PHYSICAL REVIEW B 70, 115105(2004

Phase shift on reflection from metallodielectric photonic bandgap materials

M. Golosovsky* Y. Neve-Oz, and D. Davidov
The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

A. Frenkel
ANAFA — Electromagnetic Solutions Ltd., P.O. Box 5301, Kiriat Bialik 27000, Israel

(Received 23 March 2004; revised manuscript received 14 June 2004; published 16 Septemper 2004

This paper reports phase-sensitive studies of the mm-wave reflection from a photonic crystal built from
conducting spheres. We compare phase shift upon reflection from external interface to the phase shift on
reflection from internal interface, the latter was estimated from the spectrum of Fabry-Perot resonances with
photonic crystal mirrors. We show that the frequency-dependent phase shift upon internal reflection is consis-
tent with the phase shift on external reflection from the whole crystal. We develop the analytical model that
relates reflectivity of multilayers to admittances and to refractive indices of sublayers and takes account of
magnetic permeability. This model yields a simple graphical procedure to determine the resonant frequencies
of a Fabry-Perot resonator with photonic crystal mirrors. The model describes our results and results of two
other groups fairly well.
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I. INTRODUCTION was studied in the context of Fabry-Perot filters and dielec-

Photonic crystals draw much interest today in view oftfic mirrors>4-1® Analytic expressions for the frequency-
potential applications in optical, microwave and infrareddependent phase shift upon reflection from the quarter-
ranges. While their basic properties, such as transmissiomyavelength dielectric mirror were obtained by Babic and
dispersion relations, gap width, properties of defects, etc.Corziné’ using the coupled-mode model and assuming
have been extensively studied and are well understoodnowsmall contrast difference between the constituents. Later on,
their phase properties, especially the frequency-dependeBtovelli and Keller'® using hyperbolic tangent substitution
reflectivity phase shift, are not characterized enough. Experiand transfer matrix method, extended this analysis to arbi-
mental studies of the reflectivity phase shift using Fabry+rary contrast. Quite recently Garmifeanalyzed finite
Perot resonators with photonic crystal mirréfsproved  |ength multilayers, while Abelé15took into account mate-
that the phase shift upon internal reflection is equal to thg;g| gispersion. In all these works, the reflectivity phase is
phase shift upon external reflection. While reflectivity phaseexpressed through refraction indices of sublayers. However,

IS cert?mg!y3 Im dp?rtatrr:t f(?]r the sgelcttr;m of Fabry-Perot; js el known that the optical properties of materials are
resonators;”and for the phase modulators, acquires even  yoormineqd by the refraction index (ue)¥? and admittance

more importance in connection with the Goos-Hanchen,_ 172 20 : . o
shift> namely, the lateral displacement of a narrow beam =(e/u)™ as well= Here u is the magnetic permeability

upon reflection from the material which supports only eva-2Nd € is the dielectric permittivity. In opticsu=1, hence
nescent waves. This effect arises from the dependence of the-N» @nd all properties of multilayers may be recast through
reflectivity phase on the wave vector orientatievhich is a refraction mdlces_,. This is not necessanly true _fc_)r photonic
different guise for the frequency-dependent reflectivity®and gap materials where magnetic permeability plays an
phase. The Goos-Hanchen shift is well known in the contextimportant roleZ®#2*>%’In particular, metallodielectric pho-

of total internal reflection, and was also observed in x-raytonic crystal has an effective magnetic permeability which
reflection from atomic plan€sRecently it has been pre- arises from the skin effect in the metallic consitu&ht®
dicted theoretically for photonic crystaféwhere it can serve Even all-dielectric photonic crystal may have magnetic per-
as a basis for many interesting applications. meability x# 1 when considered as an effective med#im.

In this study we systematically explore the phase shiftTherefore the previous analysis of the reflectivity of multi-
upon reflection from photonic crystal. We use a metallodi-layers should be revisited in order to take into account mag-
electric sample based on the array of conducting spféfes netic effects. We develop here a simple analytical derivation
which has a wide photonic band gap and negligible absorpef the reflectivity of multilayers, based on transmission line
tion. We compare our experimental results to numericaBnalogy and the Bragg reflector mofethere we carefully
simulations. Although we perform our experimental studiesdistinguish between admittances and refraction indices. The
in the mm-wave range, our conclusions are quite general anesulting expressions are valid far+1. We successfully
applicable to optical wavelengths. apply this model to describe our experimental data and the

We also compare our results to the analytical model. Tadata of two other group® Our derivation is intended to
understand the physical origin of the frequency-dependergerve as an auxiliary tool for the calculation of the photonic
reflectivity phase in photonic crystals, it is natural to rely oncrystal reflectivity, while the rigorous calculation is best done
the optics of multilayers. Optical reflectivity of multilayers using transfer matrix formalisi#?:23-31

1098-0121/2004/101)/115105%10)/$22.50 70115105-1 ©2004 The American Physical Society



GOLOSOVSKYet al.

