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Magnetic properties of superconductors with strong spin-orbit coupling
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We study the response of a superconductor with a strong spin-orbit coupling on an external magnetic field.
The Ginzburg-Landau free energy functional is derived microscopically for a general crystal structure, both
with and without an inversion center, and for an arbitrary symmetry of the superconducting order parameter. As
a by-product, we obtain the general expressions for the intrinsic magnetic moment of the Cooper pairs. It is
shown that the Ginzburg-Landau gradient energy in a superconductor lacking inversion symmetry has unusual
structure. The general formalism is illustrated using as an examplg&e®Rhich is the first known heavy-
fermion superconductor without an inversion center.
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[. INTRODUCTION without SO coupling, is that the system is no longer invariant
with respect to arbitrary S(2) spin rotations, which alters

Superconductors with unconventional, or anisotropicthe symmetry of the order parameter in the pseudospin-
pairing have remained one of the favorite and most-studiedriplet channek? A detailed analysis of the temperature de-
systems in condensed matter physics for more than two dgsendence of the upper critical field, including the band an-
cades. Any superconducting material in which the symmetrysotropy, impurity scattering, and sometimes the Fermi liquid
of the pair wave function is different from aswave spin  corrections, has been done using the quasiclaséiibdn-
singlet, predicted by the Bardeen-Cooper-SchriefRCS) bergey method, see, e.g., Ref. 7, and the references therein.
theory, can be called “unconventional.” From the initial dis- A disadvantage of this approach is that it assumes a constant
coveries of superconductivity in the heavy-fermion com-density of states of the normal electrons near the Fermi sur-
pounds, the list of examples has grown to include the Aigh- face and therefore fails to capture some contributions to the
cuprate superconductors, ruthenates, magnetic superconduitttrinsic magnetism of the Cooper pairs. Additional compli-
ors, and possibly organic materials. In contrast, such popularations arise when a superconductor with SO interaction
novel superconductor as MgBn which the order parameter lacks an inversion center. In a nutshell, the symmetry analy-
is ans-wave singlet, is still “conventional” despite its many sis of superconducting phases should be modified if the SO
unusual properties. coupling is strong, because the twofold degeneracy of the

Although the pairing mechanism in most if not all uncon- single-electron bands is now lifted almost everywhere in the
ventional superconductors is subject to much debate, theBrillouin zone, which makes it impossible to introduce pseu-
behavior can be well understood using the symmetry apdospin and also suppresses most of the pairing chafinels.
proach, pioneered in Refs. 1-3. The intrinsic anisotropy and Although most superconductors do have inversion sym-
the multicomponent nature of the order parameter lead to eetry, there are some exceptions. Early examples included
variety of interesting magnetic properties, such as the intersuch materials as 35i (Ref. 9 and Hf\,,%in which a pos-
nal magnetism of the Cooper pairs, multiple phases in thsible loss of inversion symmetry is associated with a struc-
vortex state, and the upper critical field anisotropy n€ar tural phase transition in the bulk of the crystal. The existence
not described by the effective mass tensor in the Ginzburgef superconductivity was later reported in ferroelectric per-
Landau(GL) equations; for a review see, e.g., Refs. 4 and 5ovskites SrTiQ (Ref. 1) and BaPb@BaBiO;.*? It was

In most of the previous microscopic calculations of thepointed out in Ref. 13 that the surface superconductivity ob-
magnetic properties of unconventional superconductors, theerved, e.g., in Na-doped W@®* is generically noncen-
model of an isotropic band in a centrosymmetric crystal hasrosymmetric simply because of the fact that the two sides of
been used. Historically, this has its origin in the fact that arthe surface layer are manifestly nonequivalent. Possible ef-
unconventional Cooper pairing was first extensively studiedects of the absence of inversion symmetry in the layered
in the context of the superfluitHe, which is indeed an iso- high-T, cuprates were discussed in Ref. 15. Very recently,
tropic Fermi liquid with a weak spin-orbitSO) coupling®  superconductivity was found in noncentrosymmetric com-
Although taking into account a realistic Fermi surface anisopounds CeR8i (Ref. 16 and Ulrl’
tropy in a crystalline superconductor is not believed to cause This article is aimed at studying the magnetic properties
any drastic qualitative effects, it might lead to some consid-of a clean superconductor with arbitrary pairing symmetry
erable quantitative changes compared to the parabolic barahd band structure, with or without an inversion center. We
model. The SO coupling in crystals is usually taken care ofocus on the strong SO coupling limit, which is believed to
by redefining the basis of the single-electron states: insteade the case in many unconventional superconductors, in par-
of the usual Bloch spinors, the Cooper pairs are now formedicular the heavy-fermion compounds, because of the pres-
by pseudospin eigenstaté$hen the only significant change ence of elements with large atomic weights, such as U, Ce,
in the superconducting properties, compared to the casetc. In contrast to the previous works, the starting point of
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our calculations is an effective band Hamiltonian, which de- 1

scribes the dynamics of the Bloch electrons in a magnetic Gk, ) = o e’ 3

field.’® The superconducting pairing is introduced using a no

BCS-type weak-coupling model, generalized for the case oWherew,=(2n+1)#T is the fermionic Matsubara frequency

an unconventional pairing symmetry. We derive the GL freg(we use the units in whickg=1).

energy microscopically, which allows us not only to calcu- In the presence of a nonzero uniform magnetic fiBld

late the upper critical field, but also evaluate the intrinsicEqg. (1) is replaced by

magnetic moment of the Cooper pairs in a crystalline super- ;

conductor. To the best of the author’'s knowledge, a micro- Ho=2 cf,£,(k,B)C,, (4)

scopic derivation of the GL equations for a superconductor kv

lacking an inversion center, in the presence of an arbitraryyhere £ is the effective one-band Hamiltonian in the

SO coupling, has never been done before, so we fill this gar-space'® The main technical difficulty in the derivation of

here. On the other hand, aIthough some of our results in tth 4 is that the Corresponding vector potentAﬂgrOWS

centrosymmetric case are not new and can be found scattergflearly as a function of, leading to divergent matrix ele-

in the literature, we found it instructive to treat both casesments of the Hamiltonian with respect to the zero-field Bloch

within the same general framework, which also highlightswaves. As was first pointed out by Peiefighese nonpertur-

the important differences between them. bative features can be taken into account by simply replacing
The article is organized as follows. In Sec. Il, we discussthe wave vectok in the zero-field band dispersian(k) by

the properties of the Bloch electrons in a magnetic field inthe gauge-invariant combinatiok+(e/Ac)A(f), where ¢

the normal state, and introduce the single-band effective.jy, is the position operator in thie-representation. Later,

Hamiltonian. In Sec. Ill, we study the properties of a strongyhjs idea was elaborated in Refs. 20 and 21, where it was

