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The form of electron counting statistics of the tunneling current noise in a generic many-body interacting
electron system is obtained and universal relations between its different moments are derived. A generalized
fluctuation-dissipation theorem providing a relation between current and noise at arbitrary bias-to-temperature
ratio eV/kBT is established in the tunneling Hamiltonian approximation. The third correlator of current fluc-
tuationsS3 (the skewness of the charge counting distribution) has a universal Schottky-type relation with the
current and quasiparticle charge that holds in a wide bias voltage range, both at large and smalleV/kBT. The
insensitivity of S3 to the Nyquist-Schottky crossover represents an advantage compared to the Schottky for-
mula for the noise power. We discuss the possibility of using the correlatorS3 for detecting quasiparticle charge
at high temperatures.
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I. INTRODUCTION

Recent developments in the problem of quantum electron
transport were marked by interest in the phenomenon of
electric noise. The many-body theory of electron shot noise,
developed by Lesovik1 (and independently by Khlus2) for a
point contact, was extended to multiterminal systems by
Büttiker3 and to mesoscopic systems by Beenakker and
Büttiker.4 Kane and Fisher proposed using shot noise for
detecting fractional quasiparticles in a Quantum Hall Lut-
tinger liquid.5

Experimental studies of the shot noise, after first measure-
ments in a point contact by Reznikovet al.6 and Kumaret
al.,7 focused on the quantum Hall regime. The fractional
chargese/3 and e/5 were observed8–10 at incompressible
Landau level filling(see also recent work on noise at inter-
mediate filling11). The shot noise in a mesoscopic conductor
was observed by Steinbachet al.12 and Schoelkopfet al.,13

who also studied noise in an ac driven phase-coherent meso-
scopic conductor.14

In this article we discuss a generalization of the shot
noise, namely the counting statistics of fluctuating electric
current. It can be defined through the probability distribution
Psqd of charge transmitted in a fixed time interval.15,16 We
consider ways of obtaining the distributionPsqd using a fast
charge integrator scheme. From the distributionPsqd all mo-
ments of charge fluctuations can be calculated and, con-
versely, the knowledge of all moments is in principle suffi-
cient for reconstruction of the full distribution. However, due
to the central limit theorem, the high moments can be more
difficult to extract from the entire distribution than the lower
ones. Moreover, they are more susceptible to the distortions
due to the noise generated by the electromagnetic
environment.29 Thus the high moments are difficult to access
experimentally, and here we shall focus primarily on the
third moment.

The counting statistics have been analyzed theoretically
for a Fermi gas, in the single- and multichannel

geometry,15,17 in the mesoscopic regime,18,19 and in the ac
driven phase-coherent regime.17,20 Charge doubling due to
Andreev scattering in NS junctions was considered by
Muzykantskii and Khmelnitskii,21 and in mesoscopic NS
systems by Belzig and Nazarov.22 However, since the most
interesting applications of the shot noise lie in the domain of
interacting electron systems, an appropriate extension of the
theory is necessary.

The problem of back influence of a charge detector on
current fluctuations was considered by Lesovik and
Loosen,23 and recently by Nazarov and Kindermann.24

Beenakker proposed an alternative way of obtaining charge
statistics using photon counting.25 Application to pumping in
quantum dots was also discussed.26

The main result of this article is a relation between differ-
ent moments of counting statistics validin the tunneling re-
gime for a generic interacting many-body system. This rela-
tion arises due to the detailed balance principle that links the
rates of tunneling in opposite directions. The results are not
sensitive to the properties of the tunneling charge, which can
be a single electron charge or an effective charge, such as the
fractional charge of a quasiparticle in a quantum Hall state
e* =e/q8–10 or a Cooper pair chargee* =2e.27,28The situation
of interest is that of weak tunneling current, when subse-
quent tunneling events are well separated in time, so that
there are no correlations between them. In this case, the tun-
neling current statistics takes a universal form of a bidirec-
tional Poisson process, a mixture of two uncorrelated Pois-
son processes describing tunneling in the opposite directions.

Physically, the regime of interest corresponds to weak
transmission for a single channel in the scattering picture, or
to weak backscattering in a point contact between quantum
Hall edge states. In the latter case, the backscattering current
is due to tunneling between the edge states that involves
quasiparticle transport through an incompressible region.

