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We propose a model of the Peierls transition(PT) taking into account amplitude fluctuations of the charge-
density waves and spontaneous thermally activated suppression of the Peierls gap, akin to the phase slip
process. The activation results in the exponential growth of the normal phase with increasing temperature. The
model fairly describes the behavior of resistance, thermal expansion, Young modulus, and specific heat both
below and above the PT temperatureTP. The PT appears to have a unique nature: it does not compriseTP as
a parameter, and at the same time it has features of the first-order transition. The possible basis for the model
is activation of noninteracting amplitude solitons perturbing large volumes around them.
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Description of the Peierls transition(PT) in quasi-one-
dimensional(quasi-1D) conductors still remains a controver-
sial problem. The widely used mean-field(MF) approach
works poorly primarily because of strong 1D fluctuations.
For example, it predicts the PT temperatureTP much above
the observed value. Say, for the typical compound TaS3, the
energy gap 2D is 1600 K, and the MF value ofTP should be
2D /3.5=460 K, while the experimental value is 220 K. The
large fluctuations reveal themselves well aboveTP: the value
of the pseudogap is close to the low-temperature value,1,2 the
threshold nonlinear conduction3 indicates the charge-density
wave(CDW) state within the fluctuating volumes. At present
only qualitative attempts to explain these experimental facts
are undertaken. Though certain success is achieved in fitting
the behavior of different values nearTP,4–6 the relations in-
volved are semiempirical, and their physical sense is not
quite clear. Another treatment of the PT is given by the gen-
eralized Ehrenfest relation7 between the specific heat, expan-
sivity, Young modulus anomalies, and stress-induced shift of
the transition temperature. This relation works nicely for
some materials, e.g., for K0.3MoO3 (the blue bronze),4 but
fails for others, such as for TaS3.

8

The general approach to the CDW’s is to consider them as
a spatially homogeneous state up toTP. However, a recent
theoretical study has demonstrated that thermal fluctuations
of the CDW stress may be very large atT<TP, so that the
rms shift of the chemical potential level from the middle-gap
position appears comparable withD,9 and one can expect
temporal local suppression of the gap. So, it is more reason-
able to consider the CDW in the vicinity ofTP as a mixture
of the Peierls phase(the CDW) and the state with temporary
suppressed gap. Studies of noise have revealed spontaneous
phase-slippage(PS) process10,11 in the vicinity of TP, which
also implies local temporal suppression of the Peierls gap.
The PS is fairly described as a thermally activated
process,12–14so it would be intriguing to extend the approach
for the description of the PT.

In the present paper we propose a model in which the
fluctuations ofD are phenomenologically introduced as ther-
mally activated local gap suppression(LGS). With increasing
T this process gives rise to the activation growth of concen-
tration of normal phase as exps−W/Td, W@D. The approach
can be extrapolated above the transition temperature. PT ap-

pears to be smeared out, but at the same time has features of
the first-order transition. The model appears to describe
fairly the behavior of various parameters nearTP. The plau-
sible basics for the model are the excitation of amplitude
solitons perturbing considerable volumes around them.

To introduce the fluctuations, we shall use the following
relation giving the frequency of the LGS acts per unit vol-
ume (see also Ref. 14):

f = fa exps− W/Td, s1d

where fa is an attempt frequency. Here the essential point is
that each LGS act results in a temporal nucleation of the
normal-state volumev0 having certain lifetimet. Then the
fraction of the normal-state volume due to the spontaneous
LGS process is

v = v0tf . s2d

This fraction grows exponentially with increasingT. At high
enough temperaturev becomes of the order of 1, so we
should take into account the shrinking of the Peierls-state
volume. So, instead of Eq.(2) we obtainv=v0tfs1−vd, or

v =
v0tf

1 + v0tf
. s3d

This relation, the principal one for our model, gives growth
of v from 0 to 1 with increasingT. The growth has the form
of a step centered atT=W/ lnsv0tfad, at whichv=1/2. The
step is smeared out by<TP

2 /W (or 1/W in the 1/T scale).
Extrapolation of the LGS description aboveTP gives a way
to treat the entire PT. Within this approach the transition
consists in the LGS-induced destruction of the CDW state.

Let us compare the resulting relation(3) with the experi-
ment. We shall refer mostly to TaS3—a typical CDW com-
pound, which is among the widely studied quasi-1D
conductors.15 The large ratio 2D /TP for TaS3, as well as
highly anisotropic structure(the anisotropy of conductivity is
about 100 at room temperature), argue for the strong fluctua-
tions of the CDW order parameter.

