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Coulomb drag effect between two one-dimensional conductors: An integrable model
with attractive and repulsive interactions

P. Schlottmann
Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
(Received 19 May 2004; published 13 September 2004

We calculate the critical exponent of the temperature dependence of the drag current between two parallel
guantum wires. The two wires have carriers with equal mass but they may have different electron density. The
electrons interact via a-function spin-exchange potential, which is attractive or repulsive depending on
whether the interacting particles are in a spin-singlet or spin-triplet state. This interaction leads to the formation
of spin-singlet or spin-triplet bound states of the Cooper typeformed hard core bosons that do not
condensate Depending on the parameters, the drag current can be parallel or opposite to the driving current.
The critical exponent of the drag current is calculated using the Batisatzsolution of the model and
conformal field theory.
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[. INTRODUCTION between wires, the momentum conservation of the interac-
tion yields a backward momentum transfer in the drag wire,
Charge carriers moving in one conductor may induce, vidnducing this way a drag current opposite to the driving cur-
the Coulomb interaction and momentum conservation, a dragent. For an attractive interaction among carriers between the
current in another conductor located nearby. This dragvires, on the other hand, the charges form bound states. The
mechanism was proposed by Pogrebirdskifor a  potential applied to the driving wire pulls the bound elec-
semiconductor-insulator-semiconductor layer structure. Hergrons and hence the drag and driving currents are parallel.
we consider the Coulomb drag between two parallel quanThe nonuniversal critical exponents depend on the model,
tum wires for ballistic electrons. In one-dimensional systemghe band filling and the interaction strength. We used the
the correlations between electrons lead to charge and sp#xact solution of the Hubbard model, the supersymmetric
separation, the disappearance of the Fermi liquid quasipartt—J model and the gas of fermions interacting via a
cle pole in the excitation spectrum, and to power laws withé-function potential.
nonuniversal critical exponents. These properties are generi- In this paper we extend this calculation to a different
cally referred to as Luttinger liquids. model involving simultaneously attractive and repulsive
The theoretical and experimental developments of thénteractions>~’The carriers in the two conductors move in
electron-drag effect in a coupled electron system have reparabolic bands with equal mass and interact with each other
cently been reviewed by Rojaand the Coulomb drag be- via a d&function-like spin-exchange interaction. There are
tween quantum wires is extensively reviewed in Ref. 4. Wethen four internal degrees of freedom, namely the two con-
limit ourselves to investigate the drag current for ballisticductors and the spin. Each of the two sect@gin and or-
carriers in linear response to the voltage applied in the drivbital) is SU2) invariant. Depending on the sign of the inter-
ing wire, assuming that only the lowest subband in each wir@ction, the exchange is attractiyeepulsivg in spin space,
is occupied. While within the Fermi liquid approach this while it is (at the same timerepulsive(attractive in orbital
leads to a drag current proportional to temperafuies Lut-  space. Hereorbital refers to the two bandgwires). This
tinger liquid picture gives rise to nonuniversal power lawsleads to the formation of Cooper-type bound states between
with critical exponents that depend on band filling and theelectrons, which, depending on the sign of the exchange,
interaction strengtf:® have either spin-singlet/orbital-triplet or spin-triplet/orbital-
The experimental resul&!® on the Coulomb drag be- singlet symmetry. A bias potentiad, between the two par-
tween parallel wires remain sparse, probably becélisthe  allel conductors may split the bands, so that the electron
drag voltage usually has a very small amplitude é¥dtis  density is not the same in the two conductors. In addition, a
difficult to create parallel electrically isolated quantum wiresmagnetic fieldH may depair the Cooper pairs in the case of
that are sufficiently long and close enough to yield a measpin-singlet bound states and spin polarize the pairs for spin-
surable drag voltage. triplet pairing. This model is then very different from those
In a previous publicatiolt we calculated the critical ex- considered in Ref. 14, which all have 8U or gl(1,N) sym-
ponent for thel dependence of the drag current between twometry, i.e., the interaction is either only attractive or only
parallel quantum wires using the BetAasatzsolutions of  repulsive.
one-dimensional interacting electron systems. The exact so- The present model is integrable via Beth&ssatzby
lution provides the mesoscopic energy spectiigonformal  construction and involves four sets of rapidities to describe
towerg and the long-time long-distance asymptotic of thethe ground statéfour internal degrees of freedgmAs a
drag-current correlation function can then be obtained viaonsequence, it has rich phase diagram as a functidd of
conformal field theory. For a repulsive interaction for carriersand A (see Fig. 2 in Ref. 18 In this paper we discuss the
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critical behavior of the drag current in a few of the phasesransfermatrices with different spectral parameters commute
of this model for both repulsive and attractive exchangeand can be diagonalized simultaneously, establishing the ex-
interaction. act integrability of the model.

