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Dynamics of the excitations of a quantum dot in a microcavity
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We study the dynamics of a quantum dot embedded in a three-dimensional microcavity in the strong
coupling regime in which the quantum dot exciton has an energy close to the frequency of a confined cavity
mode. Under the continuous pumping of the system, the confined electron and hole can recombine either by
spontaneous emission through a leaky mode or by stimulated emission of a cavity mode that can escape from
the cavity. The numerical integration of a master equation including all these effects gives the dynamics of the
density matrix. By using the quantum regression theorem, we compute the first- and second-order coherence
functions required to calculate the photon statistics and the spectrum of the emitted light. Our main result is the
determination of a range of parameters in which a state of cavity modes with Poissonian or sub-Poissonian
(nonclassical statistics can be built up within the microcavity. Depending on the relative values of pumping
and rate of stimulated emission, either one or two peaks close to the excitation energy of the dot and/or to the
natural frequency of the cavity are observed in the emission spectrum. The physics behind these results is
discussed.
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I. INTRODUCTION -1 excitons are occupied. This biexciton state has an energy

Quantum electrodynamics of atoms within optical cavitiesdifferent to twice that of a single exciton due to the Coulomb

is a well-understood problem that has produced many resulf§teraction of their components. This spectrum presents in-

of both fundamental and practical interést. The current teresting alternative$, which we intend to study in future
capability of using semiconductors technology to grow quanVork, while here we restrict to simplest case in which we
tum dots(QD) embedded in microcavities seems very prom_conS|der only excitons with a given spin. This assumption is

ising to reproduce and control the properties in a solid-statd/ell justified in the case of experiments in which the system
would be pumped with polarized light, so that excitons with

system that could be integrated in electronic or optical de-""" I " Idb ted in th @
vices. The essential physics of such a system is the couplirg/g'ven anguiar momentum would be created inthe system.

o . . e also assume that spin-flip mechanisms are slow as com-
between the QD excitations a_nd the photomc cavity mode ared with typical time scales in our system. Other single-
as well as the possibility of interaction with the external

. a
world through the pumping of the system and the S“bse_q“e'ﬁeglected because they are not strongly coupled to the cavity
emission of light. The main goal is the control of the emitted o6 in the case of resonance or quasiresonance between the
light and its quantum properties. Therefore it is possible tQuyciton and the confined photon. Under these conditions, the
build up high-efficiency light-emitting diodes, low-threshold prohlem reduces to that of a two-level artificial atom embed-
lasers, and single-photon sources. ded in the optical cavity. We are going to show that, in spite
We concentrate here on a problem, not far from the actuaf this simplification, the system presents a very rich variety
situation in several experimefts! in which a single QD is  of physical situations.
embedded in either a pillar, a disk, or a photonic crystal The problem of a two-level system coupled to a single
microcavity confining photons in the three spatial directions.cavity mode under different conditions and approximations
The system is pumped either by electrically injecting elec-has received a lot of attention, mainly in the field of quantum
trons and holes that tunnel into the ®Br by pumping ex-  optics*+14150f particular interest is the study of the pos-
citons in the QIP7-*-1Light emission from the system takes sible sub-Poissonian radiation when cavity losses and pump-
place both by cavity mode decay and by spontaneous emigg dominate onto the spontaneous emission of leaky modes.
sion of leaky modes. All these pumping and emission mechathe aim of our work is an exhaustive analysis of the differ-
nisms introduce decoherence affecting the quantum propeent regimes of parameters to determine the role played by the
ties of the system. different physical mechanisms in the quantum properties of
The lowest energy excitation of a neutral QD is anboth the internal state of the system and the light emitted in
electron-hole pair, usually labeled as exciton. Due to the ferthe steady regime under continuous incoherent pumping.
mionic character of its components, this exciton state caisince the case of perfect resonance has been already
only be singly occupied having a degeneracy related to thstudied!® we will make emphasis on the effects appearing in
possible values of the third component of the total angulathe more realistic situation of having a finite detuning be-
momentum. This quantum number is usually referred to asween the QD exciton and the cavity photon.
the spin of the exciton. Among all these states, only two The paper is organized as follows: In Sec. Il we describe
cases—those corresponding to +1—are of interest in outhe model Hamiltonian and master equation that allows to
problem due to their possible coupling with photons. Thecalculate the evolution of the populations and coherences of
next excitation corresponds to the case in which both +1 anthe energy levels. By means of the quantum regression theo-

rticle states of the QD, above the exciton energy, can be
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rem, we can use our master equation to calculate cavity phanside the microcavity. This process is responsible for the
ton statistics and the spectrum of the emitted light. In Sec. lIdissipation of the excitonic degrees of freedom by the spon-
we present the results for the time evolution of the magnitaneous emission to an external resen®iof photons cre-
tudes of interest in different ranges of parameters characteated byb}e

izing different physical situations. The spectrum of the light

emitted by the system is presented and discussed in Sec. IV. 2 Mrlobk+ bro'], (4)
Section V is devoted to a summary of the work. R

