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Counting statistics of tunneling current
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The form of electron counting statistics of the tunneling current noise in a generic many-body interacting
electron system is obtained and universal relations between its different moments are derived. A generalized
fluctuation-dissipation theorem providing a relation between current and noise at arbitrary bias-to-temperature
ratio eV/kgT is established in the tunneling Hamiltonian approximation. The third correlator of current fluc-
tuationsS; (the skewness of the charge counting distributibas a universal Schottky-type relation with the
current and quasiparticle charge that holds in a wide bias voltage range, both at large arelvskadll The
insensitivity of S; to the Nyquist-Schottky crossover represents an advantage compared to the Schottky for-
mula for the noise power. We discuss the possibility of using the correédafor detecting quasiparticle charge
at high temperatures.
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. INTRODUCTION geometry:>17 in the mesoscopic regint€;’® and in the ac
driven phase-coherent regimie?® Charge doubling due to
Recent developments in the problem of quantum electrondreev scattering in NS junctions was considered by
transport were marked by interest in the phenomenon ofuzykantskii and Khmelnitski#! and in mesoscopic NS
electric noise. The many-body theory of electron shot noisesystems by Belzig and Nazaré¥/However, since the most
developed by Lesovik(and independently by Khidsfor a  interesting applications of the shot noise lie in the domain of
point contact, was extended to multiterminal systems bynteracting electron systems, an appropriate extension of the
Buttiker® and to mesoscopic systems by Beenakker andheory is necessary. )
Buttiker* Kane and Fisher proposed using shot noise for The problem of back influence of a charge detector on

detecting fractional quasiparticles in a Quantum Hall Lut-CUrrént fluctuations was considered by Lesovik and
tinger liquid?® Loosen?® and recently by Nazarov and Kindermaiin.

Experimental studies of the shot noise, after first measureE’ee.n‘".1kker proposed an alte_rnatlve way of obtammg c_harge
ments in a point contact by Reznik@t al® and Kumaret ~ Statistcs lésmg photoln cggnﬂﬁ@g@gphcaﬂon to pumping in
7 . . quantum dots was also discussed.
2:1';“ fzggfgdagg et/hg vegfentgtr:]s e':\f‘gd{(? %\'mi'c;—:]e rgsascitt')?enal The main result of this article is a relation between differ-
g . P ) ent moments of counting statistics validthe tunneling re-
Landau level filling(see also recent work on noise at inter-

diate fillindd). The sh L ) d gimefor a generic interacting many-body system. This rela-
mediate filling"). The shot oIS In a MEsOScopic con llsjcmrtion arises due to the detailed balance principle that links the
was observed by Steinbaei al™* and Schoelkopgt al, rates of tunneling in opposite directions. The results are not

who also studied noise in an ac driven phase-coherent mesgensitive to the properties of the tunneling charge, which can
scopic conductof? be a single electron charge or an effective charge, such as the
In this article we discuss a generalization of the shoffractional charge of a quasiparticle in a quantum Hall state
noise, namely the counting statistics of fluctuating electrice"=e/g8-1%0r a Cooper pair charge =2e.27:28The situation
current. It can be defined through the probability diStribUtiOnof interest is that of weak tunne"ng current, when subse-
P(q) of charge transmitted in a fixed time interv&.®We  quent tunneling events are well separated in time, so that
consider ways of obtaining the distributi®q) using a fast there are no correlations between them. In this case, the tun-
charge integrator scheme. From the distribufRig) all mo-  neling current statistics takes a universal form of a bidirec-
ments of charge fluctuations can be calculated and, cortional Poisson process, a mixture of two uncorrelated Pois-
versely, the knowledge of all moments is in principle suffi- son processes describing tunneling in the opposite directions.
cient for reconstruction of the full distribution. However, due  Physically, the regime of interest corresponds to weak
to the central limit theorem, the high moments can be morgransmission for a single channel in the scattering picture, or
difficult to extract from the entire distribution than the lower to weak backscattering in a point contact between quantum
ones. Moreover, they are more susceptible to the distortiondall edge states. In the latter case, the backscattering current
due to the noise generated by the electromagnetics due to tunneling between the edge states that involves
environmeng® Thus the high moments are difficult to accessquasiparticle transport through an incompressible region.
experimentally, and here we shall focus primarily on the We obtain a general formula for the moments of the
third moment. counting statistics of tunneling current fluctuations that holds
The counting statistics have been analyzed theoreticallat an arbitrary relation between temperature and bias voltage.
for a Fermi gas, in the single- and multichannellt can be summarized in a compact form using a generating
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functionX()\):EqP(q)e”‘q’e*, with € the quasiparticle charge 0"
andP(q) the distribution of charge transmitted during a fixed
time interval. We find

