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Our work deals with the application of the spatial dispersion theory to optical effects in the spectral region
of excitonic transitions. The principal problems here are the physics of additional(with respect to the tradi-
tional birefringence theory) light waves(ALW’s ) and formulation of the corresponding additional boundary
conditions(ABC’s) (with respect to the Maxwell ones). It was substantiation of the ABC choice that aroused
an active discussion lasting from the first study of this problem(1957) up to now. As a result of certain
theoretical incompleteness, some ABC’s have come into conflict with the main physical principles and were
rejected. Here we show that this rejection is premature and try to remake them using the experience gained in
attempts to reach self-consistency of ABC’s and Maxwell boundary conditions within crystal optics with
spatial dispersion. The main approach is to put into correspondence a number of formulas for polaritonic
reflectance that are used in ALW physics, with the principle of conservation of polaritonic energy.
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Until 1957 all investigations of crystal optics were per-
formed on the basis of the classical birefringence theory that
was formed long ago and approved repeatedly. A new stage
of the development of the crystal optics with spatial disper-
sion (SD) started in 1957. It was initiated not least by the
physics of additional light waves(ALW’s ). For the first time
an actual possibility for the observation of the corresponding
effects was predicted by Pekar in Ref. 1 who made a com-
prehensive analysis of the spectral region of excitonic reso-
nances.

Dealing with ALW’s, a variation of the classical birefrin-
gence theory is required. One of its consequences is, in par-
ticular, that for a bounded medium the traditional Maxwell-
Fresnel boundary conditions(MFBC’s) (which relate
electromagnetic fields at a boundary between two media) be-
come insufficient to determine unambiguously the ampli-
tudes of all the waves considered. Some additional boundary
conditions (ABC’s) are required in this case. For the first
time such ABC were formulated in the same paper1 of 1957
in which ALW’s were introduced[see Eq.(7) below]. Up to
now they are still used by most of researchers, both theorists
and experimentalists. Concurrently studies on the refinement
of MFBC’s were performed. They dealt with taking into ac-
count spatial dispersion as a whole and coordination of the
whole set of boundary conditions in the region of excitonic
transitions.2

In spite of a vast number of works that have been pub-
lished for 45 years, still much controversy remains concern-
ing the correct form of ABC’s. Just the same might be said
about ALW physics and other problems of spatially disper-
sive media as a whole. One of the controversies that has also
arisen due to the presence of a boundary is related to the
problem of fitting generalized MFBC’s and ABC’s. It is well
known3 that consideration of them separately(as is done in
most cases) may lead to violation of fundamental principles.
Such a situation often arises at the calculation of the polari-
tonic reflectance(PR), either on the basis of microscopic
consideration or in the continual approximation. The objec-
tive of our paper is just in putting into correspondence with
the principle of conservation of polaritonic energy a number

of formulas for the calculation of PR that are used in ALW
physics.

In the early works on ALW’s various ABC’s were derived
on the basis of Pekar’s idea. It stated that a correct(i.e., not
conflicting with the principal laws of physics) formulation of
ABC’s is possible on the basis of exciton models only. Such
a position remains in a great number of further works in this
line (see references to the corresponding works made before
the 1990s in Refs. 2–4 as well as the works made during the
last decade5–9). The model concepts, however, are restricted
as compared to actual situations. This natural drawback of
such concepts stimulated the attempts of many researchers to
build heuristic generalizations of ABC’s. These generaliza-
tions are based on either the results of model calculations for
a set of excitonic states(which is replenished permanently),
and/or rather general semiphenomenological guesses, and/or
some additional postulates concerning the polarization op-
erator structure or range, etc.3

From the very beginning the grounds for such generaliza-
tions of ABC’s aroused keen discussion. It is revived every
time a new group of researchers in the field of SD theory
advances fresh results of their investigations. As a conse-
quence of this, many of the results obtained have been re-
jected (in our opinion, sometimes prematurely) either be-
cause they seemed to be in conflict with the principle of
conservation of energy or due to some similar reasons. The
objective of this work is to advance the way for rehabilita-
tion of such results through self-consistency and inner coor-
dination, as was mentioned above.

The presentation of our paper is closely related to its con-
tent. Having in mind the aim to analyze critically(from the
viewpoint of their obeying the principle of conservation of
energy) and to remake as many of the known formulas for
the calculation of PR as possible, we cite all the correspond-
ing formulas known from the literature on ABC’s(which are
required for achievement of our goal), along with a couple of
the pioneer works dealing with each of them. For the sake of
simplicity and clearness, we shall restrict ourselves to a sim-
plest model of polarization oscillations in a medium[the
exciton effective mass(EEM) approximation], as well as the
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simplest geometrical configuration of the “light-medium”
system.

