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Time-resolved measurements of magnetization inn-GaAs have revealed a rich array of spin decoherence
processes, and have shown that fairly long lifetimess,100 nsd can be achieved under certain circumstances.
In time-resolved Faraday rotation and time-resolved Kerr rotation the evolution of the magnetization can be
followed as a function of temperature, applied field, doping level, and excitation level. We present a theory for
the spin relaxation inn-GaAs based on a set of rate equations for two interacting thermalized subsystems of
spins: localized states on donor sites and itinerant states in the conduction band. The conduction-band spins
relax by scattering from defects or phonons through the D’yakonov-Perel’ mechanism, while the localized
spins relax by interacting with phonons(when in an applied field) or through the Dzyaloshinskii-Moriya
interaction. In this model, numerous features of the data, including puzzling temperature and doping depen-
dencies of the relaxation time, find an explanation.
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Spin coherence in semiconductors is attracting renewed
attention due to the prospects of spintronics—information
storage and processing using spin rather than charge degrees
of freedom, and by the idea that spins in semiconductors
could serve as qubits for quantum computers.1,2 For qubit
applications, the spin degreees of freedom must be coherent,
which necessitates a detailed understanding of the processes
that limit spin lifetimes. Time-resolved measurements on
n-type systems have revealed an array of decoherence pro-
cesses, and have shown that fairly long lifetimes(greater
than 100 ns) can be achieved inn-GaAs.3,4 In time-resolved
Faraday rotation and time-resolved Kerr rotation the evolu-
tion of the magnetization can be followed as a function of
temperature, applied field, doping level, and the intensity and
duration of the pump pulse. Results on different materials
(GaAs, GaN, ZnSe) are similar, pointing to universality in
the phenomena. Awschalom and Samarth5 have reviewed the
experimental situation.

Our theory provides a systematic framework for investi-
gating the wide range of parameters studied in optical orien-
tation experiments onn-type semiconductors. Previous theo-
ries have concentrated on either higher temperatures,3 or on
very low temperatures and very low magnetic fields.4 We
account for certain puzzling experimental observations by
having two distinct types of spin states: localized donor
states and itinerant conduction-band states, with characteris-
tic spin-relaxation rates 1/tl and 1/tc, respectively. In addi-
tion, a fast cross-relaxation rate, 1/tcr, between the localized
and itinerant spins is a crucial feature of these systems, lead-
ing to the largest relaxation rate, either 1/tc or 1/tl, usually
tending to dominate the spin dynamics for the whole system.
Examples of this behavior are shown in Figs. 1 and 2 below.
In this paper we focus on presenting the theory and applying
it to n-GaAs, reserving a more extensive comparision to ex-
periments for a later publication.

The cross relaxation between localized and itinerant spins
occurs by the usual exchange interaction Hamiltonian

Hl−c =
J

Vo
i,kW

sWi ·SWkW ,

where the sum runs over impurity spinsi and conduction-

band stateskW andV is the volume of the system. This Hamil-
tonian conserves total spin and cannot, by itself, relax the
magnetization. However, it can transfer spin from localized
to itinerant states.J may be estimated asJ,−e2aB

2. Here
aB=10.4 nm is the effective Bohr radius for an impurity. If
virtual excitations to the upper-Hubbard band are important,
this estimate could be reduced andJ could even change sign.
The sign is actually not important for our purposes, since all
experimental temperatures are well above the Kondo tem-
perature. Forn-GaAs an order-of-magnitude estimate for the

FIG. 1. Plot of 1/T2
* vs temperature. The data are from Ref. 3,

with solid dots forB=0 T and solid squares forB=4 T. The lines
connecting the data points are guides for the eye. The curves are a
least-squares fit of Eq.(5) to the data. Dashed-dotted curve:
snl /nimpds1/tDMd; dashed curve:snl /nimpds1/ts−phd for B=4 T; dot-
ted curve:snc/nimpds1/tcd; solid curves: total 1 /T2

* . For B=0 T,
1/ts−ph=0. Inset:tp vs temperature for(a) nimp=1016 cm−3 and(b)
nimp=1018 cm−3.
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cross-relaxation rate is 1/tcr,s1 ps−1dsnimp/n0d, where n0

=1018 cm−3 is a fiducial density.
The spin orientation is created by a circularly polarized

optical pump pulse about 100-fs long tuned near the band
gap, creating particle-hole pairs. The valence-band holes de-
polarize quickly and fast recombination(on a time scale of
50–100 ps) leaves the conduction-band and localized donor
state system with a net spin polarization along the propaga-
tion direction of the beam(z direction). The time evolution
of this polarization is tracked by applying a transverse mag-
netic field in thex direction (Voigt geometry). The resulting
precession about thex axis and concomitant decay are mea-
sured optically, with 1/T2

* the relaxation rate of the macro-
scopic transverse magnetization.