(iii) The escape of the cavity mode out of the microcavity
II. THEORETICAL FRAMEWORK due to the incomplete reflectance of the mirrors. The cavity
mode is thus coupled to the continuum of photonic modes

We consider a single QD inside a semiconductor miCroyt of the microcavity. This process produces the direct dis-
cavity that is continuously and incoherently pumped. Ourgipation of the cavity mode

system is initially in its ground state and evolves until it
reaches the steady state. In order to describe the time evolu- Hce = > Ag(abf + bga'). (5)
tion of the QD-cavity system we use a master equation that R

includes the strong exciton-photon coupling, the nonresonanlthe last term in Eq(l), Hg, describes the external reservoirs

pump, and the interaction with the environment that is re- . .
sponsible for dissipation. of harmonic oscillators(photons, phonons, electron-hole

pairs,...), not being necessary to detail them explicitly. The
three termdHgs have coupling constanigz: g, Ag, @andig,

A. The Hamiltonian which depend on the particular mo¢e, R’, or R”) of each
The physics of a QD strongly coupled with a single cavity €xternal reservoir. The operatogs bg, Cr, and dr: have
mode is described by the Hamiltonian bosonic commutation rules as they correspond to harmonic
oscillators. Since we are interested in the strong coupling
H=Hs+Hgst Hg. (1) regime, the first three termsl, andHy_c are treated exactly.

Hs and Hg, are the Hamiltonian for the QD-cavity system, That means tr}‘at one could quk in t"he framewqu usually
known as the “dressed atom picture.” However, in order to

and the environmer(treservoir$, respectively. The terrilzg %larify the different pumping and losses mechanisms, it is

describes the interaction between the QD-cavity system an . ; )
the reservoirsHg is given by the usual Jaynes-Cummings preferable _to work in basi§Gn);[Xn)) in terms of the_ num-
Hamiltonian24which describes the interaction of a two-level Per of cavity photons and bare grounds and excitonX

system with a single mode of the electromagnetic field, ~ States of the QD.

Hs=Ho+ Hx-c,
B. Master equation
Ho = oy X)(X| + (0x — A)a'a, We have made the whole algebra for a general case in
which reservoirs are at finite temperature. However, the main
HX_C:g(UaT+aO'T). (2) physics already occurs for zero temperature, which is the
_ case we present hereafter in this paper.
We have introduced ladder operatars=|X)(G|, o=|G)(X| We define the reduced density matrjx,for the exciton-

connecting the grouni@) and excitedexciton |X) states of  photon system by tracing out the reservoir degrees of free-

the QD with energies zero andy, respectively(we takeZi  gom in the total density matrig,
=1). a' creates a cavity photon with energyy—A). The

coupling termHy_c in Eq. (2) describes the exciton-photon p=Tre(py). (6)
coupling in the Rotating Wave Approximatidr In the interaction picture with respect ky_c+Hgsin Egs.

Hgrscontains the coupling to external reservoirs including(l) and(2), p satisfies the master equatfoh
the following three processes: '

(i) The continuous and incoherent pumping of the QD by  d
annihilating(cg/) an electron-hole pair from an external res-  §;”
ervoir R (representing either electrical injection or the cap-
ture of excitons optically created at frequencies larger than
the typical ones of our systenand creatior(d;,,) a phonon

. >
emitted to a reservoiR” in order to take care of energy ths master equation is obtained under the usual Born-

[
= g[p,Hs] + g(ZapaT -a'ap-pa'a) + %/(ZO'pO'T

P
-d'op-poto) + E(ZO'Tpa' —od'p-poa). (7)

conservation Markov approximation for the interactioHgs between the
o d oot + och da QD-cavity system and the reservoirs, but the strong exciton-
R,ER/, pr RlOgCr 0" + 0 dre, ®) cavity photon couplingHy_c is described exactlyx is the

decay of the cavity photon by escaping through the micro-
(i) The direct coupling of the QD exciton to the leaky cavity mirrors,y is the decay of the QD exciton by the spon-

modes, that is, to the photonic modes, with energy differentaneous emission into leaky modes, @i the rate of con-

from the cavity mode, that have a residual density of stateinuous incoherent pumping of the QD exciton. By means of

115304-2



DYNAMICS OF THE EXCITATIONS OF A QUANTUM... PHYSICAL REVIEW B 70, 115304(2004

X2 considered below, it is enough to take equal to 100.

As initial conditions we takepgogo=1 and all the other
elements of the density matrix equal to zero. In other words,
we start with the system in its ground state and the pumping,
and subsequently the losses, produces the dynamical evolu-
tion of the whole system. The steady state of the system can
be studied by integrating the set of E¢9)—(11) for long
X0 times.

