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We study the response of a superconductor with a strong spin-orbit coupling on an external magnetic field.
The Ginzburg-Landau free energy functional is derived microscopically for a general crystal structure, both
with and without an inversion center, and for an arbitrary symmetry of the superconducting order parameter. As
a by-product, we obtain the general expressions for the intrinsic magnetic moment of the Cooper pairs. It is
shown that the Ginzburg-Landau gradient energy in a superconductor lacking inversion symmetry has unusual
structure. The general formalism is illustrated using as an example CePt3Si, which is the first known heavy-
fermion superconductor without an inversion center.
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I. INTRODUCTION

Superconductors with unconventional, or anisotropic,
pairing have remained one of the favorite and most-studied
systems in condensed matter physics for more than two de-
cades. Any superconducting material in which the symmetry
of the pair wave function is different from ans-wave spin
singlet, predicted by the Bardeen-Cooper-Schrieffer(BCS)
theory, can be called “unconventional.” From the initial dis-
coveries of superconductivity in the heavy-fermion com-
pounds, the list of examples has grown to include the high-Tc
cuprate superconductors, ruthenates, magnetic superconduct-
ors, and possibly organic materials. In contrast, such popular
novel superconductor as MgB2, in which the order parameter
is ans-wave singlet, is still “conventional” despite its many
unusual properties.

Although the pairing mechanism in most if not all uncon-
ventional superconductors is subject to much debate, their
behavior can be well understood using the symmetry ap-
proach, pioneered in Refs. 1–3. The intrinsic anisotropy and
the multicomponent nature of the order parameter lead to a
variety of interesting magnetic properties, such as the inter-
nal magnetism of the Cooper pairs, multiple phases in the
vortex state, and the upper critical field anisotropy nearTc
not described by the effective mass tensor in the Ginzburg-
Landau(GL) equations; for a review see, e.g., Refs. 4 and 5.

In most of the previous microscopic calculations of the
magnetic properties of unconventional superconductors, the
model of an isotropic band in a centrosymmetric crystal has
been used. Historically, this has its origin in the fact that an
unconventional Cooper pairing was first extensively studied
in the context of the superfluid3He, which is indeed an iso-
tropic Fermi liquid with a weak spin-orbit(SO) coupling.6

Although taking into account a realistic Fermi surface aniso-
tropy in a crystalline superconductor is not believed to cause
any drastic qualitative effects, it might lead to some consid-
erable quantitative changes compared to the parabolic band
model. The SO coupling in crystals is usually taken care of
by redefining the basis of the single-electron states: instead
of the usual Bloch spinors, the Cooper pairs are now formed
by pseudospin eigenstates.2 Then the only significant change
in the superconducting properties, compared to the case

without SO coupling, is that the system is no longer invariant
with respect to arbitrary SUs2d spin rotations, which alters
the symmetry of the order parameter in the pseudospin-
triplet channel.1,2 A detailed analysis of the temperature de-
pendence of the upper critical field, including the band an-
isotropy, impurity scattering, and sometimes the Fermi liquid
corrections, has been done using the quasiclassical(Eilen-
berger) method, see, e.g., Ref. 7, and the references therein.
A disadvantage of this approach is that it assumes a constant
density of states of the normal electrons near the Fermi sur-
face and therefore fails to capture some contributions to the
intrinsic magnetism of the Cooper pairs. Additional compli-
cations arise when a superconductor with SO interaction
lacks an inversion center. In a nutshell, the symmetry analy-
sis of superconducting phases should be modified if the SO
coupling is strong, because the twofold degeneracy of the
single-electron bands is now lifted almost everywhere in the
Brillouin zone, which makes it impossible to introduce pseu-
dospin and also suppresses most of the pairing channels.8

Although most superconductors do have inversion sym-
metry, there are some exceptions. Early examples included
such materials as V3Si (Ref. 9) and HfV2,

10 in which a pos-
sible loss of inversion symmetry is associated with a struc-
tural phase transition in the bulk of the crystal. The existence
of superconductivity was later reported in ferroelectric per-
ovskites SrTiO3 (Ref. 11) and BaPbO3-BaBiO3.

12 It was
pointed out in Ref. 13 that the surface superconductivity ob-
served, e.g., in Na-doped WO3,

14 is generically noncen-
trosymmetric simply because of the fact that the two sides of
the surface layer are manifestly nonequivalent. Possible ef-
fects of the absence of inversion symmetry in the layered
high-Tc cuprates were discussed in Ref. 15. Very recently,
superconductivity was found in noncentrosymmetric com-
pounds CePt3Si (Ref. 16) and UIr.17

This article is aimed at studying the magnetic properties
of a clean superconductor with arbitrary pairing symmetry
and band structure, with or without an inversion center. We
focus on the strong SO coupling limit, which is believed to
be the case in many unconventional superconductors, in par-
ticular the heavy-fermion compounds, because of the pres-
ence of elements with large atomic weights, such as U, Ce,
etc. In contrast to the previous works, the starting point of
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our calculations is an effective band Hamiltonian, which de-
scribes the dynamics of the Bloch electrons in a magnetic
field.18 The superconducting pairing is introduced using a
BCS-type weak-coupling model, generalized for the case of
an unconventional pairing symmetry. We derive the GL free
energy microscopically, which allows us not only to calcu-
late the upper critical field, but also evaluate the intrinsic
magnetic moment of the Cooper pairs in a crystalline super-
conductor. To the best of the author’s knowledge, a micro-
scopic derivation of the GL equations for a superconductor
lacking an inversion center, in the presence of an arbitrary
SO coupling, has never been done before, so we fill this gap
here. On the other hand, although some of our results in the
centrosymmetric case are not new and can be found scattered
in the literature, we found it instructive to treat both cases
within the same general framework, which also highlights
the important differences between them.