SO coupling superconductor in a magnetic field nearde-  ghown that the Peierls Hamiltonian corresponds in fact to the

rive the linearized GL equations in the lowest ordeBirand  zero-order term in the expansion of the general effective one-
calculate the internal magnetic moment of the Cooper pair§yang Hamiltonian in powers d:

in both the centrosymmetric and noncentrosymmetric cases. )
In Sec. IV, we apply the general formalism to CgSt Sec- E(K,B) = ,(K) + Biel}(K) +BBjeZ(K) + ..., (5)

tion V concludes with a discussion of our results. . .
whereK is an operator in th&-space:

- e . . e J
Il. SINGLE-PARTICLE PROPERTIES K=k+ _CA(r) =K+ I—<B % ﬂ)

2hc
To develop the necessary framework for the analysis of

the superconducting properties, we first need to understaridiere and below we use the symmetric gaue(B Xr)/2].
how a uniform magnetic field affects the single-electronSince the components oK do not commute:[K;,K;]
states in a normal crystal with SO coupliagith or without  =-i(e/%c)e By, the order of application is important, so that
an inversion centgr While for free electrons with a para- £ is assumed to be a completely symmetrized functiok;of
bolic dispersiorp?/2m the magnetic Hamiltonian is obtained This can be achieved, e.g., by representing the expansion
by simply replacing with a gauge-invariant momentum op- coefficients in Eq(5), which are periodic irk, in the form of
erator p+(e/c)A (e is the absolute value of the electron a Fourier series over the lattice vect®&sand then replacing
charge, the case of band electrons should be treated mork— K to obtain the operators,(K)==ge,(R)eR¥, etc.
carefully. If the electron bands are degenerate in zero field due to
In zero field, the single-electron Hamiltonian has the formspin or pseudospifsee Sec. Il A beloyy then the effective
Hamiltonian £ and all the expansion coefficients arex 2
HO:E Gp(k)CEVCkw (1) matrices. The Green’s function corresponding to the Hamil-
kv tonian(4) is not diagonal with respect o because the sys-
tem is no longer invariant under lattice translatigitss still
wherec' andc are the creation and annihilation operators ofinvariant though under the magnetic translations which com-
band electrons with the wave vectare, (k) is the quasipar-  pine the lattice translations with gauge transformations
ticle dispersion in thes th band, which takes into account all  Although the explicit expressions for the expansion coef-
effects of the periodic lattice potential and the SO interacficients in Eq.(5) can be derived, at least in principle, using
tion, andXy stands for the integration over the first Brillouin the procedure described in detail in Ref. 21, some important
zone. We assume that there is no disorder in the crystal, Saformation can be obtained from general symmetry consid-
thatk is a good quantum number in the absence of externadrations. The full symmetry groug of the system in the
fields. The Matsubara Green'’s function of electrons, defineghormal state is given by a product of the space group and the
in the standard fashion: gauge group (). Assuming that there is no magnetic order
in zero field and omitting the lattice translations, we can
Gyyy(Ki, 713K, ) = = (TG ()G, (1), (D) write G=GXKx U(1), where is the point group of the
crystal, which may or may not include the inversion opera-
is diagonal with respect to both the band index and the wavéon I, andK is the time reversal operation. At nonzéothe
vector: Hamiltonian (4) is invariant with respect to time reversal
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only if the sign of B (and of A) is also changed, which tion. The latter is defined as{r,o|(iw,—Hg)™|r0’)
imposes the following constraint on the functiofi — =(r;o|k;@)G,4(ky,ko; wn)(koB|r20") (the summation over
K'¢,(-B)K=€,(B). In addition, the expansion coefficients repeated indices is impligdwhere(ra|ka) =i (ro) is the
must have certain transformation properties under the actiogjoch spinor, witho=1,| being thez-projection of spin.

of the point group elements, in particular, the band dispersion The second term ik presents some difficulty because it

e(k} must be invariant under all operations fra@ .grows linearly as a function of and therefore cannot be

F.“”hef steps dep_end crucially on Whethe( or not the_re reated as a small perturbation. To handle this problem, we
an inversion center in the crystal lattice, which determlnesseek solution of Eq(9) in a factorized form '

the degeneracy of the zero-field bands. -
Gapl(I1,12;@n) = Gup(ry =y, ) €90112), (10

A. Crystals with inversion center . .
y where <p(r1,rz):(e/hc)f{iA(r)dr, and the integration goes

"8long a straight line connecting andr,.22 Using the iden-
tities

If the crystal has an inversion center, then the bands a
twofold degenerate at eadhy because the Bloch stateg.,
=i, and ¢y_=Kly, have the same energy, belong to the r
same wave vector, and are orthogonal. These states can be J 2 o 1
chosen to transform under the action of the space group op- ary Jr A(ndr= 5 A(ry 9 + E[B X (ri=rz)l, (11
erations similar to the spin eigenstates, in which case they o
are referred to as the pseudospin staf€sus the bands can one can show that the translationally-invariant function
be labeled byv=(n,«), wherea=+ is the pseudospin pro- E(rl—rz):E(R) obeys the equation
jection. Focussing on a single band, we can omit the ingex

and the effective band Hamiltonigh) becomes (iwn—g)ayayﬁ(R,wn) = 0,50(R), (12
Eap(K,B) = €(K) 8ap = Biwij(K)j op+ -+, (6)  where the operataf is obtained by replacing in the argu-

whereg; are the Pauli matrices, and both the zero-field bandnent of £ in Eq. (9) by Kg=-id/dR+(e/2Ac)(B X R).

dispersione(k) and the tensog;;(k) are invariant under all The advantage of introducing the functi@ is that, in

point group operations. It is easy to see that this form of the&ontrast to Eq(9), the magnetic field term in E¢12) can be
effective Hamiltonian is compatible with all the symmetry treated as a perturbation at small enolgiThe precise con-
requirements, in particular th&tshould be Hermitian an-  dition can be easily obtained in the case of an isotropic para-
and l-invariant. Indeed, the time reversal operatorKs bolic band e(k)=%%(k?~kZ)/2m, when the solution of Eq.
=(io,)Kq, WhereKj is the operation of complex conjugation, (12) in zero field is Ga(R,wy) ~ 5aﬁeik,:R sign wng|wnRIvE

which *Shangesk—>—k. There_fore, we have[op€(-K,  \hereye=fik-/m is the Fermi velocity. Because of the fast
~B)a,] =£(k,B). Also, £(-k,B)=£(k,B), because of inver-  ygiliations of the exponential, the characteristic scale of the

sion symmetry. In the limit of zero SO coupling, the usualgerivative 9/ R is ke. On the other hand, the scale Rfis

Zeeman interaction term is recovered;(k) — ugdj, where . —— il
g is the Bohr magneton. given by#vg/KgT, so that the field-dependent termKRpG is

The Green's function(2) is a 2x 2 matrix in the pseu- small compared with the gradient term7itv, <kgT, where

: . L X e w.=eB/mcis the cyclotron frequency. Although this condi-
dospin space, which satisfies the following equation in thPtion does not have a simple form for a realistic band struc-
frequency representation:

ture, it is usually assumed that the perturbative treatment of
(i0n = 1) 0yG (K, Ka; ) = 8,58(ky — ko). (7)  Bin Eq.(12) is legitimate at all but very low temperatures,
where the Landau level quantization effects become impor-
The Fourier transform of the Green'’s function, defined as tgnt.