X1

C. First- and second-order coherence functions

From the master equation, one can compute the dynamics
of the expectation values of any operator. Moreover, two-
FIG. 1. Ladder of levelgcontinuous linesfor a two-state QD time correlation functions are also of physical interest. In
coupled to a single optical mode of a microcavity. States labeled agarticular, we want to compute the first- and second-order
Gnwith n=0,1,2,...correspond to having the QD in its GS coex- coherence functiodé
isting with n cavity photons. The same for statés with the QD in

its excited stateX. Double continuous lines depict the coupligg (EDFHED(F t+ 7))

] ) . . (7 t ) -
dashed lines the pumping with rae dotted lines the leaky modes 9 7 O (7 =@ (7 (P t+ AED(F L4
emission with ratey, and dash-dotted lines the emission of cavity VETIDETIOXET(T U+ BT U 7))
modes with rate. (12

Eq. (7) one can get a set of differential equations that de- @ t,7) = (EDFHED(F t+ DED(F,t+ DED(F, 1))
scribe the evolution of the populations and coherences of the L= (EOFHEDFHNE Tt + DED(F t+ 1)
cavity-QD system. On the badin);|Xn)) of product states

between QD states and Fock states of the cavity mode, the (13
matrix elements of the reduced density matrix are whereE™) andE®) are the positive and negative frequency
0 parts of the amplitude of the electromagnetic field. In the

Pin,jm = (inlpljm), ®) steady-state limit in which we are interested, neitfjfér nor

with i, j being eitherG or X. The diagonal matrix elements g'? depends on the absolute tirhe

PGnGm Pxnxn are the popu|ations of the QD-photon levels, The experimental situation is such that phOtOﬂiC modes
while the nondiagonal termgg,xn-1, Pxn-16n describe the escaping from the cavity are emitted in well-defined direc-
coherences between these levels. By taking the matrix eldions, for instance along the axis of the micropillars in the
ments in Eq(7) we get, fort=0, the following set of linear direction in which the mirrors defining the cavity have some

differential equations: transparenc§.®8-11 On the contrary, emission of leaky
- modes takes place in any direction, particularly through lat-
Apenen=19VN(Penxn-1~ Pxn-1Gn) + YPxnxn eral surfaces of the micropillar. This means that simply by

changing the spatial distribution of detectors, one can mea-
sure the emission from cavity modes or the leaky modes.

9 By Fourier transforming the first-order correlation func-
tion

= k[Npgnen= (N+ Dpen1 el = PPcncn:

. /_
FPxnxn =19VN + LpxnGne1 = Peneixn) = YPxnxn

G (t,7) = (EFHEN(F t+ 1), (14)
- K[nPXn,Xn -(n+ 1)P><n+1,><n+1] + PPGn,Gni

one can obtain the the power spectrum of the emitted light,

(10
N
. fv)==R | dre"GY(t,7). 15
Apenxn-1= 1[9VN(pcnen = Pxm-1xn-1) + Apnxn-1] SF) T fo .7 (19
~[(y+ «(2n=1) + P)/2lpnxn-1 The first-order correlation function of the external field can
+ 1VN(N + 1) pans1.x0e (11)  be obtained from the time dependence of the operators de-

. N ] scribing intrinsic properties of the system
plus the equation Hermitian conjugate(@f). In the absence

of dissipation, the matrix element®cncn Pxn-1xn1s G(t,7) = @' (t+ Da(v)),
PGnxn-1, @Ndpyn -1 gn, fOr a given photon numbaer, satisfy a
closed set of four differential equations. However, the pump- GP(t, 1) = (ol (t + Do(t)). (16)

ing and emission with rateB, «, and vy, couple the terms " . _ _ .

with different photon occupation number so that an infi- G (t, 7) is the correlation function for the cavity mode, re-
nite set of equations has to be solved, as depicted schemasiponsible for the stimulated emission part of the spectrum
cally in Fig. 1. For the numerical integration, the set of equadi.€., the light coming from the confined phoydsy means of
tions can be truncated at a given value that, in all the case@(l)(t,r)chGg)(t,T). In the case of pillar microcavities, it
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would correspond to the light emitted in the vertical direc- (9T<a;f<n_l(7)> = (0. pyr1xn)€ @I+ i(w—A)(a;r(n_l(T»,
tion. On the other hands;l)(t,r) describes the spontaneous

part of the spectrunti.e., light directly coupled to the QD 045 (1) = (9 @207 4 i () = 2A) (s (7)).
exciton) by means ofG(t, 7) = yGY(t, 7). This gives the ASn(7) = (Frpxo-1.0m) ( Hsal) -
light emitted through the leaky modes that can be measured (22)

in the lateral direction of a micropillar. Although the operatos, is not needed in the evaluation of

