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We calculate the critical exponent of the temperature dependence of the drag current between two parallel
quantum wires. The two wires have carriers with equal mass but they may have different electron density. The
electrons interact via ad-function spin-exchange potential, which is attractive or repulsive depending on
whether the interacting particles are in a spin-singlet or spin-triplet state. This interaction leads to the formation
of spin-singlet or spin-triplet bound states of the Cooper type(preformed hard core bosons that do not
condensate). Depending on the parameters, the drag current can be parallel or opposite to the driving current.
The critical exponent of the drag current is calculated using the BetheAnsatzsolution of the model and
conformal field theory.
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I. INTRODUCTION

Charge carriers moving in one conductor may induce, via
the Coulomb interaction and momentum conservation, a drag
current in another conductor located nearby. This drag
mechanism was proposed by Pogrebinskii1 for a
semiconductor-insulator-semiconductor layer structure. Here
we consider the Coulomb drag between two parallel quan-
tum wires for ballistic electrons. In one-dimensional systems
the correlations between electrons lead to charge and spin
separation, the disappearance of the Fermi liquid quasiparti-
cle pole in the excitation spectrum, and to power laws with
nonuniversal critical exponents. These properties are generi-
cally referred to as Luttinger liquids.2

The theoretical and experimental developments of the
electron-drag effect in a coupled electron system have re-
cently been reviewed by Rojo3 and the Coulomb drag be-
tween quantum wires is extensively reviewed in Ref. 4. We
limit ourselves to investigate the drag current for ballistic
carriers in linear response to the voltage applied in the driv-
ing wire, assuming that only the lowest subband in each wire
is occupied. While within the Fermi liquid approach this
leads to a drag current proportional to temperature,5 the Lut-
tinger liquid picture gives rise to nonuniversal power laws
with critical exponents that depend on band filling and the
interaction strength.6–9

The experimental results10–13 on the Coulomb drag be-
tween parallel wires remain sparse, probably because(1) the
drag voltage usually has a very small amplitude and(2) it is
difficult to create parallel electrically isolated quantum wires
that are sufficiently long and close enough to yield a mea-
surable drag voltage.4

In a previous publication14 we calculated the critical ex-
ponent for theT dependence of the drag current between two
parallel quantum wires using the BetheAnsatzsolutions of
one-dimensional interacting electron systems. The exact so-
lution provides the mesoscopic energy spectrum(conformal
towers) and the long-time long-distance asymptotic of the
drag-current correlation function can then be obtained via
conformal field theory. For a repulsive interaction for carriers

between wires, the momentum conservation of the interac-
tion yields a backward momentum transfer in the drag wire,
inducing this way a drag current opposite to the driving cur-
rent. For an attractive interaction among carriers between the
wires, on the other hand, the charges form bound states. The
potential applied to the driving wire pulls the bound elec-
trons and hence the drag and driving currents are parallel.
The nonuniversal critical exponents depend on the model,
the band filling and the interaction strength. We used the
exact solution of the Hubbard model, the supersymmetric
t−J model and the gas of fermions interacting via a
d-function potential.

In this paper we extend this calculation to a different
model involving simultaneously attractive and repulsive
interactions.15–17The carriers in the two conductors move in
parabolic bands with equal mass and interact with each other
via a d-function-like spin-exchange interaction. There are
then four internal degrees of freedom, namely the two con-
ductors and the spin. Each of the two sectors(spin and or-
bital) is SUs2d invariant. Depending on the sign of the inter-
action, the exchange is attractive(repulsive) in spin space,
while it is (at the same time) repulsive(attractive) in orbital
space. Hereorbital refers to the two bands(wires). This
leads to the formation of Cooper-type bound states between
electrons, which, depending on the sign of the exchange,
have either spin-singlet/orbital-triplet or spin-triplet/orbital-
singlet symmetry. A bias potential,D, between the two par-
allel conductors may split the bands, so that the electron
density is not the same in the two conductors. In addition, a
magnetic fieldH may depair the Cooper pairs in the case of
spin-singlet bound states and spin polarize the pairs for spin-
triplet pairing. This model is then very different from those
considered in Ref. 14, which all have SUsNd or gls1,Nd sym-
metry, i.e., the interaction is either only attractive or only
repulsive.