Gapll 1,12 0) = D eiklrl'”‘Z’ZGaﬁ(kl,kz;wn), ®) The Fourier transform o6 satisfies the equation
k. . = =
v [lwn - 5(kaB)]a7GyB(k!wn) = 6aﬁl (13)
satisfies the equation
g which is solved perturbatively iB. The expansion of the
(iwy— E"l)ayGyﬁ(rler;wn) = 8,0(r1 = 15), (9)  effective band Hamiltonian has the form
~ 3 — 2
where€ is the Fourier transform of the effective band Hamil- Eap(k,B) = €(k) 5,5 = Bm,5(k) + O(B), (14)

tonian(6), which is obtained by replacini§ by the operator \ynere

Re—it s S =-it+ @B x) L J
~ar ke ©ar 2kc ' mivaﬁ(k)_'z: v(k) X Ik iaaﬁ+ﬂii(k)"j,a,8- (19

The subscript 1 in€; or & means that the operator acts The first term comes from the expansion &fK), with

on the first argument of5. It should be noted that the wv(k)=(1/%)de(k)/dk being the band velocity, while the sec-

Green's function (8) is not the same as the Green's ond one is obtained by replacigwith k in w;;. As obvious

function of the band electrons in the coordinate representdrom Eq.(14), m can be interpreted as the magnetic moment
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operator of the band electrons, although one cannot say that i — £(k.B)IG(k -1 19
the first and the second terms correspond to the orbital and Ly = £k B)IG(K, @) = 1. (19
the spin magnetic moments respectively, because ddh

andu;; (k) include the effects of SO coupling. The solution of

Eqg. (13) can be written as= Go BGOmGO+O(BZ) Insert-

ing expressior{15) here and keeping only the corrections of g(k B) = e(k) - Bm(k) + O(B?) (20)
the first order inB, we have ’ '

As in the centrosymmetric case, at low fields we solve this
equation perturbatively iB, using

5 where

(k wp) = _‘8_ |M|J )_J_Lz (16)
- e(k) [iw, = e(k)] e d
m(k)=|2—C v(k) X oK + (k) (21
Note that because of inversion symmet@,(-k,wy)
=Gk, @p). has the meaning of the magnetic moment operator of the

band electrons. The contribution from the first termmrto

B. Crystals without inversion center G vanishes, and we finally have, in the first ordeiBin

In the absence of inversion center in the crystal lattice, the
electron bands are nondegenerate almost everywhere, except G(k, o) = fon—ek) Bihi(k )W (22)
from some high-symmetry lines in the Brillouin zone. The
formal reason for this is that without the inversion operation Most of the previous works on noncentrosymmetric su-
[, one cannot in general construct two orthogonal degeneratgerconductors, both two-dimensiod&t>?*  and
Bloch states at the sanie(note that the Kramers theorem three-dimensiona® have been based on the Rashba model
still holds: there is a degeneracy between the time reversegve would like to mention, in particular, Ref. 26, in which
statesyy, andKyy, belonging tok and —k respectively. The  the GL functional was derived for a one-componsiwave
above is not valid at zero SO coupling. In that case, there isrder parameter in a Rashba supercondyctorthis model,
an additional symmetry in the system—the invariance withthe combined effect of the SO coupling and the lack of in-
respect to arbitrary spin rotations, which leads to the bandgersion symmetry is mimicked by an additional term in the
being twofold degenerate because of spin, so that the resulsingle-particle Hamiltonian:
of the previous section apply.

Assuming that the SO coupling is strong and the bands = eo(K)al,a, + 7>, N - (0,0 X K)a] ag,. (23)
k

are well split[which is the case in CefBi (Ref. 23], the k
effective single-band Hamiltonia¢b) can be written in the
following form: Here o,0’=1,| is the z-axis spin projection, the operator
a,, destroys an electron in a Bloch state of eneggik)
E(k,B) = e(K) -BAK) + ..., (17)  corresponding to zero SO coupling, ands a unit vector

allowed by symmetryin a 2D systempn is simply the nor-

where the band dispersiafk) is invariant with respect to all mal vector to the plare Choosingn=2, we diagonalize the
point group operations, andl(k) is a pseudovector, which, Hamiltonian(23) by a unitary transformatio@y,=Uy ;nCkn
being a property of the crystal in zero field, satisfies the(n=1,2), which gives two Rashba bands:
conditions(gh)(g™'k) =A(k), whereg is any operation from
the point group. Because of the time-reversal symmetry, we e12)(K) = eo(k) £ [yk, (24)
also havee(—k) =€(k) andA(-k)=-A(k). At a nonzerdB we
have £(-k,-B)=£(k,B), but £&(-k,B) # £(k,B) in general, (k, = \k2+ky) with the eigenfunctions
because of the lack of inversion symmetry. An example of
the microscopic calculation oA(k) using a simple two- 1 1
dimensional model is given at the end of this subsection. i//k,l(z)(r):?( ) ke,
Also, in Sec. IV below, we discuss how to find the momen- V2
tum dependence ok in a noncentrosymmetric tetragonal
crystal.

The only modification to the analysis of Sec. IlA is that
both the effective Hamiltoniab) and the Green'’s function
(2) become scalar functions. The Green’s function is factor-

(25

Fie'%

where tang,=k,/k,. The bandg24) are nondegenerate al-
most everywhere, touching only at the two poles of the
Fermi surface along the axis. We would like to emphasize
that the band indices=1,2 cannot be interpreted as the
pseudospin projections. Indeed, under time reversal the pseu-

ized: dospin eigenstates would transform similar to the spin eigen-
— , states, i.e., into one another. However, being a symmetry of
G(ry,rp;0p) = G(ry = 1y, ;)€ #1212, (18)  the Hamiltonian time reversal transforms the Rashba bands
_ into themselves, which can be directly verified for the eigen-
where the Fourier transform & satisfies the equation states(25),
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; e 1) 1 T 1 + 2 2
Kihea = (109Koth1 = =\ 1, )@ STV W) D = STV W0 DofE(e) = dunfele),
ie‘”"k( 1 ) o (29)
== o BT yq,
V2 \-iel where the angular brackets denote the averaging over the

and similarly for g , (we usedg_, = g+ ). constant energy surfaagk) = e:

It is easy to show that in the presence of a nonzero mag-
netic field the_ effective Hamiltonian f_or the Rashba model ((-+).= 1 > () de-ek)], (30)
can be cast in the forngl7). To obtain the pseudovector No(e) %
A(k), let us consider a two-dimensional system in a field
parallel to thexy plane. Then the Hamiltoniaf23) is modi-  andNg(e) == e— (k)] is the normal-metal density of states
fied by the Zeeman termiig=Hy—ugoB. The diagonaliza- (DoS) per one pseudospin projection.

tion of Hg, followed by an expansion in powers Bf gives It follows from anticommutation of the fermionic opera-
=3 5= tors thatW, 5,(-kK)=-W¥, ,4(k). In the presence of inversion
E1(z(k,B) = €o(K) £ VYK + 2yup(k X B)y+ ugB symmetry, the even ik (pseudospin-singlgtand odd ink
= €1(K) = Ay2(K)B, (pseudospm-trl_ple)tpalrlng states can be_c0n5|d¢_3red sepa-
rately. In the singlet case, the matrix basis functions can be
where represented in the form
kxn Wy oK) = (i K 31
Naoy(K) = g — (26) a.ap(K) = (102) 4pPa(K), (31)

L

. . . . where ¢,(k) are the even scalar basis functions of fhe
In this article, we want to keep our discussion as general as . .
possible and therefore do not resort to any explicit model’representatlon. In the triplet case, we have
such as the Rashba model, to describe the SO coupling. Our
results are based only on the symmetry considerations and
valid for an arbitrary strength of the SO coupling and any,

band structure.

Va,ap(K) = (10702) 4pba,(K), (32)

where ¢,(k) are the odd vector basis functions of the
representatiof?

1. MAGNETIC RESPONSE IN THE SUPERCONDUCTING The superconducting order parameter can be represented
STATE as a linear combination of the basis functions:

A. Crystals with inversion center Aag(k,CI) _ 2 ﬂa(Q)‘I’a,aﬁ(k), (33)
Now let us take into account the attractive interaction be- a
tween the band electrons in the Cooper channel. The total o .
Hamiltonian is given byH=Hy+H., where the free electron With the coefficientsy, playing the role of the order param-
Hamiltonian H, is given by Eq.(4) and, for a BCS-type eter components, which determine, for instance, the free en-

mechanism of pairing, the interaction part can be written argy 7 of the superconductor. In the vicinity of the critical
temperaturél(B), one can keep only the quadratic terms in

1 : .
_ t t the expansion ofF:
Hine = > 2 Vaﬁ,ya(k-k’)Ck+q/z,ac-k+q/2,ﬁc—k'+q/2,ka'+q/2,5- P

k,k’,q
(27 F=2 | dr g (n)Sum(r). (34
b
The pairing potential does not depend on the external mag- h
netic field and is assumed to have a factorized form: HereSis ad X d matrix differential operator of infinite order:
d
1 t
N —_ = ’ 1 — .
Vg, yskiK') = 2va§1 Vo oKW (K, (28) S= 20" f ARS.,(R)EO, (35)

with the coupling constan>0. HereW4(k) are the 2x 2 . . . .
matrix basis functions of an irreducible representationf WhereD=_—|V,+(2e/hc)A, and the translationally-invariant
dimensionalityd of the symmetry group of the system at function S;(R) is expressed in terms of the Green’s func-
zero magnetic field.The pairing interaction is nonzero only tions(12). Its Fourier transform is given by

inside a thin shell of widthe. (the cutoff energy in the
vicinity of the Fermi surface ek)=0, i.e., ¥, k)
=W, (kp)fle(k)], wherekg is a wave vector at the Fermi
surface and the cutoff functiofiy(e) is localized about the
origin, e.g., f.(e)=6(e.~|€|). The basis functions are as- x€a5<—k+9,—wn),
sumed to be orthonormal: 2

Sl =TS S A%, 05 k+ S
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1 e d d 2€%¢,
Ai%yﬁ(k)za exp{lﬂc8<a—kl X &—k)] |(T)=fdeN0(e)f§(e)5(e): Neln——= (39
UL (k)W (k) (C=0.577 is Euler’s constantTo obtain this result we made
a,ap "l b,y 2 - the usual assumption thhl(e) is a slowly-varying function
v within the energy shell of widtke, near the Fermi surface,
_}\I’T (KW, - A(K) which allows us to replace it by a constant—the DoS at the
T aab by Fermi levelN=N,(0). At the zero-field critical temperature

o T., we havel(T,)=1/V, which gives the standard BCS re-
+ i—B(Vk\II;aB X VW) + O(B?). sult: T,=1.13¢.exp(—1/NgV). ExpandingA,, in the vicinity
8hc of T, we recover the familiar expression for the uniform
(36) term in the free energy density,

The derivation of these formulas is outlined in Appendix A. Aap=a(T = T¢) Sap, (40)
As obvious from Eq.(35), the operatorS is a completely where a=Ng/T,.
symmetrized function of the components®fwhich do not Next. we caclculate the intrinsic magnetic moméht Us-

commute:[D;, D;]=-i(2e/fic)eyBy. Also, its Taylor expan- g the smallB expansions of the normal-state Green's func-
sion contains only even powers @, becauseS;(-R)  tion G and the vertex\, we obtain in the singlet case,
=S,5(R) due to the inversion symmetry.

The field dependence of the phase transition temperature M; = —— 7. 796{(Vioa X Viechp)i Yol ,
at arbitraryB can be found from Eq34): T,(B) is defined as ' apc e K e kLo
the temperature at which the minimum eigenvalue of th%here((---»o stands for the Fermi-surface averagigy),

operatO{S patshses through z(;a_ro. For a?. |sotroq;>wav: o.rdedr and| is defined by Eq(39). To derive this expression, we
palrargg erl,? feﬂcorrETpc;n mgleqtua lons were e.rt|ve arlacgain used the fact that the basis functions are nonzero only
solved In Retl. 27, while Tor an 1ISoropiwave case it was ;,"5 nappow vicinity of the Fermi surface, which allows one

dtonetln Ref.d28._|_n a genera![ C?%e)’ €., folr at? arblltralryi bdan separate the energy integration from the integration over
structure and pairing symmetrf(B) can only be calculate the Fermi surface. A similar calculation in the triplet case

ie

numerically. ives
Here we focus on the properties of our superconductor ir%J
the weak field limit. We haveF=[Fdr, where the free en- _ e .
ergy density can be represented as M; = chanb«vkd’a X Viehp)i)ol
F = Aapa7a + Kapjj 7:DiDj 75~ MB . (37) + 21 7o i (K) (g X b Dol 1,

This expression has the usual form expected on the phenorW—here
enological grounds, with,,;; being the generalized effec-

tive mass tensor, anél having the meaning of the intrinsic 1(T) = f de No(e)fg(e)Sl(e) =-—In—7F,
magnetic moment of the Cooper pairs. The linearized GL 2 ot
equations follow from Eq(37) after the minimization over

the order parametesF/ 87,(r)=0. Below we outline how to S0 =TS 1 1 195(e) 1)
calculate the free energy density using our weak-coupling ! ~ (ioy— €)% —iwp—€ 2 de '
model.