In order to calculate these two-time correlation functions,ihe required two-time averagéss) and(19), we have to add
we make use of the quantum regression thedterfirst of  the correlation functions that include an operaggrin order

all, we define the following operators: to get a closed set of equations. Using the master equation
+ _ (0mt)r and eliminating the elements of the density matrix, we arrive
agy(7) =|Gn+ 1)(Gnle , at the desired time evolution for the averages of the operators
in Egs.(17)

ak,(7) = |Xn+ 1)(Xn|(©2)7, .
d{ag, (1) = <a£n(f)>{i(wx -A) - E(Zn +1) - P]

al(7) = |Xny(Gnle*, e N
+ <a1CL;n+1(T)>K\‘”(n +1)(n+2)+ <0'I(T)>ig n+1

sn(P =|Gn+ 1)(Xn - 1|g(@2A)7, (17) +(a) 1(7)y— (sn(7)ig N
In the interaction picture, time evolution with respect to (y+P)
Hx_c+Hgrsappears explicitly. The two-time correlation func- g(a () = (al(7)igVn+ 1 +<0‘l(7’)>|:iwx V4 -k ]

tion of the cavity mode can be expressed in terms of the
previous operators: +(opa(D(n+1) = (@l (D)igin,

GE'(t 1 =X Vn+ 1[(a,(t+ naln) + (ak,(t+ Da)]. 827 = (8P — (ol igR

(18) . K
+ (@ g (M) i(wx = A) = y= E(Zn -1)
The exciton correlation function can be written as follows:

+ (@l (Dyrin(n+ 1) +(sy(n)igvn+ 1,

GR(t,7) = 2 (ot + Da(t). (19
" 3sn(1) = = (@l (DigVn + (@ly-g)(D)igVn + 1 +(s5(7)
For the calculation of the spectrum of the emitted light it is, (y+P)
thus, necessary to evaluate the functidla%n(H 7a(t)), x[i(wx—A) - - Kn}
(al(t+7a(t)), and (o (t+7o(t)). The quantum regression 2
theorem states that given a set of opera@yswhose aver- +{sp(T) NN+ 2). (23

ages satisfy a closed set of linear differential equations ) o
From Eq.(23) and the quantum regression theorem, it is

d straightforward to obtain two separate closed sets of differ-
d—T<Oj(t +7)) =2 L Ot + 1), (20)  ential equations for two times functions; one for the set of
K functions
then the two-time averages Gf with any other operatod, {(agn(rﬂ)a(t)), <a;r( _(r+Da),

also satisfy the same differential equation
(an(r+Da).(sp(7+DaM)}, (24)

d
d—<Oj (t+DOM) = X L {Olt + DO(L)). (21)  needed for the calculation G(t,7), and the other for the
T k set of functions

In order to get the time evolution of two-time averages, we T t
start with the dynamics of the operators(it¥). Their aver- Hagr(r+ ol (@xna(7+ DolO),
ages satisfy the set of linear differential equations that allows (oh(T+ Do), (so(T+ D (D)}, (25)
us to find the evolution of the corresponding two-time aver- _ )
ages in Eqs(18) and(19), needed for the calculation @, (t, 7).
An important point is the initial conditions to solve these
aal ()= (0.ponem1)€ ™ +i(w - A)alL (1), systems of equations. Such conditions are obtained by solv-

ing, up to the stationary limit, the master equatig@s-(11)
N et for the density matrix. From this information, one knows the
IL0n(1) = (:penxn) €7 +iw(oy(7)), initial conditions. For the functions it24),
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(aL(ba(t)) = \"nTlpen+1en+1, oscillator wy will survive longer thanwy—A, and it will

’ dominate the spectrum. In the opposite limit (y+P)/2,

the frequencywy—A will dominate the spectrum. This be-
havior is the one shown by our spin-oscillator system as can
be checked by means of the Haken’s model on adiabatic

<a;r(n—1(t)a(t)> = \“”nPXn,Xn’

opBalt) = Vn+ 1pgne xe ™, eliminatior?3%in the equations of motion of the field opera-
_ tors. From this simple picture, we can motivate the existence
(sp(ba(t)) = V’ann’GnﬂeiM_ (26) of three different regimes> (y+P)/2, k<(y+P)/2, and

he f . . some intermediate regimes. For this purpose, wa i as
For the functions in25), the energy scale, take a fixed small valye0.1 reflecting
t — -iAt the fact that leaky modes emission is the less efficient
@en(o(0) = pxncm mechanism in practical situations, and define the three re-
gimes by changingc and P.

<a;r<f*l(t)‘7(t)> =0, Apart from those parameters, our model requires us to set
. the frequency of the two oscillators. In practical cases, the
(070(1)) = pxaxn, coupling between the oscillators is in the order of meV while
the excitation energywy is in the order of eV. Therefore,
(spof(t)) =0. (27)  since our energy scale g=1(meV), all the calculations we

i S present here have been performed by taking:1000. Fi-
The second-order coherence function aspriori, more nally the detuningA is a very important parameter. Since

complicated to calculate. Averages of products of four oper fypical detunings are on the order of a few meV, we present

tors at two d'ﬁerem times have to be performed.. This taSl"here results for two different cases: perfect resonaxe@
becomes much simpler for the case of zero time delay,

g?(t,7=0) is a one-time operator, which simplifies the cal- and quasiresonance=>5.