Il. THE MODEL

A. Phase shift upon reflection from multilayer

We assume a periodic two-component multilajaB]N
consisting of uniform sublayerd and B with thicknesses
da,dg, refraction indiceq,,ng, and admittance¥, Yg (Ya
# Yg), related to the dielectric constaatand the magnet-
ic permeability u of individual sublayers as follows:
Y=(el w)*?, n=(eu)''? (in the visible range¥=n). Reflectiv-
ity of this multilayer is

Yo~ Yn

- , 1
Yo+ Yy (1)

whereY) is the effective admittance of the multilayer con-
sisting of N unit cells andY,=(377Q)! is the admittance of
free space. In what follows, we divide all admittancesYgy
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© 2(npda+ngds)  2dngg

()

fo

is the midgap frequency, is the speed of lightd=d,+dg is
the unit cell period, andi; is the effective refraction index
of the crystal as a whole. The width of the gap is

The multilayer exhibits a stopband. For the frequencies in-

side the stopband the wave is evanescent, so the admittance

is purely imaginary and foN>1 it achieves a constant

value, Yy— Yins=js. For such *“infinite” multilayer, the re-

flectivity in the stopband iR=¢e7® where
® =2 arctans.

2

We calculate the admittance of the finite siz&B]N

multilayer using recurrent procedure. Indeed, if we add to the

front side of this multilayer an additiond sublayer, the
admittance of the resultinB[ AB]N multilayer is found using
admittance transformation,

Yyt Y tankgdg
BiYy tankgds + Yg'

Y'= 3
wherekg=2xfng/c is the wave vector. If we add to the front
side of the resulting multilayer an additionalsublayer, the
admittance of the resultingAB]N*! multilayer is

Y' +]Ya tankada

. 4
AiY’ tankada + Ya @

Yne1 =

Af Ya—Y,
Af=f,-f,=—C2sin 1| 28|, (8)
o YA+ YB
The solutions of Eq(6) are
(Ya=Yotan T
AT TIB
Lo ZIA 4Y,Yg Lz
2 af
Ya- Yp)? tarf—
(Ya= Yo tarf
9
for Y5> Yz (high-low sequengeand
(Ya—Yoytanr
H:M 1-11- 4YAYB 12
2 af
Ya— Yp)? tarf—
(Ya= Yo tarf
(10

for Yo<Yg (low-high sequence The identification of the
solutions was made through comparison of E§sand(10)

to the limiting case of the admittance of the quarter-
wavelength stack at midgap frequencyy=(Ya/Yg)?N
(which can be found by applyingN2times the well-known
expression for the admittance of the quarter-wave plate
such a way tha¥y— o« for Yo>Yg, andYy— 0 for Yo<Yg.

In the vicinity of the midgap frequency the Eq®), (9),
and (100 may be linearized. To this end we replace
tan(wf/2fy) by 2fy/ 7(fo—f) and substitute Eq$9) and(10)
into Eq.(2). The resulting phase shift on reflection is

However, for the frequencies inside the stopband and for

N>1, Yy= Yn:1= Yinr- Then Egs(3) and(4) yield

(Y% - Yi)tan deB tan kAdA
Ya tankgdg + Yg tankada

Y tankada + Yg tankgdg
A BYA tankgdg + Yg tankada -

5

For the frequencies inside the gaps real, hence the deter-
minant of Eg.(5) should be positive. This requirement
yields the dispersion relation and defines the upfeand
lower f, stopband frequencies, while the solutions of EJ.
yield the phase of the reflectivity through E&). To avoid

7T(f - fo)

