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This paper reports phase-sensitive studies of the mm-wave reflection from a photonic crystal built from
conducting spheres. We compare phase shift upon reflection from external interface to the phase shift on
reflection from internal interface, the latter was estimated from the spectrum of Fabry-Perot resonances with
photonic crystal mirrors. We show that the frequency-dependent phase shift upon internal reflection is consis-
tent with the phase shift on external reflection from the whole crystal. We develop the analytical model that
relates reflectivity of multilayers to admittances and to refractive indices of sublayers and takes account of
magnetic permeability. This model yields a simple graphical procedure to determine the resonant frequencies
of a Fabry-Perot resonator with photonic crystal mirrors. The model describes our results and results of two
other groups fairly well.
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I. INTRODUCTION

Photonic crystals draw much interest today in view of
potential applications in optical, microwave and infrared
ranges. While their basic properties, such as transmission,
dispersion relations, gap width, properties of defects, etc.,
have been extensively studied and are well understood now,1

their phase properties, especially the frequency-dependent
reflectivity phase shift, are not characterized enough. Experi-
mental studies of the reflectivity phase shift using Fabry-
Perot resonators with photonic crystal mirrors,2,3 proved
that the phase shift upon internal reflection is equal to the
phase shift upon external reflection. While reflectivity phase
is certainly important for the spectrum of Fabry-Perot
resonators,2,3 and for the phase modulators,4 it acquires even
more importance in connection with the Goos-Hanchen
shift,5 namely, the lateral displacement of a narrow beam
upon reflection from the material which supports only eva-
nescent waves. This effect arises from the dependence of the
reflectivity phase on the wave vector orientation(which is a
different guise for the frequency-dependent reflectivity
phase). The Goos-Hanchen shift is well known in the context
of total internal reflection, and was also observed in x-ray
reflection from atomic planes.6 Recently it has been pre-
dicted theoretically for photonic crystals7,8 where it can serve
as a basis for many interesting applications.

In this study we systematically explore the phase shift
upon reflection from photonic crystal. We use a metallodi-
electric sample based on the array of conducting spheres9–13

which has a wide photonic band gap and negligible absorp-
tion. We compare our experimental results to numerical
simulations. Although we perform our experimental studies
in the mm-wave range, our conclusions are quite general and
applicable to optical wavelengths.

We also compare our results to the analytical model. To
understand the physical origin of the frequency-dependent
reflectivity phase in photonic crystals, it is natural to rely on
the optics of multilayers. Optical reflectivity of multilayers

was studied in the context of Fabry-Perot filters and dielec-
tric mirrors.5,14–16 Analytic expressions for the frequency-
dependent phase shift upon reflection from the quarter-
wavelength dielectric mirror were obtained by Babic and
Corzine17 using the coupled-mode model and assuming
small contrast difference between the constituents. Later on,
Brovelli and Keller,18 using hyperbolic tangent substitution
and transfer matrix method, extended this analysis to arbi-
trary contrast. Quite recently Garmire19 analyzed finite
length multilayers, while Abeles14,15 took into account mate-
rial dispersion. In all these works, the reflectivity phase is
expressed through refraction indices of sublayers. However,
it is well known that the optical properties of materials are
determined by the refraction indexn=smed1/2 and admittance
Y=se /md1/2 as well.20 Here m is the magnetic permeability
and e is the dielectric permittivity. In opticsm=1, hence
Y=n, and all properties of multilayers may be recast through
refraction indices. This is not necessarily true for photonic
band gap materials where magnetic permeability plays an
important role.20,21,23–27In particular, metallodielectric pho-
tonic crystal has an effective magnetic permeability which
arises from the skin effect in the metallic consituent.28–30

Even all-dielectric photonic crystal may have magnetic per-
meability mÞ1 when considered as an effective medium.21

Therefore the previous analysis of the reflectivity of multi-
layers should be revisited in order to take into account mag-
netic effects. We develop here a simple analytical derivation
of the reflectivity of multilayers, based on transmission line
analogy and the Bragg reflector model,5 where we carefully
distinguish between admittances and refraction indices. The
resulting expressions are valid formÞ1. We successfully
apply this model to describe our experimental data and the
data of two other groups.2,3 Our derivation is intended to
serve as an auxiliary tool for the calculation of the photonic
crystal reflectivity, while the rigorous calculation is best done
using transfer matrix formalism.22,23,31