The present model is integrable via Bethe’sAnsatzby
construction and involves four sets of rapidities to describe
the ground state(four internal degrees of freedom). As a
consequence, it has rich phase diagram as a function ofH
and D (see Fig. 2 in Ref. 18). In this paper we discuss the
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critical behavior of the drag current in a few of the phases
of this model for both repulsive and attractive exchange
interaction.

The remainder of the paper is organized as follows. In
Sec. II we briefly restate the model and its BetheAnsatz
solution for the ground state. We also obtain the mesoscopic
corrections to the ground state energy. Using conformal field
theory we obtain the drag current correlation function for
repulsive spin exchange in Sec. III. In Sec. IV we consider
the drag current for attractive spin exchange and conclusions
are presented in Sec. V.

II. MODEL AND BETHE ANSATZ SOLUTION

We consider an integrable model consisting of electrons
moving in the parabolic bands of two parallel wires
labeled withm=1,2 andinteracting via a contact potential
of the spin-exchange type.15,16 The Hamiltonian is given
by

H = o
m,s
E dx cms

† sxds− ]2/] x2dcmssxd

+ c o
m,m8,s,s8

E dxE dx8dsx − x8d

3 cms
† sxdcm8,s8

† sx8dcm8ssx8dcms8sxd

− Do
m,s

s− 1dmE dx cms
† sxdcmssxd, s1d

where cms
† sxd creates an electron with spins at site x in

wire m, c is the strength of the local exchange interaction,
and 2D represents the potential difference between the
two wires. D lifts the degeneracy between the wires and
introduces a difference in the electron density. We choose
equal masses for the electrons in the two wires, which
is also a necessary condition for the integrability of the
model.

Theexchanged-function potential is repulsive(attractive)
in spin space, while attractive(repulsive) in the orbital sector
for c.0 sc,0d. The two-particle scattering matrix factor-
izes into one for the spin channels and one for the band
sector16

R̂skd =
kÎs − icP̂s

k − ic

kÎm + icP̂m

k + ic
, s2d

wherek=k1−k2 is the momentum transfer, andÎm sÎsd and

P̂m sP̂sd denote the identity and permutation operators in the
band(spin) channel, respectively. When applied to a triplet
(in the spin or band sector) each of these factor yields one.
Hence, the scattering matrix acts nontrivially only on band or
spin singlet states. For the case of singlets in both the spin
and the band sectors, the two factors cancel and there is no
effective phase shift.

The scattering matrix for each of the channels(spin and
band) separately satisfies the Yang–Baxter relations,16,19 thus
their product also satisfies the triangular relation. Hence,

transfermatrices with different spectral parameters commute
and can be diagonalized simultaneously, establishing the ex-
act integrability of the model.

The eigenvalues and eigenfunctions are parametrized
by three sets ofrapidities:16 charge rapiditieshkjj j=1

Ne (with
Ne being the total number of electrons), spin rapidities
hlaja=1

M (M is the number of “down spins”) and the band

rapiditieshjbjb=1
n*

. HereNe−n* andn* are the number of elec-
trons in the two wires(majority and minority), respectively
(due to the potential difference 2D the two wires have dif-
ferent populations). These rapidities satisfy the discrete Be-
the Ansatzequations. For the ground state andc.0 the so-
lutions are classified into four classes:16,19 (1) Ne−2M real
charge rapidities of unbound itinerant electrons,(2) M pairs
of complex conjugated charge rapidities representing spin-
singlet orbital-triplet pairs,(3) real band rapidities, and(4)
interband bound states(j strings) of length 2. Forc,0, class
(2) corresponds to spin-triplet orbital-singlet pairs, class(3)
to real spin rapidities and class(4) to spin-bound states(l
strings) of length 2.