The remainder of the paper is organized as follows. In  The eigenvalues and eigenfunctions are parametrized
Sec. Il we briefly restate the model and its Bethesatz by three sets ofapidities'® charge rapidities{kj}}\‘:‘3l (with
solution for the ground state. We also obtain the mesoscopiNl, being the total number of electropsspin rapidities
corrections to the ground state energy. Using conformal fieldx }M., (M is the number of “down sping"and the band
theory we obtain the drag current correlation function forrapidities{gﬁ};}:l. HereN,—n" andn’ are the number of elec-

repulsive spin exchange in Sec. lll. In Sec. IV we considety g iy the two wiregmajority and minority, respectively
the drag current for attractive spin exchange and conclusmr‘t%ue to the potential differenceA2the two wires have dif-
are presented in Sec. V. ferent populations These rapidities satisfy the discrete Be-

the Ansatzequations. For the ground state agd O the so-
Il. MODEL AND BETHE ANSATZ SOLUTION lutions are classified into four class¥s' (1) No—2M real

We consider an integrable model consisting of electrongharge rapidities of unbound itinerant electrof®, M pairs
moving in the parabolic bands of two parallel wires ©f complex conjugated charge rapidities representing spin-
labeled withm=1,2 andinteracting via a contact potential Singlet orbital-triplet pairs(3) real band rapidities, ant)
of the spin-exchange tyg&16 The Hamiltonian is given interband bound state_s str_mgs) of I_ength 2. Forc; 0, class
by (2 corresponds_ tg_spm—tnplet orbltal—smglet pairs, cl&3s

to real spin rapidities and clagéd) to spin-bound stateg\
stringg of length 2.

H=2 | dX o (X) (= P1IX) Yny(X) We denote withe the dressed energies of the rapidity
mo bands and withp, the density of rapidities and their
holes. Herel=1,...,4 refers to the four classes of states
+c X fdxf dx’ a(x = x') indicated above. The densities satisfy the following integral
mm’,e,0’ equations:

X lr/lelr(X) lvb:n’ o' (X,) ivbm’o'(xl ) l//ma" (X) 4 Bq
ROSEDS d\'Kig(A =N)psN)=g(N),  (3)

A (D™ f AdX (9 iy (%), D 4178
ma whereg; is the driving term given by 127), 1/7, 0 and 0
where ¢ (x) creates an electron with spim at sitex in ~ for 1=1,...,4, respectively. In terms of a,(\)

wire m, ¢ is the strength of the local exchange interaction,=(nlc|/2m)/[A\?+(nc/2)?], the integration kerneléK,q=Ky)
and 2A represents the potential difference between there
two wires. A lifts the degeneracy between the wires and

introduces a difference in the electron density. We choose Ki=0, Kp=a, Kp=-a, Ku=-a,
equal masses for the electrons in the two wires, which

is also a necessary condition for the integrability of the Ky=a,, Ky=—-a, Ky=-a;—as,
model.

The exchanges-function potential is repulsivéattractive
in spin space, while attractiveepulsive in the orbital sector
for c>0 (c<0). The two-particle scattering matrix factor- The integration limitsB, are determined from the total num-
izes into one for the spin channels and one for the bantber of carriers, the magnetization and the electron population

Kaz=a,, Kg=ay+as Kgp=2a,+a,. (4)

sectott difference between the two wirg¢for c>0)
R A oA - B B
. K, —icP, ki +icP,, &a_f ! 2
R(k) = e~ 1Py , 2 = de)+2|  dapon),
= Cic k+ic @ L Jg -B,
\ivherAe k=k;—k, is the momentum transfer, aﬁq, (TU) and M2 B,
P., (P,) denote the identity and permutation operators in the T = Ef d\ps(N),

band(spin) channel, respectively. When applied to a triplet B

(in the spin or band sectpeach of these factor yields one.