PHYSICAL REVIEW B 70, 115105(2004)

1098-0121/2004/70(11)/115105(10)/$22.50 ©2004 The American Physical Society70 115105-1



II. THE MODEL

A. Phase shift upon reflection from multilayer

We assume a periodic two-component multilayerfABgN

consisting of uniform sublayersA and B with thicknesses
dA,dB, refraction indicesnA,nB, and admittancesYA,YB sYA

ÞYBd, related to the dielectric constante and the magnet-
ic permeability m of individual sublayers as follows:
Y=se /md1/2, n=semd1/2 (in the visible rangeY=n). Reflectiv-
ity of this multilayer is

R=
Y0 − YN

Y0 + YN
, s1d

whereYN is the effective admittance of the multilayer con-
sisting ofN unit cells andY0=s377Vd−1 is the admittance of
free space. In what follows, we divide all admittances byY0.
The multilayer exhibits a stopband. For the frequencies in-
side the stopband the wave is evanescent, so the admittance
is purely imaginary and forN@1 it achieves a constant
value, YN→Yinf = js. For such “infinite” multilayer, the re-
flectivity in the stopband isR=e−jF where

F = 2 arctans. s2d

We calculate the admittance of the finite sizefABgN

multilayer using recurrent procedure. Indeed, if we add to the
front side of this multilayer an additionalB sublayer, the
admittance of the resultingBfABgN multilayer is found using
admittance transformation,

Y8 = YB
YN + jYB tan kBdB

jYN tan kBdB + YB
, s3d

wherekB=2pfnB/c is the wave vector. If we add to the front
side of the resulting multilayer an additionalA sublayer, the
admittance of the resultingfABgN+1 multilayer is

YN+1 = YA
Y8 + jYA tan kAdA

jY8 tan kAdA + YA
. s4d

However, for the frequencies inside the stopband and for
N@1, YN<YN+1<Yinf. Then Eqs.(3) and (4) yield

s2 + s
sYB

2 − YA
2dtan kBdB tan kAdA

YA tan kBdB + YB tan kAdA

+ YAYB
YA tan kAdA + YB tan kBdB

YA tan kBdB + YB tan kAdA
= 0. s5d

For the frequencies inside the gap,s is real, hence the deter-
minant of Eq. (5) should be positive. This requirement
yields the dispersion relation and defines the upperfu and
lower f l stopband frequencies, while the solutions of Eq.(5)
yield the phase of the reflectivity through Eq.(2). To avoid
cumbersome algebraic expressions, we restrict ourselves
to a particular case of the quarter-wavelength stack, i.e.,
nAdA=nBdB. Then Eq.(5) reduces to

s2 + ssYB − YAdtan
pf

2f0
+ YAYB = 0, s6d

where

f0 =
c

2snAdA + nBdBd
=

c

2dneff
s7d

is the midgap frequency,c is the speed of light,d=dA+dB is
the unit cell period, andneff is the effective refraction index
of the crystal as a whole. The width of the gap is

Df = fu − f l =
4f0

p
sin −1UYA − YB

YA + YB
U . s8d

The solutions of Eq.(6) are

sHL =

sYA − YBdtan
pf

2f0

2 31 +11 −
4YAYB

sYA − YBd2 tan2 pf

2f0
2

1/2

4
s9d

for YA.YB (high-low sequence) and

sLH =

sYA − YBdtan
pf

2f0

2 31 −11 −
4YAYB

sYA − YBd2 tan2 pf

2f0
2

1/2

4
s10d

for YA,YB (low-high sequence). The identification of the
solutions was made through comparison of Eqs.(9) and(10)
to the limiting case of the admittance of the quarter-
wavelength stack at midgap frequency,YN=sYA/YBd2N

(which can be found by applying 2N times the well-known
expression for the admittance of the quarter-wave plate), in
such a way thatYN→` for YA.YB, andYN→0 for YA,YB.