x(\) =exd (e = DNy (1) + (™ = DN, _1(D], (D)

whereN,_.,(7)=my,7 is the mean charge number transmitted ;

~
S

ity

from the contact to the contacb in a time 7. f.é
The result(1) yields a number of relations between dif- <10
ferent statistics of the probability distributid?(q). The cu-  §
mulants ((59%)) (irreducible correlatopsof the distribution § e
P(q) are expressed in terms gf\) as [— N,,=20,N,=0
2, (055 il e
I q By AR RO S B e S R e e R T -
In xy(\) = >, ——~F2%, 2 g R Setius iksts fattons -
o k(e L —— SN ——  W— -
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Using Eq.(1) one obtains 0 5 10 15 itedharge 52‘15/‘10 30 35 40
ko) (M —myy) 7, kodd
(6q9) =(e) (Mp+ Moy 7, K even. ) FIG. 1. The third momen(6) determines the shape of the dis-

tribution P(g), namely itsskewnessThis is illustrated by a distri-
Setting k=1,2 we express m;,xm,; through the time- bution of the form(1) and a Gaussian with the same mean and
averaged current and the low frequency noise p&wer variance. For$;>0 the peak is somewhat more stretched to the

" x right than to the left.
M= My = 1/€, M+ My = Sl(e)?. (4)
It can be seen from the principle of detailed balance that thg;lazs_g?[iloto the variancem,*myy, i.e., at any temperature/

rates m; qnd My, are relgted by a factor e@“/ !(BT)’ The meaning of Eq(7) is similar to that of the Schottky
where Au is the quasiparticle chemical potential d|fferencef0rrnula for the second correlat®@=((5q)=¢'| which is

between the reservoirs. Combined with E4) this yields a usually used to determine the effective chagjerom the

noise-current relation tunneling current noise. The Schottky formula is valid when
charge flow is unidirectional, which meams;,>m,; [see
Eqg. (3)]. The latter can be true only at sufficiently low tem-

. . ) o peratureskgT<eV. This requirement of a cold sample at a
whereV is the voltage bias. Although quite reminiscent of relatively high bias voltage is the origin of a well known

the relation(5) holds for tunneling in a generic nonequilib- (7) js not constrained by any requirement on the sample tem-
rium situation. Specifically, it can be applied to systems W'thperature.

an arbitrary nonlinearity of th&V characteristic, which can On a general basis we expect the relati@nto hold ap-
arise due to the energy dependence of the quasiparticle degroximately even outside the tunneling regime. Indeed, for
sity of states in reservoirs, due to tunneling gap, pseudogaghe Nyquist noise at equilibrium all odd moments vanish.
zero-bias anomaly, etc. Also, it holds for an arbitrary compined with the temperature independenc®(@f) out of

temperature/bias ratio. _ _ equilibrium, ateVskgT, this implies a dependence on the
A relation of the form(5) with Aw=eV has been derived atjo eV/kgT which is weaker than in the noise-current rela-