The article is organized as follows. In Sec. II, we discuss
the properties of the Bloch electrons in a magnetic field in
the normal state, and introduce the single-band effective
Hamiltonian. In Sec. III, we study the properties of a strong
SO coupling superconductor in a magnetic field nearTc, de-
rive the linearized GL equations in the lowest order inB, and
calculate the internal magnetic moment of the Cooper pairs,
in both the centrosymmetric and noncentrosymmetric cases.
In Sec. IV, we apply the general formalism to CePt3Si. Sec-
tion V concludes with a discussion of our results.

II. SINGLE-PARTICLE PROPERTIES

To develop the necessary framework for the analysis of
the superconducting properties, we first need to understand
how a uniform magnetic field affects the single-electron
states in a normal crystal with SO coupling(with or without
an inversion center). While for free electrons with a para-
bolic dispersionp2/2m the magnetic Hamiltonian is obtained
by simply replacingp with a gauge-invariant momentum op-
erator p+se/cdA (e is the absolute value of the electron
charge), the case of band electrons should be treated more
carefully.

In zero field, the single-electron Hamiltonian has the form

H0 = o
kn

enskdckn
† ckn, s1d

wherec† andc are the creation and annihilation operators of
band electrons with the wave vectork, enskd is the quasipar-
ticle dispersion in then th band, which takes into account all
effects of the periodic lattice potential and the SO interac-
tion, andok stands for the integration over the first Brillouin
zone. We assume that there is no disorder in the crystal, so
that k is a good quantum number in the absence of external
fields. The Matsubara Green’s function of electrons, defined
in the standard fashion:

Gn1n2
sk1,t1;k2,t2d = − kTtck1n1

st1dck2n2

† st2dl, s2d

is diagonal with respect to both the band index and the wave
vector:

Gnsk,vnd =
1

ivn − enskd
, s3d

wherevn=s2n+1dpT is the fermionic Matsubara frequency
(we use the units in whichkB=1).

In the presence of a nonzero uniform magnetic fieldB,
Eq. (1) is replaced by

H0 = o
kn

ckn
† Ensk,Bdckn, s4d

where E is the effective one-band Hamiltonian in the
k-space.18 The main technical difficulty in the derivation of
Eq. (4) is that the corresponding vector potentialA grows
linearly as a function ofr, leading to divergent matrix ele-
ments of the Hamiltonian with respect to the zero-field Bloch
waves. As was first pointed out by Peierls,19 these nonpertur-
bative features can be taken into account by simply replacing
the wave vectork in the zero-field band dispersionenskd by
the gauge-invariant combinationk+se/"cdAsr̂d, where r̂
= i¹k is the position operator in thek-representation. Later,
this idea was elaborated in Refs. 20 and 21, where it was
shown that the Peierls Hamiltonian corresponds in fact to the
zero-order term in the expansion of the general effective one-
band Hamiltonian in powers ofB:

Ensk,Bd = ensKd + Bien,i
s1dsKd + BiBjen,i j

s2d sKd + . . . , s5d

whereK is an operator in thek-space:

K = k +
e

"c
Asr̂d = k + i

e

2"c
SB 3

]

] k
D

[here and below we use the symmetric gauge:A=sB3 rd /2].
Since the components ofK do not commute:fKi ,Kjg
=−ise/"cdeijkBk, the order of application is important, so that
E is assumed to be a completely symmetrized function ofKi.
This can be achieved, e.g., by representing the expansion
coefficients in Eq.(5), which are periodic ink, in the form of
a Fourier series over the lattice vectorsR, and then replacing
k→K to obtain the operatorsensKd=oRensRde−iRK, etc.

If the electron bands are degenerate in zero field due to
spin or pseudospin(see Sec. II A below), then the effective
HamiltonianE and all the expansion coefficients are 232
matrices. The Green’s function corresponding to the Hamil-
tonian(4) is not diagonal with respect tok, because the sys-
tem is no longer invariant under lattice translations(it is still
invariant though under the magnetic translations which com-
bine the lattice translations with gauge transformations).

Although the explicit expressions for the expansion coef-
ficients in Eq.(5) can be derived, at least in principle, using
the procedure described in detail in Ref. 21, some important
information can be obtained from general symmetry consid-
erations. The full symmetry groupG of the system in the
normal state is given by a product of the space group and the
gauge group Us1d. Assuming that there is no magnetic order
in zero field and omitting the lattice translations, we can
write G=G3K3Us1d, whereG is the point group of the
crystal, which may or may not include the inversion opera-
tion I, andK is the time reversal operation. At nonzeroB, the
Hamiltonian (4) is invariant with respect to time reversal

K. V. SAMOKHIN PHYSICAL REVIEW B 70, 104521(2004)

104521-2



only if the sign of B (and of A) is also changed, which
imposes the following constraint on the functionE:
K†Ens−BdK=EnsBd. In addition, the expansion coefficients
must have certain transformation properties under the action
of the point group elements, in particular, the band dispersion
eskd must be invariant under all operations fromG.

Further steps depend crucially on whether or not there is
an inversion center in the crystal lattice, which determines
the degeneracy of the zero-field bands.

A. Crystals with inversion center

If the crystal has an inversion center, then the bands are
twofold degenerate at eachk, because the Bloch statesck+
=ckn and ck−=KIckn have the same energy, belong to the
same wave vector, and are orthogonal. These states can be
chosen to transform under the action of the space group op-
erations similar to the spin eigenstates, in which case they
are referred to as the pseudospin states.2 Thus the bands can
be labeled byn=sn,ad, wherea=± is the pseudospin pro-
jection. Focussing on a single band, we can omit the indexn,
and the effective band Hamiltonian(5) becomes

Eabsk,Bd = esKddab − Bimi jsKds j ,ab + ¯ , s6d

wheres j are the Pauli matrices, and both the zero-field band
dispersioneskd and the tensormi jskd are invariant under all
point group operations. It is easy to see that this form of the
effective Hamiltonian is compatible with all the symmetry
requirements, in particular thatE should be Hermitian andK-
and I-invariant. Indeed, the time reversal operator isK
=sis2dK0, whereK0 is the operation of complex conjugation,
which changesk→−k. Therefore, we havefs2Es−k ,
−Bds2g* =Esk ,Bd. Also, Es−k ,Bd=Esk ,Bd, because of inver-
sion symmetry. In the limit of zero SO coupling, the usual
Zeeman interaction term is recovered:mi jskd→mBdi j , where
mB is the Bohr magneton.