In the vicinity of the midgap frequency the Eqs.(2), (9),
and (10) may be linearized. To this end we replace
tanspf /2f0d by 2f0/psf0− fd and substitute Eqs.(9) and(10)
into Eq. (2). The resulting phase shift on reflection is

FHL < p +
psf − f0d

f0sYA − YBd
, s11d

FLH <
psf − f0d

f0sZA − ZBd
, s12d

where Z=Y−1 is the impedance(dimensionless). Note that
at the midgap frequency,FHLsf0d=p and FLHsf0d=0. The
linear expansion given by Eqs.(11) and (12) holds for
uFsfd−Fsf0du, sp /4d.19 If we replaceY by n, i.e., assume
m=1, Eqs.(11) and (12) reduce to previous results.15,17–19

The linear frequency dependence of the phase can be in-
terpreted as a virtual reflection from the plane shifted from
the outer interface byLph= 1

2s]F /]kd. This phase penetration
length17 is calculated from Eqs.(11) and (12),

Lph
HL =

c

4f0sYA − YBd
, s13d

GOLOSOVSKYet al. PHYSICAL REVIEW B 70, 115105(2004)

115105-2



Lph
LH =

cYAYB

4f0sYB − YAd
=

c

4f0sZA − ZBd
. s14d

Note that in both casesLph is positive, i.e., reflection effec-
tively occursinside the crystal. With respect to pulse reflec-
tion this meanspositivegroup delay.

B. Fabry-Perot resonances

The spectrum of a Fabry-Perot resonator with dielectric
mirrors is determined by the frequency-dependent reflectiv-
ity phase. To model it, we assume that our multilayerfABgN

is split in two halves with a separationL between them. The
space between the halves operates as a Fabry-Perot resona-
tor. We assume that only a single plane wave(i.e., zero-order
Floquet mode) could propagate in the resonator space. Trans-
mission through the two halves of the photonic crystal
coupled through the Fabry-Perot resonator is given by

TFP =
eis2pfL/cdS12

2

eis4pfL/cd − S11
2 , s15d

whereS12 and S11 are complex transmission and the reflec-
tion coefficients for each of the halves. For sufficiently large
number of layers,N@1, and for the frequencies in the stop-
band,S12!1 andS11<e−jF, whereF is the phase shift upon
reflection from the infinite crystal. Then Eq.(15) yields reso-
nant frequenciesf,

4pLf

c
+ F1sfd + F2sfd = 2mp, s16d

whereF1,F2 are the phase shifts upon reflection from each
half of the multilayer. If one half of the multilayer isfABgN/2,
another half isfBAgN/2. In other words, if the front layer in
one half isA, the front layer in another half isB (Fig. 5).
Therefore, ifF1 is given by Eq.(11), thenF2 is given by Eq.
(12) (with the indicesA and B interchanged). The sum of
these two phase shifts is found from Eqs.(2), (9), and(10),

F1 + F2 = 2 arctanssHL − sLHd

= 2 arctan3 uYA − YBu
1 + YAYB

311 −
4YAYB

sYA − YBd2 tan2 pf

2f0
2

1/2

tan
pf

2f04 . s17d

Since at the gap edgessHL=sLH, thenF1+F2 is equal to zero
at the lower edge, is equal top at the midgap and to 2p at
the upper edge.

To find the resonant frequency corresponding to a certain
L, we substitute Eq.(17) into Eq.(16) and solve forfsLd. For
any given m and L there is only one solution, provided
YA,YBù1. In the vicinity of the midgap the solution can be
found quite easily. We substitute the linear expansion of Eq.
(17),

F1 + F2 < p +
psf − f0ds1 + YAYBd

f0uYA − YBu
s18d

into Eq.(16), recast it through the wavelength and find linear
dependence of the resonant wavelengthlFP on L,

lFP = l0
L + Lph1 + Lph2

Sm

2
−

1

4
Dl0 + Lph1 + Lph2

. s19d

Here, l0=c/ f0 is the midgap wavelength, andLph1,Lph2
are the phase penetration depths into each half of the
multilayer, which are given by Eqs.(13) and (14). Equation
(19) predicts thatlFPsLd consists of a series of straight lines
intercepting at the horizontal axis; the intercept is the sum of
the phase penetration depths,Lph1+Lph2. Each line corre-
sponds to a certainm in Eq. (16). Note, that forL=pl0/4,
where p=1,3,5. . ., theresonance wavelength is exactly at
the midgap, i.e.,lFP=l0, while for L→0 the resonance
wavelength is at the stopband edges. This allows us to esti-
mate the resonance wavelengths using graphical procedure
illustrated in Fig. 5. Indeed, assuming that the admittance of
the low-index material is close to unity, i.e.,YB.1, then Eq.
(19) may be recast through experimentally measured param-
eters such as midgap wavelengthf0 and gap widthDf,