The first term inF is obtained by puttingj=B=0 in Egs. HereNE=N(0) is a measure of the electron-hole asymmetry
(35) and(36), which gives near the Fermi surface. Puttifg=T,, using the BCS result

for the critical temperature, and choosing real basis functions
1 1 + (which can always be done if the normal state is non-
Aa= 1, Oa = 52 tr{ W (K Wu(k)STek)], (38 magnetig we finally obtain the density of the intrinsic mag-
K netic moment of the Cooper pairs:

e M =i Yap a7, (42)
1 1 where y,,=—y,, IS given b
S(=TY 5= —tanh—. Yab™"Yba 1S 9 y
S wite 2 2T e 5 6.(K) 7 (k) s
Yiab= gy ok ak /o

The necessary momentum cutoff in E88) is provided by

the basis function¥,(k), which are restricted to the vicinity in the singlet case, and
of the Fermi surface. Calculating the momentum integral

with the help of the normalization conditiq9), we obtain Yiab= ilem<ﬁ bam(K) 9 ¢bvm(k)>

As=[(1/V) =118, Where T 4hicV ak; ki /o
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NE anisotropic Fermi surface, but still a conventional pairing,
N Vejk|(M|,(k)¢ak(k)¢b|(k)> (44)  the results of Ref. 29 are recovered.

Now we would like to make a few comments about our
in the triplet case. It follows from these expressions tat results. The internal magnetism of superconductors has been
=0 for any order parameter corresponding to a onediscussed before mostly for a charged isotropic Fermi liquid
dimensional representation of the point group, both in thewithout SO coupling, see, e.g., Ref. 30. In this case, the
singlet and triplet cases. density of the pair magnetic moment can be divided into the

Finally, let us evaluate the gradient terms in E2}f). The  orbital and spin parts, both being small due to the smallness
magnetic field dependence of the coefficieKtg;; can be of both the quasiclassical parametdr&,)° <1 (& is the
neglected, which follows from the fact that the lowest eigen-coherence lengjh and the electron-hole asymmetiy:.
value of the operatoK,,;;D;D; is already linear inB|, see  Here we do not make any assumptions about the strength of
Appendix B. The physical meanlng of this is simple: thethe SO coupling, therefore the orbital and the spin magnetic
suppression of the critical temperature due to the gradienhoments cannot be separated, in general. For a general band
energy is always linear in a weak field, regardless of thealispersion, one can neglect neither of these contributions
dimensionality of the order parameter and the shape of thpriori, before calculating the Fermi-surface averages in Egs.
Fermi surface. Taking the second order derivative in(B6)  (43) and (44). In particular, the energy dependence of the
atB=0 and calculating the Matsubara sums, we obtain  single-electron DoS in the metals with and f-electrons is

1 usually quite significant, which can lead to an appreciable
Kapij =~ —h2<tr[q};(k)1{/b(k)]vi(k)v i)Yol 2 electron-hole asymmetry near the Fermi level.
4 In terms of the response of the superconductor on a weak
1 external field, the gradient terms produce a lineaBisup-
—‘ﬁzﬂf[‘l’;(k)‘l’b(k)]m_jl(k»o'1- pression ofT,, see Appendix B. The value of the slope
dH,/dT can be calculated either analyticallin very few
Here m,l(k) (1/7%)Pe(k)/ ok ok; is the inverse tensor of casey or using a variational approach. On the other hand,

effective massed, is defmed by Eq(41), and the pair magnetism can compete with the gradient energy,
leading even to the possibility of increasiiigas a function

1,(T) :f deNg()F2(e)S,(€) = — 7§(3)2va (45) of B, if the internal magnetic moment is large enough. _Such
87°T mechanism was recently proposed in Ref. 31 to explain the
phase diagram of the ferromagnetic superconductor ZrZn

where
1 1 B. Crystals without inversion center
82(6) TE 3_ . . .
(lon— € —iw,— € In this case, the calculations are somewhat simpler be-
cause the bands are nondegenerate. We assume that the Coo-
21 1 1 ] per pairing occurs only between the electrons in the states
2(iwy— €% (—iwy - €)? with opposite momenta, which are transformed into each
other by time reversal. Then the most general BCS-type
- smh( ) cosh ( ) Hamiltonian can be written in the form
16T%€ 2T 2T e
Hine = Hid + HiS + Hi Y, 48
has a peak near=0, and{(s) is Riemann’s zeta-function. it Hint 7 Hint it (48)
Putting all the pieces together, replacifignith T,, and ~ Where
using real basis functions, we finally have
7L3)H2 H{Y = 22 > VO K,k e Cl e CoirnCicrns
Kabjj = WNF<¢a(k)¢b(k)vi(k)0j(k)>0 N kK
N @_1
__<¢a( )¢b(k)m (k)>0 (46) Hlnt 2 E V (k K’ )Cknc knC—k’mCk’m»
8V NF n;&mk K’
in the singlet case, and
7L3)1? HO == E > VK kel e CokrmCirn:
Kanij = 3 g rzr2 Vel far (k)i (00 vy (o " 2 B
72N Heren andm label the nondegenerate smgle electron bands,
K/N_Fwa'(k)%'(k)m (k))o (47) e.g., the Rashba band%zé)l) The HamlltonlarHIm describes

the intraband pairingH;’; describes the pair scattering be-
in the triplet case. Assuming a spherical Fermi surface, &aween the bands, which can result in the superconducting
completely isotropic pairing corresponding to the unity rep-gaps mduced on more than one sheet of the Fermi surface,
resentation ofG, and neglectlng the electron-hole asymme-and HIm corresponds to the pairing of electrons from differ-
try, Eq. (46) yields K;;=8;[7£(3)42/48m*TZINrvE.?2 For an  ent bands.
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A considerable simplification occurs if the superconduct-in k. In Ref. 23, the nodal structure df(k) was analyzed in
ing gaps are much smaller than the interband energies. Fegrms of the odd basis functions. This has been corrected in
example, the band structure calculations of Ref. 23 show thaRef. 34, where the the importance of the phase fatfior
the SO band splitting in Cef8i exceeds the superconduct- was recognized.
ing gap by orders of magnitude. In this situation, the forma-  Allowing for the possibility of a non-uniform supercon-
tion of interband pairs described nyft) is strongly sup- ducting order parameter, the Hamiltoniés2) becomes
pressed for the same reaso?rés as for the paramagnetically 1
limited singlet superconductofsthe interband splitting cuts - Nt AF
off the logarithmic singularity in the Cooper channel, thus Hinc = 2k% VK CsgrCoicrqreCokrvanCiosaz: - (59)
reducing the critical temperature. Although the bands may e
touch at some isolated points at the Fermi surface, as is thehe order parameter can be represented as
case for the Rashba ban@®}) atkllz, the interband pairing
in the vicinity of those points is still suppressed due to the Ak,q) = > 7.V 4(k), (59
phase space limitations. We also neglect the possibility of the a