culation. In spite of loosing informationg®(t,7=0) is a

very interesting magnitude because it can be used as an in- B. Dynamics of the density matrix: Occupations
dicator of the possible coherence of the state of the and coherences

systemt~* In addition, if we concentrate in the properties of
cavity modegi.e., neglecting the emission of leaky moygles
the second-order coherence function acquires a very simp
form in the stationary limit

In this section we show the time evolution of the occupa-
ions and coherence@iagonal and off-diagonal, respec-

ely) pinjm described in Eqs(9)<11). From these equa-
tions, it is clear that if losses and pumping are not included,

> (= Dl pxxn+ penen the systgm sho_vvs the usual Rabi oscillations in e{;\ch sub-
(ata’aa) A e space with a given number of photons. The amplitude of
g?(t,r=0)= oo - PR these oscillations increases with the couplinand decreases
(@'a) > NLpxnxn + PGn,Gn]J with the detuningA.
n

When all the losses and the pumping are included, the

(28)  situation changes drastically. The initial occupation®®)
gvolves with time up to a state of equilibrium in which oc-
Cupation is redistributed among a large number of levels with
a finite number of photons. In this final steady situation, the
sum of all the losses equilibrates the pumping.

Figures 2 and 3 show the time evolution of occupations
pinin for both the exciton(i=X) and the groundi=G)
Ill. RESULTS states in two cases with finite detuniag The results in Figs.
2 and 3 are typical of the two regimes described above. The
first point to be noted is the time scale of the transient re-

Since our model has several parameters, we need songtme, something that could be accessible by ultrafast spec-
simple pictures in order to gain insight on the interestingtroscopy. In the case in which pumping dominateg. 2),
regime of parameters. Although our system is similar to ahe transient regime is of the order of 100 ps, while when the
spin-coupled to an harmonic oscillator, we can understangumping is comparable with the emission réfeg. 3), such
the effect of dissipation by considering two-coupldy g)  scale is reduced to just a few picoseconds. The second inter-
oscillators. One of them has an eigenfrequeagy A being  esting point is the relative occupation of different states.
damped with a rate while the other, with an eigenfrequency When pumping rat® dominategFig. 2), states with a large
wy, is damped with a ratg and is pumped incoherently with number of photonsi become occupied and two bundles of
a rate P. The incoherent pumping implies a dephasingbranches can be distinguished: upper branches corresponding
mechanism that, together with the damping, gives an average |Xn) states and lower branches correspondingGo)
dephasindy+P)/2. When the damping of the first oscillator states. In other words, the system stores many photons in the
x is much higher than the dephasifig+P)/2 of the second cavity preferably keeping the QD in its exciton state. When
oscillator, one could expect that the frequency of this secondates for photon emission increase and become comparable

g'? takes different values depending on the statistics of th
photon stateg®=2 for chaotic stategy?=1 for states hav-
ing a Poisson distribution in, andg®? <1 for nonclassical
systems having a sub-Poisson distributioh.

A. Election of the range of parameters of interest
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0.1

0.075

FIG. 2. Density matrix diago-
nal elementsp;,;, for exciton (i
=X) states (dashed lines and
ground (i=G) states(continuous
lines), from n=0 up ton=35 cav-
ity photons.g=1, A=5, y=0.1,
k=0.1, and P=15. The inset
shows a zoom out of the graphic
to observe high occupations at
very short times.

0.025

t(ps)

to the pumping rate, just a few photofrs< 3) can be stored ing as we discuss below. Whendominates, the coherences
in the cavity but still, in the stationary situation, the highestincrease with time up to finite, but small, value. When pump-
occupation is that of the excitonlike staf¢0). It is quite  ing dominates, the mean number of photons inside the cavity
evident that an interesting regime is missing in these resultds much higher than 1 as discussed below. Therefore, a co-
the one in which losses dominate onto the pumping, for inherence like the one in Fig. 4 between states wit#0 and
stance the case=5 andP=1. We will discuss below other n=1 decreases with time. In this ca$&> «, we have com-
characteristics of this case, but do not include any figure herputed coherencegy,gn1, for values ofn around the mean
because the corresponding time dependence is featurelessimber of photons inside the cavifgee below, obtaining
showing a fast decay to zero of the occupations for all theéhat they also go to a small constgapart from oscillations
states withn>0. for large times.