We are beginning with the temperature dependence of re-
sistance, the most common curve characterizing the PT.
Within the present model we should calculate the resistance

PHYSICAL REVIEW B 70, 113106(2004)

1098-0121/2004/70(11)/113106(4)/$22.50 ©2004 The American Physical Society70 113106-1



of a mixture of two phases with different resistivities,rc and
rn. We shall consider the Peierls-state resistivity
rc~expsD /Td, and the normal state resistivityrn=A+BT,
whereA and B are constants. To calculate the resulting re-
sistivity one should consider a complex electric connection
of the domains of each phase. For simplicity, we take the
contribution of each phase to the resistivity to be just propor-
tional to the volume fraction of the phase, as if for connec-
tion in series:16

r = vrn + s1 − vdrc. s4d

Note that the fluctuations are known to contribute
to the conductivity of the Peierls phase due to thermal
depinning of the CDW.14,17,18According to the model14 this
contribution is governed by the LGS as well and grows as
exps−W/Td. Here we shall not distinguish it from that of the
normal phase.

Figure 1 presents an example of a fit of theRsTd curve
for TaS3 with Eq. (4). The fitting is splendid, but one
should note that we have takenB,0, which is unreasonable
for a metal. Even if we takeB=0, i.e. rn=const, the
fitting aboveTP becomes considerably worse(see the broken
line). Below we shall introduce a modification of the
model aboveTP explaining the slower drop of the CDW
fluctuations.

Let us now probe the model for the values which com-
monly characterize thermodynamic transitions, such as ther-
mal expansion(TE), Young modulussYd, and specific heatcp

(see, e.g., Ref. 5).
To perform TE measurements, we have developed an in-

terferometric technique for measurements of needlelike
samples.19,20 Figure 2 gives the temperature dependence of
the relative length changedl / l for TaS3 in the vicinity of the
PT. To exclude the contribution of length hysteresis,19 we
present the half sum of the results obtained upon heating and

cooling the sample. A similar curve results if we apply elec-
tric field exceedingET to remove metastability each time
before measuringl. Evidently, the curve presented is close to
equilibrium. For all our measurements cooling belowTP re-
sults in adrop of length by about 10−5. This result is quan-
titatively similar to that obtained for K0.3MoO3 in the in-
chain direction.21

TE at the PT has been discussed in Ref. 21. For example,
it could be understood within the anharmonic model, taking
into account the anharmonic effect of the lattice distortion
associated with the CDW. Without going into details, we just
assume that the length increase with heating is proportional
to the fraction of the normal phase. Thus, thelsTd step should
be described by Eq.(3). The fit withW=6500 K is quite nice
(Fig. 2, the solid line).

As another example we consider the Young modulus
temperature dependence,YsTd. One can expect a drop ofY
due to the same anharmonic effects. So, withT→TP
from above one can expect a decrease ofY proportional to
the fraction of the CDW volume. However, this is not the
whole effect.

Let us recall that depinning of the CDW belowTP reduces
the Young modulus.4,22,23(This effect is associated with fast
relaxation of the CDW deformations which in the pinned
state contribute toY.23) As we mentioned above, with in-
creasingT, the fluctuations result in the spontaneous depin-
ning of the CDW,14,17,18 the concentration of the depinned
state growing as exps−W/Td,14 which results in the drop ofY
with approachingTP from below. Thus, a dip ofYsTd is
expected atTP.24 The value of the depinning drop ofY de-
pends on the particular compound. Being anomalously
strong for TaS3,

22 it is not observed for the blue bronze,
dY/Y,5310−5.25,26 Thus, the dip inYsTd at T→TP−0
should be large for TaS3, and much weaker, if any, for the
blue bronze. This expectation agrees with the experiment:
inset to Fig. 3 showsYsTd for TaS3 from Ref. 6. Large drop
of Y is seen withT approachingTP both from above and
from below, whereas only a small dip ofYsTd at T→TP from
below is observed for the blue bronze in the in-chain
direction.4,5

FIG. 1. Fits of a typicalRsTd curve for TaS3 (points) with Eq.
(4); for the solid lineW=6600 K, v0tfa=331013, andD=710 K.
The broken line shows a similar fit withB=0. The inset shows the
corresponding logarithmic derivatives.

FIG. 2. dl / l vs T for a TaS3 sample. The background approxi-
mated with a second-order polynomial is subtracted. The solid line
gives a fit with Eq.(3) with W=6500 K.
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Figure 3 shows the dependencedYsTd below TP in the
Arrhenius axes[a linear dependenceYsTd is subtracted]. The
slope of the solid line gives the activation energy 5600 K,
giving a good fit nearly up toTP. To fit the wholeYsTd curve
we presentY asvYn+vpYp+vrYr, where the indicesn, p, and
r refer to the normal, pinned, and relaxed states respectively
sv+vp+vr =1d. The drop ofY in comparison with the normal
state can be presented asdY=sYr −Yndvr +sYp−Yndvp, where
vr =s1−vdminff r exps−W/Td ,1g, andvp=s1−v−vrd. The in-
set to Fig. 3 shows the fit withW=6000 K, f r =7.831011,
v0tfa=631011, sYr −Ynd=0.044, andsYr −Ypd=0.011 in the
normalized units. The fit is quite nice, but aboveTP the fluc-
tuations fall down slower than the fit gives, as it could be
expected(recall also Fig. 1).