Cooper pairs having a nonzero momentutharkin- _ _ .
A i S where ¥, (k) =t(k) ¢p,(k) ==V ,(-k) satisfy the orthonormal-
Ovchinnikov-Fulde-Ferrell phasé® which is expected to be 63’ condition (W’ (K)W,(K)).= 8,f2(€), see Eq(51)

suppressed as well by the large depairing effect of the S Mra 7
band splitting. The contribution to the fre_e energy quadratic in the order
In this paper, we further neglect the interband pair scatParameter has the forad4) with the kernel now given by

tering process described |§t) leaving the investigation of 1
its effects for future work. Thus, we focus on a single non- Sp=
degenerate band for which the pairing between time-reversed

statedk) andK|k) ~ |-k) near the Fermi surface can be writ-

1 _ _
Sy 5 f dRS,,(R)e™RP, (55)

whereS,(R) is the Fourier transform of

ten as
1Sy S.q) = a O
Hine = EE,V(Kk’)CECLkCKk’CkH (49) San(@) Tzn: zk: Aab(k)g(k + zywn)a( K+ 2 wn>,
wherec], denotes the creation operator of an electron in the e 9 9 .
stateK|k), and the pairing potential is assumed to have aAap(k) =exp IRE’(W X W) W (k) Wp(ko)
factorized form c 1 2 ky=k,=k

~ o - & - 2
VikK) ==V 44045k (50) = VAl g BV X Vick) + OB,
a=1 (56)
with V>0. Here ¢,(k) are the scalar basis functions of an o _
irreducible representatioli of the point group of the crystal The derivation is similar to the centrosymmetric case, see
in the absence of magnetic field, which are nonzero onlyAPPeNdix A. . . .
inside the energy shell of widt, near the Fermi surface ~ An important difference from the previous case is that,
$(K) = do(ke) f [ (k)], and orthonormal although the function®,(k) still have a definite parity, the

. o 2 2 Green’s functiong22) do not: G(-k, w,,) # G(k, w,) in gen-
(@a(k) (kD) = (alk) dolk))ofcl€) = Sapfele). - (51) eral, thereforeS,,(-R) # Sy,(R). This means that the expan-

The parity of the basis functions can be determined using thgion of the free energy density now contains gradient terms
following arguments? Although the time-reversed state of an odd degree iD:

K|k) belongs to the wave vectorksit is not the same as . . .
|-k). In fact, K|k)=t(k)|-k), wheret(k) is a nontrivial phase F =10 7m0+ T30 7D 0 + Ty 7DiDj 7o + +-+, (57)
factor, which satisfie$(—k)=-t(k). This allows us to write

ch =t(k)cl, and cq =t (k)c_. Inserting these relations in where
Eq. (49), we have o1 B
1 fl = Sy O~ Su@=0),
Hint = EE V(k; k,)chikC—k’Ck’ , (52)
KK/ B B
v d 1 &

where V(k,k")=t(k)t'(k")V(k,k’). From the anticommuta- fhi =~ Sulq) , fami=-3 Sul9) :

’ IG  lg=0 ’ 2 9090 | g=0

tion of fermionic operators it follows that(k,k’) has to be

an even function of both arguments, i.e., one should chooseic.
even basis functiong,(k) in the expansion50). Treating Using EqQ.(22), it is easy to see thdglgizo atB=0.

the interaction52) in the mean-field approximation, one ob-  Keeping only the lowest order terms in the free energy
tains the order parametar(k) =t(k)>,7,¢4(K), which is odd  density expansion in a weak field, we have
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TABLE |. The character table and the examples of the basis

= o+ DD 7 — +K...B 7D,
F = Aap7a7 + Kabj 7aDiD;j 776 = MB + Ko Bi 7D, functions of the irreducible representationsQ..

(58)
~ . o E C o, Even ¢r(K) Odd ¢r(k)
whereKgpj; :af;ﬂj/ dBjlrt_g=o- The uniform contribution to i X i i
F can be calculated in the same fashion as in the previous: 1 1 1 KE+IC+cIC k,
section, and we obtain A, 1 1 -1 (G =IZ) Kk, (G =K ke,
— 2_ 1,2 2_ 1,2
Aab= (T =T 5, 69 o+ Tt 5l (il
B, 1 -1 -1 keky kek K,
where the critical temperaturk, is given by the same BCS g 2 0 0 Ky Kok Ky Ky

expression as in the centrosymmetric case, but new
=Ng/2T,.

The pair magnetic momemdl and the generalized effec- rotationsC,, about thez axis by an angler/2 and the re-
tive mass tensoK,p;; can be calculated similarly to the cen- flectionsa, in the vertical plang100). The Fermi surface is
trosymmetric case. Using real basis functiafigk), we ob-  invariant under all the operations fro@y, and also the in-
tain version, the latter being the consequence of the time-reversal

e 1 IV (K) 9 W (K) symmetry. The bgnd structure calpulgtions of Ref. 23 show
M=i——="g; a b VTl (60)  that the SO coupling in this material is strong and therefore
8hicV ki dk /o the degeneracy of the bands is lifted everywhere, except

along thez axis.

and
The point groupCy,, has five irreducible representations:
_7{(3)h? four one-dimensionalA;, A,, B;, and B,), and one two-
abij = g5 212 Ne(Ba(K) p(K)vi(K)vj (K)o dimensional E), see Table I. Although the order parameter is
) ¢ odd ink,?3 its nodal structure is determined by the even basis
A Ne -1 functions®* Here we consider only the case of a one-
T lev NF<¢a(k)¢b(k)m” (K)o- (61) component order parameter, for which
To calculate the coefficier,y;;, we expandS,y(q) to the A(k,r) = ()W (k) = n(ntk) ¢(k), (63
r/lvrﬁitc?]rg’iavrelg bothB andq and evaluate the Matsubara SUMS,\yhere ¢(k)=¢(-k). The pair magnetic moment vanishes,

and the GL free energgp8) takes the form

Kapij = ba(k) dok)Ni (K)o (K)ol F = a(T~To)| 72+ K7 DiD; 7+ KB Dj.