lFP

l0
<

L

l0
+

f0

pDf

m

2
−

1

4
+

f0

pDf

. s20d

Here we used Eqs.(7) and (8). In this case the horizontal
intercept in Fig. 5 is determined by the experimentally mea-
sured parameters, i.e.,Lph1+Lph2<sf0/pDfd. Of course, Eqs.
(19) and (20) are valid only in the vicinity of the midgap,
while at the gap edges one should use Eqs.(16) and (17).

III. EXPERIMENTAL SETUP

Figure 1 shows the experimental setup. Our building
block is an array of 230 steel spheres of 2 mm diameter
placed on a 0.67 mm thick plexiglas plate. In this plate we
drilled a hexagonal array of small holes 2.9 mm apart and
mounted our spheres in the holes, in such a way that the
spheres slightly protrude through the plate. In order to match
the stopband to the frequency range of our source we re-
moved 30% of the spheres. This results in “diluted” hexago-
nal lattice(the in-plane particle arrangement is shown in the
inset in Fig. 1). The spheres can be considered as perfect
conductors since for our frequency range, the skin depth is
much smaller than radius. Moreover, since the sphere radius
is such thatkr&1, all Mie resonances of the spheres32 are
above our experimental frequency range.

Ten layers of spheres were arranged in a stack(Fig. 1).
The layer spacing of 4.3 mm was fixed by appropriate spac-
ers. The layers were assembled in such a way that the
spheres formed the columns across the stack. However, our
experimental results turned out to be insensitive to small
lateral shift of one layer relative to another. This is probably
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due to the fact that the interlayer separation is rather big,
d. r ,d.l /2p, hence near fields of the scatterers in adja-
cent layers do not overlap.

Mm-wave transmission and reflection was measured in
the frequency range of 20–50 GHz, using a HP8510C Vector
Network Analyzer and two standard gain horn antennas
equipped with collimating teflon lenses. The inner curvature
of the lens is 15 cm, the outer curvature is 30 cm, the dis-
tance between antennas is 28 cm, the beamwidth is 6 cm.
The sample is mounted symmetrically between antennas and
its cross section slightly exceeds the beamwidth. To prevent
edge effects we set two 6 cm diameter apertures above and
below the sample. Calibration for the reflectivity measure-
ments was performed using a thin aluminum foil covering
the upper layer of the array. This should represent a perfect
short.

IV. EXPERIMENTAL RESULTS AND COMPARISON
TO THE MODEL

Figure 2 shows our experimental results. Transmission
measurements clearly reveal a stopband at 25–39 GHz
which becomes exponentially deeper upon increasing num-
ber of layersN (not shown here), i.e., transmittance,exp
−s2Nd/ ld whered is the unit cell period andl is the local-
ization length(Bragg attenuation length). Localization length

in the stopband is very short,l =1.5d, so this 10-layer stack
can be considered as infinite one. In the frequency range
corresponding to the stopband, the electromagnetic wave
does not penetrate into the stack and is totally reflected,
hence the reflectivity is close to unity(Fig. 2). The reflectiv-
ity phase is strongly frequency dependent(Fig. 3) and the
phase shift at the midgap is close top, as predicted by the
model[Eq. (11)]. Similar results were obtained for the stack
constructed from 3 mm diameter steel spheres(not shown
here).

To achieve quantitative comparison to the model, we
identify the constituents: the sublayerA consists of conduct-
ing spheres mounted in the plexiglas plate, while the sub-
layer B is the spacing between the layers of spheres, i.e.,
dA=2r =2 mm; dB=2.3 mm;nB=1, YB=1. (We do not con-
sider the plexiglas plate as a separate layer since its optical
thickness does not exceedl /6 so that the standing wave

FIG. 1. Measurement setup. Standard gain microwave horns are
connected to HP8510C Vector Network Analyzer and are termi-
nated by two home-made collimating teflon lenses. The sample is a
stack of 10 plexiglas plates, each of them containing 230 steel
spheres of 2 mm diameter. The in-plane arrangement of the spheres
is shown in the inset. The nearest-neighbor in-plane distance is
2.9 mm and the layer spacing isd=4.3 mm.

