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We study the dynamics of a quantum dot embedded in a three-dimensional microcavity in the strong
coupling regime in which the quantum dot exciton has an energy close to the frequency of a confined cavity
mode. Under the continuous pumping of the system, the confined electron and hole can recombine either by
spontaneous emission through a leaky mode or by stimulated emission of a cavity mode that can escape from
the cavity. The numerical integration of a master equation including all these effects gives the dynamics of the
density matrix. By using the quantum regression theorem, we compute the first- and second-order coherence
functions required to calculate the photon statistics and the spectrum of the emitted light. Our main result is the
determination of a range of parameters in which a state of cavity modes with Poissonian or sub-Poissonian
(nonclassical) statistics can be built up within the microcavity. Depending on the relative values of pumping
and rate of stimulated emission, either one or two peaks close to the excitation energy of the dot and/or to the
natural frequency of the cavity are observed in the emission spectrum. The physics behind these results is
discussed.
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I. INTRODUCTION

Quantum electrodynamics of atoms within optical cavities
is a well-understood problem that has produced many results
of both fundamental and practical interest.1–4 The current
capability of using semiconductors technology to grow quan-
tum dots(QD) embedded in microcavities seems very prom-
ising to reproduce and control the properties in a solid-state
system that could be integrated in electronic or optical de-
vices. The essential physics of such a system is the coupling
between the QD excitations and the photonic cavity modes
as well as the possibility of interaction with the external
world through the pumping of the system and the subsequent
emission of light. The main goal is the control of the emitted
light and its quantum properties. Therefore it is possible to
build up high-efficiency light-emitting diodes, low-threshold
lasers, and single-photon sources.

We concentrate here on a problem, not far from the actual
situation in several experiments5–11 in which a single QD is
embedded in either a pillar, a disk, or a photonic crystal
microcavity confining photons in the three spatial directions.
The system is pumped either by electrically injecting elec-
trons and holes that tunnel into the QD6 or by pumping ex-
citons in the QD.5,7,9–11Light emission from the system takes
place both by cavity mode decay and by spontaneous emis-
sion of leaky modes. All these pumping and emission mecha-
nisms introduce decoherence affecting the quantum proper-
ties of the system.

The lowest energy excitation of a neutral QD is an
electron-hole pair, usually labeled as exciton. Due to the fer-
mionic character of its components, this exciton state can
only be singly occupied having a degeneracy related to the
possible values of the third component of the total angular
momentum. This quantum number is usually referred to as
the spin of the exciton. Among all these states, only two
cases—those corresponding to ±1—are of interest in our
problem due to their possible coupling with photons. The
next excitation corresponds to the case in which both +1 and

−1 excitons are occupied. This biexciton state has an energy
different to twice that of a single exciton due to the Coulomb
interaction of their components. This spectrum presents in-
teresting alternatives,12 which we intend to study in future
work, while here we restrict to simplest case in which we
consider only excitons with a given spin. This assumption is
well justified in the case of experiments in which the system
would be pumped with polarized light, so that excitons with
a given angular momentum would be created in the system.13

We also assume that spin-flip mechanisms are slow as com-
pared with typical time scales in our system. Other single-
particle states of the QD, above the exciton energy, can be
neglected because they are not strongly coupled to the cavity
mode in the case of resonance or quasiresonance between the
exciton and the confined photon. Under these conditions, the
problem reduces to that of a two-level artificial atom embed-
ded in the optical cavity. We are going to show that, in spite
of this simplification, the system presents a very rich variety
of physical situations.

The problem of a two-level system coupled to a single
cavity mode under different conditions and approximations
has received a lot of attention, mainly in the field of quantum
optics.1–4,14,15Of particular interest is the study of the pos-
sible sub-Poissonian radiation when cavity losses and pump-
ing dominate onto the spontaneous emission of leaky modes.
The aim of our work is an exhaustive analysis of the differ-
ent regimes of parameters to determine the role played by the
different physical mechanisms in the quantum properties of
both the internal state of the system and the light emitted in
the steady regime under continuous incoherent pumping.
Since the case of perfect resonance has been already
studied,15 we will make emphasis on the effects appearing in
the more realistic situation of having a finite detuning be-
tween the QD exciton and the cavity photon.

The paper is organized as follows: In Sec. II we describe
the model Hamiltonian and master equation that allows to
calculate the evolution of the populations and coherences of
the energy levels. By means of the quantum regression theo-
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rem, we can use our master equation to calculate cavity pho-
ton statistics and the spectrum of the emitted light. In Sec. III
we present the results for the time evolution of the magni-
tudes of interest in different ranges of parameters character-
izing different physical situations. The spectrum of the light
emitted by the system is presented and discussed in Sec. IV.
Section V is devoted to a summary of the work.