The Green’s function(2) is a 232 matrix in the pseu-
dospin space, which satisfies the following equation in the
frequency representation:

sivn − E1dagGgbsk1,k2;vnd = dabdsk1 − k2d. s7d

The Fourier transform of the Green’s function, defined as

Gabsr1,r2;vnd = o
k1,k2

eik1r1−ik2r2Gabsk1,k2;vnd, s8d

satisfies the equation

sivn − Ê1dagGgbsr1,r2;vnd = dabdsr1 − r2d, s9d

whereÊ is the Fourier transform of the effective band Hamil-
tonian(6), which is obtained by replacingK by the operator

K̂ = − i
]

] r
+

e

"c
Asrd = − i

]

] r
+

e

2"c
sB 3 rd.

The subscript 1 inE1 or Ê1 means that the operator acts
on the first argument ofG. It should be noted that the
Green’s function (8) is not the same as the Green’s
function of the band electrons in the coordinate representa-

tion. The latter is defined askr1s u sivn−H0d−1u r2s8l
=kr1s uk1alGabsk1,k2;vndkk2b u r2s8l (the summation over
repeated indices is implied), wherekrs ukal=ckasrsd is the
Bloch spinor, withs= ↑ ,↓ being thez-projection of spin.

The second term inK̂ presents some difficulty because it
grows linearly as a function ofr and therefore cannot be
treated as a small perturbation. To handle this problem, we
seek solution of Eq.(9) in a factorized form

Gabsr1,r2;vnd = Ḡabsr1 − r2,vndeiwsr1,r2d, s10d

where wsr1,r2d=se/"cder1

r2Asrddr, and the integration goes
along a straight line connectingr1 and r2.

22 Using the iden-
tities

]

] r1,2
E

r1

r2

Asrddr = 7 Asr1,2d +
1

2
fB 3 sr1 − r2dg, s11d

one can show that the translationally-invariant function

Ḡsr1−r2d=ḠsRd obeys the equation

sivn − ĒdagḠgbsR,vnd = dabdsRd, s12d

where the operatorĒ is obtained by replacingK̂ in the argu-

ment of Ê in Eq. (9) by K̂R=−i ] /]R+se/2"cdsB3Rd.
The advantage of introducing the functionḠ is that, in

contrast to Eq.(9), the magnetic field term in Eq.(12) can be
treated as a perturbation at small enoughB. The precise con-
dition can be easily obtained in the case of an isotropic para-
bolic bandeskd="2sk2−kF

2d /2m, when the solution of Eq.

(12) in zero field is ḠabsR,vnd,dabeikFR sign vne−uvnuR/vF,
wherevF="kF /m is the Fermi velocity. Because of the fast
oscillations of the exponential, the characteristic scale of the
derivative] /]R is kF. On the other hand, the scale ofR is

given by"vF /kBT, so that the field-dependent term inK̂RḠ is
small compared with the gradient term if"vc!kBT, where
vc=eB/mc is the cyclotron frequency. Although this condi-
tion does not have a simple form for a realistic band struc-
ture, it is usually assumed that the perturbative treatment of
B in Eq. (12) is legitimate at all but very low temperatures,
where the Landau level quantization effects become impor-
tant.

The Fourier transform ofḠ satisfies the equation

fivn − Ēsk,BdgagḠgbsk,vnd = dab, s13d

which is solved perturbatively inB. The expansion of the
effective band Hamiltonian has the form

Ēabsk,Bd = eskddab − Bmabskd + OsB2d, s14d

where

mi,abskd = i
e

2c
Fvskd 3

]

] k
G

i

dab + mi jskds j ,ab. s15d

The first term comes from the expansion ofesKd, with
vskd=s1/"d]eskd /]k being the band velocity, while the sec-
ond one is obtained by replacingK with k in mi j . As obvious
from Eq.(14), m can be interpreted as the magnetic moment
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operator of the band electrons, although one cannot say that
the first and the second terms correspond to the orbital and
the spin magnetic moments respectively, because bothvskd
andmi jskd include the effects of SO coupling. The solution of

Eq. (13) can be written asḠ=Ḡ0−BḠ0mḠ0+OsB2d. Insert-
ing expression(15) here and keeping only the corrections of
the first order inB, we have

Ḡabsk,vnd =
dab

ivn − eskd
− Bimi jskd

s j ,ab

fivn − eskdg2 . s16d

Note that because of inversion symmetry,Ḡabs−k ,vnd
=Ḡabsk ,vnd.

B. Crystals without inversion center

In the absence of inversion center in the crystal lattice, the
electron bands are nondegenerate almost everywhere, except
from some high-symmetry lines in the Brillouin zone. The
formal reason for this is that without the inversion operation
I, one cannot in general construct two orthogonal degenerate
Bloch states at the samek (note that the Kramers theorem
still holds: there is a degeneracy between the time reversed
statesckn andKckn belonging tok and −k respectively). The
above is not valid at zero SO coupling. In that case, there is
an additional symmetry in the system—the invariance with
respect to arbitrary spin rotations, which leads to the bands
being twofold degenerate because of spin, so that the results
of the previous section apply.

Assuming that the SO coupling is strong and the bands
are well split [which is the case in CePt3Si (Ref. 23)], the
effective single-band Hamiltonian(5) can be written in the
following form:

Esk,Bd = esKd − BlsKd + . . . , s17d

where the band dispersioneskd is invariant with respect to all
point group operations, andlskd is a pseudovector, which,
being a property of the crystal in zero field, satisfies the
conditionssgldsg−1kd=lskd, whereg is any operation from
the point group. Because of the time-reversal symmetry, we
also havees−kd=eskd andls−kd=−lskd. At a nonzeroB we
haveEs−k ,−Bd=Esk ,Bd, but Es−k ,BdÞEsk ,Bd in general,
because of the lack of inversion symmetry. An example of
the microscopic calculation oflskd using a simple two-
dimensional model is given at the end of this subsection.
Also, in Sec. IV below, we discuss how to find the momen-
tum dependence ofl in a noncentrosymmetric tetragonal
crystal.