Let us consider a case when a monochromatic plane wave
(with frequencyv and wave vectork0=v /c, wherec is the
speed of light in vacuum) is incident from vacuum normally
to the surface of a semi-infinite optically uniaxial crystal(oc-
cupying the half-spacexù0). We assume that this wave is in
resonance with some nondegenerate dipole-allowed exci-
tonic state to which a polarization vectorP corresponds. This
vector (directed along the crystal axis) is parallel to that of
the wave electric fieldEh0,0,Ej and determines the partial
contribution from the state studied into the total crystal po-
larization. The ideal Maxwell equation in a medium(1) and
MFBC (2) now have the standard form10

]2E

]x2 + k0
2s«0E + 4pPd = 0, s1d

where«0 is the background permittivity, and

Es0−d = Es0+d,

]E

]x
s0−d =

]E

]x
s0+d + 4p

ik0

c
j , s2d

Here 07 designates approaching the crystal boundary from
the left and right to the origin of coordinates, respectively.
The quantityjh0,0,jj (which is at the focus of consideration
in this work) is the density of the surface polarization cur-
rent. The following preliminary assumptions are made here
concerning this quantity:

j = ssvdEs0d, s3d

wheres is some(unspecified for the moment) surface con-
ductivity of the crystal, and

Imssd = 0. s4d

It should be noted that the requirement ImssdÞ0 is not
contradictory, in principle, to the condition of energy flow
continuity at the vacuum-medium boundary(when neglect-
ing spatial dispersion, as well as taking it into account).
However, it introduces, without some reasonable grounds, an
extra phenomenological parameter(or even a function of fre-
quency) into the theory. By assuming Eq.(4) valid, we be-
lieve that this situation holds also in the limiting case of
birefringence for those media and spectral regions where the
traditional Fresnel formulas for light reflection and transmis-
sion are adequate. This is valid, in particular, by ignoring the
higher multipole transitions(except the dipole one) in the
crystal-field interaction,11 as it has place in this paper.

Usually, in addition to the above-mentioned conditions,
the crystal surface is assumed ideal(due to absence of any
mechanisms for intense decay of excitons or their consider-
able diffuse scattering) to an extent that the requirement
Ressd=0 is assumed also. The experience of model calcula-
tions, however, evidences that in SD theory the condition
RessdÞ0 may be not only consistent, but necessary as well,
even when there are no specific polariton energy sources or

drains at the crystal surface. When calculating light wave
reflection from crystals in this work, we shall resort to this
fact.

In the EEM approximation the material Maxwell equation
for a present configuration is determined by the following
constitutive equation1,12:

"

2M

]2P

]x2 + sv − vex+ igdP = −
«0D

4p
E. s5d

HereM is the exciton effective mass(taken positive for the
sake of definiteness); vex andg are the resonance frequency
and damping, respectively;D is equal to the so-called
“longitudinal-transverse” splitting of exciton line.

According to the studies of such class of equations in
mathematical physics, the only linear boundary conditions
for Eq. (5) that are not overdetermined have generally the
following form:

Ps0+d + a
]P

]x
s0+d + bEs0+d = 0. s6d

Herea andb are some phenomenological parameters of the
theory. Their values may be determined either from experi-
ment and/or by calculation, after having chosen a concrete
microscopic model for the excitonic state of a confined crys-
tal. When applying the semiphenomenological approach to
the boundary conditions, the parameters introduced above
may be treated, naturally, as some functions of frequency to
be determined experimentally. We will treat them(as is made
traditionally in the studies of ALW’s) as constants in the
narrow spectral region of the exciton transition considered or
as some concrete functions of frequency[e.g., stepwise ones,
as is done often for the quantityg—see Ref. 13—or those of
the form (10) in the dielectric approximation] which do not
involve other parameters except for those entering Eq.(5)
and/or a small number of some additional parameters, if they
are phenomenological generalizations of certain model cal-
culations[see text to Eq.(11)].

From the generalized Pekar ABC(6) one may obtain vari-
ous particular ABC’s that are used in when studying ALW’s:

(i) The Dirichlet like boundary condition(known in phys-
ics of ALW’s as the Pekar ABC proper1) that corresponds to
the casea=b=0—i.e.,

P = 0. s7d

Historically this is the first and most popular ABC which,
in the opinion of many experimentalists, provides the best
agreement between the theory and experiment at primary
processing of the latter.