by Rogovin and Scalapifitfor electron tunneling from nor- - tjon at the Nyquist-Schottky crossover. This is manifest, for
mal metal into superconductor and, more recently, by Sukhopstance, in the temperature independent first moment of
rukov and Loss for cotunneling in a quantum dothe e~ P(q) for free fermions(the Landauer formula Below we
lation (5) with Au=€ 'V has also been proposed on heuristic, ;| see that the temperature-dependent corrections to the
grounds in the work on fractional charge nofséwhere it (o|ation(7) arise in the second order expansion in the trans-
was used for fitting the results of noise measurement. mission constant.
Agother qqantity of interest'for us will be the cumulant  This property of the third moment, if confirmed experi-
((69%) which is equal to the third correlafdr mentally, may prove to be quite useful for determining the
{6q%)) EW:W (6) quasiparticle charge. In parf[ic_ulqr, this applies to the situa-
tions when thd-V characteristic is strongly nonlinear. The
(see Fig. 1 For this correlator Eq(3) gives ((50°))=S;  nonlinearity usually makes it difficult to distinguish the
with the coefficientS; (“spectral power) related to the cur- variation of the second moment with current due to shot
rentl as noise and due to thermal noise modified by nonlinear con-
_ VLY ductance. We stress that this is a completely general problem
S = (oqni7=(e)7. @) pertinent to any interacting system. Namely, in systems such
We note that the relatio(v) holds for the distributior{1) at  as Luttinger liquids, thé-V nonlinearities arise a#V=KkgT.
any ratio of the mean number of transmitted chargedHowever, it is exactly this voltage that has to be applied for

. Ap ) .
=el cot , Au=eV, 5
S,=el co r(ZkBT n=e (5)
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measuring the shot noise in the Schottky regime. 1 - -
W()\) =- E f f <TK V)\(t)(t)V)\(t/)(t'»dtdt’ . (13)
CO,T

Il. MICROSCOPIC ANALYSIS . o o
There are several different contributions to this integral, from

Here we present and discuss a microscopic derivation of andt’ on the forward or backward parts of the cont@yr,.

the counting distributiortl). The starting point of the analy- Evaluating them separately, we obtain
sis will be the tunneling Hamiltonian

H=H,+Hy+V, ) W) = JO fo (V_, (DV, (t))dt dt

wherefil,z describe the leads ar\h:312+321 is the tunnel-
ing operator. The operatory;, obeying J1,=J;,, describe
quasiparticle tunneling between the reservoirs 1 and 2:

T t
- J J (V, (DV, (t))dt dt
0 0

. e o - (V_,(HV_, (t))dt'dt. (14)

Ji2(N3+1) =NpJip  Ja(Ny— 1) =NyJpy 9 J0 Jt

with N,=Q,/€" the quasiparticle number operator in the res-We substitute the forni1l) into Eq. (14) and average by

ervoir 1 (similar for reservoir 2 The specific form of the pairing J;, with J,4. This bringsW(\) to the form

guasiparticle tunneling operatods,, J,; will be inessential — (N _ +(ah =

for the most of our discussion. W(N) = (e" = 1N;_o(7) + (€™ = N,_1(7) (15
The counting statistics generating functigfin) can be  with the rates given by

writtent® as a Keldysh partition function

Na b= f ' J a0l )clcl (16)
X()\):<TK exp<—i m(t)dt)>, (10) o o
Co,r

Exponentiating15) gives the bidirectional Poisson distribu-
n (1).

It is instructive to link the quantitie€l6), and thereby the
result (1), with the standard Kubo-like treatment of
tunneling3* We consider an expression for the tunneling cur-

rent operator

Here A (t)=%£\ is antisymmetric on the forward and back- A ra e o
ward parts of the Keldysh conto@, ,=[0— 7— 0]. Equa- Z(t) =i[QnH] = —ie (Ipo(t) = Inn(1)), (17)
tions (10) and(11) originate from the analysis of a coupling where the commutator is evaluated with the help of the rela-
Hamiltonian for an ideal “passive charge detector” withouttions (9). The Kubo theorem for the tunneling curr&his
internal dynamic3624 _ ~ derived by considering a linear response of the cur(&t

_In what follows we compute/()) and establish a relation 4 the tunneling coupling/(t)=J,,(t) + J,4(t) that plays a role
with the Kubo theorem for tunneling curretftThis theorem ot 5 auxiliary external field. Using the canonical Kubo com-
relates the tunneling current with an auxiliary susceptibility y ,tator result, one can represent the mean integrated current

at finite frequencyw=Apu evaluated using the tunneling op- ., - « . .
eratorsJy, Jp, for a system in thermodynamic equilibrium, Jo (Z(tdt scaled bye as a time integral of a commutator,