We obtain a general formula for the moments of the
counting statistics of tunneling current fluctuations that holds
at an arbitrary relation between temperature and bias voltage.
It can be summarized in a compact form using a generating
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functionxsld=oqPsqdeilq/e*
, with e* the quasiparticle charge

andPsqd the distribution of charge transmitted during a fixed
time interval. We find

xsld = expfseil − 1dN1→2std + se−il − 1dN2→1stdg, s1d

whereNa→bstd=mabt is the mean charge number transmitted
from the contacta to the contactb in a timet.

The result(1) yields a number of relations between dif-
ferent statistics of the probability distributionPsqd. The cu-
mulants kkdqkll (irreducible correlators) of the distribution
Psqd are expressed in terms ofxsld as

ln xsld = o
k=1

`
sildk

k!

kkdqkll
se*dk . s2d

Using Eq.(1) one obtains

kkdqkll = se*dkHsm12 − m21dt, k odd

sm12 + m21dt, k even.
s3d

Setting k=1,2 we express m12±m21 through the time-
averaged current and the low frequency noise power30

m12 − m21 = I/e* , m12 + m21 = S2/se*d2. s4d

It can be seen from the principle of detailed balance that the
rates m12 and m21 are related by a factor expsDm /kBTd,
whereDm is the quasiparticle chemical potential difference
between the reservoirs. Combined with Eq.(4) this yields a
noise-current relation

S2 = e*I cothS Dm

2kBT
D, Dm = e*V, s5d

whereV is the voltage bias. Although quite reminiscent of
the fluctuation-dissipation theorem that holds in equilibrium,
the relation(5) holds for tunneling in a generic nonequilib-
rium situation. Specifically, it can be applied to systems with
an arbitrary nonlinearity of theI-V characteristic, which can
arise due to the energy dependence of the quasiparticle den-
sity of states in reservoirs, due to tunneling gap, pseudogap,
zero-bias anomaly, etc. Also, it holds for an arbitrary
temperature/bias ratio.

A relation of the form(5) with Dm=eV has been derived
by Rogovin and Scalapino32 for electron tunneling from nor-
mal metal into superconductor and, more recently, by Sukho-
rukov and Loss for cotunneling in a quantum dot.33 The re-
lation (5) with Dm=e*V has also been proposed on heuristic
grounds in the work on fractional charge noise,8,10 where it
was used for fitting the results of noise measurement.

Another quantity of interest for us will be the cumulant
kkdq3ll which is equal to the third correlator31

kkdq3ll ; dq3 = sq − q̄d3 s6d

(see Fig. 1). For this correlator Eq.(3) gives kkdq3ll=S3t
with the coefficientS3 (“spectral power”) related to the cur-
rent I as

S3 ; kkdq3ll/t = se*d2I . s7d

We note that the relation(7) holds for the distribution(1) at
any ratio of the mean number of transmitted charges

m12−m21 to the variancem12+m21, i.e., at any temperature/
bias ratio.

The meaning of Eq.(7) is similar to that of the Schottky
formula for the second correlatorS2=kkdq2ll=e*I which is
usually used to determine the effective chargee* from the
tunneling current noise. The Schottky formula is valid when
charge flow is unidirectional, which meansm12@m21 [see
Eq. (3)]. The latter can be true only at sufficiently low tem-
peratureskBT!eV. This requirement of a cold sample at a
relatively high bias voltage is the origin of a well known
difficulty in the noise measurement. In contrast, the relation
(7) is not constrained by any requirement on the sample tem-
perature.

On a general basis we expect the relation(7) to hold ap-
proximately even outside the tunneling regime. Indeed, for
the Nyquist noise at equilibrium all odd moments vanish.
Combined with the temperature independence ofPsqd out of
equilibrium, ateV@kBT, this implies a dependence on the
ratio eV/kBT which is weaker than in the noise-current rela-
tion at the Nyquist-Schottky crossover. This is manifest, for
instance, in the temperature independent first moment of
Psqd for free fermions(the Landauer formula). Below we
will see that the temperature-dependent corrections to the
relation (7) arise in the second order expansion in the trans-
mission constant.