II. THEORETICAL FRAMEWORK

We consider a single QD inside a semiconductor micro-
cavity that is continuously and incoherently pumped. Our
system is initially in its ground state and evolves until it
reaches the steady state. In order to describe the time evolu-
tion of the QD-cavity system we use a master equation that
includes the strong exciton-photon coupling, the nonresonant
pump, and the interaction with the environment that is re-
sponsible for dissipation.

A. The Hamiltonian

The physics of a QD strongly coupled with a single cavity
mode is described by the Hamiltonian

H = HS+ HRS+ HR. s1d

HS and HR are the Hamiltonian for the QD-cavity system,
and the environment(reservoirs), respectively. The termHRS
describes the interaction between the QD-cavity system and
the reservoirs.HS is given by the usual Jaynes-Cummings
Hamiltonian,2,4 which describes the interaction of a two-level
system with a single mode of the electromagnetic field,

HS= H0 + HX−C,

H0 = vXuXlkXu + svX − Dda†a,

HX−C = gssa† + as†d. s2d

We have introduced ladder operatorss†= uXlkGu, s= uGlkXu
connecting the grounduGl and excited(exciton) uXl states of
the QD with energies zero andvX, respectively(we take"
=1). a† creates a cavity photon with energysvX−Dd. The
coupling termHX−C in Eq. (2) describes the exciton-photon
coupling in the Rotating Wave Approximation.1–3

HRScontains the coupling to external reservoirs including
the following three processes:

(i) The continuous and incoherent pumping of the QD by
annihilatingscR8d an electron-hole pair from an external res-
ervoir R8 (representing either electrical injection or the cap-
ture of excitons optically created at frequencies larger than
the typical ones of our system) and creationsdR9

† d a phonon
emitted to a reservoirR9 in order to take care of energy
conservation

o
R8,R9

mR8,R9fdR9
† cR8s

† + scR8
† dR9g, s3d

(ii ) The direct coupling of the QD exciton to the leaky
modes, that is, to the photonic modes, with energy different
from the cavity mode, that have a residual density of states

inside the microcavity. This process is responsible for the
dissipation of the excitonic degrees of freedom by the spon-
taneous emission to an external reservoirR of photons cre-
ated bybR

†

o
R

llRfsbR
† + bRs†g, s4d

(iii ) The escape of the cavity mode out of the microcavity
due to the incomplete reflectance of the mirrors. The cavity
mode is thus coupled to the continuum of photonic modes
out of the microcavity. This process produces the direct dis-
sipation of the cavity mode

HCE = o
R

lRsabR
† + bRa†d. s5d

The last term in Eq.(1), HR, describes the external reservoirs
of harmonic oscillators(photons, phonons, electron-hole
pairs,…), not being necessary to detail them explicitly. The
three termsHRS have coupling constantsmR8,R9, lR, andllR,
which depend on the particular mode(R, R8, or R9) of each
external reservoir. The operatorsa, bR, cR8, and dR9 have
bosonic commutation rules as they correspond to harmonic
oscillators. Since we are interested in the strong coupling
regime, the first three terms,H0 andHX−C are treated exactly.
That means that one could work in the framework usually
known as the “dressed atom picture.” However, in order to
clarify the different pumping and losses mechanisms, it is
preferable to work in basissuGnl ; uXnld in terms of the num-
ber of cavity photonsn and bare groundG and excitonX
states of the QD.

B. Master equation

We have made the whole algebra for a general case in
which reservoirs are at finite temperature. However, the main
physics already occurs for zero temperature, which is the
case we present hereafter in this paper.

We define the reduced density matrix,r, for the exciton-
photon system by tracing out the reservoir degrees of free-
dom in the total density matrixrT

r = TrRsrTd. s6d

In the interaction picture with respect toHX−C+HRS in Eqs.
(1) and (2), r satisfies the master equation2,3

d

dt
r =

i

"
fr,HSg +

k

2
s2ara† − a†ar − ra†ad +

g

2
s2srs†

− s†sr − rs†sd +
P

2
s2s†rs − ss†r − rss†d. s7d

The master equation is obtained under the usual Born-
Markov approximation for the interactionHRS between the
QD-cavity system and the reservoirs, but the strong exciton-
cavity photon couplingHX−C is described exactly.k is the
decay of the cavity photon by escaping through the micro-
cavity mirrors,g is the decay of the QD exciton by the spon-
taneous emission into leaky modes, andP is the rate of con-
tinuous incoherent pumping of the QD exciton. By means of
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Eq. (7) one can get a set of differential equations that de-
scribe the evolution of the populations and coherences of the
cavity-QD system. On the basissuGnl ; uXnld of product states
between QD states and Fock states of the cavity mode, the
matrix elements of the reduced density matrix are

rin,jm = kinuru jml, s8d

with i, j being eitherG or X. The diagonal matrix elements
rGn,Gn, rXn,Xn are the populations of the QD-photon levels,
while the nondiagonal termsrGn,Xn−1, rXn−1,Gn, describe the
coherences between these levels. By taking the matrix ele-
ments in Eq.(7) we get, fort=0, the following set of linear
differential equations:

]trGn,Gn = igÎnsrGn,Xn−1 − rXn−1,Gnd + grXn,Xn

− kfnrGn,Gn − sn + 1drGn+1,Gn+1g − PrGn,Gn,

s9d

]trXn,Xn = igÎn + 1srXn,Gn+1 − rGn+1,Xnd − grXn,Xn

− kfnrXn,Xn − sn + 1drXn+1,Xn+1g + PrGn,Gn,

s10d

]trGn,Xn−1 = ifgÎnsrGn,Gn − rXn−1,Xn−1d + DrGn,Xn−1g

− fsg + ks2n − 1d + Pd/2grGn,Xn−1

+ kÎnsn + 1drGn+1,Xn, s11d

plus the equation Hermitian conjugate of(11). In the absence
of dissipation, the matrix elementsrGn,Gn, rXn−1,Xn−1,
rGn,Xn−1, andrXn−1,Gn, for a given photon numbern, satisfy a
closed set of four differential equations. However, the pump-
ing and emission with ratesP, k, and g, couple the terms
with different photon occupation numbern, so that an infi-
nite set of equations has to be solved, as depicted schemati-
cally in Fig. 1. For the numerical integration, the set of equa-
tions can be truncated at a given value that, in all the cases

considered below, it is enough to take equal to 100.
As initial conditions we takerG0,G0=1 and all the other

elements of the density matrix equal to zero. In other words,
we start with the system in its ground state and the pumping,
and subsequently the losses, produces the dynamical evolu-
tion of the whole system. The steady state of the system can
be studied by integrating the set of Eqs.(9)–(11) for long
times.

C. First- and second-order coherence functions

From the master equation, one can compute the dynamics
of the expectation values of any operator. Moreover, two-
time correlation functions are also of physical interest. In
particular, we want to compute the first- and second-order
coherence functions3,4

gs1dsrW,t,td =
kEs−dsrW,tdEs+dsrW,t + tdl

ÎkEs−dsrW,tdEs+dsrW,tdlkEs−dsrW,t + tdEs+dsrW,t + tdl
,

s12d

gs2dsrW,t,td =
kEs−dsrW,tdEs−dsrW,t + tdEs+dsrW,t + tdEs+dsrW,tdl

kEs−dsrW,tdEs+dsrW,tdlkEs−dsrW,t + tdEs+dsrW,t + tdl
,

s13d

whereEs+d andEs−d are the positive and negative frequency
parts of the amplitude of the electromagnetic field. In the
steady-state limit in which we are interested, neithergs1d nor
gs2d depends on the absolute timet.

The experimental situation is such that photonic modes
escaping from the cavity are emitted in well-defined direc-
tions, for instance along the axis of the micropillars in the
direction in which the mirrors defining the cavity have some
transparency.5,6,8–11 On the contrary, emission of leaky
modes takes place in any direction, particularly through lat-
eral surfaces of the micropillar. This means that simply by
changing the spatial distribution of detectors, one can mea-
sure the emission from cavity modes or the leaky modes.

By Fourier transforming the first-order correlation func-
tion

Gs1dst,td = kEs−dsrW,tdEs+dsrW,t + tdl, s14d

one can obtain the the power spectrum of the emitted light,

SsrW,nd =
1

p
RE

0

`

dteintGs1dst,td. s15d

The first-order correlation function of the external field can
be obtained from the time dependence of the operators de-
scribing intrinsic properties of the system

GC
s1dst,td = ka†st + tdastdl,

GX
s1dst,td = ks†st + tdsstdl. s16d

GC
s1dst ,td is the correlation function for the cavity mode, re-

sponsible for the stimulated emission part of the spectrum
(i.e., the light coming from the confined photon) by means of
Gs1dst ,td~kGC

s1dst ,td. In the case of pillar microcavities, it

FIG. 1. Ladder of levels(continuous lines) for a two-state QD
coupled to a single optical mode of a microcavity. States labeled as
Gn with n=0,1,2, . . .correspond to having the QD in its GS coex-
isting with n cavity photons. The same for statesXn with the QD in
its excited stateX. Double continuous lines depict the couplingg,
dashed lines the pumping with rateP, dotted lines the leaky modes
emission with rateg, and dash-dotted lines the emission of cavity
modes with ratek.
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would correspond to the light emitted in the vertical direc-
tion. On the other handGX

s1dst ,td describes the spontaneous
part of the spectrum(i.e., light directly coupled to the QD
exciton) by means ofGs1dst ,td~gGX

s1dst ,td. This gives the
light emitted through the leaky modes that can be measured
in the lateral direction of a micropillar.