HL
T A Yo o
LHzM 12
foZa-Zg)' (12

where Z=Y! is the impedanc&dimensionless Note that
at the midgap frequencyp"t(fy)=m and ®-"(f;)=0. The
linear expansion given by Eqg1l) and (12) holds for
|D(f) - D(fo)| < (7/4).2° If we replaceY by n, i.e., assume
n=1, Egs.(11) and(12) reduce to previous resultg1’-1°

cumbersome algebraic expressions, we restrict ourselves The linear frequency dependence of the phase can be in-
to a particular case of the quarter-wavelength stack, i.eterpreted as a virtual reflection from the plane shifted from

nada=ngdg. Then Eq.(5) reduces to
f
@ +5(Yg - YA)tan% +Y,Yg=0, (6)
0

where

the outer interface byph:%(ad)/&k). This phase penetration
length'” is calculated from Eqg11) and(12),

HL _ c

Ly,=———, 13
" A (Ya Vo) 9
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cY,LY, C f=f)(1+Y,aY
I‘;E: A'B  _ _ (14) CI>1+CI)2z77+7T( 0)( AYp)
4fo(Yg—Ya)  4fo(Zp—Zp) folYa— Yal

(18)

Note that in both casels,, is positive, i.e., reflection effec- INto Eq.(16), recast it through the wavelength and find linear
tively occursinsidethe crystal. With respect to pulse reflec- dependence of the resonant wavelengih on L,

tion this meangositivegroup delay. L+ Ly + Lo
P p

Aep =g

B. Fabry-Perot resonances (E - Z) ot Lphl + Lph2

(19

The spectrum of a Fabry-Perot resonator with dielectric ) )
mirrors is determined by the frequency-dependent reflectiviiere: Xo=C/fo is the midgap wavelength, anbyn, Lpn,
ity phase. To model it, we assume that our multilajaB]N &€ the phase penetration depths into each half of the
is split in two halves with a separatidnbetween them. The Multilayer, which are given by Eq¢13) and(14). Equation
space between the halves operates as a Fabry-Perot resofi? Predicts thatgp(L) consists of a series of straight lines
tor. We assume that only a single plane wéve., zero-order intercepting at the h_orlzontal axis; the intercept is the sum of
Floquet modgcould propagate in the resonator space. Transt"€ Phase penetration deptfis,,+Lyrp. Each line corre-
mission through the two halves of the photonic crystalSPONds to a certaim in Eq. (16). Note, that forL=pho/4,

coupled through the Fabry-Perot resonator is given by where'p:1,3,.5..., theresongnce wavelength is exactly at
the midgap, i.e.\gp=\g, While for L—0 the resonance

ei(27rfL/c)§2 wavelength is at the stopband edges. This allows us to esti-
Tep= m, (15 mate the resonance wavelengths using graphical procedure
1 illustrated in Fig. 5. Indeed, assuming that the admittance of
the low-index material is close to unity, i.&g=1, then Eq.
(19) may be recast through experimentally measured param-
eters such as midgap wavelendthand gap widthAf,

whereS;, and S;; are complex transmission and the reflec-
tion coefficients for each of the halves. For sufficiently large
number of layersN>1, and for the frequencies in the stop-

band,S;,<1 andS;;~e®, whered is the phase shift upon L f,
reflection from the infinite crystal. Then E¢L5) yields reso- —t—=
. )\Fp )\0 7TAf
nant frequencies, —_— - (20)
N m_1_ fo
4mlf 2 4 7Af

+ d4(f) + Dy(f) = 2mar, (16)

Here we used Eqg7) and (8). In this case the horizontal
hintercept in Fig. 5 is determined by the experimentally mea-
sured parameters, i.é.py +L = (fo/ 7Af). Of course, Egs.
(19) and (20) are valid only in the vicinity of the midgap,
while at the gap edges one should use Ef§) and(17).

whered,,d, are the phase shifts upon reflection from eac
half of the multilayer. If one half of the multilayer [$\B]N?,
another half igBAJN2. In other words, if the front layer in
one half isA, the front layer in another half iB (Fig. 5).
Therefore, if®, is given by Eq(11), thend, is given by Eq.
(12) (with the indicesA and B interchangefl The sum of IIl. EXPERIMENTAL SETUP
these two phase shifts is found from E@®), (9), and(10),

Figure 1 shows the experimental setup. Our building

&, + D, =2 arctaigs™t - s-H) block is an array of 230 steel spheres of 2 mm diameter
Y A= Yel placed on a 0.67 mm thick plexiglas plate. In this plate we