We denote withel the dressed energies of the rapidity
bands and withrl the density of rapidities and their
holes. Herel =1, . . . ,4 refers to the four classes of states
indicated above. The densities satisfy the following integral
equations:

rlsld + o
q=1

4 E
−Bq

Bq

dl8Klqsl − l8drqsl8d = glsld, s3d

wheregl is the driving term given by 1/s2pd, 1 /p, 0 and 0
for l =1, . . . ,4, respectively. In terms of ansld
=snucu /2pd / fl2+snc/2d2g, the integration kernelssKlq=Kqld
are

K11 = 0, K12 = a1, K13 = − a1, K14 = − a2,

K22 = a2, K23 = − a2, K24 = − a1 − a3,

K33 = a2, K34 = a1 + a3, K44 = 2a2 + a4. s4d

The integration limitsBl are determined from the total num-
ber of carriers, the magnetization and the electron population
difference between the two wires(for c.0)

Ne

L
=E

−B1

B1

dlr1sld + 2E
−B2

B2

dlr2sld,

Mz

L
=

1

2
E

−B1

B1

dlr1sld,

L
L

=E
−B1

B1

dlr1sld + 2E
−B2

B2

dlr2sld − 2E
−B3

B3

dlr3sld

− 4E
−B4

B4

dlr4sld s5d

and the energy is given by
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E

L
=E

−B1

B1

dll2r1sld + 2E
−B2

B2

dlSl2 −
c2

4
Dr2sld. s6d

The dressed energieselsld satisfy integral Eqs.(3) but with
driving termshlsld (for c.0)

h1sld = l2 − m − H/2 − D,

h2sld = 2sl2 − c2/4 − m − Dd,

h3sld = 2D, h4sld = 4D, s7d

wherem is the chemical potential andH is the external mag-
netic field. HereL is the length of the wires.

The generalized dressed charges form a 434 matrix,
zjk=j jksBkd, wherej jksld again satisfy the integral Eqs.(3)
now with the driving termd jk. The matrix of dressed charges
determines the interplay between the four rapidity bands as
given by the conformal towers.19,20

The elementary excitations of the four rapidity bands con-
sist of particle and hole excitations of the four rapidity bands.
Their energy and momentum are given byuelsldu and
2peBl

uludl8rlsl8d, wherel parametrizes the excitation. Close
to the Fermi points the dispersion is linear in the momentum
and defines a group velocityvl =s]el /]ldul=Bl

/ f2prlsBldg. Of
course, a group velocity can only be defined for rapidity
bands that have a Fermi surface.

The low energy excitations of the system are given by the
mesoscopic corrections to the ground state energy in terms of
quantum numbers, the group velocities and the matrix of
generalized dressed charges21

E = Le` + o
l

pvl

2L Fo
q

sẑ−1dlqDNqG2

+ o
l

2pvl

L HFo
q

zqlDqG2
+ nl

+ + nl
− −

1

12J , s8d

where e` is the ground state energy density in the
thermodynamic limit and the sum overl ,q is only over bands
with Fermi points. HereDNq is the departure of the number
of particles in the bandq from the equilibrium value.
Each band has two Fermi points corresponding to
forward and backward moving states.Dq is the backward
scattering quantum number, i.e., 2Dq represents the
difference of forward to backward moving states in
each band. TheDq are sensitive to the parity in each set
of rapidities. Finally,nq

± define the low-lying particle-hole
excitations about each of the Fermi points. HereDNq, nq

±,
and 2Dq always take integer values; henceDq can either
be an integer or half integer depending on the initial
conditions.

In terms of the quantum numbers defined above, the total
momentum of the system is given by20,21

P =
2p

L o
l

fNlDl + nl
+ − nl

−g. s9d

From Eqs.(8) and(9) we obtain the conformal dimensions of
primary fields characterized by the above quantum
numbers20

Dl
± = nl

± + F1

2o
q

sẑ−1dlqDNq ± o
q

zqlDqG2

. s10d

For a given set of quantum numbers, the asymptotic be-
havior of a correlation function for long times and large dis-
tances is proportional to

p
l,p=±

e−2ipFlDlH pT/L

sinhfpTsx − ipvltd/vlg
J2Dl

p

, s11d

wherepFl is the Fermi momentum associated with the rapid-
ity band l.

III. DRAG CURRENT FOR SPIN-SINGLET PAIRING

In this section we discuss the casec.0 which favors
the formation of spin-singlet orbital-triplet Cooper-like
bound states. We first consider the simplest limit, i.e.,H
=D=0, and then the situationsH=0 with DÞ0 andHÞ0
with D=0.