In order to calculate these two-time correlation functions,
we make use of the quantum regression theorem.2–4 First of
all, we define the following operators:

aGn
† std = uGn+ 1lkGnueisv−Ddt,

aXn
† std = uXn+ 1lkXnueisv−Ddt,

sn
†std = uXnlkGnueivt,

§nstd = uGn+ 1lkXn− 1ueisv−2Ddt. s17d

In the interaction picture, time evolution with respect to
HX−C+HRSappears explicitly. The two-time correlation func-
tion of the cavity mode can be expressed in terms of the
previous operators:

GC
s1dst,td = o

n

În + 1fkaGn
† st + tdastdl + kaXn

† st + tdastdlg.

s18d

The exciton correlation function can be written as follows:

GX
s1dst,td = o

n

ksn
†st + tdsstdl. s19d

For the calculation of the spectrum of the emitted light it is,
thus, necessary to evaluate the functionskaGn

† st+tdastdl,
kaXn

† st+tdastdl, and ksn
†st+tdsstdl. The quantum regression

theorem states that given a set of operatorsOj, whose aver-
ages satisfy a closed set of linear differential equations

d

dt
kOjst + tdl = o

k

Lj ,kkOkst + tdl, s20d

then the two-time averages ofOj with any other operatorO,
also satisfy the same differential equation

d

dt
kOjst + tdOstdl = o

k

Lj ,kkOkst + tdOstdl. s21d

In order to get the time evolution of two-time averages, we
start with the dynamics of the operators in(17). Their aver-
ages satisfy the set of linear differential equations that allows
us to find the evolution of the corresponding two-time aver-
ages in Eqs.(18) and (19),

]tkaGn
† stdl = s]trGn,Gn+1deisv−Ddt + isv − DdkaGn

† stdl,

]tksn
†stdl = s]trGn,Xndeivt + ivksn

†stdl,

]tkaXn−1
† stdl = s]trXn−1,Xndeisv−Ddt + isv − DdkaXn−1

† stdl,

]tk§nstdl = s]trXn−1,Gn+1deisv−2Ddt + isv − 2Ddk§nstdl.

s22d

Although the operator§n is not needed in the evaluation of
the required two-time averages(18) and(19), we have to add
the correlation functions that include an operator§n, in order
to get a closed set of equations. Using the master equation
and eliminating the elements of the density matrix, we arrive
at the desired time evolution for the averages of the operators
in Eqs.(17)

]tkaGn
† stdl = kaGn

† stdlFisvX − Dd −
k

2
s2n + 1d − PG

+ kaGn+1
† stdlkÎsn + 1dsn + 2d + ksn

†stdligÎn + 1

+ kaXn−1
† stdlg − k§nstdligÎn,

]tksn
†stdl = kaGn

† stdligÎn + 1 + ksn
†stdlFivX −

sg + Pd
2

− knG
+ ksn+1

† stdlksn + 1d − kaXn−1
† stdligÎn,

]tkasXn−1d
† stdl = kaGn

† stdlP − ksn
†stdligÎn

+ kaXn−1
† stdlFisvX − Dd − g −

k

2
s2n − 1dG

+ kaXn
† stdlkÎnsn + 1d + k§nstdligÎn + 1,

]tk§nstdl = − kasGnd
† stdligÎn + kasXn−1d

† stdligÎn + 1 + k§nstdl

3FisvX − Dd −
sg + Pd

2
− knG

+ k§n+1stdlkÎnsn + 2d. s23d

From Eq. (23) and the quantum regression theorem, it is
straightforward to obtain two separate closed sets of differ-
ential equations for two times functions; one for the set of
functions

hkaGn
† st + tdastdl,kaXn−1

† st + tdastdl,

ksn
†st + tdastdl,k§nst + tdastdlj, s24d

needed for the calculation ofGC
s1dst ,td, and the other for the

set of functions

hkaGn
† st + tdsstdl,kaXn−1

† st + tdsstdl,

ksn
†st + tdsstdl,k§nst + tdsstdlj, s25d

needed for the calculation ofGX
s1dst ,td.