FIG. 2. Transmittivity and reflectivity of a 10-layer sample. We
clearly see the stopband at 25–39 GHz. The reflectivity in the stop-
band is close to unity.

FIG. 3. The phase shift upon external reflection from the sample
shown in Fig. 1. The crosses show experimental data for reflection
from external interface, continuous solid line shows model predic-
tion [Eq. (9)] and open symbols stand for the phase shift upon
internal reflection from photonic crystal mirrors. The latter data
were retrieved from the spectrum of defects(Fig. 6). Note quasilin-
ear frequency dependence of the reflectivity phase in the stopband.
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resonances do not occur there in our frequency range.) The
effective refraction index of the layer of conducting spheres,
nA=1.19, was found by substitution of the experimental
value of the midgap frequencysf0=31.7 GHzd into Eq. (7).
Note that the condition of a quarter-wavelength stack is sat-
isfied here pretty well,nAdA/nBdB=1.03; and at the center of
the gapkAdA=0.51p, as expected. The effective admittance
of the sublayer of conducting spheres embedded into plexi-
glas plate, YA=2.04, was found by substitution of the
experimentally found stopband widthDf =14.3 GHz and
midgap frequencyf0=31.7 GHz into Eq.(8). Note that
YAÞnA, as expected for a metallodielectric composite where

mÞ1.28–30,33 We calculate the reflectivity phase using
Eqs. (2) and (9), since YA.YB. The calculated phase is
shown as a continuous line in Fig. 3. Experimental points
(crosses) demonstrate the same frequency dependence al-
though they are shifted up by 15°. This discrepancy is attrib-
uted to the uncertainty in the position/flatness of the calibra-
tion plane in the external reflectivity measurements.(Note
that 1 mm uncertainty in the position of the calibration plane
results in 30° phase shift.)

To construct a Fabry-Perot resonator, we split this stack
into two halves and displaced one of the halves in the direc-
tion perpendicular to the layers byL. The distance between
the splitted layers isD=L+dB. This operation does not affect
the width of the gap but results in one or a few sharp
transmission peaks inside it(Fig. 4). These peaks appear not
only when we set two halves of the sample further apart
sL.0d but when we bring them closer as wellsL,0d. To
analyze the spectrum of these peaks as suggested by the
model(Fig. 5), we plot the resonant wavelength versus sepa-
ration and find that experimental points are grouped in a few
series(Fig. 6), whereby the wavelength in each series lin-
early depends onL. The resonant wavelength is equal to the
midgap wavelength each time whenL is an odd multiple of
l0/4. All these linear dependences intersect in one point on
the horizontal axis. The experimentally found horizontal in-
tercept of 0.8 agrees with the value of 0.71 predicted by Eq.
(20).

The same analysis is applied to the results of Beakyet al.3

who studied the two-dimensional(2D) photonic crystal con-
sisting of a square lattice of cylindrical alumina rods with a
few missing rows. When we plot the spectrum of resonances
in this system in the coordinates of wavelength-separation,
we find that experimental points are grouped in a few series,
whereby the wavelength in each series linearly depends on
separationL (Fig. 7). The resonant wavelength passes
through the midgap each time whenL is an odd multiple of
l0/4. All these linear dependences intersect at one point on
the horizontal axis. To compare this horizontal intercept to
model prediction, we model this 2D photonic crystal as a

FIG. 4. Mm-wave transmission through the 10-layer stack
which has been split on two halves, each containing five layers. The
separation between the two halves isD=6 mm. Note a sharp peak
at 30 GHz. We ascribe this peak to a Fabry-Perot resonance be-
tween two halves of the structure operating as mirrors. The dashed
line shows numerical simulation of the microwave transmission
through this stack using CST/Microwave Studio software(Ref. 35).