(ii ) The Neumann boundary condition, witha−1=0 in Eq.
(6):

]P

]x
= 0. s8d

For the first time this condition has been derived for some
specific excitonic models.14–16The author of Ref. 14 applied
the Frenkel exciton model, subject to the condition that near-
surface distortion of the crystal lattice is such that(a) a sur-
face excitonic level may appear and(b) this level coincides
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with the excitonic band edge(see also Ref. 2). The authors of
Ref. 15 obtained the boundary condition(8) when consider-
ing repulsion of the Wannier-Mott exciton from the crystal
surface. Due to this repulsion, the exciton is reflected from
the crystal surface when its center of mass has not reached
the surface yet.

The condition(8) appears also in the method of “auxiliary
surface current”; see Ref. 17. However, it corresponds ad-
equately to another problem statement—namely, excitation
of polaritons in an infinite medium by a monochromatic light
source located in the planex=0 [in this case the currentj in
Eq. (2) is set by an external field source]. In Ref. 18 an
attempt has been made to apply the above method and its
results[in particular the form of Eq.(8) for ABC’s] to the
problem considered here. This attempt has aroused a useful
discussion(see Refs. 19–21) that enabled us to refer the
work of Ref. 18 to item(ii ).

(iii ) The mixed uniform boundary conditions, withb=0
in Eq. (6):

P + a
]P

]x
= 0. s9d

There are a number of studies wherea was assumed to be
an essentially large and, even more, a complex quantity.
Among those studies are such as Ref. 22, wherea was con-
sidered as one of the main parameters used in fitting experi-
mental data to the results of theoretical calculations. There
exist also a series of works, Refs. 23–26, which are well
known in the literature concerning ALW’s as the “dielectric
approximation”(DA). They use the following expression for
a:

a ; − ir = − iF2M

"
sv − vex+ igdG−1/2

. s10d

In the above-mentioned works it was assumed concurrently
that j =0. In this case some conflicts appear with the law of
conservation of polariton energy flow at the crystal bound-
ary. That was the reason why those works were ignored later
by the researchers dealing with physics of ALW’s. However,
in our opinion, it has been done prematurely and the main
aim of the paper is to remake and rehabilitate that and analo-
gous approaches to the ABC problem.

The same may be said about a lot of papers on ALW
theory, where the parametera is determined starting from
certain semiphenomenological assumptions concerning the
structure and/or localization radiusr of the polarization op-
erator for a confined or semi-infinite medium. As some gen-
eralization of the results of the specific excitonic models
(see, e.g., Refs. 14, 27, and 28) for the above-mentioned
“light-crystal” configuration it is taken often4 that P
=e0

`fxsx−x8 ,vd+uxsx+x8dgEsx8ddx8, where usuuuø1d is a
generalized phenomenological microscopic parameter setting
the exciton interaction with crystal surface, andxsx−x8 ,vd
is the polarization operator for an infinite medium. In the
EEM approximation[which corresponds to Eqs.(5) and(9)],
x=−isD«0Mr /4p"dexpfsi / rdux−x8ug and in compliance with
this

a = ir su + 1d/su − 1d. s11d

The limiting cases here are as follows:u=−1 corresponds to
item (i), while u=1 corresponds to item(ii ) andu=0 results
in Eq. (10) of the DA.

(iv) The mixed nonuniform boundary conditions of Di-
richlet type, witha=0 in Eq. (6):

P + bE = 0. s12d

Reference 5 may serve as a typical example of the appli-
cation of the boundary condition(12) in the physics of
ALW’s.29 Since it was assumed in Ref. 5 thatj =0, then in
accordance with Ref. 30 all the remarks of item(iii ), con-
cerning the possible violation of the principle of conserva-
tion of energy, refer also to that paper.

Some other limiting versions of the ABC(6) are possible
also. It is obvious, however, that in no case is the chosen set
of parameters in Eqs.(2)–(6) independent. Their choice must
be consistent from the standpoint of the fulfillment of the
main physical principles, in particular those of the energy
conservation law, the principle of symmetry of the kinetic
coefficients, etc.