An important point is the initial conditions to solve these
systems of equations. Such conditions are obtained by solv-
ing, up to the stationary limit, the master equations(9)–(11)
for the density matrix. From this information, one knows the
initial conditions. For the functions in(24),
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kaGn
† stdastdl = În + 1rGn+1,Gn+1,

kaXn−1
† stdastdl = ÎnrXn,Xn,

sn
†stdastd = În + 1rGn+1,Xne

−iDt,

k§nstdastdl = ÎnrXn,Gn+1e
iDt. s26d

For the functions in(25),

kaGn
† stdsstdl = rXn,Gn+1e

−iDt,

kaXn−1
† stdsstdl = 0,

ksn
†sstdl = rXn,Xn,

k§nsstdl = 0. s27d

The second-order coherence function is,a priori, more
complicated to calculate. Averages of products of four opera-
tors at two different times have to be performed. This task
becomes much simpler for the case of zero time delay.
gs2dst ,t=0d is a one-time operator, which simplifies the cal-
culation. In spite of loosing information,gs2dst ,t=0d is a
very interesting magnitude because it can be used as an in-
dicator of the possible coherence of the state of the
system.1–4 In addition, if we concentrate in the properties of
cavity modes(i.e., neglecting the emission of leaky modes),
the second-order coherence function acquires a very simple
form in the stationary limit

gs2dst,t = 0d =
ka†a†aal

ka†al2 =

o
n

nsn − 1dfrXn,Xn + rGn,Gng

Fo
n

nfrXn,Xn + rGn,GngG2 .

s28d

gs2d takes different values depending on the statistics of the
photon state:gs2d=2 for chaotic states,gs2d=1 for states hav-
ing a Poisson distribution inn, andgs2d,1 for nonclassical
systems having a sub-Poisson distribution.2–4

III. RESULTS

A. Election of the range of parameters of interest

Since our model has several parameters, we need some
simple pictures in order to gain insight on the interesting
regime of parameters. Although our system is similar to a
spin-coupled to an harmonic oscillator, we can understand
the effect of dissipation by considering two-coupled(by g)
oscillators. One of them has an eigenfrequencyvX−D being
damped with a ratek while the other, with an eigenfrequency
vX, is damped with a rateg and is pumped incoherently with
a rate P. The incoherent pumping implies a dephasing
mechanism that, together with the damping, gives an average
dephasingsg+Pd /2. When the damping of the first oscillator
k is much higher than the dephasingsg+Pd /2 of the second
oscillator, one could expect that the frequency of this second

oscillator vX will survive longer thanvX−D, and it will
dominate the spectrum. In the opposite limit,k! sg+Pd /2,
the frequencyvX−D will dominate the spectrum. This be-
havior is the one shown by our spin-oscillator system as can
be checked by means of the Haken’s model on adiabatic
elimination2,3,16in the equations of motion of the field opera-
tors. From this simple picture, we can motivate the existence
of three different regimesk@ sg+Pd /2, k! sg+Pd /2, and
some intermediate regimes. For this purpose, we fixg=1 as
the energy scale, take a fixed small valueg=0.1 reflecting
the fact that leaky modes emission is the less efficient
mechanism in practical situations, and define the three re-
gimes by changingk andP.

Apart from those parameters, our model requires us to set
the frequency of the two oscillators. In practical cases, the
coupling between the oscillators is in the order of meV while
the excitation energyvX is in the order of eV. Therefore,
since our energy scale isg=1smeVd, all the calculations we
present here have been performed by takingvX=1000. Fi-
nally the detuningD is a very important parameter. Since
typical detunings are on the order of a few meV, we present
here results for two different cases: perfect resonanceD=0
and quasiresonanceD=5.

B. Dynamics of the density matrix: Occupations
and coherences

In this section we show the time evolution of the occupa-
tions and coherences(diagonal and off-diagonal, respec-
tively) rin,jm described in Eqs.(9)–(11). From these equa-
tions, it is clear that if losses and pumping are not included,
the system shows the usual Rabi oscillations in each sub-
space with a given number of photons. The amplitude of
these oscillations increases with the couplingg and decreases
with the detuningD.

When all the losses and the pumping are included, the
situation changes drastically. The initial occupation ofuG0l
evolves with time up to a state of equilibrium in which oc-
cupation is redistributed among a large number of levels with
a finite number of photons. In this final steady situation, the
sum of all the losses equilibrates the pumping.