=2 arctap —2—E8' drilled a hexagonal array of small holes 2.9 mm apart and
1+YaYp mounted our spheres in the holes, in such a way that the

spheres slightly protrude through the plate. In order to match
the stopband to the frequency range of our source we re-

1/2
x[1- AYaYe tanlf . (179  moved 30% of the spheres. This results in “diluted” hexago-
(Ya—Yg)? tar?lf 2fy nal lattice(the in-plane particle arrangement is shown in the

2f, inset in Fig. 3. The spheres can be considered as perfect
conductors since for our frequency range, the skin depth is
Since at the gap edged-=s", thend,+®, is equal to zero  much smaller than radius. Moreover, since the sphere radius
at the lower edge, is equal t at the midgap and to2at  is such thatkr=<1, all Mie resonances of the sphefeare
the upper edge. above our experimental frequency range.
To find the resonant frequency corresponding to a certain Ten layers of spheres were arranged in a si@&ig. 1).
L, we substitute Eq.17) into Eq.(16) and solve forf(L). For  The layer spacing of 4.3 mm was fixed by appropriate spac-
any givenm and L there is only one solution, provided ers. The layers were assembled in such a way that the
Ya,Yg=1. In the vicinity of the midgap the solution can be spheres formed the columns across the stack. However, our
found quite easily. We substitute the linear expansion of Egexperimental results turned out to be insensitive to small
(17, lateral shift of one layer relative to another. This is probably
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Photerite FIG. 2. Transmittivity and reflectivity of a 10-layer sample. We
crystal clearl)_/ see the stop_band at 25—39 GHz. The reflectivity in the stop-
band is close to unity.
\ o in the stopband is very sholtz=1.5d, so this 10-layer stack
Receiving can be considered as infinite one. In the frequency range

Antenna corresponding to the stopband, the electromagnetic wave

does not penetrate into the stack and is totally reflected,
hence the reflectivity is close to unitiig. 2). The reflectiv-
FIG. 1. Measurement setup. Standard gain microwave horns afiigy phase is strongly frequency dependéRig. 3) and the
connected to HP8510C Vector Network Analyzer and are termiphase shift at the midgap is close 49 as predicted by the
nated by two home-made collimating teflon lenses. The sample is fhodel[Eq. (11)]. Similar results were obtained for the stack

stack of 10 plexiglas plates, each of them containing 230 steefynstructed from 3 mm diameter steel spherest shown
spheres of 2 mm diameter. The in-plane arrangement of the spherﬁ%r

is shown in the inset. The nearest-neighbor in-plane distance is

C To achieve quantitative comparison to the model, we
2.9 mm and the layer spacingds=4.3 mm. q P

identify the constituents: the sublay&rconsists of conduct-
_ o _ing spheres mounted in the plexiglas plate, while the sub-
due to the fact that the interlayer separation is rather bigiayer B is the spacing between the layers of spheres, i.e.,
d>r,d>\/2m, hence near fields of the scatterers in adja-d,=2r=2 mm; dg=2.3 mm;ng=1, Yg=1. (We do not con-
cent layers do not overlap. sider the plexiglas plate as a separate layer since its optical

Mm-wave transmission and reflection was measured iRhickness does not exceed 6 so that the standing wave
the frequency range of 20—50 GHz, using a HP8510C Vector

Network Analyzer and two standard gain horn antennas 360 - P r e B
equipped with collimating teflon lenses. The inner curvature stopband | x
of the lens is 15 cm, the outer curvature is 30 cm, the dis- 5%
tance between antennas is 28 cm, the beamwidth is 6 cnr 270 FAE 270

The sample is mounted symmetrically between antennas an__,
its cross section slightly exceeds the beamwidth. To preven & 180 |-
edge effects we set two 6 cm diameter apertures above anS
below the sample. Calibration for the reflectivity measure-"*¢
ments was performed using a thin aluminum foil covering 90
the upper layer of the array. This should represent a perfec
short.