+ 1<<¢>;(k) dp(K) J )\'(k)> I, Dropping the terms proportional td- and using the symme-
2 7k /o try of the Fermi surface, we have
where A (k) is the momentum-dependent pseudovector that 2
determines the linear response of the band electrons on a Koo = Kyy = K1=L3)ﬁ2N,:(¢2(k)v)2<(k))o,
weak magnetic field, see E¢l7), andl, , are defined by 327°T:
Egs. (41) and (45), respectively. Using real basis functions,
we finally have 70(3)%2
7@"(3)??, Kzz: K2 = 32(7]2)1.2 NF<¢2(k)U§(k)>O- (64)
abii = = g —zr2 Ne(@alK) gu(ONi(K)v; (K)o _ - _
c In order to calculaté;;, we need an expression fa(k),

K
dNi(K) which satisfies the following symmetry requirements
ok /s (62 A(-K)=-A(K), (C4N\)(C7k)=A(K), and (o A) (05 k)=A(K)

! (since N is a pseudovector, we have\=IC,A=C,A\,
Note that the phase factot&k) have dropped out of both whereC,, is a rotation by an angler about thex axis). To
Kapjj and Kapjj. To evaluate the Fermi-surface averages inSolve these constraints, we represers an expansion over
Eqs.(60—(62) explicitly, one has to know the band structure the odd basis functions of the irreducible representations of
[including A(k) andt(k)] and the momentum dependence of Cs,, see Table I,

1N
TN < $a(K) (k)

the order parameter. dr
MK) =2 2 Nadra(k), (65)
IV. APPLICATIONS TO CePt 5Si Ia=1

CePtSi is a heavy-fermion material without inversion where¢(-k)=-¢(k). It is straightforward to check that only
center, which was recently found to become superconductinthe representations, and E contribute to the expansion
at T=0.75 K It has a tetragonal lattice symmetry de- (65), so that the most general expression idk), which
scribed by the point grou@=C,,, which is generated by the satisfies all the symmetry requirements, is given by
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=\ [ o _ 7 o ~ 5 becomegz-independent and the linear Biterm in Eq.(71) is
MK) = hel de 20X~ de O3] + Magba K2, (66) absent. Thus, l?n this case the superconductivitchgan) be pro-
whereg and\,, are constants. Substituting it into E§2), moted by a parallel magnetic field, at least in the weak field
using the fact that the Fermi velocityk) transforms accord- limit. This agrees with the results of Ref. 35, where the gra-
ing to a vector representatidi+A,, and dropping the terms dient term linear irB andD was introduced on the phenom-

proportional toN/., we finally have enological grounds for a surface superconductor. The order
703 parameter which occurs at at nonzeroB is modulated in
= =T ~ :7(r)=1,€Q", with Qo (z2x B),3 see also Ref.
K o=-K.=K=- Ne( 2k Kow(K))e. the xy plane: 7(r)=7o€e~", with Q ,
o v 87°T2 F 7K dealkloykn 24. It should be noted though that the field-induced increase

(67) in T, may indicate the onset of a magnetic instability of the
superconducting state, the investigation of which is beyond

All other K; vanish by symmetry. the scope of the present work.
Finally, the GL free energy density can be written as

F=a(T-To)|7?*+ 7 [Ky(D + D)) +K,DZ] 9 V. CONCLUSIONS

+R7,*(BXDy— ByDy) 7. (68) We studied the magnetic properties of a clean supercon-

) ) ) ductor with spin-orbit coupling. We focused on the weak-
While the second-order gradient terms here are typical for §e|q |imit near the critical temperature, where the Ginzburg-

one-component order parameter in a uniaxial crystal, the last,gngay theory is applicable. Starting from the effective
linear in bothD and B, term is unusual and occurs only gjngle-hand Hamiltonian in the magnetic field, we obtained
because of the absence of inversion symmetry. the expressions for the GL effective masses and the internal
As an application of the above resullts, let us calculate the,,4netic moments of the Cooper pairs in terms of the Fermi-
upper critical fields foB parallel and perpendicular to the g itace averages, for an arbitrary pairing symmetry and crys-
axis. To this end, we solve the linearized GL equation obyy) sirycture, both in the centrosymmetric and noncentrosym-
tained from Eq(68). If B=B(0,0,1), then metric cases.
hC a For a superconductor without inversion symmetry, un-
HeoAT) = Z—K—(TC—T)- (69)  usual terms, linear in both the magnetic field and the order
€% parameter gradients, were found in the free energy expan-
If B=B(cos¢,sin ¢,0), we choose the gauge=Bzsin ¢, sion. The order parameter itself corresponds to the pairing of
-cos¢,0). The lowest eigenvalue of the GL operator corre-€lectrons in the time-reversed states within the same nonde-

sponds to the order parameter with no modulation along thgenerate band. As a simple application of our general formal-

field direction: ism, we derived the GL functional for CeBi. It was found
5 that although the unusual gradient term does not affect the
<€ itical field in a bulk sample, it could result in a
- (B x £ upper critica sample, it
7r) eXp{lhc( r)zzo] @. field-induced enhancement ®f in a thin film.
wherez, is an arbitrary parameter. The functiffz) satisfies
an equation which can be reduced to the standard harmonic ACKNOWLEDGMENTS
oscillator equation by a shift in the coordinate=Z+z,
™ : The author is pleased to thank V. Mineev for the discus-
+(hcK/4eK,). Thus we find . S . ;
( ) sions which initiated this project, D. Agterberg for valuable
eB [Ki_, comments and pointing out Refs. 24 and 35, and B. Mitrovi
f(2) > exp - he K_ZZ ’ (70 for interest to this work. The financial support from the Natu-

ral Sciences and Engineering Research Council of Canada is
and the field-dependent critical temperature gratefully acknowledged.

2e VKK K2
_¥B+_BZ' (71)

Te®)=T(B=0) - fic «a 4aK, APPENDIX A: DERIVATION OF EQ. (34)

which is completely isotropic in th&y-plane. We see that, To derive the free energy for a nonuniform distribution of

surprisingly, theK-term does not affect the linear B sup-  the order parameter, we start with a representation of the
pression ofT,, giving rise only to a small, quadratic in field, partition function for the BCS Hamiltoniaf27) in terms of a

correction. Neglecting the latter effect, we find functional integral over the Grassmann fieldg,() and
Cka(7):
HeasolT) = 827, -7) 0
2xy\) == —\cT 1). o
2e VKK, Z= f DcDee S, (A1)