The only modification to the analysis of Sec. IIA is that
both the effective Hamiltonian(5) and the Green’s function
(2) become scalar functions. The Green’s function is factor-
ized:

Gsr1,r2;vnd = Ḡsr1 − r2,vndeiwsr1,r2d, s18d

where the Fourier transform ofḠ satisfies the equation

fivn − Ēsk,BdgḠsk,vnd = 1. s19d

As in the centrosymmetric case, at low fields we solve this
equation perturbatively inB, using

Ēsk,Bd = eskd − Bmskd + OsB2d, s20d

where

mskd = i
e

2c
Fvskd 3

]

] k
G + lskd s21d

has the meaning of the magnetic moment operator of the
band electrons. The contribution from the first term inm to

Ḡ vanishes, and we finally have, in the first order inB,

Ḡsk,vnd =
1

ivn − eskd
− Biliskd

1

fivn − eskdg2 . s22d

Most of the previous works on noncentrosymmetric su-
perconductors, both two-dimensional,13,15,24 and
three-dimensional,25 have been based on the Rashba model
(we would like to mention, in particular, Ref. 26, in which
the GL functional was derived for a one-components-wave
order parameter in a Rashba superconductor). In this model,
the combined effect of the SO coupling and the lack of in-
version symmetry is mimicked by an additional term in the
single-particle Hamiltonian:

H0 = o
k

e0skdaks
† aks + go

k
n · ssss8 3 kdaks

† aks8. s23d

Here s ,s8= ↑ ,↓ is the z-axis spin projection, the operator
aks destroys an electron in a Bloch state of energye0skd
corresponding to zero SO coupling, andn is a unit vector
allowed by symmetry(in a 2D system,n is simply the nor-
mal vector to the plane). Choosingn= ẑ, we diagonalize the
Hamiltonian (23) by a unitary transformationaks=Uk,snckn
sn=1,2d, which gives two Rashba bands:

e1s2dskd = e0skd ± uguk' s24d

sk'=Îkx
2+ky

2d, with the eigenfunctions

ck,1s2dsrd =
1
Î2

S 1

7 ieiwk
Deikr , s25d

where tanwk=ky/kx. The bands(24) are nondegenerate al-
most everywhere, touching only at the two poles of the
Fermi surface along thez axis. We would like to emphasize
that the band indicesn=1,2 cannot be interpreted as the
pseudospin projections. Indeed, under time reversal the pseu-
dospin eigenstates would transform similar to the spin eigen-
states, i.e., into one another. However, being a symmetry of
the Hamiltonian time reversal transforms the Rashba bands
into themselves, which can be directly verified for the eigen-
states(25),
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Kck,1 = sis2dK0ck,1 =
ie−iwk

Î2
S 1

ieiwk
De−ikr

=
ie−iwk

Î2
S 1

− ieiw−k
De−ikr ~ c−k,1,

and similarly forck,2 (we usedw−k=wk+p).
It is easy to show that in the presence of a nonzero mag-

netic field the effective Hamiltonian for the Rashba model
can be cast in the form(17). To obtain the pseudovector
lskd, let us consider a two-dimensional system in a field
parallel to thexy plane. Then the Hamiltonian(23) is modi-
fied by the Zeeman term:HB=H0−mBsB. The diagonaliza-
tion of HB, followed by an expansion in powers ofB, gives

E1s2dsk,Bd = e0skd ± Îg2k'
2 + 2gmBsk 3 Bdx + mB

2B2

.e1s2dskd − l1s2dskdB,

where

l1s2dskd = ± mB
k 3 n

k'

. s26d

In this article, we want to keep our discussion as general as
possible and therefore do not resort to any explicit model,
such as the Rashba model, to describe the SO coupling. Our
results are based only on the symmetry considerations and
valid for an arbitrary strength of the SO coupling and any
band structure.

III. MAGNETIC RESPONSE IN THE SUPERCONDUCTING
STATE

A. Crystals with inversion center

Now let us take into account the attractive interaction be-
tween the band electrons in the Cooper channel. The total
Hamiltonian is given byH=H0+Hint, where the free electron
Hamiltonian H0 is given by Eq.(4) and, for a BCS-type
mechanism of pairing, the interaction part can be written as

Hint =
1

2 o
k,k8,q

Vab,gdsk,k8dck+q/2,a
† c−k+q/2,b

† c−k8+q/2,gck8+q/2,d.

s27d

The pairing potential does not depend on the external mag-
netic field and is assumed to have a factorized form:

Vab,gdsk,k8d = −
1

2
Vo

a=1

d

Ca,abskdCa,gd
† sk8d, s28d

with the coupling constantV.0. HereCaskd are the 232
matrix basis functions of an irreducible representationG of
dimensionalityd of the symmetry group of the system at
zero magnetic field.4 The pairing interaction is nonzero only
inside a thin shell of widthec (the cutoff energy) in the
vicinity of the Fermi surface eskd=0, i.e., Caskd
=CaskFdfcfeskdg, where kF is a wave vector at the Fermi
surface and the cutoff functionfcsed is localized about the
origin, e.g., fcsed=usec− ue u d. The basis functions are as-
sumed to be orthonormal:

1

2
ktrfCa

†skdCbskdgle =
1

2
ktrfCa

†skdCbskdgl0fc
2sed = dabfc

2sed,

s29d

where the angular brackets denote the averaging over the
constant energy surfaceeskd=e:

ks¯dle =
1

N0sedok
s. . .ddfe − eskdg, s30d

andN0sed=okdfe−eskdg is the normal-metal density of states
(DoS) per one pseudospin projection.