180

90

IV. EXPERIMENTAL RESULTS AND COMPARISON Frequency (GHz)
TO THE MODEL

. . o FIG. 3. The phase shift upon external reflection from the sample
Figure 2 shows our experimental results. Transmissiony,qyn jn Fig. 1. The crosses show experimental data for reflection

measurements clearly reveal a stopband at 25-39 GHgym external interface, continuous solid line shows model predic-
which becomes exponentially deeper upon increasing NUMon [Eq. (9)] and open symbols stand for the phase shift upon
ber of layersN (not shown herg i.e., transmittance eXp  internal reflection from photonic crystal mirrors. The latter data
—(2Nd/l) whered is the unit cell period and is the local-  were retrieved from the spectrum of defey. 6). Note quasilin-
ization length(Bragg attenuation lengthLocalization length  ear frequency dependence of the reflectivity phase in the stopband.
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S N B B w# 1283033 We calculate the reflectivity phase using
0r, Fabry-Perot resonance /™% .4 Egs. (2) and (9), since Y,>Yg. The calculated phase is
- o e ] shown as a continuous line in Fig. 3. Experimental points
10 |- (crossey demonstrate the same frequency dependence al-
— though they are shifted up by 15°. This discrepancy is attrib-
Q@ -2 uted to the uncertainty in the position/flatness of the calibra-
= tion plane in the external reflectivity measuremeritgote
-% -30 | that 1 mm uncertainty in the position of the calibration plane
g results in 30° phase shift.
@ -40 - To construct a Fabry-Perot resonator, we split this stack
s into two halves and displaced one of the halves in the direc-
F oot tion perpendicular to the layers ly The distance between
the splitted layers ia =L +dg. This operation does not affect
60 |- the width of the gap but results in one or a few sharp
L ; transmission peaks inside(fEig. 4). These peaks appear not
ol only when we set two halves of the sample further apart
20 25 30 35 40 45 50 (L>0) but when we bring them closer as we¢ll<0). To

Frequency (GHz) analyze the spectrum of these peaks as suggested by the
model(Fig. 5), we plot the resonant wavelength versus sepa-

FIG. 4. Mm-wave transmission through the 10-layer stackration and find that experimental points are grouped in a few
which has been split on two halves, each containing five layers. Theeries(Fig. 6), whereby the wavelength in each series lin-
separation between the two halvesiis6 mm. Note a sharp peak early depends oh. The resonant wavelength is equal to the
at 30 GHz. We ascribe this peak to a Fabry-Perot resonance benidgap wavelength each time whenis an odd multiple of
tween two halves of the structure operating as mirrors. The dashegl /4. All these linear dependences intersect in one point on
line shows numerical simulation of the microwave transmissionthe horizontal axis. The experimentally found horizontal in-
through this stack using CST/Microwave Studio softw@ef. 35. tercept of 0.8 agrees with the value of 0.71 predicted by Eq.

(20).

resonances do not occur there in our frequency range The same analysis is applied to the results of Bestkyl 3
effective refraction index of the layer of conducting sphereswho studied the two-dimensioné2D) photonic crystal con-
na=1.19, was found by substitution of the experimentalsisting of a square lattice of cylindrical alumina rods with a
value of the midgap frequendy,=31.7 GHz into Eq.(7).  few missing rows. When we plot the spectrum of resonances
Note that the condition of a quarter-wavelength stack is satin this system in the coordinates of wavelength-separation,
isfied here pretty wellnada/ngdg=1.03; and at the center of we find that experimental points are grouped in a few series,
the gapk,d,=0.51, as expected. The effective admittance whereby the wavelength in each series linearly depends on
of the sublayer of conducting spheres embedded into plexiseparationL (Fig. 7). The resonant wavelength passes
glas plate, Y,=2.04, was found by substitution of the through the midgap each time whens an odd multiple of
experimentally found stopband widthf=14.3 GHz and \y/4. All these linear dependences intersect at one point on
midgap frequencyf,=31.7 GHz into Eq.(8). Note that the horizontal axis. To compare this horizontal intercept to
Ya# Ny, as expected for a metallodielectric composite wheranodel prediction, we model this 2D photonic crystal as a

15 7 d}' _____ S B

FIG. 5. Schematic representation of the spec-
< trum of Fabry-Perot resonator with dielectric mir-
— .

e +____J4__ M _ __L__~L __~Z rors, as a function of the resonator length. Note
< straight lines with common intercept at the hori-
zontal axis. The sections of these lines passing

05 G A e through the stopbandthick solid lineg define

AB 1R g Xl g possible values of resonant wavelengths. When

OGN S the resonator length is an odd multiple X§/4,

~1 fa L where \q is the midgap wavelength, the reso-
< —> nance occurs aXg.
L L

0 ph2 ph1
-1 -0.5 0 0.5 1 1.5 2
mﬂ
|'ph1+Lph2
<>
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1.5
o]
5
1 g .