Hence, the scattering matrix acts nontrivially only on band or E _ B1 dhpy(\) + 2 B2 dhpy(\) = 2 B3 dhpa(N)
spin singlet states. For the case of singlets in both the spin | ~ . P1 B P2 . P3
and the band sectors, the two factors cancel and there is no ! . 2 $
effective phase shift. 3 4
The scattering matrix for each of the chann@pin and 4J dAps(M) )

. D -B
bang separately satisfies the Yang—Baxter relatiri€thus 4

their product also satisfies the triangular relation. Henceand the energy is given by
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By B, 2
E J dANZpy(N) + 2 f d>\<>\2 - C—) po(N). () P= 2—”2 [ND, +n/ =ny]. 9
L Jog, -B, 4 L

_ o ) From Eqs(8) and(9) we obtain the conformal dimensions of
The dressed energieg\) satisfy integral Eqs(3) but with  primary  fields characterized by the above quantum
driving termsh,(\) (for ¢>0) numberg°

2
hl()\):)\z_ﬂ_ H/Z_A, AF:nf‘F |:%E (2_1)|qANqiE ZqIDq:| . (10)
q q

For a given set of quantum numbers, the asymptotic be-
havior of a correlation function for long times and large dis-
tances is proportional to

ha) =24, hy(\) =4, @) { L }ZA;»
SNGEY

e 2PrID|
}gi sinf 7 T(x - ipyvt)/v]

hy(\) =2(\N2 = ¢4 — u— A),

wherepu is the chemical potential artd is the external mag-
netic field. HerelL is the length of the wires. wherepg, is the Fermi momentum associated with the rapid-
The generalized dressed charges form @44 matrix, ity bandl.
zy=&k(By), where &y () again satisfy the integral Eqé3)
now with the driving terms,. The matrix of dressed charges
determines the interplay between the four rapidity bands as
given by the conformal towers:2° In this section we discuss the case-0 which favors
The elementary excitations of the four rapidity bands conthe formation of spin-singlet orbital-triplet Cooper-like
sist of particle and hole excitations of the four rapidity bandsbound states. We first consider the simplest limit, ité.,
Their energy and momentum are given kg(\)| and =A=0, and then the situationd=0 with A#0 andH #0
Zwﬂgl‘d)\’p,()\’), where\ parametrizes the excitation. Close with A=0.
to the Fermi points the dispersion is linear in the momentum |f H=0 there are equal number of up-spin and down-spin
and defines a group Ve|OCiiM:(67E|/69)\)|x:3|/[277p|(B|)]. of  electrons, i.e.M*=0. For A=0 the bands of electrons are
course, a group velocity can only be defined for rapidity?q”a”y populated, which correspondsde0. This situation
bands that have a Fermi surface. is sometimes referred to as the degenerate bandiritiiis
The low energy excitations of the system are given by thé®@Sy to verify that the density of real band rapiditiggi)),
mesoscopic corrections to the ground state energy in terms yfnishes identically, i.e.e3(\)=0. Similarly, the rapidity
quantum numbers, the group velocities and the matrix oPand of orbital two-stringsp,(\), is completely filled and
generalized dressed chargles can be eliminated from the integral equations via Fourier
transformation. The band of unpaired electropg\), is
empty. This band can only be populated by depairing Cooper
E=Le, + 2, ﬂ[z (2_l)|qANq:|2 pairs, i.e., an extra energy to overcome the binding energy
1 2L | has to be provided. Hence, excitations into this band are