At this point we would like to draw attention to some
previous investigations of this topic. In Refs. 31 and 32 the
way of correction and consistence of boundary conditions
and the appropriate material equations has been considered
for SD effects in natural optically active crystals. The work
in Ref. 31 has been done in the framework of birefringence
theory but Ref. 32 has used the ALW theory concept[on the
base of MFBC’s(2) with j =0 and ABC’s of(9) type with
Imsad=0, in fact]. The latter approach has been used also in
Ref. 30 in another context—namely, for correlation of MF-
BC’s and nonuniform ABC’s of(12) type. Here we have to
stress that in SD theory there exist different expressions for
the energy flux vectorS, which may be called, conditionally,
the Poynting-Pekar vector. In Refs. 30 and 31 a particular
form of the vectorS was used.3,10 It is quite general with
respect to the choice of excitonic model. However, its appli-
cation is strongly restricted by the following requirements:
Imsbd=0 and Imsad=0 [i.e., it does not include the case of
DA and many other ones corresponding to expression(11)];
g=0 (which seems unlikely in the spectral range of exciton
resonance); the “interference” fluxes are to be ignored also.
In this paper[see Eq.(13)], as well as is done in Ref. 32, we
choose such a form of the above vector which enables us to
go beyond those limitations.

If the EEM approximation is applied consistently, then the
expressions for the energy dissipation power and for the en-
ergy flux density are well defined(see Refs. 33–35). In our
case a possible jump of the time-averaged normal component
of the energy flux,DS, at the vacuum-medium boundary is
given by the expression

DS=
1

4p
F− Ej * + i

2p"vex

MD«0
P

]P*

]x
+ c.c.G

0+
. s13d

It is evident that this jump is related to the presence of
surface current and excitonic polarization behavior near the
surface. Here an assumption is made that the crystal surface
is neither a source nor a drain of polariton energy and the

CONSISTENCY OF BOUNDARY CONDITIONS IN… PHYSICAL REVIEW B 70, 115107(2004)

115107-3



above-stated quantities are determined mainly by the charac-
ter of the exciton interaction with the crystal surface, so one
may treat them, to a first approximation, as independent of
possible dissipation processes at the crystal surface, excita-
tion of surface waves, Raman scattering of polaritons, and so
on (see Refs. 2 and 3). If the above conditions are met, then
the relation between the boundary parameters must be such
as to makeDS vanish.

The set of Equations(1)–(6) and (13) supplemented with
the requirement for absence of any electromagnetic field
sources at infinitys+`d and with the conditionDS=0 makes
it possible to get a stable and unique solution of the problem.
When speaking about the possibility of obtaining an exact
solution, one often means that this solution can be presented
in a way that is natural for physicists(the extinction
theorem)—namely, as a sum of the incident and reflected
waves in vacuum(whose refractive index is unity) and a
finite number of plane waves that entered the crystal with the
corresponding refractive indicesnj (for the problem studied
there are two of them, e.g.,j =1,2). In this case the final
objective of the calculation is the amplitude reflection coef-
ficient R, which can be obtained experimentally. We omit
cumbersome but rather apparent intermediate mathematics,
bearing in mind to make our paper more compact and help
experimentalists to focus their attention on the final results
only. The procedure of such calculation is known from nu-
merous works on ALW’s.2,3 As concerning our problem with
ABC (6), in the standard representation the coefficientR is of
the following form:

R=
1 − nef f

1 + nef f
, s14d

wherenef f is the effective refractive index. The latter may be
presented as a sum of two termsnef f8 andnef f9 :

nef f = nef f8 + nef f9 , s15d

with

nef f8 =
n1 + qn2

1 + q
, s16d

nef f9 =
4p

b
F k0

4p
ImsaduDu2 − Resb * DdG , s17d

D =
n1sn1

2 − «0d + qn2sn2
2 − «0d

1 + q
. s18d

Here q sets the ratioE2/E1 between the amplitudes of two
waves that propagate in the crystal,

q = −
sn1

2 − «0ds1 + iak0n1d + 4pb

sn2
2 − «0ds1 + iak0n2d + 4pb

, s19d

andn1,2 are the corresponding refractive indices that are de-
termined by solution of the volume equations(1) and (5).
They are the same for all models of excitons considered in
the EEM approximation for the considered “light-crystal”
configuration:

n1,2
2 ; n+,−

2 =
1

2
sm + «0d ±Î1

4
sm − «0d2 + b, s20d

where

m = sk0rd−2 ;
2M

"k0
2sv − vex+ igd,

b =
2M«0D

"k0
2 ; − sn1

2 − «0dsn2
2 − «0d

[here and below all equations are written in the “resonance”
approximation identical to that for Eq.(5)].

We would like to note that for the particular microscopic
model of Ref. 3[with g=0 in Eq. (5); Imsad=Imsbd=0 in
Eq. (6) and Resad, Resbd being expressed via the definite
microparameters] the appropriate expression forR coincides
with that given above.