FIG. 5. Schematic representation of the spec-
trum of Fabry-Perot resonator with dielectric mir-
rors, as a function of the resonator length. Note
straight lines with common intercept at the hori-
zontal axis. The sections of these lines passing
through the stopband(thick solid lines) define
possible values of resonant wavelengths. When
the resonator length is an odd multiple ofl0/4,
where l0 is the midgap wavelength, the reso-
nance occurs atl0.
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two-layer system, where sublayerA is a row of dielectric
rods and sublayerB is the air spacing between the rows
of the rods. The sublayer thickness isdA=2r =6.35 mm and
dB=14.45 mm. We substitutenB=1, YB=1, Df =3 GHz,
f0=5.3 GHz into Eqs.(7) and (8) and findnA=2.2, YA=2.7.
(Although hereYAÞnA, while in all-dielectric composite we
expectYA=nA, we do not believe that this deviation indicates
effective magnetic properties of this photonic crystal. We
trace this deviation to the error of replacing a plane of scat-
terers by a uniform layer with sharp interfaces.) Here, the
condition of a quarter-wavelength stack is also satisfied
well, nAdA/nBdB=0.94; and at the center of the gapkAdA
=0.49p, as expected. The horizontal intercept of 0.7 found in
the experiment is not far from the value 0.55 predicted by
Eq. (20).

The spectrum of resonances in a woodpile array of dielec-
tric rods measured by Ozbay and Temelkuran2 can be ac-
counted for along the similar lines. Here,f0=13 GHz, Df
=6 GHz. Despite a considerable deviation from the quarter-

wavelength conditionsnAdA/nBdB=1.58d, the model predicts
the spectrum of resonances here pretty well. Indeed, we find
that experimental points are grouped in two series, whereby
the wavelengths in each series linearly depend on separation
(Fig. 8). The horizontal intercept of 1 that we find in the
experiment is not far from the value 0.7 predicted by Eq.
(20).

We conclude that for these three different materials(con-
ducting spheres, dielectric rods, woodpile structure), our
model describes fairly well the spectrum of Fabry-Perot reso-
nances with photonic crystal mirrors and relates it to the
frequency-dependent reflectivity phase.

Now we go back to our sample and compare the phase
shift on external reflection to the phase shift on internal
reflection derived from Fabry-Perot resonances. Here we use
the fact that in our sample the sublayerB is the air, hence
the effective length of the resonator may be also written as
D=L+dB, in such a way,F2=F1−s4pLf /cd. To determine
F1 we use the procedure first proposed by Ref. 2. We plot

FIG. 6. The wavelength corresponding to
transmission peaks shown in Fig. 4 as a function
of the separationL between the two halves of the
stack. L=0 corresponds to the regular sample
shown in Fig. 1. The symbols show experimental
results, thick solid lines show results of numerical
simulations, thin solid lines show linear depen-
dences predicted by Eq.(20).

FIG. 7. The resonant wavelength in a 2D ar-
ray of dielectric rods(Ref. 3) split in two parts, as
a function of separationL between the two halves
of the stack.L=0 corresponds to the ideal crystal.
The symbols show experimental results, thin
solid lines show linear dependences predicted by
Eq. (20).

GOLOSOVSKYet al. PHYSICAL REVIEW B 70, 115105(2004)

115105-6



experimentally found values of 2pDfFPsDd /c versus reso-
nant frequency,fFP. This results in several series of experi-
mental points displaced byp, each series corresponding to a
particularm in Eq. (16). We identify mode numbersm, sub-
tract multiples ofp and obtain a single-valued dependence
Fsfd which is shown by open symbols in Fig. 3. At the next
step we compare the phase shift on internal reflection to the
phase shift on external reflection from the perfect crystal
(Fig. 3, crosses). Note that both phase shifts are almost iden-
tical inside the gap. This is quite trivial forD@d, whered is
the unit cell period. However, it is surprising that the coinci-
dence persists forD,d where strong near-field effects are
expected; and even more surprising that it persists forD,d
wherea priori we hardly expect any resonances at all.(In-
deed, if the reflection were occurring at the interface between
photonic crystal and air, the first standing wave resonance in
the splitted photonic crystal corresponds to conditionD
=l /2. ForD,d the resonant wavelength is beyond the gap.)

V. COMPUTER SIMULATIONS

The simplifying assumption of a single plane wave within
the Fabry-Perot resonator space[see Eqs.(15) and (16)],
calls for accurate numerical simulations, especially at small
separations.