The latter susceptibility, by Kubo theorem, can be repre- A .
sented as an expectation values of the commutator of the f f ([Jp1(1),d1(t") Pdtdt =N;_»—N,_;.  (18)
tunneling operators taken at different times. 0 o

Our first step will be to perform the usual gauge transfor-¢ i convenient at this point to write the quantitieks) by
mation turning the bias voltage into the time-dependentynressing the expectation values(ir6) through the exact

phgse factor the tunneling operators :11§—>3126'm‘“, Jo;  eigenstates in the reservoirs 1, 2. Taking into account that the
— J,,624, Passing to the Keldysh interaction representationcorresponding energy spectrum is continuous, we obtain

where a counting field\(t) is added to the phase of the tio
tunneling operators,,, J,; as

Vy = el2M0J35(0) + & VM 3y(1). (1)

we write rates proportional to the measurement time,
. ~ Ng_.p = MapT (19
x(\)={ Tx exp - Ifco_v}\(t)(t)dt . (12 with
Diagrammatically, the partition functionl2) is a sum of M= 27>, 86— € - Ap)[(eldide)ePa (20
linked cluster diagrams with appropriate combinatorial fac- S

tors. To the lowest order in the tunneling operatdss 321 with B=1/kgT, and a similar expression fon,; with 12
we only need to consider linked clusters of the second ordeandAux— —Au. The apparent energy nonconservation in Eq.
This givesy(\)=e"™, where (20) is due to the time-dependent phase fa@dt* in the

115305-3



L. S. LEVITOV AND M. REZNIKOV PHYSICAL REVIEW B 70, 115305(2004)

tunneling operator that was introduced above to offset the 1 ' ' ‘ ' ' ' ‘
bias voltage across the contact.

With these definitions of,, we immediately arrive at
the first relation(4), |=€"(m;,—m,,). To obtain the second

S
Co
T

I~

relation(4), S,=(€")2(m,,+Myy), we consider the variance of .,

the charge transmitted during timeln terms of the counting 20,6

statistics generating function counting\), the variance is 3

identified with the second momedt In x(\)/d\2. The latter §

can be written with the help of the microscopic definition §0'4‘

(12) as a time integral of an averaged symmetrized product 5

of two current operators E 0.2 multichannel |
~ conductor

(80P = (€")? f f (I, 7))t . (21) 0
0 70 t=0.95
The integral in(21) can be rewritten as -+ & - ‘;‘fltage e‘0//21t kBIT 2 4 £
It "‘] t)1,)dtdt =Ny, + N,_ 29 FIG. 2. The third correlato; scaled bye?l, with | the time-
fo JO (120), J(t)}) 1=z 21 (22 averaged currerjsee Eqs(6) and(7)], for the single channel prob-

lem (25—27), and for a phase-coherent mesoscopic multichannel
which immediately leads t¢4). conductor(dashed ling Note that the relatiors;=€?l holds ap-
Having the noise and current expressed in terms of th@roximately at not too large transmissitn
ratesN,_.,,, we can establish a proportionality relation be-

tween them by noting that the microscopic form@®) for U, =UI2 + coshl(t cosil/2 +iN) +r coshul2)),
my, and an analogous formula fam,; imply that h 26)