If H=0 there are equal number of up-spin and down-spin
electrons, i.e.,Mz=0. For D=0 the bands of electrons are
equally populated, which corresponds toL=0. This situation
is sometimes referred to as the degenerate band limit.16 It is
easy to verify that the density of real band rapidities,r3sld,
vanishes identically, i.e.,e3sld;0. Similarly, the rapidity
band of orbital two-strings,r4sld, is completely filled and
can be eliminated from the integral equations via Fourier
transformation. The band of unpaired electrons,r1sld, is
empty. This band can only be populated by depairing Cooper
pairs, i.e., an extra energy to overcome the binding energy
has to be provided. Hence, excitations into this band are
gapped, and the gap can only gradually be closed with an
external magnetic field. For the remaining rapidity band,
r2sld and e2sld, representing the spin-singlet orbital-triplet
bound states, we obtain

e2sld = 2l2 − sc2/2d − 2m, r2sld = 1/p. s12d

Hence, the pairs areeffectively free, i.e., they are independent
of other states and have a parabolic dispersion corresponding
to a mass of 2. They are free(hard-core) bosons with
a symmetric wavefunction. The chemical potential is
related to the integration limitB2 via e2s±B2d=0, i.e.,
m=sB2d2−sc/2d2, and the number of electrons isNe

=4B2L /p. More properties, e.g., the excitation spectrum,
group velocities and critical fields, can be found in Sec. 3
of Ref. 19.

In order to obtain the critical exponent of the drag current
we have to evaluate the matrix of dressed generalized
charges. Since only two rapidity bands have a Fermi surface,
we need to consider onlyl =2 and 4. The four functionsjlq
are
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j22sld = 1, j24sld =E
−B2

B2

dl8G0sl − l8d,

j42sld = 1/2, G0sld = fucu2 coshspl/ucudg−1, s13d

so that z22=1, z24=0, z42=1/2, andz44 is given by cs0d,
wherecsld satisfies

csld +E
0

`

dl8f2a2sl − l8d + a4sl − l8dgcsl8d = 1.

s14d

Equation (14) is of the Wiener–Hopf type and can be
solved analytically, yieldingz44=1/2. TheFermi momenta
of the two rapidity bands involved arepF2=sp /2dn and
pF4=sp /4dn, wheren=Ne/L.

Since for H=D=0 all electrons are bound in Cooper
pairs, the current operator transfers a pair of electrons from
one Fermi point to the opposite one. A drag current only
exists if the paired electrons belong to different wires. De-
fining O±

ssd†sxd=2−1/2fc1↑±
† sxdc2↓±

† sxd−c1↓±
† sxdc2↑±

† sxdg, where
± refers to the Fermi point, the current is given by
O+

ssd†sxdO−
ssdsxd. This operator neither changes the number of

rapidities nor does it create particle-hole excitations at the
Fermi points in either rapidity band, and henceDN2=DN4
=n2

±=n4
±=0. The transfer of particles from one Fermi point to

the other requiresD2=−D4= ±1, and consequently the con-
formal dimensions areDl

±=sz2l −z4ld2, i.e.,

D2
± = f1 − 1/2g2 = 1/4, D4

± = 1/4. s15d

The current correlation function, Eq.(11), has four factors
and after integrating the function with respect tox for equal
times we obtain that the drag current is proportional toT.
This is the same result as for a Fermi liquid, although in this
case the current is carried byfree hard core bosons(spin-
paired electrons).

We now consider the more general situation ofDÞ0 in
zero magnetic field. IfH=0 all electrons are bound in spin-
singlet pairs and due to the binding energy it requires a finite
energy to depair the bound states. Hence, since all spins are
compensated, the rapidity bandse1 ande3 are still empty, and
only the e2 and e4 bands need to be considered. The main
difference with the previous case is that thee4 band is not
completely filled forD.0, because the wire with less elec-
tron density does not have sufficient electrons to pair all the
electrons in the other wire. Hence, some of the spin-singlet
bound states are formed with both electrons belonging to the
majority wire. With increasingD the e4 band is gradually
depleted and there is a criticalDc

ssd so that forDùDc
ssd the

band is empty

Dc
ssd = −

1

4
E

−B2

B2

dlfa1sld + a3sldge2sld. s16d

This corresponds to the band splitting at which only one of
the wires has electrons, while the other one is completely
depleted. Since only one wire is populated, a drag current
cannot exist forDùDc

ssd.