We first studied a model of a Fabry-Perot resonator with
infinite lateral extent. Due to the 2D periodicity of the pho-
tonic crystal, we can accurately model the infinite structure
by a single unit cell with periodic boundaries. To this end we
used Ansoft/HFSS,34 a commercial finite element solver for
Maxwell equations that has the capability of imposing peri-
odic boundary conditions. The numerical model has five lay-
ers of metallic spheres for both reflectors, and includes also
the plexiglas plates that hold the spheres in place. The hex-
agonal lattice is replaced by an equivalent square lattice with
exactly the same photonic band gap.S parameters for both
the whole Fabry-Perot resonator and the single reflector were
calculated over a broad band of frequencies. We then com-
pare the predictions of Eq.(15)—as derived from the FEM

simulation of a single five-layers reflector—with the numeri-
cal FEM simulation of the complete resonator(two five-
layers reflectors), and an excellent agreement is observed
(Fig. 9). We find that the near-field effects of the evanescent
waves are properly accounted for by theS parameters of the
single reflector, so that the assumption of a single plane wave
within the Fabry-Perot resonator is fully justified.

We then proceeded to simulate the finite-size resonator.
Due to the large size(relative to wavelength) of the resonator
we used CST/Microwave Studio,35 a commercial FDTD
solver that is more efficient in terms of computational re-
sources. The complete finite-size resonator with the hexago-
nal lattice is analyzed. Figure 4 shows our experimental re-

FIG. 8. The resonant wavelength correspond-
ing to transmission peaks in the 3D woodpile ar-
ray of dielectric rods(Ref. 2) split in two parts, as
a function of separationL between the two halves
of the stack.L=0 corresponds to the ideal crystal.
The symbols show experimental results, thin
solid lines show linear dependences predicted by
Eq. (20).

FIG. 9. Numerical simulation of the microwave transmission
through the 10-layer stack shown in Fig. 4, using ANSOFT soft-
ware (Ref. 34). The symbols show numerical simulation assuming
infinite lateral extent of the stack. Solid line shows prediction of Eq.
(15) assuming Fabry-Perot resonator with photonic crystal mirrors
consisting of five bilayers each. The separation between the halves
is L=4.5 mmsL /l0=0.32d.
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sults and the full-wave FDTD simulations, and a very good
correspondence is observed. The low-level ripple of the
simulated results originates from the finite sampling in time
and the FFT transformation used to transform the time-
domain results into frequency-domain results.

VI. DISCUSSION

A. Applicability of the Bragg reflector model

We have shown that the phase shift on reflection from
several different photonic crystals can be estimated using a
Bragg reflector model which takes into account magnetic
effects. This model was developed to account for the optical
properties of continuous multilayers. To account for photonic
crystals, they should be represented as a sequence of layers
where each layer is characterized by some effective dielectric
constant and magnetic permeability. This requires some kind
of effective-medium approximation21,36–38 for each layer.
The limits of such effective-medium approach to photonic
crystals, which in fact are ordered arrays of scatterers, were
analyzed by Lalanne38 who showed that it works well only
when the scatterers can be considered as dipoles.29,39 It is
well known that the dipole approximation is good for the
scatterers of arbitrary shape, providedkr,1, wherer is the
size of the scatterer andk is the wave vector. Since in our
experimental conditionskr&1, the success of the combina-
tion of the Bragg reflector model and effective-medium ap-
proximation is not surprising. This can be formulated differ-
ently. To approximate a planar array of scatterers by a
uniform layer, the near fields of the adjacent layers should
not overlap. This is justified for small scatterers, whose near
field consists of quickly decaying evanescent waves;40 while
it may be problematic for the scatterers with the size compa-
rable to wavelength since they give rise to propagating
waves.