Ny /N, ; =efAx, (23
where 7 is a measurement time, aitkEeV/kgT. This result
The universal ratio of the rates is a manifestation of the deholds for any values of the transmission and reflection con-
tailed balance principle. Taking the ratio of the expressionstantst andr (constrained by+r=1). The formulag25) and
for the current and noise, we quickly obtain (26) were obtained in Ref. 16 by explicitly evaluating the
Keldysh partition function in the scattering basis representa-
S Npo,+Npp ’_< L ) ” tion. . , .
el Ny ,-Ny 1 cot keT) (24) The Fh|rd corre!ato((&q ) can be obtained fron25) by
expanding Iny(\) in Taylor series up t@®(\3):
Our derivation is not constrained by linear response assump-
tion, and thus the relatiofb) holds for any tunneling -V 3 sinh
characteristic, no matter how nonlinear. The only assumption ((60%)) =€X(1 - Ny 6tm +A-20U|. (27)
underpinning the detailed balance relatiéty. (23)] is that
both reservoirs are in local equilibrium. This is a weaker
requirement than the condition of a true equilibrium, as it S . )
allows for the chemical potentials in both reservoirs, an d, an(:] stohlnlthls cia:?e theAreI%tl(iﬁ)tifor”the third correlator
even for their temperature, to be perturbed due to the pres-Oes ot holdsee Fig. 2 Asymptotically
ence of the tunneling current.

This expression is a function of the bias-to-temperature ratio

(1 -l eV<kgT

e(1-2)(1-t)lr, eV>KkgT, 28)

(o)) = {

Ill. THE EFFECT OF FINITE TRANSMISSION ON  S3

The result(1), and thereby the formulé7) for the third  where | =(e?/27#)Vt. One can also averag@7) over the
correlator and the noise/current relati@), are valid only at  universal Dorokhov’s distribution of transmission in a mul-
low transmission. In that the situation is similar to the Kubotichannel mesoscopic metéisee Fig. 2
formula for the tunneling current, which is valid only in the  Equations(27) and (28) indicate nonuniversality of the
tunneling Hamiltonian approximation. To illustrate this we relation (7) outside the tunneling regime. They also lead to
recall the expression for counting statistics for a single chanan interesting qualitative prediction: At>0.5 the ratio
nel noninteracting Fermi syste(point contactin the pres-  ((5g%)/1 can become negative. Such a signature could be
ence of a dc voltag¥’ and temperaturd,® observed even if it proves difficult to measytéqg®) quan-

T titatively with sufficient precision. This is important in view
— _ ™8 of the difficulties in measuring the counting statisticee
XV =eXH-Nrl2), Ne=22 (29 DL 9 g statist
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In the single channel probler25), (26) the tunneling stricted by the parasitic capacitance of the sanp)af both
regime is realized at low transmissitriTo connect with the the intrinsic and stray kind, and by the effective output re-
results(1) and(7) we analyze the expressiga6) att<1. To  sistance of the sample in parallel with the input resistance of
the lowest order in smatl we have the amplifier,R, so thatr.;=RC.

(e - 1) + (€™ = 1) To obtain a quantitative e_stimate of tBéN ratio fo_r high
_ (29) order cumulants, let us consider the case of tunneling contact
é-1 with a small transmission. We shall assume that the main
source of the noise is the the resiskbthermal noise, ignor-
ing both the shot noise produced by the sample and the am-

U.=U, U-=t

Substituting this in Eq(25) we recover(1) with

eVr t plifier noise. The signal-to-noise ratio can be estimated by
N2~1(T):ﬁeu_l’ Ni_o(7) = €Np_a(7), (30) Egg)lacing 7 by 7 and pluggingS,+S?=2ksT/R in Eq.

the rates of two Poisson processes. Note that the ratio of the The fluctuations frequency-dependent conversion from
two rates(30) is equal toe®®", as required by detailed bal- current into voltage is accounted for by multiplying tBg

ance. spectral density by the integral
D Zw)Z(w)Z(ws) = R¥I37%, (34)
IV. MEASUREMENT OF S; w1+wytwz=0
The measurement of the distributiét{q) is a nontrivial ~ Where Z(w)=R/(1-iwe) a”d_zzgg' denotes a triple
task. Current fluctuations must be amplified with a very lowfrequency integral  (2m)™*Z, [Z, [Z.. dlwt o,

noise preamplifiete.g., the one used in Refs. 8 and.Ibhe  +wz)dw;dw,dws. Simultaneously, the correlat8 should be
amplified signal can then be digitized and analyzed withmultiplied by
computer. This setup in principle allows to reconstruct the

full statistics of transmitted charge. In practice, however, the > B Z(w1)Z(w,) = R 27y (39
correlators of high order become increasingly difficult to ex- wrtes=0
tract. Evaluating the ratio(33), finally we obtain the following