Ill. DRAG CURRENT FOR SPIN-SINGLET PAIRING

2 1 gapped, and the gap can only gradually be closed with an
+> £y [2 ZqIDq:|2+n|++n|___ , (8 external magnetic field. For the remaining rapidity band,
T L q 12 po(\) and e,(\), representing the spin-singlet orbital-triplet
bound states, we obtain

where €, is the ground state energy density in the — N2 _ (2/9) _ -
thermodynamic limit and the sum ovie is only over bands &N =207 (C12) = 2u, - poM) = L (12
with Fermi points. Here\N, is the departure of the number Hence, the pairs areffectively fregi.e., they are independent
of particles in the bandg from the equilibrium value. of other states and have a parabolic dispersion corresponding
Each band has two Fermi points corresponding tao a mass of 2. They are freghard-cor¢ bosons with
forward and backward moving state, is the backward a symmetric wavefunction. The chemical potential is
scattering quantum number, i.e.,DQ represents the related to the integration limitB, via eX(+B;)=0, i.e.,
difference of forward to backward moving states inu=(B,)?—(c/2)?, and the number of electrons i#l,
each band. Thd, are sensitive to the parity in each set=4B,L/w. More properties, e.g., the excitation spectrum,
of rapidities. Finally, né define the low-lying particle-hole group velocities and critical fields, can be found in Sec. 3
excitations about each of the Fermi points. Héf,, né, of Ref. 19.
and D, always take integer values; hengg, can either In order to obtain the critical exponent of the drag current
be an integer or half integer depending on the initialwe have to evaluate the matrix of dressed generalized
conditions. charges. Since only two rapidity bands have a Fermi surface,
In terms of the quantum numbers defined above, the totale need to consider only=2 and 4. The four functiong,
momentum of the system is given8y! are
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B, 1.0 .
&N =1, &N = f d\"Go(A —\"), Zy;
_B2
0.8 t
£(N) =1/2, Go(N\) =[|c|2 costimN/|c)]™,  (13) T
so thatz,,=1, z,,=0, z4,=1/2, andz,, is given by ¢(0), 06 |
wherey(\) satisfies ' z
N 24
z/;()\)+f d\'[2a,(A = N") +as(N = N)J(N) = 1. 0.4t
0 (a)
(14)
. . . 02 r Z,
Equation (14) is of the Wiener—Hopf type and can be
solved analytically, yieldingz;,=1/2. The Fermi momenta
of the two rapidity bands involved arpg,=(#/2)n and 0.0 . . . .
Pesa=(7/4)n, wheren=N,/L. 0.0 0.2 0.4 OAB 0.8 1.0 1.2

Since for H=A=0 all electrons are bound in Cooper
pairs, the current operator transfers a pair of electrons fromr 14
one Fermi point to the opposite one. A drag current only
exists if the paired electrons belong to different wires. De-
fining OF" (=214 ¢ () . (%) = Y1 .. () ¥, ()], where 13t
+ refers to the Fermi point, the current is given by
09" (x)0¥(x). This operator neither changes the number of
rapidities nor does it create particle-hole excitations at the
Fermi points in either rapidity band, and hens#l,=AN, = 12y
=n,=n;=0. The transfer of particles from one Fermi point to
the other require®,=-D,=+1, and consequently the con- (b)
formal dimensions ard\ =(z,-24)? i.e.,

A>=[1-1/27=1/4, A;=1/4. (15)
The current correlation function, E@l1), has four factors
and after integrating the function with respectxtéor equal 9% 02 0z 06 08 10 12
times we obtain that the drag current is proportionallto A
This is the same result as for a Fermi liquid, although in this ) _
case the current is carried Hyee hard core bosongspin- FIG. 1. (&) Components of the matrix of dressed generalized

chargeszq, and(b) the critical exponent of the temperature depen-
dence of the drag current as a function of the potential differance

zero magnetic field. IH=0 all electrons are bound in spin- PeWeen the two wires foc=1, Ne/L=1.273 and zero magnetic
singlet pairs and due to the binding energy it requires a finité'EId'