Our theory may be formalized by writing modified Bloch
equations for the magnetization for times after recombination
(t.100 ps after the end of the pump pulse). The holes have
recombined and spin-conserving processes have thermalized
the system, subject to the constraint that the magnetization
retains the polarization produced by the initial excitation pro-
cess. There are then two thermalized subsystems of electrons
at ambient temperature with relative occupations determined
by standard thermodynamic methods. The localization of
conduction-band electrons onto impurity sites takes place at
a temperature scaleTimp determined bynimp. For nimp
=1016 cm−3 we haveTimp<50 K. Denote the localized and
conduction-band densities bynl andnc, with nimp=nl +nc. In
the experiments,Nex, the density of electrons excited by the
pump pulse, is small,Nex!nimp, except possibly for nomi-
nally insulating samples, which we discuss briefly below.

We work in the frame which rotates about thex axis at a
rate g*mBB/", and is along thez axis at timet=0. In this
frame, the dynamics are governed by

dnc+
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nc+

gcr
nl− +

nc−

gcr
nl+ −

1

2tc
nc+ +

1

2tc
nc−, s1d
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where + and − denote up and down spins in the rotating
frame andgcr=n0tcr. By rewriting Eqs.(1)–(4) in terms of
the total densities,nl =nl++nl− andnc=nc++nc−, and the mag-
netization densities,ml =nl+−nl− and mc=nc+−nc−, we find
that the total densities are time independent,dnl /dt=0, and
dnc/dt=0, and the magnetization densities are determined by

dmc

dt
= − S 1

tc
+

nl

gcr
Dmc +

nc

gcr
ml s5d

dml

dt
=

nl

gcr
mc − S 1

tl
+

nc

gcr
Dml . s6d

In general, the time dependence of the total magnetization
mstd=mcstd+mlstd is a sum of two exponentials, exps−G+td
and exps−G−td (behavior observed in experiments on
n-GaN )6 with eigenvalues

G± =
1

2
S 1

tc
+

1

tl
+

nimp

gcr
± SD , s7d

whereS is given by

S=ÎS 1

tl
−

1

tc
+

nc − nl

gcr
2 D2

+
4nlnc

gcr
2 . s8d

For n-GaAs, we are in the regime 1/tcr@1/tc,1 /tl,
where the eigenvalues give two very different relaxation
rates: a very rapid relaxation given byG+<nimp/ sn0tcrd, with
a timescale on the order of picoseconds, and a slower relax-
ation given by

G− =
1

T2
* <

nl/nimp

tl
+

nc/nimp

tc
, s9d

with a timescale on the order of tens of nanoseconds. Given
the expressions for 1/tl and 1/tc, Eq. (9) gives the calcu-
lated total relaxation rate from our theory. This is the appro-
priate quantity to compare to the single exponential time
dependence observed in experiments.3,4

There are various processes that can relax the nonequilib-
rium magnetization produced in optical orientation experi-
ments. The conduction-band processes have been well
studied,7 while the relaxation mechanisms for localized elec-
trons are less well understood.

D’yakonov-Perel’ Mechanism. Conduction-band elec-
tron spins inn-GaAs relax primarily by the D’yakonov-
Perel’ (DP) mechanism,8 due to lack of inversion symmetry
in III-V systems. The lack of inversion symmetry, together

with spin-orbit coupling, gives an effectivekW-dependent
magnetic field, causing the spin of an itinerant electron to

precess about an axis related tokW. The precession frequency

for an electron at wavenumberkW is VDPskWd, and the DP re-
laxation comes from switching the precession axis by scat-

FIG. 2. Plot of 1/T2
* vs applied magnetic field. The data are from

Ref. 3, with solid dots fornimp=1016 cm−3 and solid squares for
nimp=1018 cm−3. The lines connecting the data points are guides for
the eye. The curves are a least-squares fit of Eq.(5) to the data.
Dashed-dotted curves:snl /nimpds1/tDMd for the two densities;
dashed curve:snl /nimps1/ts−phd; solid curves: total 1 /T2

* . For T
=5 K, snc/nimpds1/tcd!0.001 ns−1.
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tering from onekW vector to another. Assumings-wave scat-

tering, one obtains 1/tDPskWd=2VDP
2 skWdtpskWd /3, wheretpskWd

is the momentum relaxation time. Averaging this expression
over the Boltzmann distribution, and using the results of
Fishman and Lampel for the momentum average,9 we find a
spin relaxation rate 1/tDP=aDPT3tp, with aDPsthd=9.0
310−10 K−3ps−2 . Here tp is the average momentum relax-
ation time which has a complicated temperature and doping
dependence(shown in Fig. 1) best taken from mobility data,
me=etp/m* .10