Time evolution of coherencegs g; is shown in Fig. 4 for The oscillatory behavior of the coherences is produced by
the two limiting case> k and P<« for A=5. These co- the second term at the right-hand side of Efl). The de-
herences present oscillations that are due to this finite detutitning provokes a period72:/A. In order to analyze the

1

T I T I T
[0 o e
T T -
GO . -
06 ——— xo0| _ FIG. 3. Density matrix diago-
’ LR -—- Gl nal elementg;, i, for both the ex-
§ P N R X1| | citon (i=X) and the ground(i
o ’ _ G2 =G) states, frorm=0 up ton=3
LN keS| X2 cavity photons.g=1, A=5, y
0.4 S = =0.1, k=0.5, andP=1. The inset
X3 ) :
7 shows a zoom of the vertical axis
h of the graphic.
1 I 1
0.2 5 10 7
it
I e msacariatasasasss e
0 sy e’ 'J;__ I o — ._J_ ki _ I
0 2:5 5 7.5 10
t (ps)
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T | T
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I\ — - k=5,P=1(Re)
0.1 | — %=5,P=1 (Im) ‘I_
NI
ELIRLINEENEE
0.05 Cf
P T
AL T
2 )| — ¥=0.1,P=15[Re) FIG. 4. Density matrix off di-
& | | k=0.1, P=15 (Im) f agonal elemenpy, c; with detun-
(R ning A=5 for g=1, y=0.1, and
| | | | | two different values ofk andP.
eyl
-0.05 | | | |
| | I I |
| | | |
| | | |
0.1 1L L] ,|
W

7.5 10

limiting case of perfect resonance, we show in Fig. 5 theoccupationgincrease of the diagonal elementsherefore it
coherencepyg g, for some cases with=0. No oscillations  is clear that, for a high pumping, decays of the off-diagonal
exist in these cases. Moreover, all these off-diagonal eleterms(loss of coherengeprevail on the occupation until the
ments of the density matrix become real while they werecoherence is completely quenched and later inverted, pre-
complex for finite detuning as shown in Fig. 4. venting the evolution toward the occupation of states with a
The fact, shown above, th& competes withk, is not  high number of photons. This is an indication of the impor-
completely general. This fact can be seen in Egs«(11) for  tant role that off-diagonal elements play in the time evolu-
the time evolution of the density matrix elements. For thetion. It also explains that, if the emission rateis above a
off-diagonal termsP has the same sign than the losgeend  critical value, it dominates on any pumping effect.
v, while for the diagonal terms, these signs are different. The
pumping produces decoherence in the off-diagonal terms as
the emission of photons does because in our model the A very important result to be drawn from the time evolu-
pumping is incoherent. At the same tim,favors higher tion discussed above is the fact that the system is able to

C. Number of cavity photons

) S PP F PP EREE ol
........ —_ k=5, P=1
%=0.1, P=15 |
- k=5, P=15
0059 7 FIG. 5. Imaginary part of the

density matrix off diagonal ele-
ment pyo gy at perfect resonance
(A=0) for g=1, y=0.1, and dif-
ferent values of« and P. All the
real parts of the same matrix ele-
ments are zero. The inset shows a
zoom of the graphic for small val-
ues oft.

pXO,GI

-0.15

t (psec)
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FIG. 6. N_ph in gray scale, as a function afandP for perfect resonanca=0 with g=1 andy=0.1. Some contours of constah_gh are
drawn as continuous lines to clarify the figure.

store a significant number of cavity photons. Let us analyzéhe range of pumping in which a large number of photons is
the mean number of cavity photons as a first step to study thgtored in the cavity.
quantum properties of these photons by looking to its distri-

bution. The mean number of photons in the cavity is D. Second-order coherence function
o The possibility of storing a large number of cavity pho-
Nph:E N(Pxnxn+ Pencn) - (29)  tons for a wide range of parameters opens an interesting
n alternative beyond the simple value Ny how is the dis-

tribution of cavity photons? If any interesting distribution is
N_ph increases with time, in a scale of hundreds of picosecinvolved, its character could be transfered to the light emit-
onds, up to the stationary value that is the magnitude iried by the system.
which we are interested. Figures 6 and 7 show a contour plot In order to quantify if such distributions are closer to
of the mean number of cavity photons fa=0 andA=5, Gaussian distributionsthermal or chaotic statgsPoisson
respectively. As in previous figures, we fix all the parameterglistributions, or even nonclassical sub-Poissonian distribu-
exceptP and «, which vary along the two axis. In these tions, one can compute, using E@®8), the second-order
figures a region with a highl,, can be observed. It corre- coherence functiog'®(7=0) discussed abovg® was also
sponds to low emission and high pumping. The region isstudied in Ref. 15 in the case of alternating pumping of elec-
larger and the number of cavity photons higher, for the resotrons and holes. The modulation period strongly affects to
nant caseA=0, than for the case with detuning=5. A  the behavior of the second-order coherence fundter Fig.
detuning makes more difficult the coupling between the8 of Ref. 15. Therefore, as we have done for all the others
stategXn) and|Gn+1). As a consequence the mechanism ofmagnitudes, we present results obtained with continuous
storing cavity photons become less efficient. pumping.