It follows from anticommutation of the fermionic opera-
tors thatCa,bas−kd=−Ca,abskd. In the presence of inversion
symmetry, the even ink (pseudospin-singlet) and odd ink
(pseudospin-triplet) pairing states can be considered sepa-
rately. In the singlet case, the matrix basis functions can be
represented in the form

Ca,abskd = sis2dabfaskd, s31d

where faskd are the even scalar basis functions of theG
representation. In the triplet case, we have

Ca,abskd = sisis2dabfa,iskd, s32d

where faskd are the odd vector basis functions of theG
representation.1,4

The superconducting order parameter can be represented
as a linear combination of the basis functions:

Dabsk,qd = o
a

hasqdCa,abskd, s33d

with the coefficientsha playing the role of the order param-
eter components, which determine, for instance, the free en-
ergy F of the superconductor. In the vicinity of the critical
temperatureTcsBd, one can keep only the quadratic terms in
the expansion ofF:

F = o
ab
E dr ha

*srdSabhbsrd. s34d

HereS is ad3d matrix differential operator of infinite order:

Sab =
1

V
dab −E dRS̄absRde−iRD, s35d

whereD=−i¹r +s2e/"cdA, and the translationally-invariant

function S̄absRd is expressed in terms of the Green’s func-
tions (12). Its Fourier transform is given by

S̄absqd = To
n

o
k

Labgd
ab skdḠbgSk +

q

2
,vnD

3ḠadS− k +
q

2
,− vnD ,
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Labgd
ab skd =

1

2
UexpFi

e

4"c
BS ]

] k1
3

]

] k2
DG

3Ca,ab
† sk1dCb,gdsk2dU

k1=k2=k

=
1

2
Ca,ab

† skdCb,gdskd

+ i
e

8"c
Bs¹kCa,ab

† 3 ¹kCb,gdd + OsB2d.

s36d

The derivation of these formulas is outlined in Appendix A.
As obvious from Eq.(35), the operatorS is a completely
symmetrized function of the components ofD, which do not
commute:fDi ,Djg=−is2e/"cdeijkBk. Also, its Taylor expan-

sion contains only even powers ofD, becauseS̄abs−Rd
=S̄absRd due to the inversion symmetry.

The field dependence of the phase transition temperature
at arbitraryB can be found from Eq.(34): TcsBd is defined as
the temperature at which the minimum eigenvalue of the
operatorSpasses through zero. For an isotropics-wave order
parameter, the corresponding equations were derived and
solved in Ref. 27, while for an isotropicp-wave case it was
done in Ref. 28. In a general case, i.e., for an arbitrary band
structure and pairing symmetry,TcsBd can only be calculated
numerically.

Here we focus on the properties of our superconductor in
the weak field limit. We haveF=eFdr, where the free en-
ergy density can be represented as

F = Aabha
*ha + Kab,i jha

*DiDjhb − MB . s37d

This expression has the usual form expected on the phenom-
enological grounds, withKab,i j being the generalized effec-
tive mass tensor, andM having the meaning of the intrinsic
magnetic moment of the Cooper pairs. The linearized GL
equations follow from Eq.(37) after the minimization over
the order parameter:dF /dha

*srd=0. Below we outline how to
calculate the free energy density using our weak-coupling
model.

The first term inF is obtained by puttingq=B=0 in Eqs.
(35) and (36), which gives

Aab =
1

V
dab −

1

2o
k

trfCa
†skdCbskdgSfeskdg, s38d

and

Ssed = To
n

1

vn
2 + e2 =

1

2e
tanh

e

2T
.

The necessary momentum cutoff in Eq.(38) is provided by
the basis functionsCaskd, which are restricted to the vicinity
of the Fermi surface. Calculating the momentum integral
with the help of the normalization condition(29), we obtain
Aab=fs1/Vd− Igdab, where

IsTd =E deN0sedfc
2sedSsed . NF ln

2eCec

pT
s39d

(C.0.577 is Euler’s constant). To obtain this result we made
the usual assumption thatN0sed is a slowly-varying function
within the energy shell of widthec near the Fermi surface,
which allows us to replace it by a constant—the DoS at the
Fermi levelNF=N0s0d. At the zero-field critical temperature
Tc, we haveIsTcd=1/V, which gives the standard BCS re-
sult: Tc.1.13ecexps−1/NFVd. ExpandingAab in the vicinity
of Tc, we recover the familiar expression for the uniform
term in the free energy density,

Aab = asT − Tcddab, s40d

wherea=NF /Tc.
Next, we calculate the intrinsic magnetic momentM. Us-

ing the small-B expansions of the normal-state Green’s func-

tion Ḡ and the vertexL, we obtain in the singlet case,

Mi =
ie

4"c
ha

*hbks¹kfa
* 3 ¹kfbdil0I ,

where ks¯dl0 stands for the Fermi-surface averaging(30),
and I is defined by Eq.(39). To derive this expression, we
again used the fact that the basis functions are nonzero only
in a narrow vicinity of the Fermi surface, which allows one
to separate the energy integration from the integration over
the Fermi surface. A similar calculation in the triplet case
gives

Mi =
ie

4"c
ha

*hbks¹kfa
* 3 ¹kfbdil0I

+ 2iha
*hbkmi jskdsfa

* 3 fbd jl0I1,

where

I1sTd =E de N0sedfc
2sedS1sed . −

NF8

2
ln

2eCec

pT
,

S1sed = To
n

1

sivn − ed2

1

− ivn − e
=

1

2

] Ssed
] e

. s41d

HereNF8 =N08s0d is a measure of the electron-hole asymmetry
near the Fermi surface. PuttingT=Tc, using the BCS result
for the critical temperature, and choosing real basis functions
(which can always be done if the normal state is non-
magnetic) we finally obtain the density of the intrinsic mag-
netic moment of the Cooper pairs:

M = igabha
*hb, s42d

wheregab=−gba is given by

gi,ab =
e

4"c

1

V
eijlK ] faskd

] kj

] fbskd
] kl

L
0

s43d

in the singlet case, and

gi,ab =
e

4"c

1

V
eijlK ] fa,mskd

] kj

] fb,mskd
] kl

L
0
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−
NF8

NF

1

V
ejklkmi jskdfa,kskdfb,lskdl0 s44d

in the triplet case. It follows from these expressions thatM
=0 for any order parameter corresponding to a one-
dimensional representation of the point group, both in the
singlet and triplet cases.