It is clear from the examples above that the PT consists in
a gradual switching to the state as if having higher free en-
ergy, and thus looks as a smeared-out first-order transition.
The common check for the first-order transition is the latent
heat. Because of the smearing out one can expect a maxi-
mum of specific heatcp. A cusplike feature is clearly seen on
the cpsTd curve for the blue bronze.5 Recently, a similar fea-
ture has been observed also for TaS3.

8 Being very faint, it
was detected as a zigzag pattern on the derivativedcp/dT.
Figure 4 presents the data from Ref. 8 together withd2v /dT2,
Eq. (3) (the background change ofcp is approximated with a
straight line). It is clear that the form of the feature is at least
approximately described by our model. Other words, the
CDW formation is accompanied by a smeared out step of
latent heat whose width is of the order ofTP

2 /W. Note that
the values of the latent heatQ<0.25RK=53104 J/m3 (Ref.
8; R is the universal gas constant) and the length change
dl / l =10−5 appear to be consistent with the Clausius-
Clapeyron equationdTp/ds=−Tpsdl / ld /Q if one takes
dTp/ds,1 K/kbar (Refs. 6 and 15) (s is the stress along
the chains).27

Above TP one should bear in mind the small sizes of the
remnant CDW volumesvc. As soon as they shrink down
belowv0, Eq. (2) is no longer valid, because the new normal
volume due to the LGS cannot exceedvc. With simple as-
sumptions at high enoughT one can obtains1−vd~exp
s−W/2Td; the appropriate fit forYsTd is given with a broken
line in the inset to Fig. 3. This consideration also explains the
behavior of theRsTd curve aboveTP (Fig. 1).

Thus, the LGS model fairly describes the temperature
evolution of the principal parameters in the vicinity of the
PT. All the fits proposed have transparent physical sense. The
main parameter of the model—the energyW—is close to the
values for the barrier characterizing thermally initiated
PS.12–14 Evidently, LGS is governed by the same process as
PS.(Some indications of the connection between PS and the
PT have been given in the early works.10,11,14,28) So, it would
be natural to consider excitation of dislocation loops29 as a
precursor effect belowTP. Excitation of the dislocation loops
is being considered as a possible origin of softening of
solids30 or similar transitions in liquid helium and HTSC’s.31

This approach gives critical expansion and proliferation of
the loops due to their mutual screening. The apparent ab-
sence of the critical behavior in our case could mean that the
CDW excitations practically do not interact up toTP.
Note that while for a conventional crystal the smallest
possible radius of a dislocation loop is of the order of the
lattice constant, for the CDW it is of the order ofj'. Such an
object (i.e., an amplitude soliton) covers a volume,j3

;jij'
2 , whereji andj' are the in-chain and the transverse

amplitude correlation lengths, respectively; the soliton can
perturb a still higher volume, where, say, the conductivity is
increased. Thus, the conditionv=1/2 can beachieved when
the concentration of the excitations is still much less than
1/ls, wherel is the CDW wavelength ands is the area per
chain.

The concentration of the solitons could be estimated as
s1/lsdexps−W/Td, whereW is the energy of such an excita-
tion. Then, v,sj3/lsdexps−W/Td. At T=TP we have
sj3/l3dexps−W/Td<1, and come to the estimate

FIG. 3. Arrhenius plot of −YsTd (a linear function ofT is sub-
tracted). The slope of the solid line corresponds toW=5600 K. The
inset shows the fit of the wholeYsTd curve(the gray circles present
only 1/15 of the total experimental points for clarity). The broken
line takes into account that for highvsT.TPd 1−v~exps−W/2Td.
The data are taken from Ref. 6.

FIG. 4. The temperature derivative of the specific heat of TaS3.
The fit is given byd2v /dT2 [Eq. (3)] with W=10 000 K. The data
are taken from Ref. 8.
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TP .
W

lnsj3/lsd
. s5d

With j3/ls=103 we obtainTP=W/7, which can give an idea
of the low value ofTP in comparison withW. A higher ratio
W/TP might be obtained if we take into consideration the
large wavelengths of the fluctuations of the CDW stress
along the chains. According to Ref. 9 they can considerably
exceedji and, consequently, the LGS volumes could appear
much larger thanj3.

According to our estimates, the excitations would begin to
turn into dislocation loops only aboveTP. So, within the
model, the metallic state develops at lower temperature than
the critical behavior is expected to begin. As far as we com-
prehend, the approach proposes a different type of phase
transition, which does not compriseTP as a parameter. At the
same time, the PT in a sense resembles a first-order transi-

tion. The model successfully works both below and above
TP, though further extrapolation of the approach to higher
temperatures requires further development of the model. The
underlying microscopic mechanisms of the LGS also need
deeper understanding. Though the model requires further
grounds it gives a limpid insight into the processes inside the
CDW nearTP.
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