In other words, for clearly defined layered structures, the
Bragg reflector approximation is a useful tool to estimate
localization length, position, and width of the gap.13 Of
course, not every 3D dielectric photonic band-gap crystal can
be approximated by a multilayer, because sometimes the lay-
ers with distinctly different electrical properties cannot be
clearly identified. Typical examples would be the original
diamond lattice41,42 and woodpile structures.2,31,38 However,
our results for the phase shift upon reflection may, neverthe-
less, be valid for these and other materials as well. To sup-
port this conjecture we recast Eqs.(12) and (11) using Eq.
(8) and find

FHL < p +
2sf − f0d
YaveDf

, s21d

FLH <
2sf − f0d
ZaveDf

. s22d

Here Yave=sYA+YBd /2 andZave=sZA+ZBd /2 is the average
admittance(impedance) of the medium. Since these equa-
tions do not depend explicitly on the properties of the indi-
vidual layers, they may be valid for any material exhibiting
stopband, such as a uniform material with strong dispersion

resulting in a negative dielectric constant or negative mag-
netic permeability, or a random media demonstrating
localization.45

B. Comparison to the uniform medium

In the following step we compare reflectivity of a photo-
nic crystal in the frequency range corresponding to the gap,
to the reflectivity of an infinitely long uniform medium
which supports only evanescent waves(for example, a di-
electric under conditions of total internal reflection), e−qz,
whereq−1 is the attenuation length. The admittance of such
medium isY=−jq /mv, hence the phase shift on reflection is
F=p+2 arctansmk/qd, wherem is the magnetic permeabil-
ity andk is the wave vector in free space. Following Ref. 17,
we compare the phase penetration length,Lph= 1

2s]F /]kd, to
the energy penetration length,LE=1/2q. Assuming fre-
quency independentq and for q@k, we find Lph.m /2q
=mLE, hence in nonmagnetic media,Lph=LE.

In the context of photonic crystals this relation generally
does not apply. Indeed, the energy penetration length into
infinitely long photonic crystal isLE=LB/2, where LB
=d/ lnsYA/YBd is the Bragg attenuation length5 (localization
length) which is very different from Eqs.(13) and(14). Only
in the limit of small contrast,DY=YA−YB!YA,YB, when
the Eqs. (7), (13), and (14) can be simplified and yield
Lph

HL<nd/2DY, Lph
LH<ndY2/2DY; there is some similarity to

the uniform medium. Indeed, comparison to the energy pen-
etration length,LE<dY/2DY, yields Lph

HL=meffLE and Lph
LH

=eeffLE, whereeeff=nY,meff=n/Y are average dielectric per-
mittivity and magnetic permeability of the whole crystal.
Only for the case of HL sequence the relation between
LE andLph is the same as that for the uniform media, while
for the LH sequence this relation is certainly different.(The
LH sequence is known to have the unusual optical proper-
ties, in particular, anomalous dispersion.)14 Hence, with re-
spect to the phase properties, photonic crystal in generalcan-
not be viewed as a uniform material with some effective
parameters.

C. Magnetic effects in photonic crystals

These effects were usually mentioned only in connection
to optical activity. Silverman and Sohn43 demonstrated the
importance of magnetic effects for the optical reflectivity of
chiral media, while Pendryet al.23 recently raised this ques-
tion with respect to left-handed materials. While the meaning
of the effective magnetic permeability for magnetic materials
and composites built of magnetic constituents is more or less
clear, the emergence of high-frequency magnetic permeabil-
ity in the composites built of intrinsically nonmagnetic ma-
terials is controversial.25 It is also known that in materials
with high dielectric constant, the high-frequency dielectric
relaxation may mimic magnetic permeability.44 As suggested
by O’Brien and Pendry,20 instead of using effectivee andm,
the properties of photonic crystals can be better described
using another pair of independent parameters, namely, effec-
tive refraction indexneff and admittanceYeff, which are less
controversial. Indeed, the optical properties of multilayers
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are conveniently described by the transfer matrix formal-
ism22 where wave propagation is represented by the product
of phase matrices and reflectivity matrices. The phase matrix
depends only on the thickness and refraction indexn of the
layer while the reflectivity matrix depends only on the reflec-
tivity at the interfaces, i.e., on the admittanceY. Sincen and
Y are independent material parameters(in such a way that
the relationY=n for nonmagnetic material is quite acciden-
tal), this approach treats magnetic and nonmagnetic materials
on an equal basis.

VII. CONCLUSIONS

We achieved understanding of such important property of
photonic crystals as the frequency-dependent reflectivity

phase and provided analytical tools to deal with it. Our re-
sults can be used in applications, of which especially prom-
ising may be those based on the Goos-Hanchen shift. Since
photonic crystals may be made tunable, we can envisage
tunable resonators, phase modulators, or electronic beam
steering upon reflection from the tunable photonic crystal.
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