Elliot-Yafet Mechanism. Conduction-band electron spins
can also relax via the Elliot-Yafet(EY)11 mechanism, due to

ordinary impurity scattering from statekW to statekW8. With
spin-orbit coupling the initial and final eigenstates are not
eigenstates ofSz, the spin projection operator, so this process
relaxes the spin. One finds 1/tEY=aEYT

2/tp, whereaEYsthd
=8310−10 K−2. For the experimental parameters discussed
below snc/nimpds1/tEYd is three orders of magnitude smaller
than the leading contributions to 1/T2

* . Thus, to simplify our
analysis of experiments onn-GaAs, we setaEY=0 and
1/tc=1/tDP.

Spins localized on donor sites cannot relax by the same
scattering-dependent processes that relax conduction-band
spins. As a rule, relaxation times for localized states are
longer than for itinerant states, due to phase-space effects.
Lifetimes for localized states can be very long: times in ex-
cess of 103 s have been measured for donor bound states of
phosphorus-doped silicon.12

Spin-phonon Mechanism. Acoustic phonons can relax
localized spins by dephasing, due to spin-orbit coupling mix-
ing spin states, if an external fieldB breaks the time-reversal
symmetry present at zero field(Van Vleck cancellation).
With B in the z direction, the relevant term in the Hamil-
tonian for a single spin takes the form,

Hs−ph = CmBBsziDi , s10d

whereDi is the dilatation at a donor sitei andC is a constant.
The dilatation modulatesg* , the effectiveg factor, which is
given by g* =2f1−sm* /m−1dDso/ s3Eg+2Dsodg, where Eg

=1.4 eV is the energy gap,m* /m=0.067 is the ratio of the
effective mass to the bare mass, andDso=0.344 eV is the
spin-orbit splitting of the valence bands.13 We also have that
EgsDid=Egs0d−s9 eVdDi and the effective mass depends on
the gap asm* ,1/Eg. These facts allow us to estimateC2

<550. There is no generally accepted theory of the multispin
relaxation rate 1/T2

* that results from such a Hamiltonian(the
single-spin rate 1/T2 has recently been calculated in
silicon14). We can obtain a simple estimate using Redfield
theory, which yields 1/ts−ph=C2B2kD2ltph, wheretph is the
phonon correlation time15 andD is the average dilatation for
the occupied donors. This leads finally to 1/ts−ph
=as−phB

2T4fsTd where fsTd=e0
uD/T x3fs1/2d+sex−1d−1gdx in

a Debye model for the phonons anduD=343 K for GaAs.
We note that this theory is not likely to be valid at higher
temperatures, where multiphonon and Orbach processes be-
come important. This issue is not settled even in insulators,
and we defer full consideration of it to a later publication.

Nuclear Hyperfine Mechanism. A localized electron

spin can relax through the hyperfine interaction with theN
<105 nuclei with which it is in contact. The nuclei are ran-
domly oriented under most conditions, and the associated
field felt by the electron isA/ÎNgmB<10−2 T, whereA is
the hyperfine constant. The corresponding precession fre-
quency isvN<108 s−1. There is also a characteristic time for
the nuclei Tn2<10−4 s, which comes from the nuclear
dipole-dipole interaction. Hence,vNTn2<104, and we are in
the regime where the effective random field fluctuates slowly
compared to the precession of the spin. The relaxation time
from coupling to the nuclei, 1 /tnuc, is not expected to have
strong temperature dependence in the rangeT.1 K consid-
ered here, and there should be no field dependence as long as
B.10−2 T. We treat 1/tnuc as a constant.

Dzyaloshinskii-Moriya Mechanism. Localized electron
spins can relax by the Dzyaloshinskii-Moriya(DM)
interaction.16 This interaction, arising from spin-orbit cou-

pling, produces a term proportional tobW ·sW13sW2 , wherebW is
related to the interspin separation and to the exchange inte-
gral between the wave function on sites 1 and 2. This inter-
action is not isotropic in spin space and can therefore relax
the spins. The calculation of the effect of this term on 1/T2

* is
not straightforward, since it involves aspects of the spin-
glass problem that are not entirely solved. Gor’kov and
Krotkov17 have given the first term in a density expansion.
We use their expression, though with a more general distance
dependence for the exchange interaction,18 as a first step to-
ward a theory valid at higher impurity densities. We find
1/tDM =aDMnimpaB

3 fDMsTd. HereaDMsthd=0.01 ns−1 and the
weakly temperature-dependent, dimensionless function
fDMsTd<32 atT=5 K.