Figures 2 and 3 show the time evolution of occupations
rin,in for both the excitonsi ;Xd and the groundsi ;Gd
states in two cases with finite detuningD. The results in Figs.
2 and 3 are typical of the two regimes described above. The
first point to be noted is the time scale of the transient re-
gime, something that could be accessible by ultrafast spec-
troscopy. In the case in which pumping dominates(Fig. 2),
the transient regime is of the order of 100 ps, while when the
pumping is comparable with the emission rate(Fig. 3), such
scale is reduced to just a few picoseconds. The second inter-
esting point is the relative occupation of different states.
When pumping rateP dominates(Fig. 2), states with a large
number of photonsn become occupied and two bundles of
branches can be distinguished: upper branches corresponding
to uXnl states and lower branches corresponding touGnl
states. In other words, the system stores many photons in the
cavity preferably keeping the QD in its exciton state. When
rates for photon emission increase and become comparable
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to the pumping rate, just a few photonssn,3d can be stored
in the cavity but still, in the stationary situation, the highest
occupation is that of the excitonlike stateuX0l. It is quite
evident that an interesting regime is missing in these results:
the one in which losses dominate onto the pumping, for in-
stance the casek=5 andP=1. We will discuss below other
characteristics of this case, but do not include any figure here
because the corresponding time dependence is featureless,
showing a fast decay to zero of the occupations for all the
states withn.0.

Time evolution of coherencesrX0,G1 is shown in Fig. 4 for
the two limiting casesP@k and P!k for D=5. These co-
herences present oscillations that are due to this finite detun-

ing as we discuss below. Whenk dominates, the coherences
increase with time up to finite, but small, value. When pump-
ing dominates, the mean number of photons inside the cavity
is much higher than 1 as discussed below. Therefore, a co-
herence like the one in Fig. 4 between states withn=0 and
n=1 decreases with time. In this case,P@k, we have com-
puted coherencesrXn,Gn+1, for values ofn around the mean
number of photons inside the cavity(see below), obtaining
that they also go to a small constant(apart from oscillations)
for large times.

The oscillatory behavior of the coherences is produced by
the second term at the right-hand side of Eq.(11). The de-
tuning provokes a period 2p" /D. In order to analyze the

FIG. 2. Density matrix diago-
nal elementsrin,in for exciton si
;Xd states (dashed lines), and
ground si ;Gd states(continuous
lines), from n=0 up ton=35 cav-
ity photons. g=1, D=5, g=0.1,
k=0.1, and P=15. The inset
shows a zoom out of the graphic
to observe high occupations at
very short times.

FIG. 3. Density matrix diago-
nal elementsrin,in for both the ex-
citon si ;Xd and the groundsi
;Gd states, fromn=0 up ton=3
cavity photons. g=1, D=5, g
=0.1, k=0.5, andP=1. The inset
shows a zoom of the vertical axis
of the graphic.
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limiting case of perfect resonance, we show in Fig. 5 the
coherencesrX0,G1 for some cases withD=0. No oscillations
exist in these cases. Moreover, all these off-diagonal ele-
ments of the density matrix become real while they were
complex for finite detuning as shown in Fig. 4.

The fact, shown above, thatP competes withk, is not
completely general. This fact can be seen in Eqs.(9)–(11) for
the time evolution of the density matrix elements. For the
off-diagonal terms,P has the same sign than the lossesk and
g, while for the diagonal terms, these signs are different. The
pumping produces decoherence in the off-diagonal terms as
the emission of photons does because in our model the
pumping is incoherent. At the same time,P favors higher

occupations(increase of the diagonal elements). Therefore it
is clear that, for a high pumping, decays of the off-diagonal
terms(loss of coherence) prevail on the occupation until the
coherence is completely quenched and later inverted, pre-
venting the evolution toward the occupation of states with a
high number of photons. This is an indication of the impor-
tant role that off-diagonal elements play in the time evolu-
tion. It also explains that, if the emission ratek is above a
critical value, it dominates on any pumping effect.

C. Number of cavity photons

A very important result to be drawn from the time evolu-
tion discussed above is the fact that the system is able to

FIG. 4. Density matrix off di-
agonal elementrX0,G1 with detun-
ning D=5 for g=1, g=0.1, and
two different values ofk andP.

FIG. 5. Imaginary part of the
density matrix off diagonal ele-
ment rX0,G1 at perfect resonance
sD=0d for g=1, g=0.1, and dif-
ferent values ofk and P. All the
real parts of the same matrix ele-
ments are zero. The inset shows a
zoom of the graphic for small val-
ues oft.
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store a significant number of cavity photons. Let us analyze
the mean number of cavity photons as a first step to study the
quantum properties of these photons by looking to its distri-
bution. The mean number of photons in the cavity is

Nph = o
n

nsrXn,Xn + rGn,Gnd. s29d

Nph increases with time, in a scale of hundreds of picosec-
onds, up to the stationary value that is the magnitude in
which we are interested. Figures 6 and 7 show a contour plot
of the mean number of cavity photons forD=0 andD=5,
respectively. As in previous figures, we fix all the parameters
except P and k, which vary along the two axis. In these
figures a region with a highNph can be observed. It corre-
sponds to low emission and high pumping. The region is
larger and the number of cavity photons higher, for the reso-
nant caseD=0, than for the case with detuningD=5. A
detuning makes more difficult the coupling between the
statesuXnl anduGn+1l. As a consequence the mechanism of
storing cavity photons become less efficient.