Hence, a drag current only exists for 0øD,Dc
ssd. Since

all electrons are bound in pairs the driving and drag currents
are along the same direction. The quantum numbers are still
D2=−D4= ±1 and all others are zero. The dressed general-
ized charges are determined by two pairs of coupled integral
equations, which have to be solved numerically. The critical
exponent of the temperature dependence of the drag current
is given by

h = 4sz22 − z42d2 + 4sz24 − z44d2 − 1, s17d

where the −1 arises from the space integration of the
equal time correlation function. The four components of
the matrix of dressed charges are displayed in Fig. 1(a)
as a function ofD for Ne/L=1.273 andc=1. The limit
D=0 corresponds to the case discussed earlier in this
section. For these parameters we haveDc

ssd=1.031. Note
thatz22 andz42 (with z42 being 0) are defined also ifD.Dc

ssd.

FIG. 1. (a) Components of the matrix of dressed generalized
charges,zlq, and(b) the critical exponent of the temperature depen-
dence of the drag current as a function of the potential differenceD
between the two wires forc=1, Ne/L=1.273 and zero magnetic
field.
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The exponenth of the current correlation function is
shown in Fig. 1(b). It monotonously increases from 1.00
for D=0 to 1.31 atDc

ssd. As Dc
ssd is approached, the exponent

is essentially constant, because the minority band is almost
empty and can no longer produce changes in the critical
behavior. In the other limit, asD→0, h is singular and
approaches the value 1 asOf1/ lnsDdg. This singularity can
be obtained analytically by reducing the Fredholm equation
to a Wiener–Hopf one. The exponent is nonuniversal in
the sense that it depends on the value ofc and the band
filling, Ne/L.

The situation D=0 and HÞ0 is very different from
the previous case,DÞ0 and H=0. It requires a finite
magnetic field, larger than a criticalHc

ssd, to gradually depair
the spin-singlet Cooper bound states. In other words, the
Zeeman splitting first has to overcome the binding energy.
The spin gap is then gradually reduced by the magnetic field
and the system atT=0 does not respond to an external mag-
netic field smaller thanHc

ssd. This property is reminiscent of
the Meissner effect(note that diamagnetism is not defined in
one dimension), although there is no long-range order of
pairs.

Hence, we have to distinguish two situations. IfH,Hc
ssd

the Coulomb-drag problem is identical to the zero-field case.
For H.Hc

ssd, on the other hand, thee1 rapidity band(corre-
sponding to unpaired charges) is gradually filled. Conse-
quently, thee3 rapidity band has nonzero spectral weight and
is completely filledsD=0d. Hence, all four rapidity bands
contribute to the critical behavior. The drag current now can
have two components: One arising from the Cooper pairs,
for which the drive and drag currents are parallel, and a
second one due to the unpaired electrons. For the latter case
the operators for the drive and drag currents are
c1↑+

† sxdc1↑−sxd and c2↑−
† sxdc2↑+sxd, respectively. Here one

electron is pushed forward in one wire and another electron
is dragged backwards in the other wire. The drag current is
then opposite to the drive current. Note that this process can
only occur if the total momentum is conserved, i.e., the two
wires must have equal carrier density. This is only possible
if D=0. The nonzero quantum numbers for the drag current
response areD1=−D3=1, and consequently the critical ex-
ponent for the T dependence of the drag current is
h8=4ol=1

4 sz1l −z3ld2−1. This current component exists for all
H.Hc

ssd.
There is a third possibility for a drag current, namely if

the pairs drag the unpaired electrons. Now the drag is oppo-
site (backflow) to the driving current. The momentum con-
servation for this process requires that the momentum trans-
fer for the unpaired electrons has the same magnitude but is
opposite to that of the paired electrons. This condition on the
Fermi momenta can only be satisfied for special values on
the magnetic field.