energy to depair the bound states. Hence, since all spins are

compensated, the rapidity banelsande; are still empty, and Hence, a drag current only exists fo<@ <AY. Since
only the e, and ¢, bands need to be considered. The mainall electrons are bound in pairs the driving and drag currents
difference with the previous case is that theband is not are along the same direction. The quantum numbers are still
completely filled forA>0, because the wire with less elec- D,=-D4=*1 and all others are zero. The dressed general-
tron density does not have sufficient electrons to pair all thézed charges are determined by two pairs of coupled integral
electrons in the other wire. Hence, some of the spin-singlegquations, which have to be solved numerically. The critical
bound states are formed with both electrons belonging to thexponent of the temperature dependence of the drag current
majority wire. With increasingA the e, band is gradually is given by

depleted and there is a criticAl” so that forA=A" the

paired electrons
We now consider the more general situationAof 0 in

band is empty 7= MN2p0~ 240" + H2o4= 249 - 1, (17
9_ 1 B2 where the -1 arises from the space integration of the
Ac=-7 5 dh[ag(N) +ag(M) ] (V). (16) equal time correlation function. The four components of
b2

the matrix of dressed charges are displayed in Fig) 1
This corresponds to the band splitting at which only one ofas a function ofA for No/L=1.273 andc=1. The limit

the wires has electrons, while the other one is completelA=0 corresponds to the case discussed earlier in this
depleted. Since only one wire is populated, a drag currensection. For these parameters we has/ﬁ=1.031. Note
cannot exist fOI’AZA(CS). thatz,, andz,, (with z,, being Q are defined also iA>Aff).
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The exponentn of the current correlation function is bands contribute to the critical behavior and several pro-
shown in Fig. 1b). It monotonously increases from 1.00 cesses involving more than two carriers are possible. The
for A=0to 1.31 atA(CS>. As Aff) is approached, the exponent processes require momentum conservatioence they are

is essentially constant, because the minority band is almoginly possible for special choices of the external paramgters
empty and can no longer produce changes in the criticahnd will in general lead to a backflow drag currésee also
behavior. In the other limit, ad —0, #» is singular and Ref. 14).

approaches the value 1 &@1/In(A)]. This singularity can

be obtained analytically by reducing the Fredholm equation

to a Wiener—Hopf one. The exponent is nonuniversal in 1IV. DRAG CURRENT FOR SPIN-TRIPLET PAIRING

the sense that it depends on the valuecadnd the band ] ) )

filling, No/L. The same model far< 0 has quite different properties. In

The situationA=0 and H#0 is very different from this case the formation of spin triplets and orbital singlets is
the previous caseA#0 and H=0. It requires a finite favored. The Bethénsatzsolution is the same as far>0,
magnetic field, larger than a criticel’”, to gradually depair i the spin and orbital indices are interchanged. Now ¢he
the spin-singlet Cooper bound states. In other words, thBand corresponds to spin-triplet orbital-singlet pairs, band
Zeeman splitting first has to overcome the binding energyl© real spin rapidities and rapidity bang to spin-bound
The spin gap is then gradually reduced by the magnetic fiel§tates(\ strings of length 2'7 Also the roles ofA and the
and the system &=0 does not respond to an external mag-magnetic field are interchanged. Equatie8s (4), and(6),
netic field smaller tham-l(cs). This property is reminiscent of Ne/L, and the_lntegral equations for the Qregsed generalized
the Meissner effeanote that diamagnetism is not defined in charges remain unchanged. The magnetization and the elec-
one dimensioy although there is no long-range order of foN population difference between the two wires &0
pairs. are

Hence, we have to distinguish two situationsHif H' MZ fsl B,

B3
d\pa(N) = J dhp3(N)
2 —B3

the Coulomb-drag problem is identical to the zero-field case. — =72

d\pi(N) +
L 2—81 Pl()f

For H> H(Cs), on the other hand, the, rapidity band(corre- B

sponding to unpaired charges gradually filled. Conse- By

quently, thees rapidity band has nonzero spectral weight and - Zf d\ps(N),

is completely filled(A=0). Hence, all four rapidity bands Ba

contribute to the critical behavior. The drag current now can 5

have two components: One arising from the Cooper pairs, E:J ! dhpy(\) (19)
for which the drive and drag currents are parallel, and a L Jg P1