The total relaxation rate for the localized spins in our
theory is given by 1/tl =1/ts−ph+1/tnuc+1/tDM.

In Figs. 1 and 2 we compare the results of our theory to
experimental data onn-GaAs atnimp=1016 cm−3 and nimp
=1018 cm−3. Our procedure is as follows. Each mechanism
above has very definite field, temperature, and doping depen-
dence. The overall constant factor for each is less certain.
The data are consistent with 1/tnuc=0. However, for reasons
explained below, the data do not set tight limits on 1/tnuc.
We do a least-squares fit to the complete data set shown in
Figs. 1 and 2, using the three remaining adjustable param-
eters, with the resultsaDPsexpd=8.6310−10 K−3 ps−2 ,
as−phsexpd=2.2310−11 T−2 K−4 ns−1, and aDMsexpd
=0.031 ns−1. These values are in satisfactory agreement with
aDPsthd=9.0310−10 K−3 ps−2 and aDMsthd=0.01 ns−1 . The
remaining valueas−phsexpd is best viewed as an estimate of
the phonon correlation time,tph=1.2310−5 ns. This seems
reasonable, given that the inverse Debye frequency" /kBuD
=2.2310−5 ns. But true comparison of theory and experi-
ment for this prefactor awaits a more comprehensive theory
of the phonon relaxation, as noted above.

The fits against temperature atnimp=1016 cm−3 for B
=0 T and 4 T are shown in Fig. 1. There are two surprising
points about the data:(1) 1/T2

* is independent ofB at highT;
(2) theT dependence is nonmonotonic at higher fields. Point
(1) is explained by noting that in our theory allB dependence
comes from 1/ts−ph. For this doping, the localized states are
completely depopulated at highT. Point (2) is more subtle.
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In our theory, though both 1/tc and 1/tl increase with in-
creasing T, their contributions to 1/T2

* are weighted by
nc/nimp and nl /nimp, respectively. Starting at lowT, where
localized states dominate, we have 1/T2

* decreasing with in-
creasingT, due to the decrease ofnl /nimp as T increases.
After the localized states are depopulated 1/tc dominates
and 1/T2

* is an increasing function ofT.
The fits against field fornimp=1016 cm−3, and nimp

=1018 cm−3 at T=5 K are shown in Fig. 2. These results are
also surprising: there is a strong enhancement of 1/T2

* by B
at low doping, while at high doping, the dependence is quite
weak. In this case, the explanation relies on the DM contri-
bution. At high doping 1/tDM dominates, because of the
short impurity-impurity spacing and consequent fast relax-
ation. This rate is field independent. At low doping 1/ts−ph,
with its strongB dependence, is more important.

Experiments3,4 show nimp=1016 cm−3 is the “optimal”
(smallest 1/T2

*) doping value at lowT. Going to lower dop-
ings (data not shown) increases 1/T2

* . This is due to a com-
bination of effects. Increasing the doping at first raises the
number of localized states, which have intrinsically much
smaller decay rates. However, this process stops when the
impurity states begin to overlap, and 1/tDM dominates. This
is why the minimum 1/T2

* is near the metal-insulator transi-
tion. These conclusions are consistent with those of Ref. 4 at
small B andT.

From an examination of Fig. 2, we can see why adding
1/tnuc does not significantly improve or worsen the fit. Do-
ing so adds a constant to 1/T2

* , which would move all theory
curves rigidly upward, not much affecting the overall good-

ness of fit. Thus, we cannot get a meaningful limit on 1/tnuc

with this data set. The question of how to average over
nuclear degrees of freedom to find 1/tnuc is not completely
clear, and there are different results in the recent
literature.19,20

The main shortcoming in our theory lies in the high-
doping regime, where spin-glass effects become important.
This is shown by theB=0 points in Fig. 2, where 1/T2

* is
dominated by 1/tDM. Since we use a low-density(pairwise
correlations only) expansion for 1/tDM, the ratio of the
theory points is exactly the ratio between the densities,
which is too small compared with experiments. A better
theory would approach freezing as a collective, not pairwise,
effect. Apart from this, all the qualitative features of the data
are explained in our picture.

Our analysis shows that the complicatedB andT depen-
dencies for 1/T2

* observed in experiments are due to having
two strongly interacting subsystems of spins: one localized
and the other itinerant. The coupling of localized spins to
phonons gives rise to the unusual magnetic-field dependen-
cies of the relaxation rates. Overall, the very differentT and
B dependencies for 1/tc and 1/tl coupled with population
effects give the wide range of experimental phenomena ob-
served.
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