A conclusion similar to the one drawn in the previous Figures 8 and 9 show®(0), for A=0 andA=5, respec-
section is in order. When pumping increases, the mean nuntively. In these two figures we have dashed the region in
ber of cavity modes also increases up to a certain maximurwhich g@(0) is close to 1 to show the region supporting a
value. Further increase oP implies that the dephasing Poissonian distribution. This is the border between classi-
mechanism related with this incoherent pumping provokes &ally accessible region and the one havigig(0) <1 with
decrease oN,, Similar behavior was already described in nonclassical states with sub-Poissonian distribution. In the
Refs. 15 and 17 for the case of perfect resonance between thase of perfect resonanceig. 8), for low «, the Poissonian
QD exciton and the cavity photda =0). The comparison of  distribution region is rather wide in terms of the pumpiRg
Figs. 6 and 7 shows how a finite detuning noticeably reduce®vhen « increases, this region becomes much narrowd?.in
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FIG. 7. N_ph in gray scale, as a function afandP for a detuningA=5 with g=1 andy=0.1. Some contours of constam_gh are drawn
as continuous lines to clarify the figure.
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FIG. 8. Second-order coherence functig(7=0), in gray scale, as function of and P for perfect resonanca=0. g=1 andy=0.1.
The dashed area shows the region supporting a Poisson distribution of cavity photons ing#iiich0) close to 1. Some contours of
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FIG. 9. Second-order coherence functigid(7=0), in gray scale, as function of and P for a detuningA=5. g=1 andy=0.1. The
dashed area shows the region supporting a Poisson distribution of cavity photons irgi#Hich0) close to 1. Some contours of constant
g? are drawn as continuous lines to clarify the figure.

In the case of detuning =5, the Poissonian region becomes to observe the emission at two different frequencies. Follow-
much smaller and even disappearing for intermediate valuesg the steps discussed in the section devoted to our model,
of «. we have computetB;l)(r) andG(Cl)(r) in the stationary limit
The interesting region of?(0) <1 appears for very low (t—o) for the three regimes already discussee «, P
pumping in these two figures. Even though this occurs in a€ k, and P comparable ta. Our results show fast oscilla-
small region of parameters, it is very interesting because itions modulated by an envelope that decreases to zero in a
means that the system can form squeezed photon states wi@nge of 10 ps for the case in which pumping dominates
sub-Poissonian distribution. In this region the emitted light(P> «), while for the other two case$ <« and P compa-
shows the antibunching that is characteristic of nonclassicdpble tox), the decay range reduces to 1 ps. In a second step,
light emitters. we Fourier transform these first-order correlation functions
The rest of the diagram is supporting states vgtH(0) to calqulate the spectrum of the emitted light. In order to
increasing from 1 to 2, i.e., states where second-order cohefumerically perform such Fourier-transforms, we have used

ence is reduced and approaching a Gaussian distributigfdital data filters(Parzen and Haningo reduce numerical
[g?(0)=2]. A finite detuningA enlarges this Gaussian re- noise. The spectra correspondingaQ=1000 are shown in

; . ) Figs. 10-12. In these three figures we have made use of the
gion as qb;erved when comparing the two f'gu“?s- _fact, discussed in the introduction, that the two types of
Combining and summarizing the r_esults.o.f F|gs. 6-9, itamissions can be separated: the emission coming from the
must be stressed that, for high-quality cavities, i.e., oW 5yt modes takes place along the axis of the pillars, while
andx, and intermediate value of the incoherent pumpig  he emission of leaky modes takes place in any spatial direc-
able to produce a rather large number of cavity photons withion (mainly in the directions perpendicular to the axis of the
Poisson distribution. When detuning increases, this effect reyjj|ar).

mains, although with a reduction of the region of parameters The case of Fig. 10 corresponds to a high pumping domi-

supporting it. nating on the effect ok. As discussed above, one expects a
strong damping of the oscillator with frequeney. There-
IV. SPECTRUM OF THE EMITTED LIGHT fore, only one peak aby—A is observed. Moreover, the peak

shown in this spectrum is significantly narrower than the
In this section we will present our results for the spectrumfeatures observed in any other case we have analyzed as, for
of the emitted light in the stationary lim{t— ). This is the instance, the ones in the following figures.
property that can be most easily measured in experiments. Figure 11 shows the result with a high value of the rate
We will do it only in the case of finite detuning=5 in order  emissionk=5 and a smaller, although nonnegligible, pump-
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ing P=1. This case corresponds M,,=0.027 andg®(0) emissions, respectively. First of all one must observe that
=0.396, i.e., to a sub-Poissonian distribution of a small numscale in Fig. 13 is more than 200 times larger than that of
ber of cavity photons. Now, the strong damping of the moddFig. 14, as it could be expected from the results and discus-
with frequencywy—A reduces its intensity, which becomes sion of Fig. 10. The main result to be drawn from Figs. 13
smaller than a second peaka. and 14 is that the most intense emission corresponds to the

In the intermediate case shown in Fig. 12, the dephasingange 16< P=<30 simply because this is the range of higher
of the two modes is similar and this produces a very widenumber of photons inside the cavity as shown in Fig. 7.
peak at the spectrum as observed in the figure.