A conclusion similar to the one drawn in the previous
section is in order. When pumping increases, the mean num-
ber of cavity modes also increases up to a certain maximum
value. Further increase ofP implies that the dephasing
mechanism related with this incoherent pumping provokes a
decrease ofNph. Similar behavior was already described in
Refs. 15 and 17 for the case of perfect resonance between the
QD exciton and the cavity photonsD=0d. The comparison of
Figs. 6 and 7 shows how a finite detuning noticeably reduces

the range of pumping in which a large number of photons is
stored in the cavity.

D. Second-order coherence function

The possibility of storing a large number of cavity pho-
tons for a wide range of parameters opens an interesting
alternative beyond the simple value ofNph: how is the dis-
tribution of cavity photons? If any interesting distribution is
involved, its character could be transfered to the light emit-
ted by the system.

In order to quantify if such distributions are closer to
Gaussian distributions(thermal or chaotic states), Poisson
distributions, or even nonclassical sub-Poissonian distribu-
tions, one can compute, using Eq.(28), the second-order
coherence functiongs2dst=0d discussed above.gs2d was also
studied in Ref. 15 in the case of alternating pumping of elec-
trons and holes. The modulation period strongly affects to
the behavior of the second-order coherence function(see Fig.
8 of Ref. 15). Therefore, as we have done for all the others
magnitudes, we present results obtained with continuous
pumping.

Figures 8 and 9 showgs2ds0d, for D=0 andD=5, respec-
tively. In these two figures we have dashed the region in
which gs2ds0d is close to 1 to show the region supporting a
Poissonian distribution. This is the border between classi-
cally accessible region and the one havinggs2ds0d,1 with
nonclassical states with sub-Poissonian distribution. In the
case of perfect resonance(Fig. 8), for low k, the Poissonian
distribution region is rather wide in terms of the pumpingP.
Whenk increases, this region becomes much narrower inP.

FIG. 6. Nph, in gray scale, as a function ofk andP for perfect resonanceD=0 with g=1 andg=0.1. Some contours of constantNph are
drawn as continuous lines to clarify the figure.
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FIG. 7. Nph, in gray scale, as a function ofk andP for a detuningD=5 with g=1 andg=0.1. Some contours of constantNph are drawn
as continuous lines to clarify the figure.

FIG. 8. Second-order coherence functiongs2dst=0d, in gray scale, as function ofk andP for perfect resonanceD=0. g=1 andg=0.1.
The dashed area shows the region supporting a Poisson distribution of cavity photons in whichgs2dst=0d close to 1. Some contours of
constantgs2d are drawn as continuous lines to clarify the figure.
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In the case of detuningD=5, the Poissonian region becomes
much smaller and even disappearing for intermediate values
of k.

The interesting region ofgs2ds0d,1 appears for very low
pumping in these two figures. Even though this occurs in a
small region of parameters, it is very interesting because it
means that the system can form squeezed photon states with
sub-Poissonian distribution. In this region the emitted light
shows the antibunching that is characteristic of nonclassical
light emitters.

The rest of the diagram is supporting states withgs2ds0d
increasing from 1 to 2, i.e., states where second-order coher-
ence is reduced and approaching a Gaussian distribution
fgs2ds0d=2g. A finite detuningD enlarges this Gaussian re-
gion as observed when comparing the two figures.

Combining and summarizing the results of Figs. 6–9, it
must be stressed that, for high-quality cavities, i.e., lowg
andk, and intermediate value of the incoherent pumpingP is
able to produce a rather large number of cavity photons with
Poisson distribution. When detuning increases, this effect re-
mains, although with a reduction of the region of parameters
supporting it.