Equations(16)–(18) become considerably simpler for the
particular ABC’s:

sid nef f8 =
n1n2 + «0

n1 + n2
, nef f9 = 0, s21d

sii d nef f8 =
n1n2sn1 + n2d

l
, nef f9 = 0, s22d

where

l ; n1
2 + n1n2 + n2

2 − «0, s23d

and

siii d nef f8 =
n1n2 + «0 + iak0n1n2sn1 + n2d

n1 + n2 + iak0l
, s24d

nef f9 = 0 at Imsad = 0 andnef f9 = Imsadk0bun1 + n2

+ iak0l u−2 at Imsad Þ 0. s25d

In the DA,a is set by Eq.(10); for more general case see Eq.
(11). One can see from Eqs.(13) and (21)–(25) that, at j
=0 (i.e., nef f9 =0), the principle of conservation of energy is
fulfilled only at some values of the parameterU in expres-
sion (11), in particular atU=1 [case(i)] and U=−1 [case
(ii )]. However, it is not fulfilled for the continuum region of
uUu,1, in particular for a DA that corresponds toU=0. Just
this situation has been corrected in our paper.

(iv) In the ordinary situation Imsbd=0,

nef f8 =
n1n2 + «0 − 4pb

n1 + n2
, nef f9 = − 4pb ReS1 − 4pbl/b

n1 + n2
D .

s26d

Above [see Eq.(15)], we presentednef f as a sum of two
terms so that one could compare easily the results obtained
here with those obtained in a number of other theoretical
works where it was setj =0—i.e., nef f9 ;0—and fulfillment
of the principle of conservation of energy has been lost.

It is traditional practice in physics of ALW’s to compare
the experimental results with theoretical calculations that use
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different ABC’s—from (i) to (iv). In most of earlier works
only the termnef f8 was taken into account in Eq.(15). From
our results it follows, however, that to satisfy the principle of
conservation of polaritonic energy one should take into ac-
count both terms(16) and(17) in the corrected Equation(15)
for nef f. Of course, only experiments can give a complete
quantitative estimation of the generalizations made in our
paper. Tentative estimations made on the basis of the experi-
mental data known from the literature show that modifica-
tions of the formulas for PR calculations in the excitonic
resonance region are not insignificant. This is not surprising,
because it is well known that calculation of PR depends es-
sentially on the boundary conditions chosen.

Some other semiphenomenological parameters, such as
the Hopfield dead layer thicknessd,12 are introduced also
when performing calculations in the physics of ALW’s
within the above approximations. The parameterd can be
taken into account easily also within the theory considered
here. To do this, one should replacenef f in Eq. (14) by nef f,d:

nef f,d = n
snef f + nde−2ik0nd − n + nef f

snef f + nde−2ik0nd + n + nef f
, s27d

wheren=Î«0.
In conclusion we would like to outline once more some

items that are of importance for understanding the paper.
Both the formulation and coordination of the Maxwell
boundary conditions and those additional to them is one of
the crucial problems in SD crystal optics. The program of
solving this problem that is stated in our work rests on man-
datory observance of the fundamental principles when per-
forming calculations, whatever the values of the expected

results. This program regards equally the calculations on the
basis of micromodels and those using the continual approxi-
mation. In the latter case the above program was realized in
our paper when dealing with a certain class of polarization
oscillations in a medium.

We have considered here the simplest situation in physics
of ALW’s and have made only a small number of references
to the works where this situation was realized in practice(in
addition to those, see the proper references in Refs. 2–4,
etc.). Obviously, the results obtained here require further
generalization when considering more complicated configu-
rations of the “light-crystal” system for which the parameters
a andb in Eq. (6) are tensors, and/or an oblique incidence of
light is considered, and/or light polarization rotates at reflec-
tion, etc. In other words, the situation becomes more com-
plicated when different limiting ABC’s for different polariza-
tion vector projections are mixed in a nontrivial way(see,
e.g., Ref. 8). Such a generalization is required also when
considering close or degenerate excitonic states32 and exci-
tons of different multiplicity,36 as well as when choosing an
alternative basis for calculation of polariton states.6 It should
be noted once more that all our calculations have been done
in the EEM approximation. In those exciton models which
are beyond the framework of this approximation, the above
equations[including ABC (6) and the expression(13) for the
Poynting-Pekar vector] may undergo substantial alterations;
see, in particular, Ref. 7 dealing with theN-exponential ex-
citon model.
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