Let us finally analyze more carefully the case of the high- V. SUMMARY

quality cavity (already studied in Fig. J0For this purpose,
we maintain fixed a low valua=0.1 and let the pumping We have described the dynamics of a QD embedded in a

vary in a wide range of values. Figures 13 and 14 show theemiconductor microcavity by means of a two-level system
spectra of the stimulate¢tavity) and spontaneoudeaky) strongly coupled to a single-cavity mode. The system is con-

1= h =
— Cavity mode

081~ — -+ Leaky modes N
S 06 -
= FIG. 11. Spectrum of emission
g B 7 for g=1, wx=1000,A=5, y=0.1,
— k=5, andP=1.

04— —

02— —
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0 . —
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frequency (meV)
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tinuously excited by incoherent pumping of excitons. Tworegimes are also characterized by Poissonian or Gaussian
different sources of photon emission are considered: spontghoton distributions inside the cavity. Sub-Poissonian distri-
neous emission through a leaky mode and stimulated emidutions can be obtained for a range of parameters, in which
sion of a cavity mode escaping from the cavity. The timethe pumping rate is very small, and the quantum nature of
evolution of first- and second-order coherence functions ishe QD-cavity system manifests itself in the emitted light.
calculated. When pumping dominates over emission rates, Rinally, we have studied the emission spectrum of our sys-
large number of cavity photons can be stored in the cavitytem. In the case of high pumping dominating on the rate
Further increase of the pumping introduces dephasing and emissionk, one gets a strong damping of the oscillator cor-
decrease of the number of cavity photons. These differentesponding to the exciton level with frequeney, and only

50
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0.9
40 4
0.8
0.7
30 0.6
— 05
>
E 0.4
o 20 -
0.3
0.2
1l 0.1
0
0 : : : : : .

I )
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frequency (meV)

FIG. 13. Spectrum, in gray scale, of stimulated emissavity modes escaping from the cayitys a function of frequency arfd. g
=1, wx=1000,A=5, y=0.1, and«=0.1. Some contours of constant intensity are drawn as continuous lines to clarify the figure.
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FIG. 14. Spectrum, in gray scale, of spontaneous emis@amssion of leaky modgsas a function of frequency ané. g=1, wy
=1000,A=5, y=0.1, andk=0.1. Some contours of constant intensity are drawn as continuous lines to clarify the figure.

one very narrow peak aby—A is observed. When the rate ACKNOWLEDGMENTS

emissionk is higher than a nonnegligible pumping reie We are indebted to Dr. P. Hawrylak for helpful discus-
the strong damping of the mode with frequensy-A al-  sjons within the framework of the CERION2 project. Work
lows one to observe the two modes with a higher intensitysupported in part by MCYT of Spain under Contract No.
for the mode atoy. In an intermediate case, the dephasing ofMAT2002-00139 and CAM under Contract No. 07N/0042/
the two modes is similar producing a very wide peak at the2002. The numerical work has been carried out in part at the
spectrum. CCC of UAM within the project QUANTUMDOT.

*Present address: Max-Planck Institute for Quantum Optics,gE. Moreau, |. Robert, J. M. Gerard, |I. Abram, L. Manin, and V.

D-85748 Garching, Germany. Thierry-Mieg, Appl. Phys. Lett.79, 2865(2001).

1C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynbektpm-  10C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yama-
photon InteractiongWiley-Interscience, New York, 1992 moto, Nature(London 419, 594 (2002.

2D. F. Walls and G. J. MilburnQuantum OpticgSpringer-Verlag,  '*M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. Solomon, J.
Berlin, 19949. Plant, and Y. Yamamoto, Phys. Rev. Le&9, 233602(2002.

3M. O. Scully and M. S. ZubairyQuantum OpticgCambridge  *?T. M. Stace, G. J. Milburn, and C. H. W. Barnes, Phys. Re@B
University Press, Cambridge, England, 1297 085317(2003.

4Y. Yamamoto and A. ImamogluMesoscopic Quantum Optics 13y, Yamamoto, M. Pelton, C. Santori, G. S. Solomon, O. Benson,
(Wiley, New York, 1999. J. Vuckovic, and A. Scerer, iemiconductor Spintronics and

5J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and Quantum Computatigredited by D. D. Awschalom, D. Loss,
V. Thierry-Mieg, Phys. Rev. Lett81, 1110(1998. and N. Samartl{Springer-Verlag, New York, 2002and refer-

60. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. ences therein.
Lett. 84, 2513(2000. 14A. V. Kozlovskii and A. N. Oraevskii, JETR88, 666 (1999.

’P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, 0. Benson and Y. Yamamoto, Phys. Rev.58, 4756(1999.

L. Zhang, E. Hu, and A. Imamoglu, Scien@90, 2282(2000. 16G. W. Gardiner,Handbook of Stochastic Method$pringer-
8G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. 188}. Verlag, Berlin, 1983

3903(2001). 17y, Mu and C. M. Savage, Phys. Rev. #6, 5944(1992.

115304-13