IV. SPECTRUM OF THE EMITTED LIGHT

In this section we will present our results for the spectrum
of the emitted light in the stationary limitst→`d. This is the
property that can be most easily measured in experiments.
We will do it only in the case of finite detuningD=5 in order

to observe the emission at two different frequencies. Follow-
ing the steps discussed in the section devoted to our model,
we have computedGX

s1dstd andGC
s1dstd in the stationary limit

st→`d for the three regimes already discussedP@k, P
!k, and P comparable tok. Our results show fast oscilla-
tions modulated by an envelope that decreases to zero in a
range of 10 ps for the case in which pumping dominates
sP@kd, while for the other two cases(P!k and P compa-
rable tok), the decay range reduces to 1 ps. In a second step,
we Fourier transform these first-order correlation functions
to calculate the spectrum of the emitted light. In order to
numerically perform such Fourier-transforms, we have used
digital data filters(Parzen and Haning) to reduce numerical
noise. The spectra corresponding tovX=1000 are shown in
Figs. 10–12. In these three figures we have made use of the
fact, discussed in the introduction, that the two types of
emissions can be separated: the emission coming from the
cavity modes takes place along the axis of the pillars, while
the emission of leaky modes takes place in any spatial direc-
tion (mainly in the directions perpendicular to the axis of the
pillar).

The case of Fig. 10 corresponds to a high pumping domi-
nating on the effect ofk. As discussed above, one expects a
strong damping of the oscillator with frequencyvX. There-
fore, only one peak atvX−D is observed. Moreover, the peak
shown in this spectrum is significantly narrower than the
features observed in any other case we have analyzed as, for
instance, the ones in the following figures.

Figure 11 shows the result with a high value of the rate
emissionk=5 and a smaller, although nonnegligible, pump-

FIG. 9. Second-order coherence functiongs2dst=0d, in gray scale, as function ofk and P for a detuningD=5. g=1 andg=0.1. The
dashed area shows the region supporting a Poisson distribution of cavity photons in whichgs2dst=0d close to 1. Some contours of constant
gs2d are drawn as continuous lines to clarify the figure.
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ing P=1. This case corresponds toNph=0.027 andgs2ds0d
=0.396, i.e., to a sub-Poissonian distribution of a small num-
ber of cavity photons. Now, the strong damping of the mode
with frequencyvX−D reduces its intensity, which becomes
smaller than a second peak atvX.

In the intermediate case shown in Fig. 12, the dephasing
of the two modes is similar and this produces a very wide
peak at the spectrum as observed in the figure.

Let us finally analyze more carefully the case of the high-
quality cavity (already studied in Fig. 10). For this purpose,
we maintain fixed a low valuek=0.1 and let the pumping
vary in a wide range of values. Figures 13 and 14 show the
spectra of the stimulated(cavity) and spontaneous(leaky)

emissions, respectively. First of all one must observe that
scale in Fig. 13 is more than 200 times larger than that of
Fig. 14, as it could be expected from the results and discus-
sion of Fig. 10. The main result to be drawn from Figs. 13
and 14 is that the most intense emission corresponds to the
range 10ø Pø30 simply because this is the range of higher
number of photons inside the cavity as shown in Fig. 7.

V. SUMMARY

We have described the dynamics of a QD embedded in a
semiconductor microcavity by means of a two-level system
strongly coupled to a single-cavity mode. The system is con-

FIG. 10. Spectrum of emission
for g=1, vX=1000,D=5, g=0.1,
k=0.1, andP=15.

FIG. 11. Spectrum of emission
for g=1, vX=1000,D=5, g=0.1,
k=5, andP=1.
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tinuously excited by incoherent pumping of excitons. Two
different sources of photon emission are considered: sponta-
neous emission through a leaky mode and stimulated emis-
sion of a cavity mode escaping from the cavity. The time
evolution of first- and second-order coherence functions is
calculated. When pumping dominates over emission rates, a
large number of cavity photons can be stored in the cavity.
Further increase of the pumping introduces dephasing and a
decrease of the number of cavity photons. These different

regimes are also characterized by Poissonian or Gaussian
photon distributions inside the cavity. Sub-Poissonian distri-
butions can be obtained for a range of parameters, in which
the pumping rate is very small, and the quantum nature of
the QD-cavity system manifests itself in the emitted light.
Finally, we have studied the emission spectrum of our sys-
tem. In the case of high pumping dominating on the rate
emissionk, one gets a strong damping of the oscillator cor-
responding to the exciton level with frequencyvX, and only

FIG. 12. Spectrum of emission
for g=1, vX=1000,D=5, g=0.1,
k=5, andP=15.

FIG. 13. Spectrum, in gray scale, of stimulated emission(cavity modes escaping from the cavity) as a function of frequency andP. g
=1, vX=1000,D=5, g=0.1, andk=0.1. Some contours of constant intensity are drawn as continuous lines to clarify the figure.
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one very narrow peak atvX−D is observed. When the rate
emissionk is higher than a nonnegligible pumping rateP,
the strong damping of the mode with frequencyvX−D al-
lows one to observe the two modes with a higher intensity
for the mode atvX. In an intermediate case, the dephasing of
the two modes is similar producing a very wide peak at the
spectrum.
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