second one due to the unpaired electrons. For the latter case
the operators for the drive and drag currents ardthe roles ofM*and £ are switchegand in Eq.(7) A and
¥, ()¢ -(x) and ¢, (X)i;.(X), respectively. Here one H/2 have to be interchanged. _
electron is pushed forward in one wire and another electron The results of the previous section can now be taken
is dragged backwards in the other wire. The drag current i§ver. ForH=A=0, the ¢, and e; bands are empty, while
then opposite to the drive current. Note that this process cafs IS completely filled, and Ec(12) remains valid. Hence,
only occur if the total momentum is conserved, i.e., the twounpaired electrons are gapped and the spin-triplet
wires must have equal carrier density. This is only possiblé@rbital-singlet pairs behave as effectively free hard-core
if A=0. The nonzero quantum numbers for the drag currenosons. The Fermi momenta of the and €, bands
response ar®;=-D;=1, and consequently the critical ex- and the matrix of dressed generalized charges remains
ponent for the T dependence of the drag current is unchanged. T,
7 =43%,(z1-25)?- 1. This current component exists for all ~ The drag current operator i©.," (x)OZ'(x), where
H>HY. OV () =271y, ()b 1. () + 4 L () Y. (X)]. Here a spin-
There is a third possibility for a drag current, namely if triplet orbital-singlet Cooper pair is transferred from
the pairs drag the unpaired electrons. Now the drag is oppgne Fermi point to the other. All quantum numbers, except
site (backflow) to the driving current. The momentum con- D,=-D,=1, are equal to zero for this process. Hence, the
servation for this process requires that the momentum transritical exponent for the temperature dependence of the
fer for the unpaired electrons has the same magnitude but Burrent is againg=1.
opposite to that of the paired electrons. This condition on the A magnetic field gradually depopulates the band of
Fermi momenta can only be satisfied for special values o8pin two strings. This means that the number of spin-triplet
the magnetic field. bound pairs with both electrons in up-spin states increases
If A#0 and |_|>H(C5> the problem is considerably at the expense of the other two triplet components. Note
more complex because of the large number of differenthat if A=0 all electrons are bound in spin-triplet pairs,
phases that are possibisee Fig. 2 of Ref. 18 On the independently of the magnetic field. This drastically differs
one hand, it is qualitatively similar to th&=0 case, from the situation of spin-singlet pair&c>0), in which
only with the increased level of complication becausedhe the external magnetic field breaks up the singlet pairs only
and ¢, rapidity bands are not completely filled, i.eB; if the field exceeds the critical fieldﬁff), resembling the
and B, are finite. On the other hand, all four rapidity Meisner effect.
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4.0 : : ‘ ‘ : trast to thec>0 case there is no second drag component,
because the mechanism discussed in the previous section
now involves only one quantum wire. However, under very
special conditiongmatching of Fermi momenta between the
rapidity bandg the paired electrons may induce a backward
drag current in the unpaired electron fluid and vice versa.
Finally, if H>0 andA>A(Ct) there is in addition a second
= component to the drag current due to Cooper pairs with only
up-spin electrons. This mechanism is already discussed
50 L | above and the driving and drag currents are parallel to each
other. Due to the complicated phase diagr@®e Fig. 2 of
Ref. 17 there are also other possibilities, involving several
electrons, to generate backflow drag currents through mo-
mentum conservation.

3.0

1.0

0.0 0.2 04 0.6 0.8 1.0 1.2

H/2
V. CONCLUSIONS

FIG. 2. Critical exponent of the temperature dependence of the
drag current as a function of magnetic field for—1, No/L We considered two nearby parallel quantum wires with
=1.273 andA=0. carriers interacting via a contact potential of the spin ex-
change type. Foc> 0 the interaction leads to the formation

There are two components to the drag current, both du8f SPin-singlet Cooper pairs, while far<0 the pairing is of

to the Cooper pairs and hence the driving and drag current§'® Spin-triplet type. The model has three additional param-
are parallel: (i) The one arising from the operator €t€rs, namely, the electron density in each wire and the mag-