The main source of errors in the measurement ofkthe  estimate for the third cumulant signal-to-noise ratio:
cumulant({g¥)) of the distributionP(q) is statistical. The =
non-Gaussian character of the amplifier noise does not IN=—— eINT _
present a problem, since the mean time-averaged value of the 3\"15(kBT/R)3/2RC
kth cumulant of the amplifier can be subtracted if known
with sufficient accuracy. The measured vali¢g)) should
be compared to its variangg@g®) due to both sample and

(36)

It is clear from EQ.(36) that as the resistand® is made
smaller, either by reducing the sample resistance or the am-
amplifier noise. The variance is expressed through the conF-)Iiﬁer 'inpu.t re§istance, the advantage of shqrter effective
clators of the order 2 Correlators ofeven order for a sampling time is overwhelmed by the increase in the thermal
generic distribution can be estimated with the help of theCurrent ﬂu<_:tuat|ons prqguced_by the same resistor. The over-
central limit theorem, using Gaussian statistics all S/N ratio scaleg, asR. .A wide ban.d setup, such as that
' used in Ref. 29, is realized wheR is reduced to about
var 8q€) = ((892) Y2 = ((2k- 1) YA 59?2, (31) 50 Ohm, a typical transmission line impedance. To estimate
) ~ ) . the S/N ratio for the wide band setup, one can simply replace
The variancg5q°) in Eq.(31) is the mean charge fluctuation 1. by the bandwidth of the measurement. Calculations simi-

produced by both the sample and the amplifier, lar to the above lead in this case to
(807 = ((g?)) + S, (32) 3 | T
. o . . N=—r—=—""—0", (37
whereS; is the amplifier noise, expressed irf/Adz. V15(4kgT/R)%2

The signal-to-noise ratio for a single measurement can . . .
then be estimated as a ratio 6 and ((2k-1)!1)Y2(S, wheref 4 iS the high-frequency cutoff of the amplifier.

_ . . For example, Eq.36) predicts the rati&/ (N ﬁ') of about
* a))klzf N l‘. Repeating the measurement many times OVl 5112 yith thz currce{nt 1hprough the samplelg 108 A, the
a long time interval7=N7 and averaging the results will '

. . 7 load resistancék=10 kOhm, the capacitand&=5 pF, and
further'reduce stqtlstlcal fluqtuatlons by a facto¥. Thus the temperatur@=4.2 K. In comparison, Eq37) gives the
we estimate the signal-to-noise ratio as

ratio S/(N\7) of 2x102sY2 for R=50 Ohm andf,.,
SKVFT =1 GHz for the same current and temperature.

(k=11 12, + S92, W17z (33 th.S|nce the results of this work were made puBfiche
ird correlator of current counting statistics have been stud-

It is evident from Eq(33) that it pays to reduce the sampling ied in various systems by a number of authBrélso, an

time 7. However, the measurements which are too closelyexperimental study ofvoltage fluctuations %V) across a
spaced in time become correlated due to finite bandwidth ofurrent-biased tunneling contact, carried out by Reulet, Sen-

the input circuit. This makes the effective sampling time re-zier, and Probet® indicated that the measuréégv) differs

SN
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):

strongly from the naively expectﬁg\’ -R%S;, whereR is

PHYSICAL REVIEW B 70, 115305(2004)

of interactions. For the third correlator we obtain a general-

the total resistance of the sample in parallel with a load reized Schottky formula7). This formula is valid at both large

sistor. These findings triggered theoretical wdrthat ana-

and smalleV/kgT and can be used to measure quasiparticle

lyzed the effects of environment and helped to understandharge at temperaturégT = eV. The difficulties in measur-

the results of measureméiitAn additional contribution to
Sfjv) which dominates in the experiméhis a result of the

ing the third correlator are discussed and its feasibility is
conjectured.

correlation between the voltage fluctuations on the sample

which stem from the environmental noise and the sample

noise itself, both of which affecting the noise correlar
via its voltage-dependence.
In summary, the counting statisti¢%) of tunneling cur-
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