° k) FIG. 6. The wavelength corresponding to
fn_ _9 _ transmission peaks shown in Fig. 4 as a function
< of the separatioh between the two halves of the

stack. L=0 corresponds to the regular sample
shown in Fig. 1. The symbols show experimental
0.5 - | results, thick solid lines show results of numerical
simulations, thin solid lines show linear depen-
dences predicted by E¢O).
0 /
-1 -0.5 0 0.5 1 1.5 2

LI)».0

two-layer system, where sublay#ris a row of dielectric wavelength conditiorinad,/ngdz=1.58, the model predicts
rods and sublayeB is the air spacing between the rows the spectrum of resonances here pretty well. Indeed, we find
of the rods. The sublayer thicknessdg=2r=6.35 mm and that experimental points are grouped in two series, whereby
dz=14.45 mm. We substitutsng=1, Yg=1, Af=3 GHz, the wavelengths in each series linearly depend on separation
fy=5.3 GHz into Eqs(7) and(8) and findn,=2.2,Y,=2.7.  (Fig. 8). The horizontal intercept of 1 that we find in the
(Although hereY, # n,, while in all-dielectric composite we experiment is not far from the value 0.7 predicted by Eq.
expectY,=n,, we do not believe that this deviation indicates (20).
effective magnetic properties of this photonic crystal. We We conclude that for these three different materiat:n-
trace this deviation to the error of replacing a plane of scatducting spheres, dielectric rods, woodpile structuraur
terers by a uniform layer with sharp interfageblere, the  model describes fairly well the spectrum of Fabry-Perot reso-
condition of a quarter-wavelength stack is also satisfiedhances with photonic crystal mirrors and relates it to the
well, nada/ngdg=0.94; and at the center of the g&pd,  frequency-dependent reflectivity phase.
=0.49r, as expected. The horizontal intercept of 0.7 found in  Now we go back to our sample and compare the phase
the experiment is not far from the value 0.55 predicted byshift on external reflection to the phase shift on internal
Eq. (20). reflection derived from Fabry-Perot resonances. Here we use
The spectrum of resonances in a woodpile array of dielecthe fact that in our sample the sublay®ris the air, hence
tric rods measured by Ozbay and Temelkdraan be ac- the effective length of the resonator may be also written as
counted for along the similar lines. Herg=13 GHz, Af A=L+dg, in such a way®,=®,-(4=Lf/c). To determine
=6 GHz. Despite a considerable deviation from the quarterd; we use the procedure first proposed by Ref. 2. We plot

1.5

Stopband

FIG. 7. The resonant wavelength in a 2D ar-
ray of dielectric rodgRef. 3 split in two parts, as
a function of separatioh between the two halves
of the stackL=0 corresponds to the ideal crystal.
The symbols show experimental results, thin
solid lines show linear dependences predicted by
Eq. (20).

;\'F PI )\0

0.5

L/
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1.5

m=

FIG. 8. The resonant wavelength correspond-
L ing to transmission peaks in the 3D woodpile ar-
ray of dielectric rodgRef. 2) split in two parts, as
a function of separatioh between the two halves
of the stackL=0 corresponds to the ideal crystal.
0.5 The symbols show experimental results, thin
solid lines show linear dependences predicted by
L _ Eqg. (20).

| Stopband

)\'F PI }"0

-1 -0.5 0 0.5 1 1.5 2
LA,

experimentally found values of72\frp(A)/c versus reso- simulation of a single five-layers reflector—with the numeri-
nant frequencyfgp. This results in several series of experi- cal FEM simulation of the complete resonat@wo five-
mental points displaced by, each series corresponding to a layers reflectors and an excellent agreement is observed
particularm in Eq. (16). We identify mode numbens), sub-  (Fig. 9. We find that the near-field effects of the evanescent
tract multiples of7 and obtain a single-valued dependencewaves are properly accounted for by thparameters of the
@(f) which is shown by open symbols in Fig. 3. At the next single reflector, so that the assumption of a single plane wave
step we compare the phase shift on internal reflection to th@ithin the Fabry-Perot resonator is fully justified.