If DÞ0 and H.Hc
ssd the problem is considerably

more complex because of the large number of different
phases that are possible(see Fig. 2 of Ref. 18). On the
one hand, it is qualitatively similar to theD=0 case,
only with the increased level of complication because thee3
and e4 rapidity bands are not completely filled, i.e.,B3
and B4 are finite. On the other hand, all four rapidity

bands contribute to the critical behavior and several pro-
cesses involving more than two carriers are possible. The
processes require momentum conservation(hence they are
only possible for special choices of the external parameters)
and will in general lead to a backflow drag current(see also
Ref. 14).

IV. DRAG CURRENT FOR SPIN-TRIPLET PAIRING

The same model forc,0 has quite different properties. In
this case the formation of spin triplets and orbital singlets is
favored. The BetheAnsatzsolution is the same as forc.0,
if the spin and orbital indices are interchanged. Now thee2
band corresponds to spin-triplet orbital-singlet pairs, bande3
to real spin rapidities and rapidity bande4 to spin-bound
states(l strings of length 2).17 Also the roles ofD and the
magnetic field are interchanged. Equations(3), (4), and (6),
Ne/L, and the integral equations for the dressed generalized
charges remain unchanged. The magnetization and the elec-
tron population difference between the two wires forc,0
are

Mz

L
=

1

2
E

−B1

B1

dlr1sld +E
−B2

B2

dlr2sld −E
−B3

B3

dlr3sld

− 2E
−B4

B4

dlr4sld,

L
L

=E
−B1

B1

dlr1sld s18d

(the roles ofMz and L are switched) and in Eq.(7) D and
H /2 have to be interchanged.

The results of the previous section can now be taken
over. For H=D=0, the e1 and e3 bands are empty, while
e4 is completely filled, and Eq.(12) remains valid. Hence,
unpaired electrons are gapped and the spin-triplet
orbital-singlet pairs behave as effectively free hard-core
bosons. The Fermi momenta of thee2 and e4 bands
and the matrix of dressed generalized charges remains
unchanged.

The drag current operator isO+
std†sxdO−

stdsxd, where
O±

std†sxd=2−1/2fc1↑±
† sxdc2↓±

† sxd+c1↓±
† sxdc2↑±

† sxdg. Here a spin-
triplet orbital-singlet Cooper pair is transferred from
one Fermi point to the other. All quantum numbers, except
D2=−D4=1, are equal to zero for this process. Hence, the
critical exponent for the temperature dependence of the
current is againh=1.

A magnetic field gradually depopulates the band of
spin two strings. This means that the number of spin-triplet
bound pairs with both electrons in up-spin states increases
at the expense of the other two triplet components. Note
that if D=0 all electrons are bound in spin-triplet pairs,
independently of the magnetic field. This drastically differs
from the situation of spin-singlet pairssc.0d, in which
the external magnetic field breaks up the singlet pairs only
if the field exceeds the critical fieldHc

std, resembling the
Meisner effect.
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There are two components to the drag current, both due
to the Cooper pairs and hence the driving and drag currents
are parallel: (i) The one arising from the operator
O+

std†sxdO−
stdsxd, already discussed above, with nontrivial

quantum numbersD2=−D4=1, and(ii ) one only involving
the up-spin triplet pairs for which the operator is
c1↑+

† sxdc2↑+
† sxdc2↑−sxdc1↑−sxd. For this case the only non-

trivial quantum number isD2=1.
The case(i) can be taken over from the previous section

with only exchangingD andH /2. Thee4 band is gradually
depleted, being full forH=0 and empty forH.Hc

std, where
hereHc

std=2Dc
ssd with Dc

ssd defined in the previous section. The
dressed generalized charges and the critical exponent for the
T dependence of the drag current are the ones shown in Figs.
1(a) and 1(b).