Finally, let us evaluate the gradient terms in Eq.(37). The
magnetic field dependence of the coefficientsKab,i j can be
neglected, which follows from the fact that the lowest eigen-
value of the operatorKab,i jDiDj is already linear inuBu, see
Appendix B. The physical meaning of this is simple: the
suppression of the critical temperature due to the gradient
energy is always linear in a weak field, regardless of the
dimensionality of the order parameter and the shape of the
Fermi surface. Taking the second order derivative in Eq.(36)
at B=0 and calculating the Matsubara sums, we obtain

Kab,i j = −
1

4
"2ktrfCa

†skdCbskdgviskdv jskdl0I2

−
1

8
"2ktrfCa

†skdCbskdgmij
−1skdl0I1.

Here mij
−1skd=s1/"2d]2eskd /]kj ]kj is the inverse tensor of

effective masses,I1 is defined by Eq.(41), and

I2sTd =E deN0sedfc
2sedS2sed . −

7zs3d
8p2T2NF, s45d

where

S2sed = To
n
F 1

sivn − ed3

1

− ivn − e

−
1

2

1

sivn − ed2

1

s− ivn − ed2G
= −

1

16T2e
sinhS e

2T
D cosh−3S e

2T
D

has a peak neare=0, andzssd is Riemann’s zeta-function.
Putting all the pieces together, replacingT with Tc, and

using real basis functions, we finally have

Kab,i j =
7zs3d"2

16p2Tc
2 NFkfaskdfbskdviskdv jskdl0

+
"2

8V

NF8

NF
kfaskdfbskdmij

−1skdl0 s46d

in the singlet case, and

Kab,i j =
7zs3d"2

16p2Tc
2 NFkfa,lskdfb,lskdviskdv jskdl0

+
"2

8V

NF8

NF
kfa,lskdfb,lskdmij

−1skdl0 s47d

in the triplet case. Assuming a spherical Fermi surface, a
completely isotropic pairing corresponding to the unity rep-
resentation ofG, and neglecting the electron-hole asymme-
try, Eq. (46) yields Kij =di jf7zs3d"2/48p2Tc

2gNFvF
2.22 For an

anisotropic Fermi surface, but still a conventional pairing,
the results of Ref. 29 are recovered.

Now we would like to make a few comments about our
results. The internal magnetism of superconductors has been
discussed before mostly for a charged isotropic Fermi liquid
without SO coupling, see, e.g., Ref. 30. In this case, the
density of the pair magnetic moment can be divided into the
orbital and spin parts, both being small due to the smallness
of both the quasiclassical parameterskFj0d2!1 (j0 is the
coherence length), and the electron-hole asymmetryNF8.4

Here we do not make any assumptions about the strength of
the SO coupling, therefore the orbital and the spin magnetic
moments cannot be separated, in general. For a general band
dispersion, one can neglect neither of these contributionsa
priori , before calculating the Fermi-surface averages in Eqs.
(43) and (44). In particular, the energy dependence of the
single-electron DoS in the metals withd- and f-electrons is
usually quite significant, which can lead to an appreciable
electron-hole asymmetry near the Fermi level.

In terms of the response of the superconductor on a weak
external field, the gradient terms produce a linear inB sup-
pression ofTc, see Appendix B. The value of the slope
dHc2/dT can be calculated either analytically(in very few
cases), or using a variational approach. On the other hand,
the pair magnetism can compete with the gradient energy,
leading even to the possibility of increasingTc as a function
of B, if the internal magnetic moment is large enough. Such
mechanism was recently proposed in Ref. 31 to explain the
phase diagram of the ferromagnetic superconductor ZrZn2.

B. Crystals without inversion center

In this case, the calculations are somewhat simpler be-
cause the bands are nondegenerate. We assume that the Coo-
per pairing occurs only between the electrons in the states
with opposite momenta, which are transformed into each
other by time reversal. Then the most general BCS-type
Hamiltonian can be written in the form

Hint = Hint
s1d + Hint

s2d + Hint
s3d, s48d

where

Hint
s1d =

1

2o
n

o
k,k8

Vn
s1dsk,k8dckn

† c−kn
† c−k8nck8n,

Hint
s2d =

1

2o
nÞm

o
k,k8

Vnm
s2dsk,k8dckn

† c−kn
† c−k8mck8m,

Hint
s3d =

1

2o
nÞm

o
k,k8

Vnm
s3dsk,k8dckn

† c−km
† c−k8mck8n.

Heren andm label the nondegenerate single-electron bands,
e.g., the Rashba bands(24). The HamiltonianHint

s1d describes
the intraband pairing,Hint

s2d describes the pair scattering be-
tween the bands, which can result in the superconducting
gaps induced on more than one sheet of the Fermi surface,
andHint

s3d corresponds to the pairing of electrons from differ-
ent bands.
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A considerable simplification occurs if the superconduct-
ing gaps are much smaller than the interband energies. For
example, the band structure calculations of Ref. 23 show that
the SO band splitting in CePt3Si exceeds the superconduct-
ing gap by orders of magnitude. In this situation, the forma-
tion of interband pairs described byHint

s3d is strongly sup-
pressed for the same reasons as for the paramagnetically
limited singlet superconductors:32 the interband splitting cuts
off the logarithmic singularity in the Cooper channel, thus
reducing the critical temperature. Although the bands may
touch at some isolated points at the Fermi surface, as is the
case for the Rashba bands(24) at k i ẑ, the interband pairing
in the vicinity of those points is still suppressed due to the
phase space limitations. We also neglect the possibility of the
Cooper pairs having a nonzero momentum(Larkin-
Ovchinnikov-Fulde-Ferrell phase),33 which is expected to be
suppressed as well by the large depairing effect of the SO
band splitting.