phase shift on external reflection from the perfect crystal We then proceeded to simulate the finite-size resonator.
(Fig. 3, crosses Note that both phase shifts are almost iden-Due to the large siz@elative to wavelengthof the resonator
tical inside the gap. This is quite trivial fax>d, wheredis ~ we used CST/Microwave Studf, a commercial FDTD

the unit cell period. However, it is surprising that the coinci- solver that is more efficient in terms of computational re-
dence persists foA ~d where strong near-field effects are sources. The complete finite-size resonator with the hexago-
expected; and even more surprising that it persists\fard nal lattice is analyzed. Figure 4 shows our experimental re-
wherea priori we hardly expect any resonances at @dh-
deed, if the reflection were occurring at the interface betweer

L N stopband
photonic crystal and air, the first standing wave resonance ir NS N R
the splitted photonic crystal corresponds to conditin 10 L l\ /l ; x“‘ [
=N\/2. ForA <d the resonant wavelength is beyond the gap. : ‘\ P K
;
g | e L
V. COMPUTER SIMULATIONS g “‘ ! gl ‘
The simplifying assumption of a single plane wave within & % : ‘\ ‘/.
the Fabry-Perot resonator spafse=e Egs.(15 and (16)], 5 40 “ A
calls for accurate numerical simulations, especially at small ! /,/
separations. F 50 | “
We first studied a model of a Fabry-Perot resonator with . ¥k
infinite lateral extent. Due to the 2D periodicity of the pho- ' ‘ ¥

tonic crystal, we can accurately model the infinite structure AN ' i
by a single unit cell with periodic boundaries. To this end we .70 T et ‘«
used Ansoft/HFS8} a commercial finite element solver for 10 15 20 25 30 35 40 45 50
Maxwell equations that has the capability of imposing peri-
odic boundary conditions. The numerical model has five lay-
ers of metallic spheres for both reflectors, and includes also g 9 Numerical simulation of the microwave transmission
the plexiglas plates that hold the spheres in place. The hexnrough the 10-layer stack shown in Fig. 4, using ANSOFT soft-
agonal lattice is replaced by an equivalent square lattice Witlyare (Ref. 34. The symbols show numerical simulation assuming
exactly the same photonic band g&pparameters for both infinite lateral extent of the stack. Solid line shows prediction of Eq.
the whole Fabry-Perot resonator and the single reflector wer@s) assuming Fabry-Perot resonator with photonic crystal mirrors
calculated over a broad band of frequencies. We then contonsisting of five bilayers each. The separation between the halves
pare the predictions of Eq15)—as derived from the FEM is L=4.5 mm(L/\y=0.32.

Frequency (GHz)
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sults and the full-wave FDTD simulations, and a very goodresulting in a negative dielectric constant or negative mag-
correspondence is observed. The low-level ripple of thenetic permeability, or a random media demonstrating
simulated results originates from the finite sampling in timelocalization?®

and the FFT transformation used to transform the time-

domain results into frequency-domain results. _ ) :
B. Comparison to the uniform medium

VI. DISCUSSION _ In the fo.llowing step we compare reflectivity of a photo-
o nic crystal in the frequency range corresponding to the gap,
A. Applicability of the Bragg reflector model to the reflectivity of an infinitely long uniform medium