Of”(x)o(_t)(x), already discussed above, with nontrivial netization, which are controlled by _the_chemlcal potential
quantum number®,=-D,=1, and(ii) one only involving (total _number qf carrieds A the po_tentlal difference l_Jetyveen
the up-spin triplet pairs ’for which the operator is the wires(relative electron densifyand the magnetic field.
+ + : The model is integrable by construction and has been solved
_ _(x). For th h [ - ; ; ;
t(/rl|1\} i’fé?%&#ﬁ#%éﬁggr f;()) =1or this case the only non previously via Bethe’sAnsatz!>1719The model is also very
Theqcase(i) can be take2n 0\}er from the previous Sectiondifferent from those considered in Ref. 14, since it simulta-
with only exchangingh andH/2. The ban% is araduall neously involves attractive and repulsive interactions in the
depleteg being fgll foH=0 and. empt; foH>H(§ wherey spin and orbital sectors. The sign of the interaction is always
hereH" —’ZA(S) with A" defined in the previous sce'ction The opposite in the two sectors. :
c ~4"¢ c P : In conjunction with conformal field theory we used the

dressed generalized charges and the critical exponent for_ﬂB:etheAnsatzsolution to explore possible drag currents and

T dependence of the drag current are the ones shown in Fig§ptain the critical exponent of the temperature dependence of

1@ and Xb). o _ that current. The Cooper-like bound states lead to a drag
The mechanism corresponding @) for c>0 only in- ¢ rrent parallel to the driving current. On the other hand,

volves one quantum wire and hence a drag current cannofnaired electrons may produce a drag current opposite to
take place for spin-singlet Cooper pairs. The critical expoyq driving current.

nent of the drag currerii) for c<0 is thennf’=4z§2+z}z_§4 The ground state of the model is described in terms of
—1, wherez,, and z, can be taken from Fig.(@. 7" IS foyr rapidity bands. In particular, the highly symmetric situ-

. . . . X t
dlsplayecli in Fig. 2. Note thab, is not defined TO’H>_H<<:?' ation corresponding to spin degeneracy and equal carrier
so that'=42,-1, and the exponent has a discontinuity aldensity in the wires, i.e., foA=H=0, the Cooper-like pairs

Hff). act like free hard-core bosons. These the bosons are pre-
In order to populate the; and e; rapidity bands(these  formed and exist at any finité.
bands refer to unpaired electrgribe bias potentiaA has to For c>0 it requires a finite magnetic field, larger than a

exceed a minimal value given by"=H®/2, whereH®  critical H', to gradually depair the spin-singlet Cooper
was defined in the previous section. This is the energyound states. FoH<Hff) only two rapidity bands play a
required to overcome the binding energy and break up e, both associated with spin-singlet bound states. If
Coope([) pair. The system does not respond unfeisslarger 1~ 19 ynpaired electrons also exist and all four rapidity
thanA.’. For H=0 the total magnetization remains equal to hands are populated. A drag current opposite to the drive
zero. All four rapidity bands contribute to this case and thegrrent can then be induced. The process of pushing one
matrix of dressed generalized charges involves 16 compgsiectron forward in one wire and dragging another electron
nents. backwards in the other wire requires conservation of the total
For H=0 andA> A" the drag current has only one com- momentum. This is only possible if the two wires have equal
ponent arising from the Cooper pairs with the current operacarrier density, i.e., i\ =0. Note that linewidths of excita-
tor 0P (x)0"(x), for which the drive and drag currents are tions in a Luttinger liquid are proportional @and smear the
parallel and the exponent i$:42|4:1 (zy—-24)?-1. In con-  §function for the momentum conservation. This allows for a
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small mismatchof orderT) between the Fermi momenta of correspond to the drag of paired electrons with drag and
the two wires and still have drag current. drive currents being parallel.

For ¢<O, i.e., for spin-triplet pairing, the roles of the
magnetic field andA are interchanged with respect to the
c>0 case. Hence, it requires a minimal bias potential be-
tween the WiresA>A(ct), to depair electrons. The unpaired  The support by the U.S. Department of Energy under
electrons, however, are all placed in one wire, so that a dragrant No. DE-FG02-98ER45707 and the National Science
current cannot occur. In a magnetic field, on the other hand;oundation under Grant No. DMR01-05431 is acknowl-
more than one component to the drag current will arise. Botkedged.
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