This property of the third moment, if confirmed experi-
mentally, may prove to be quite useful for determining the
quasiparticle charge. In particular, this applies to the situa-
tions when theI-V characteristic is strongly nonlinear. The
nonlinearity usually makes it difficult to distinguish the
variation of the second moment with current due to shot
noise and due to thermal noise modified by nonlinear con-
ductance. We stress that this is a completely general problem
pertinent to any interacting system. Namely, in systems such
as Luttinger liquids, theI-V nonlinearities arise ateVùkBT.
However, it is exactly this voltage that has to be applied for

FIG. 1. The third moment(6) determines the shape of the dis-
tribution Psqd, namely itsskewness. This is illustrated by a distri-
bution of the form(1) and a Gaussian with the same mean and
variance. ForS3.0 the peak is somewhat more stretched to the
right than to the left.
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measuring the shot noise in the Schottky regime.

II. MICROSCOPIC ANALYSIS

Here we present and discuss a microscopic derivation of
the counting distribution(1). The starting point of the analy-
sis will be the tunneling Hamiltonian

Ĥ = Ĥ1 + Ĥ2 + V̂, s8d

whereĤ1,2 describe the leads andV̂= Ĵ12+ Ĵ21 is the tunnel-

ing operator. The operatorsĴi j , obeying Ĵ12= Ĵ21
+ , describe

quasiparticle tunneling between the reservoirs 1 and 2:

Ĵ12sN̂1 + 1d = N̂1Ĵ12, Ĵ21sN̂1 − 1d = N̂1Ĵ21 s9d

with N̂1=Q̂1/e* the quasiparticle number operator in the res-
ervoir 1 (similar for reservoir 2). The specific form of the

quasiparticle tunneling operatorsĴ12, Ĵ21 will be inessential
for the most of our discussion.

The counting statistics generating functionxsld can be
written16 as a Keldysh partition function

xsld =KTK expS− iE
C0,t

ĤlstddtDL , s10d

where a counting fieldlstd is added to the phase of the

tunneling operatorsĴ12, Ĵ21 as

V̂l = esi/2dlstdĴ12std + e−si/2dlstdĴ21std. s11d

Here lstd= ±l is antisymmetric on the forward and back-
ward parts of the Keldysh contourC0,t;f0→t→0g. Equa-
tions (10) and(11) originate from the analysis of a coupling
Hamiltonian for an ideal “passive charge detector” without
internal dynamics.16,24

In what follows we computexsld and establish a relation
with the Kubo theorem for tunneling current.34 This theorem
relates the tunneling current with an auxiliary susceptibility
at finite frequencyv=Dm evaluated using the tunneling op-
eratorsJ12, J21 for a system in thermodynamic equilibrium.
The latter susceptibility, by Kubo theorem, can be repre-
sented as an expectation values of the commutator of the
tunneling operators taken at different times.

Our first step will be to perform the usual gauge transfor-
mation turning the bias voltage into the time-dependent

phase factor the tunneling operators asĴ12→ Ĵ12e
−iDmt, Ĵ21

→ Ĵ21e
iDmt. Passing to the Keldysh interaction representation,

we write

xsld =KTK expS− iE
C0,t

V̂lstdstddtDL . s12d

Diagrammatically, the partition function(12) is a sum of
linked cluster diagrams with appropriate combinatorial fac-

tors. To the lowest order in the tunneling operatorsĴ12, Ĵ21
we only need to consider linked clusters of the second order.
This givesxsld=eWsld, where

Wsld = −
1

2
E E

C0,t

kTK V̂lstdstdV̂lst8dst8dldtdt8. s13d

There are several different contributions to this integral, from
t andt8 on the forward or backward parts of the contourC0,t.
Evaluating them separately, we obtain

Wsld =E
0

t E
0

t

kV̂−lstdV̂lst8dldt8dt

−E
0

t E
0

t

kV̂lstdV̂lst8dldt8dt

−E
0

t E
t

t

kV̂−lstdV̂−lst8dldt8dt. s14d

We substitute the form(11) into Eq. (14) and average by

pairing Ĵ12 with Ĵ21. This bringsWsld to the form

Wsld = seil − 1dN1→2std + se−il − 1dN2→1std s15d

with the rates given by

Na→b =E
0

t E
0

t

kĴbastdĴabst8dldtdt8. s16d

Exponentiating(15) gives the bidirectional Poisson distribu-
tion (1).