In this paper, we further neglect the interband pair scat-
tering process described byHint

s2d, leaving the investigation of
its effects for future work. Thus, we focus on a single non-
degenerate band for which the pairing between time-reversed
statesukl andKukl,u−kl near the Fermi surface can be writ-
ten as

Hint =
1

2o
k,k8

Ṽsk,k8dck
†cKk

† cKk8ck8, s49d

wherecKk
† denotes the creation operator of an electron in the

stateKukl, and the pairing potential is assumed to have a
factorized form

Ṽsk,k8d = − Vo
a=1

d

faskdfa
*sk8d s50d

with V.0. Herefaskd are the scalar basis functions of an
irreducible representationG of the point group of the crystal
in the absence of magnetic field, which are nonzero only
inside the energy shell of widthec near the Fermi surface
faskd=faskFdfcfeskdg, and orthonormal

kfa
*skdfbskdle = kfa

*skdfbskdl0fc
2sed = dabfc

2sed. s51d

The parity of the basis functions can be determined using the
following arguments.34 Although the time-reversed state
Kukl belongs to the wave vector −k, it is not the same as
u−kl. In fact, Kukl= tskdu−kl, wheretskd is a nontrivial phase
factor, which satisfiests−kd=−tskd. This allows us to write
cKk

† = tskdc−k
† and cKk= t*skdc−k. Inserting these relations in

Eq. (49), we have

Hint =
1

2o
k,k8

Vsk,k8dck
†c−k

† c−k8ck8, s52d

where Vsk ,k8d= tskdt*sk8dṼsk ,k8d. From the anticommuta-

tion of fermionic operators it follows thatṼsk ,k8d has to be
an even function of both arguments, i.e., one should choose
even basis functionsfaskd in the expansion(50). Treating
the interaction(52) in the mean-field approximation, one ob-
tains the order parameterDskd= tskdoahafaskd, which is odd

in k. In Ref. 23, the nodal structure ofDskd was analyzed in
terms of the odd basis functions. This has been corrected in
Ref. 34, where the the importance of the phase factortskd
was recognized.

Allowing for the possibility of a non-uniform supercon-
ducting order parameter, the Hamiltonian(52) becomes

Hint =
1

2 o
k,k8,q

Vsk,k8dck+q/2
† c−k+q/2

† c−k8+q/2ck8+q/2. s53d

The order parameter can be represented as

Dsk,qd = o
a

hasqdCaskd, s54d

where Caskd= tskdfaskd=−Cas−kd satisfy the orthonormal-
ity condition kCa

*skdCbskdle=dabfc
2sed, see Eq.(51).

The contribution to the free energy quadratic in the order
parameter has the form(34) with the kernel now given by

Sab =
1

2V
dab −

1

2
E dRS̄absRde−iRD, s55d

whereSabsRd is the Fourier transform of

S̄absqd = To
n

o
k

LabskdḠSk +
q

2
,vnDḠS− k +

q

2
,− vnD ,

Labskd = expUFi
e

4"c
BS ]

] k1
3

]

] k2
DGCa

*sk1dCbsk2dU
k1=k2=k

= Ca
*skdCbskd + i

e

4"c
Bs¹kCa

* 3 ¹kCbd + OsB2d.

s56d

The derivation is similar to the centrosymmetric case, see
Appendix A.

An important difference from the previous case is that,
although the functionsCaskd still have a definite parity, the

Green’s functions(22) do not: Ḡs−k ,vndÞḠsk ,vnd in gen-

eral, thereforeS̄abs−RdÞ S̄absRd. This means that the expan-
sion of the free energy density now contains gradient terms
of an odd degree inD:

F = fab
s0dha

*hb + fab,i
s1d ha

*Dihb + fab,i j
s2d ha

*DiDjhb + ¯ , s57d

where

fab
s0d =

1

2V
dab − S̄absq = 0d,

fab,i
s1d = −U ] S̄absqd

] qi

U
q=0

, fab,i j
s2d = −

1

2
U ]2S̄absqd

] qi ] qj

U
q=0

,

etc.
Using Eq.(22), it is easy to see thatfab,i

s1d =0 at B=0.
Keeping only the lowest order terms in the free energy

density expansion in a weak field, we have
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F = Aabha
*hb + Kab,i jha

*DiDjhb − MB + K̃ab,i jBiha
*Djhb,

s58d

whereK̃ab,i j =]fab,j
s1d /]BiuT=Tc,B=0. The uniform contribution to

F can be calculated in the same fashion as in the previous
section, and we obtain

Aab = asT − Tcddab, s59d

where the critical temperatureTc is given by the same BCS
expression as in the centrosymmetric case, but nowa
=NF /2Tc.

The pair magnetic momentM and the generalized effec-
tive mass tensorKab,i j can be calculated similarly to the cen-
trosymmetric case. Using real basis functionsfaskd, we ob-
tain

M = i
e

8"c

1

V
eijlK ] Ca

*skd
] kj

] Cbskd
] kl

L
0
ha

*hb, s60d

and

Kab,i j =
7zs3d"2

32p2Tc
2 NFkfaskdfbskdviskdv jskdl0

+
"2

16V

NF8

NF
kfaskdfbskdmij

−1skdl0. s61d

To calculate the coefficientK̃ab,i j , we expandS̄absqd to the
first order in bothB andq and evaluate the Matsubara sums,
which gives

K̃ab,i j = "kfa
*skdfbskdliskdv jskdl0I2

+
1

2
Kfa

*skdfbskd
] liskd

] kj
L

0
I1,

where lskd is the momentum-dependent pseudovector that
determines the linear response of the band electrons on a
weak magnetic field, see Eq.(17), and I1,2 are defined by
Eqs. (41) and (45), respectively. Using real basis functions,
we finally have

K̃ab,i j = −
7zs3d"
8p2Tc

2 NFkfaskdfbskdliskdv jskdl0

−
1

4V

NF8

NF
Kfaskdfbskd

] liskd
] kj

L
0
. s62d

Note that the phase factorstskd have dropped out of both

Kab,i j and K̃ab,i j . To evaluate the Fermi-surface averages in
Eqs.(60)–(62) explicitly, one has to know the band structure
[including lskd and tskd] and the momentum dependence of
the order parameter.