We have shown that the phase shift on reflection fromhich supports only evanescent wavésr example, a di-
several different photonic crystals can be estimated using @lectric under conditions of total internal reflectjore™,
Bragg reflector model which takes into account magnetidvhereq™ is the attenuation length. The admittance of such
effects. This model was developed to account for the opticaedium isY=—jq/ uw, hence the phase shift on reflection is
properties of continuous multilayers. To account for photonic?=7+2 arctariuk/q), where is the magnetic permeabil-
crystals, they should be represented as a sequence of laydisandk is the wave vector in free space. Following Ref. 17,
where each layer is characterized by some effective dielectrige compare the phase penetration lengii=3(s®/ k), to
constant and magnetic permeability. This requires some kinthe energy penetration length,c=1/2q. Assuming fre-
of effective-medium approximatiéh®6-38 for each layer  quency independeng and for q>k, we find L,,=u/2q
The limits of such effective-medium approach to photonic=uLg, hence in nonmagnetic media,,=Le.
crystals, which in fact are ordered arrays of scatterers, were In the context of photonic crystals this relation generally
analyzed by Lalanri who showed that it works well only does not apply. Indeed, the energy penetration length into
when the scatterers can be considered as digdfédt is  infinitely long photonic crystal isLg=Lg/2, where Lg
well known that the dipole approximation is good for the =d/In(Y,/Yp) is the Bragg attenuation lengtilocalization
scatterers of arbitrary shape, provided< 1, wherer is the length which is very different from Eqg13) and(14). Only
size of the scatterer arklis the wave vector. Since in our in the limit of small contrastAY=Y,—Yg<<Y,,Yg, when
experimental conditionkr<1, the success of the combina- the Egs.(7), (13), and (14) can be simplified and yield
tion of the Bragg reflector model and effective-medium ap-LghLGd/ZAY, LEH~ndY?/2AY; there is some similarity to
proximation is not surprising. This can be formulated differ-the uniform meé)ium. Indeed, comparison to the energy pen-
ently. To approximate a planar array of scatterers by atration length,Lg~dY/2AY, yields Ljj =puexle and Ly
uniform layer, the near fields of the adjacent layers should-es5lg, Wherees=nY, u.s=n/Y are average dielectric per-
not overlap. This is justified for small scatterers, whose neamittivity and magnetic permeability of the whole crystal.
field consists of quickly decaying evanescent waffeghile  Only for the case of HL sequence the relation between
it may be problematic for the scatterers with the size compakg andL,, is the same as that for the uniform media, while
rable to wavelength since they give rise to propagatingor the LH sequence this relation is certainly differefithe
waves. LH sequence is known to have the unusual optical proper-

In other words, for clearly defined layered structures, theies, in particular, anomalous dispersigf.Hence, with re-
Bragg reflector approximation is a useful tool to estimatespect to the phase properties, photonic crystal in gecarsl
localization length, position, and width of the g&pOf  not be viewed as a uniform material with some effective
course, not every 3D dielectric photonic band-gap crystal caparameters.
be approximated by a multilayer, because sometimes the lay-
ers with distinctly different electrical properties cannot be
clearly identified. Typical examples would be the original
diamond lattic&"4? and woodpile structure=313¢ However, These effects were usually mentioned only in connection
our results for the phase shift upon reflection may, nevertheto optical activity. Silverman and Sofihdemonstrated the
less, be valid for these and other materials as well. To supmportance of magnetic effects for the optical reflectivity of
port this conjecture we recast Eq42) and(11) using Eq.  chiral media, while Pendrgt al?® recently raised this ques-
(8) and find tion with respect to left-handed materials. While the meaning

of the effective magnetic permeability for magnetic materials
dH ~ 7+ M’ (21) and composites built of magnetic constituents is more or less
Yavd f clear, the emergence of high-frequency magnetic permeabil-
ity in the composites built of intrinsically nonmagnetic ma-

2(f - fo) terials is controversia® It is also known that in materials
S oA (22 with high dielectric constant, the high-frequency dielectric

av relaxation may mimic magnetic permeabilifyAs suggested
Here Ya,=(YatYp)/2 andZ,,.=(Z5+Zg)/2 is the average by O'Brien and Pendr{? instead of using effective and u,
admittance(impedancg of the medium. Since these equa- the properties of photonic crystals can be better described
tions do not depend explicitly on the properties of the indi-using another pair of independent parameters, namely, effec-
vidual layers, they may be valid for any material exhibiting tive refraction indexn.; and admittancé ., which are less
stopband, such as a uniform material with strong dispersiocontroversial. Indeed, the optical properties of multilayers

C. Magnetic effects in photonic crystals

(I)LH
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are conveniently described by the transfer matrix formal{phase and provided analytical tools to deal with it. Our re-
ism?2 where wave propagation is represented by the productults can be used in applications, of which especially prom-
of phase matrices and reflectivity matrices. The phase matrising may be those based on the Goos-Hanchen shift. Since
depends only on the thickness and refraction indeof the  photonic crystals may be made tunable, we can envisage
layer while the reflectivity matrix depends only on the reflec-tunable resonators, phase modulators, or electronic beam
tivity at the interfaces, i.e., on the admittan¢eSincen and  steering upon reflection from the tunable photonic crystal.

Y are independent material parametérssuch a way that

the relationY=n for nonmagnetic material is quite acciden-

tal), this approach treats magnetic and nonmagnetic materials
on an equal basis. ACKNOWLEDGMENTS
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