It is instructive to link the quantities(16), and thereby the
result (1), with the standard Kubo-like treatment of
tunneling.34 We consider an expression for the tunneling cur-
rent operator

Îstd = ifQ̂1,Hg = − ie*sĴ12std − Ĵ21stdd, s17d

where the commutator is evaluated with the help of the rela-
tions (9). The Kubo theorem for the tunneling current34 is
derived by considering a linear response of the current(17)
to the tunneling couplingV̂std= Ĵ12std+ Ĵ21std that plays a role
of an auxiliary external field. Using the canonical Kubo com-
mutator result, one can represent the mean integrated current

e0
t kÎstdldt scaled bye* as a time integral of a commutator,

E
0

t E
0

t

kfĴ21std,Ĵ12st8dgldtdt8 = N1→2 − N2→1. s18d

It is convenient at this point to write the quantities(16) by
expressing the expectation values in(16) through the exact
eigenstates in the reservoirs 1, 2. Taking into account that the
corresponding energy spectrum is continuous, we obtain
rates proportional to the measurement time,

Na→b = mabt s19d

with

m12 = 2po
e1,e2

dse2 − e1 − Dmduke2uĴ12ue2lu2e−be1 s20d

with b=1/kBT, and a similar expression form21 with 1↔2
andDm→−Dm. The apparent energy nonconservation in Eq.
(20) is due to the time-dependent phase factore−iDmt in the
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tunneling operator that was introduced above to offset the
bias voltage across the contact.

With these definitions ofmab, we immediately arrive at
the first relation(4), I =e*sm12−m21d. To obtain the second
relation(4), S2=se*d2sm12+m21d, we consider the variance of
the charge transmitted during timet. In terms of the counting
statistics generating function countingxsld, the variance is
identified with the second momentd2 ln xsld /dl2. The latter
can be written with the help of the microscopic definition
(12) as a time integral of an averaged symmetrized product
of two current operators

kkdq2ll = se*d2E
0

t E
0

t

khÎstd,Îst8dj+ldtdt8. s21d

The integral in(21) can be rewritten as

E
0

t E
0

t

khĴ12std,Ĵ21st8dj+ldtdt8 = N1→2 + N2→1 s22d

which immediately leads to(4).
Having the noise and current expressed in terms of the

ratesNa→b, we can establish a proportionality relation be-
tween them by noting that the microscopic formula(20) for
m12 and an analogous formula form21 imply that

N1→2/N2→1 = ebDm. s23d

The universal ratio of the rates is a manifestation of the de-
tailed balance principle. Taking the ratio of the expressions
for the current and noise, we quickly obtain

S2

e*I
=

N1→2 + N2→1

N1→2 − N2→1
= cothS Dm

2kBT
D . s24d

Our derivation is not constrained by linear response assump-
tion, and thus the relation(5) holds for any tunnelingI -V
characteristic, no matter how nonlinear. The only assumption
underpinning the detailed balance relation[Eq. (23)] is that
both reservoirs are in local equilibrium. This is a weaker
requirement than the condition of a true equilibrium, as it
allows for the chemical potentials in both reservoirs, and
even for their temperature, to be perturbed due to the pres-
ence of the tunneling current.

III. THE EFFECT OF FINITE TRANSMISSION ON S3

The result(1), and thereby the formula(7) for the third
correlator and the noise/current relation(5), are valid only at
low transmission. In that the situation is similar to the Kubo
formula for the tunneling current, which is valid only in the
tunneling Hamiltonian approximation. To illustrate this we
recall the expression for counting statistics for a single chan-
nel noninteracting Fermi system(point contact) in the pres-
ence of a dc voltageV and temperatureT,16

xsld = exps− NT U+U−d, NT =
tkBT

2p"
, s25d

U± = U/2 ± cosh−1st coshsU/2 + ild + r coshsU/2dd,

s26d

wheret is a measurement time, andU=eV/kBT. This result
holds for any values of the transmission and reflection con-
stantst andr (constrained byt+r =1). The formulas(25) and
(26) were obtained in Ref. 16 by explicitly evaluating the
Keldysh partition function in the scattering basis representa-
tion.