The mechanism corresponding to(ii ) for c.0 only in-
volves one quantum wire and hence a drag current cannot
take place for spin-singlet Cooper pairs. The critical expo-
nent of the drag current(ii ) for c,0 is thenh9=4z22

2 +4z24
2

−1, wherez22 and z24 can be taken from Fig. 1(a). h9 is
displayed in Fig. 2. Note thatz24 is not defined forH.Hc

std,
so thath9=4z22

2 −1, and the exponent has a discontinuity at
Hc

std.
In order to populate thee1 and e3 rapidity bands(these

bands refer to unpaired electrons) the bias potentialD has to
exceed a minimal value given byDc

std=Hc
ssd /2, whereHc

ssd

was defined in the previous section. This is the energy
required to overcome the binding energy and break up a
Cooper pair. The system does not respond unlessD is larger
thanDc

std. For H=0 the total magnetization remains equal to
zero. All four rapidity bands contribute to this case and the
matrix of dressed generalized charges involves 16 compo-
nents.

For H=0 andD.Dc
std the drag current has only one com-

ponent arising from the Cooper pairs with the current opera-
tor O+

std†sxdO−
stdsxd, for which the drive and drag currents are

parallel and the exponent ish=4ol=1
4 sz2l −z4ld2−1. In con-

trast to thec.0 case there is no second drag component,
because the mechanism discussed in the previous section
now involves only one quantum wire. However, under very
special conditions(matching of Fermi momenta between the
rapidity bands) the paired electrons may induce a backward
drag current in the unpaired electron fluid and vice versa.

Finally, if H.0 andD.Dc
std there is in addition a second

component to the drag current due to Cooper pairs with only
up-spin electrons. This mechanism is already discussed
above and the driving and drag currents are parallel to each
other. Due to the complicated phase diagram(see Fig. 2 of
Ref. 17) there are also other possibilities, involving several
electrons, to generate backflow drag currents through mo-
mentum conservation.

V. CONCLUSIONS

We considered two nearby parallel quantum wires with
carriers interacting via a contact potential of the spin ex-
change type. Forc.0 the interaction leads to the formation
of spin-singlet Cooper pairs, while forc,0 the pairing is of
the spin-triplet type. The model has three additional param-
eters, namely, the electron density in each wire and the mag-
netization, which are controlled by the chemical potential
(total number of carriers), D the potential difference between
the wires(relative electron density) and the magnetic field.
The model is integrable by construction and has been solved
previously via Bethe’sAnsatz.15–17,19The model is also very
different from those considered in Ref. 14, since it simulta-
neously involves attractive and repulsive interactions in the
spin and orbital sectors. The sign of the interaction is always
opposite in the two sectors.

In conjunction with conformal field theory we used the
BetheAnsatzsolution to explore possible drag currents and
obtain the critical exponent of the temperature dependence of
that current. The Cooper-like bound states lead to a drag
current parallel to the driving current. On the other hand,
unpaired electrons may produce a drag current opposite to
the driving current.

The ground state of the model is described in terms of
four rapidity bands. In particular, the highly symmetric situ-
ation corresponding to spin degeneracy and equal carrier
density in the wires, i.e., forD=H=0, the Cooper-like pairs
act like free hard-core bosons. These the bosons are pre-
formed and exist at any finiteT.

For c.0 it requires a finite magnetic field, larger than a
critical Hc

ssd, to gradually depair the spin-singlet Cooper
bound states. ForH,Hc

ssd only two rapidity bands play a
role, both associated with spin-singlet bound states. If
H.Hc

ssd unpaired electrons also exist and all four rapidity
bands are populated. A drag current opposite to the drive
current can then be induced. The process of pushing one
electron forward in one wire and dragging another electron
backwards in the other wire requires conservation of the total
momentum. This is only possible if the two wires have equal
carrier density, i.e., ifD=0. Note that linewidths of excita-
tions in a Luttinger liquid are proportional toT and smear the
d function for the momentum conservation. This allows for a

FIG. 2. Critical exponent of the temperature dependence of the
drag current as a function of magnetic field forc=−1, Ne/L
=1.273 andD=0.
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small mismatch(of orderT) between the Fermi momenta of
the two wires and still have drag current.

For c,0, i.e., for spin-triplet pairing, the roles of the
magnetic field andD are interchanged with respect to the
c.0 case. Hence, it requires a minimal bias potential be-
tween the wires,D.Dc

std, to depair electrons. The unpaired
electrons, however, are all placed in one wire, so that a drag
current cannot occur. In a magnetic field, on the other hand,
more than one component to the drag current will arise. Both

correspond to the drag of paired electrons with drag and
drive currents being parallel.
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