lowest single-electron states decouple(see Fig. 1
in Ref. 3), leading to a considerably smalleruMu and disap-
pearance of the transition atB,23 T in the noninteracting
systems. On the other hand, the interacting systems show
frequent oscillations due to the entanglement of the energy
levels, i.e., periodic changes in the fully-polarized ground
state.14 The QD’s with different impurity locations behave
similarly, indicating that the circular properties are preserved
also when the impurity is off-center. This verifies the screen-
ing of the impurity by the electrons. The importance of
screening is evident also from the work by Halonenet al.3

who considered impurity-containing QD’s with two and
three electrons. The same tendency was also found in the
magnetization of the two-electron square QD’s studied by
Sheng and Xu.24 In our forthcoming studies, we will exam-
ine the high magnetic field regime as a function of the im-
purity parameters in more detail.

VI. SUMMARY

We have reported a transport measurement of a vertical
quantum dot, giving single-electron energies strongly deviat-
ing from the Fock-Darwin spectrum. We have found a real-
istic model for the sample dot by including a Coulombic
impurity in the external parabolic potential that has soft
edges. The parameters obtained for the model potential indi-
cate a strong confinement resulting from the growth-induced
formation of the QD, as well as an additional impurity par-
ticle, presumably a single or doubly charged Si atom, shifted

FIG. 7. Total angular momentum and electron density distribu-
tions for a six-electron QD as a function of the impurity distance
from the dot center. The solid and dashed curves correspond to the
magnetic fields of 20 and 25 T, respectively.

FIG. 8. Magnetization of the(fully polarized) state of a six-
electron quantum dot at the impurity distancesR=0 (plus markers)
and 5 nm(cross markers) with (solid curves) and without(dashed
curves) the electron-electron interactions. The effective Bohr mag-
netonmB

* =e" /2m* .
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both laterally and vertically from the center of the quantum
dot. Using the model and the spin-density-functional theory,
we have studied the energetics and structural properties of
the corresponding many-electron problem. The impurity
evens out the state alternation as a function of the magnetic
field by lifting the degeneracies, but it does not affect re-
markably the onset of the full spin polarization. The stability
of both the maximum-density droplet and the magnetization
verify that the many-electron structure reduces the distortion
apparent in the single-electron properties. The future experi-
ments may illustrate the damping of the irregular behavior in

actual quantum-dot devices as the number of electrons in-
creases.
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