The third correlatorkkdq3ll can be obtained from(25) by
expanding lnxsld in Taylor series up toOsl3d:

kkdq3ll = e3ts1 − tdNTS6t
sinhU − U
coshU − 1

+ s1 − 2tdUD . s27d

This expression is a function of the bias-to-temperature ratio
U, and so in this case the relation(7) for the third correlator
does not hold(see Fig. 2). Asymptotically

kkdq3ll = He2s1 − tdIt, eV! kBT

e2s1 − 2tds1 − tdIt, eV@ kBT,
s28d

where I =se2/2p"dVt. One can also average(27) over the
universal Dorokhov’s distribution of transmission in a mul-
tichannel mesoscopic metal18 (see Fig. 2).

Equations(27) and (28) indicate nonuniversality of the
relation (7) outside the tunneling regime. They also lead to
an interesting qualitative prediction: Att.0.5 the ratio
kkdq3ll / I can become negative. Such a signature could be
observed even if it proves difficult to measurekkdq3ll quan-
titatively with sufficient precision. This is important in view
of the difficulties in measuring the counting statistics(see
below).

FIG. 2. The third correlatorS3 scaled bye2I, with I the time-
averaged current[see Eqs.(6) and(7)], for the single channel prob-
lem (25)–(27), and for a phase-coherent mesoscopic multichannel
conductor(dashed line). Note that the relationS3=e2I holds ap-
proximately at not too large transmissiont.
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In the single channel problem(25), (26) the tunneling
regime is realized at low transmissiont. To connect with the
results(1) and(7) we analyze the expression(26) at t!1. To
the lowest order in smallt we have

U+ = U, U− = t
eUseil − 1d + se−il − 1d

eU − 1
. s29d

Substituting this in Eq.(25) we recover(1) with

N2→1std =
eVt

2p"

t

eU − 1
, N1→2std = eUN2→1std, s30d

the rates of two Poisson processes. Note that the ratio of the
two rates(30) is equal toebeV, as required by detailed bal-
ance.

IV. MEASUREMENT OF S3

The measurement of the distributionPsqd is a nontrivial
task. Current fluctuations must be amplified with a very low
noise preamplifier(e.g., the one used in Refs. 8 and 10). The
amplified signal can then be digitized and analyzed with
computer. This setup in principle allows to reconstruct the
full statistics of transmitted charge. In practice, however, the
correlators of high order become increasingly difficult to ex-
tract.

The main source of errors in the measurement of thekth
cumulant kkqkll of the distributionPsqd is statistical. The
non-Gaussian character of the amplifier noise does not
present a problem, since the mean time-averaged value of the
kth cumulant of the amplifier can be subtracted if known
with sufficient accuracy. The measured valuekkqkll should
be compared to its variancekdqkl due to both sample and
amplifier noise. The variance is expressed through the corr-
elators of the order 2k. Correlators ofeven order for a
generic distribution can be estimated with the help of the
central limit theorem, using Gaussian statistics

varkdqkl = skdq2kld1/2 . ss2k − 1d ! ! d1/2kdq2lk/2. s31d

The variancekdq2l in Eq. (31) is the mean charge fluctuation
produced by both the sample and the amplifier,

kdq2l = kkq2ll + S2
sadt, s32d

whereS2
a is the amplifier noise, expressed in A2/Hz.

The signal-to-noise ratio for a single measurement can
then be estimated as a ratio ofSk and ss2k−1d ! ! d1/2sS2

+S2
saddk/2t k/2−1. Repeating the measurement many times over

a long time intervalT=Nt and averaging the results will
further reduce statistical fluctuations by a factorÎN. Thus
we estimate the signal-to-noise ratio as

S/N .
SkÎT

ss2k − 1d ! ! d1/2sS2 + S2
saddk/2t sk/2−1/2d . s33d

It is evident from Eq.(33) that it pays to reduce the sampling
time t. However, the measurements which are too closely
spaced in time become correlated due to finite bandwidth of
the input circuit. This makes the effective sampling time re-

stricted by the parasitic capacitance of the sample,C, of both
the intrinsic and stray kind, and by the effective output re-
sistance of the sample in parallel with the input resistance of
the amplifier,R, so thatteff.RC.