The last term in Eq(71) could become dominant in a film of -
CePtSi. If the thickness of the film is less than the correla-where S=[5d72,Cr,d,C+H(7]. The interaction term in
tion length &=K,/ a(T.—T), then the order parametéf0)  the action can be written as
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\Vi B . field approximation corresponds to a stationary saddle point
Snt=- ZE f dr>, Bl(q,7)B4(q,7), of the effective actiofA4). For 7.(q, )= 7,(q), the saddle-
a’o point action becomesh=pF, with the free energyor,
where more precisely, the difference between the free energies of
the superconducting and the normal states at the same tem-
Ba(g,7) = Ek W oK) Cotesy2,0{ ) a2 (7). peraturg given by
The interaction term is then decoupled by means of the 1 1
Habbard-Stratonovich transformation, introducing a complex F= VE 2 |- ZBTr IN(1-GeX). (A7)
bosonic fieldz,(q, 7): a
s . B The order parameter components satisfy the saddle-point
€ n— f D7D, €X _Ea fo dr equationssF/ 87,=0 (the GL equations In the vicinity of

the critical temperature at arbitrary magnetic field, the order
P . parameter is small, so we can keep only the quadratig,in
x> V|77a| + E(Ba”a*' 7aBa) | [ - terms in the expansion of the trace in the free enéfg). In
q terms of the Fourier-transformed basis functions
The last two terms in the exponent can be written as

1(* _ _ Waap(p) = 2 €W, 1K) (A8)
EJ dr, A 5K, 0} 7)Cag2,0( T Coprgrz p(7) + H.C., k
0 k,q
where and the Green'’s function®), we have

Aaﬁ(kiq; T) = E 77a(qa T)qla,aﬁ(k) (AZ) N
a F=20 | drydrom(r)Sap(ra,r2) ml(r), (A9)
b
is the order parameter matrix in the pseudospin spefc&q. :
(33)]. .
The next step is to integrate out the fermionic degrees 0¥V'th the kernel
freedom, which can be achieved by using the four- 1 1
. . - - T
compoqent Nambu spinor fle.IdS{((r.)—[cka(T) ,C_o(m]" and Suf1,F) = =88~ 1) - = f dp,dp,
calculating a Gaussian fermionic integral. As a result we ar- \ 2
rive at the following representation of the partition function:

. Xq’;aﬁ(Pl)Gﬁy(rl"'&,rz"'&;wn)
Z= f DD e St 7, (A3) ' 2 2
p P2
where X‘I’b,ya(Pz)Gaa(fl—El,rz—z;—wn)

B
su=y3 [ @S - rrna o) (A o
\% aJo q 2

Substitution of the factorized Green’s functigtD) in (A10)
is the effective action for the superconducting order paramgjves the phase factor

eter. HereG, is the Gor’kov-Nambu Green’s function at

=7 =0 (i.e., in the normal staje _ p1 PANE p1 P
G O X IQD r1+31r2+5 +|‘P rl_E'rz_E
Go={y _g7): (A5)

where G=(-d,-&)™! is a 2x2 matrix in the pseudospin
space, which satisfies E({), andZ is the 4x 4 matrix self-
energy function describing the superconducting pairing:  [to prove this, one can use the Taylor expansions ofghe

( 0 A) with respect top, ,, and also the identitiegl1)]. The next
3= ,

=exp 2igp(r r)+iiB( X p)
= elryrs ahe P P2

(AB) step is to use

AT 0
with the order parameter matrix defined by E&2). The 2e ("2 i 4=r)D
trace in the actioriA4) should be understood as the matrix exp) iz [ AlNdr ary) = e™iePuglry),
51

trace in the four-dimensional Nambd pseudospin space,

accompanied by the operator trace in #vespace. . _
Using the partition functior(A3), we can calculate the WhereD=-iV +(2e/Ac)A, to cast the free energéA9) in

free energy of the systenf=—(1/8)In Z. The BCS mean- the form(34), with the functionS(R) given by
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s 1 RepresentingC.,,, in terms of the operator@1 , we have
SR = 5T f dp1dp, VY () W, 5(02) P Kan peratoreB1)
n

kab:_ E Rab,nrrartam’ (BZ)

eB
hcn,mzis

Xexp{iiB(m X Pz)]

anc where the coefficientEab’nm are linear combinations ¢, ;
Gl R+ PL— P> s (r- pP1— P> Cw and therefore do not depend @& It immedia:[ely follows
By ') Pas oo from the last expression that all eigenvaluesKoare linear
in B.

(Al11) . . .
To calculate the eigenvalues explicitly, it is convenient to
Finally, taking the Fourier transform of this expression, wechoose the basis of stat@$, p) such that
arrive at Eq.(36). N
The analysis in the noncentrosymmetric case can be done a|N,p) = VN +1[N+1,p),
in a similar fashion, the only difference being that there is no
pseudospin degrees of freedom, @&dW¥, and A become
just scalar functions. The partition function still has the form
(A3), but the effective action now reads ag|N, p) = p|N.p),
1 B 1 whereN=0,1,... has theneaning of the Landau level index
S = —Ef dr, [7.2- =Trin(1-Go3), (A12) andp is a real number which is proportional to the wave
CA q 2 vector along thez-axis: p=k/%c/eB. Expanding the eigen-

where G, and S are 2x 2 matrix operators in the Nambu functions of K in this basis: 7,(r) =2y pCanp(rIN,p), We
space and thkr-space. Repeating all the steps leading to Egarrive at a system of linear equations for the coefficients

a N,p)=VN|N-1,p),

(All1), we arrive at Eqs(55) and (56). Canp: Which is infinite in general. The upper critical field
then corresponds to the minimum eigenvalue of this system
APPENDIX B: GRADIENT ENERGY NEAR T, with respect top (while it is usually assumed that the mini-

mum is achieved fop=0, some exceptions are discussed,
In this Appendix we estiAmate the lowest eigenvalue of thee g., in Ref. 5.
matrix differential operatokC,,=Kp;;DiDj, whereK,,;; are In some simple cases, the diagonalization procedure out-
constant coefficients,b=1...d, andi,j=x,y,z. We choose lined above can be carried out analytically. For example, for
B along thez axis, i.e.,B=BZz (one can always achieve that a one-component order parameter in an isotrepi@ve su-
by rotating the coordinate system, which is equivalent to gerconductor we have
redefinition ofK,;j;). It is convenient to introduce new op-

A B
erators K =K(DZ+D2+D?) = %K(4a+aL +ai+2). (B3)
1 |#Ac . ; _
a, = 5 _B(Dxi iD,), Sincea,a_|N,p)=NI|N, p), we have
- e
- eB
IC|N,p>:ﬁ—K(4N+p2+2)|N,p). (B4)
a3 = \/@D (B1) ‘
8" NVeB % The lowest eigenvalue correspondsNe p=0, which gives

the standard expression for the critical temperature sup-

It is easy to check that the operat@ssatisfy the relations pressed by the field,

a,=a' and[a_,a,]=1, and therefore have the meaning of the
lowering and the raising operators, respectively, while the TB) =T(B=0 _Z_GEB B5
operatoras=aj commutes with both of themag,a.]=0. o(B) =Tl ) fica (B9
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