To obtain a quantitative estimate of theS/N ratio for high
order cumulants, let us consider the case of tunneling contact
with a small transmission. We shall assume that the main
source of the noise is the the resistorR thermal noise, ignor-
ing both the shot noise produced by the sample and the am-
plifier noise. The signal-to-noise ratio can be estimated by
replacing t by teff and pluggingS2+S2

sad=2kBT/R in Eq.
(33).

The fluctuations frequency-dependent conversion from
current into voltage is accounted for by multiplying theS3
spectral density by the integral

o
v1+v2+v3=0

Zsv1dZsv2dZsv3d = R3/3teff
2 , s34d

where Zsvd=R/ s1−ivteffd and o. . . denotes a triple
frequency integral s2pd−2e−`

` e−`
` e−`

` . . .dsv1+v2

+v3ddv1dv2dv3. Simultaneously, the correlatorS2 should be
multiplied by

o
v1+v2=0

Zsv1dZsv2d = R2/2teff. s35d

Evaluating the ratio(33), finally we obtain the following
estimate for the third cumulant signal-to-noise ratio:

S/N =
e2IÎT

3Î15skBT/Rd3/2RC
. s36d

It is clear from Eq.(36) that as the resistanceR is made
smaller, either by reducing the sample resistance or the am-
plifier input resistance, the advantage of shorter effective
sampling time is overwhelmed by the increase in the thermal
current fluctuations produced by the same resistor. The over-
all S/N ratio scales asÎR. A wide band setup, such as that
used in Ref. 29, is realized whenR is reduced to about
50 Ohm, a typical transmission line impedance. To estimate
the S/N ratio for the wide band setup, one can simply replace
1/t by the bandwidth of the measurement. Calculations simi-
lar to the above lead in this case to

S/N =
3e2If maxÎT

Î15s4kBT/Rd3/2
, s37d

where fmax is the high-frequency cutoff of the amplifier.
For example, Eq.(36) predicts the ratioS/ sNÎT d of about

1s−1/2 with the current through the sampleI =1310−8 A, the
load resistanceR=10 kOhm, the capacitanceC=5 pF, and
the temperatureT=4.2 K. In comparison, Eq.(37) gives the
ratio S/ sNÎT d of 2310−2 s−1/2 for R=50 Ohm andfmax

=1 GHz for the same current and temperature.
Since the results of this work were made public,35 the

third correlator of current counting statistics have been stud-
ied in various systems by a number of authors.36 Also, an
experimental study ofvoltage fluctuations S3

sVd across a
current-biased tunneling contact, carried out by Reulet, Sen-
zier, and Prober,29 indicated that the measuredS3

sVd differs
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strongly from the naively expectedS3
sVd=−R3S3, whereR is

the total resistance of the sample in parallel with a load re-
sistor. These findings triggered theoretical work37 that ana-
lyzed the effects of environment and helped to understand
the results of measurement.29 An additional contribution to
S3

sVd which dominates in the experiment29 is a result of the
correlation between the voltage fluctuations on the sample
which stem from the environmental noise and the sample
noise itself, both of which affecting the noise correlatorS2
via its voltage-dependence.

In summary, the counting statistics(1) of tunneling cur-
rent is found to be universal and independent of the character

of interactions. For the third correlator we obtain a general-
ized Schottky formula(7). This formula is valid at both large
and smalleV/kBT and can be used to measure quasiparticle
charge at temperatureskBTùeV. The difficulties in measur-
ing the third correlator are discussed and its feasibility is
conjectured.

ACKNOWLEDGMENTS

This research is supported by the U.S.-Israel Binational
Science Foundation and by the MRSEC Program of the Na-
tional Science Foundation under Grant No. DMR 98-08941.

1G. B. Lesovik, JETP Lett.49, 592 (1989).
2V. K. Khlus, Sov. Phys. JETP66, 1243(1987).
3M. Buttiker, Phys. Rev. Lett.65, 2901(1990).
4C. W. J. Beenakker and M. Buttiker, Phys. Rev. B46, 1889

(1992).
5C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett.72, 724 (1994).
6M. Reznikov, M. Heiblum, Hadas Shtrikman, and D. Mahalu,

Phys. Rev. Lett.75, 3340(1995).
7A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne,

Phys. Rev. Lett.76, 2778(1996).
8R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bu-

nin, and D. Mahalu, Nature(London) 389, 162 (1997).
9L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev.

Lett. 79, 2526(1997).
10M. Reznikov, R. de Picciotto, T. G. Griffiths, M. Heiblum, and V.

Umansky, Nature(London) 399, 238 (1999).
11T. G. Griffiths, E. Comforti, M. Heiblum, A. Stern, and V. Uman-

sky, Phys. Rev. Lett.85, 3918(2000).
12A. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett.

76, 2778(1996).
13R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnikov, and D. E.

Prober, Phys. Rev. Lett.78, 3370(1997).
14R. J. Schoelkopf, A. A. Kozhevnikov, D. E. Prober, and M.

Rooks, Phys. Rev. Lett.80, 2437(1998).
15L. S. Levitov and G. B. Lesovik, JETP Lett.58, 230 (1993).
16L. S. Levitov, H. W. Lee, and G. B. Lesovik, J. Math. Phys.37,

4845 (1996); L. S. Levitov and G. B. Lesovik, cond-mat/
9401004(unpublished).

17D. A. Ivanov and L. S. Levitov, JETP Lett.58, 461 (1993).
18H. W. Lee, L. S. Levitov, and A. Yu. Yakovets, Phys. Rev. B51,

4079 (1995).
19Yu. V. Nazarov, cond-mat/9908143, Ann. Phys.(Leipzig) 8,

SI-193 (1999).
20D. A. Ivanov, H. W. Lee, and L. S. Levitov, Phys. Rev. B56,

6839 (1997).
21B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B50,

3982 (1994).
22W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett.87, 067006

(2001).
23G. B. Lesovik and R. Loosen, JETP Lett.65, 295 (1997).
24Yu. V. Nazarov and M. Kindermann, Eur. Phys. J. B35, 413

(2003).
25C. W. J. Beenakker and H. Schomerus, Phys. Rev. Lett.86, 700

(2001).
26A. V. Andreev and A. Kamenev, Phys. Rev. Lett.85, 1294

(2000).
27X. Jehl, M. Sanquer, R. Calemczuk, and D. Mailly, Nature

(London) 405, 50 (2000).
28A. A. Kozhevnikov, R. J. Schoelkopf, and D. E. Prober, Phys.

Rev. Lett. 84, 3398(2000).
29B. Reulet, J. Senzier, and D. E. Prober, Phys. Rev. Lett.91,

196601(2003).
30Our definition of the second moment differs by a factor of 2 from

that adopted by those authors who use positive frequency repre-
sentation for the noise power spectrum and thus write the

Schottky formula asS̃2=2eI. It seems more natural to use the
entire range of frequencies from −` to `, which brings the
Schottky relation to the formS2=eI.

31The relation between cumulants and correlators is generally more
complicated than Eq.(6) for the third cumulant. For example,
kkdq4ll=dq4−3sdq2d2.

32D. Rogovin and D. J. Scalapino, Ann. Phys.(N.Y.) 86, 1 (1974).
33E. V. Sukhorukov and D. Loss, inElectronic Correlations: From

Meso- to NanoPhysics, edited by T. Martin, G. Montambaux and
J. Trân Than Vân(EDP Sciences, Les Ulis, France, 2001).

34G. D. Mahan,Many-Particle Physics(Plenum, New York 1981),
Sec. 9.3.

35L. S. Levitov and M. Reznikov, cond-mat/0111057(unpublished).
36P.-E. Roche and B. Doucot, Eur. Phys. J. A27, 393(2002); K. E.

Nagaev, Phys. Rev. B66, 075334(2002); A. Shelankov and J.
Rammer, Europhys. Lett.63, 485 (2003); D. B. Gutman and Y.
Gefen, Phys. Rev. B68, 035302(2003); S. Pilgramet al., Phys.
Rev. Lett. 90, 206801(2003); M. Kindermann, Yu. V. Nazarov,
and C. W. J. Beenakker,ibid. 90, 246805(2003).

37C. W. J. Beenakker, M. Kindermann, and Yu. V. Nazarov, Phys.
Rev. Lett. 90, 176802(2003).

L. S. LEVITOV AND M. REZNIKOV PHYSICAL REVIEW B 70, 115305(2004)

115305-6