IV. APPLICATIONS TO CePt 3Si

CePt3Si is a heavy-fermion material without inversion
center, which was recently found to become superconducting
at T.0.75 K.16 It has a tetragonal lattice symmetry de-
scribed by the point groupG=C4v, which is generated by the

rotationsC4z about thez axis by an anglep /2 and the re-
flectionssx in the vertical plane(100). The Fermi surface is
invariant under all the operations fromC4v and also the in-
version, the latter being the consequence of the time-reversal
symmetry. The band structure calculations of Ref. 23 show
that the SO coupling in this material is strong and therefore
the degeneracy of the bands is lifted everywhere, except
along thez axis.

The point groupC4v has five irreducible representations:
four one-dimensional(A1, A2, B1, and B2), and one two-
dimensionalsEd, see Table I. Although the order parameter is
odd ink,23 its nodal structure is determined by the even basis
functions.34 Here we consider only the case of a one-
component order parameter, for which

Dsk,rd = hsrdCskd = hsrdtskdfskd, s63d

where fskd=fs−kd. The pair magnetic moment vanishes,
and the GL free energy(58) takes the form

F = asT − Tcduhu2 + Kijh
*DiDjh + K̃ijBih

*Djh.

Dropping the terms proportional toNF and using the symme-
try of the Fermi surface, we have

Kxx = Kyy = K1 =
7zs3d"2

32p2Tc
2 NFkf2skdvx

2skdl0,

Kzz= K2 =
7zs3d"2

32p2Tc
2 NFkf2skdvz

2skdl0. s64d

In order to calculateK̃ij , we need an expression forlskd,
which satisfies the following symmetry requirements
ls−kd=−lskd, sC4zldsC4z

−1kd=lskd, and ssxldssx
−1kd=lskd

(since l is a pseudovector, we havesxl; IC2xl=C2xl,
whereC2x is a rotation by an anglep about thex axis). To
solve these constraints, we representl as an expansion over
the odd basis functions of the irreducible representations of
C4v, see Table I,

lskd = o
G

o
a=1

dG

lG,af̃G,askd, s65d

wheref̃s−kd=−f̃skd. It is straightforward to check that only
the representationsA2 and E contribute to the expansion
(65), so that the most general expression forlskd, which
satisfies all the symmetry requirements, is given by

TABLE I. The character table and the examples of the basis
functions of the irreducible representations ofC4v.

G E C4z sx EvenfGskd Odd fGskd

A1 1 1 1 kx
2+ky

2+ckz
2 kz

A2 1 1 −1 skx
2−ky

2dkxky skx
2−ky

2dkxkykz

B1 1 −1 1 kx
2−ky

2 skx
2−ky

2dkz

B2 1 −1 −1 kxky kxkykz

E 2 0 0 kxkz, kykz kx, ky
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lskd = lEff̃E,2skdx̂ − f̃E,1skdŷg + lA2
f̃A2

skdẑ, s66d

wherelE andlA2
are constants. Substituting it into Eq.(62),

using the fact that the Fermi velocityvskd transforms accord-
ing to a vector representationE+A1, and dropping the terms
proportional toNF8, we finally have

K̃xy = − K̃yx = K̃ = −
7zs3d"
8p2Tc

2 NFkf2skdf̃E,1skdvxskdl0.

s67d

All other K̃ij vanish by symmetry.
Finally, the GL free energy density can be written as

F = asT − Tcduhu2 + h*fK1sDx
2 + Dy

2d + K2Dz
2gh

+ K̃h*sBxDy − ByDxdh. s68d

While the second-order gradient terms here are typical for a
one-component order parameter in a uniaxial crystal, the last,
linear in bothD and B, term is unusual and occurs only
because of the absence of inversion symmetry.

As an application of the above results, let us calculate the
upper critical fields forB parallel and perpendicular to thez
axis. To this end, we solve the linearized GL equation ob-
tained from Eq.(68). If B=Bs0,0,1d, then

Hc2,zsTd =
"c

2e

a

K1
sTc − Td. s69d

If B=Bscosw ,sin w ,0d, we choose the gaugeA=Bzssin w ,
−cosw ,0d. The lowest eigenvalue of the GL operator corre-
sponds to the order parameter with no modulation along the
field direction:

hsrd = expFi
2e

"c
sB 3 rdzz0G fszd,

wherez0 is an arbitrary parameter. The functionfszd satisfies
an equation which can be reduced to the standard harmonic
oscillator equation by a shift in the coordinate:z=Z+z0

+s"cK̃/4eK1d. Thus we find

fszd ~ expS−
eB

"c
ÎK1

K2
Z2D , s70d

and the field-dependent critical temperature

TcsBd = TcsB = 0d −
2e

"c

ÎK1K2

a
B +

K̃2

4aK1
B2, s71d

which is completely isotropic in thexy-plane. We see that,

surprisingly, theK̃-term does not affect the linear inB sup-
pression ofTc, giving rise only to a small, quadratic in field,
correction. Neglecting the latter effect, we find

Hc2,xysTd =
"c

2e

a

ÎK1K2

sTc − Td. s72d

The last term in Eq.(71) could become dominant in a film of
CePt3Si. If the thickness of the film is less than the correla-
tion length jz=K2/asTc−Td, then the order parameter(70)

becomesz-independent and the linear inB term in Eq.(71) is
absent. Thus, in this case the superconductivity can be pro-
moted by a parallel magnetic field, at least in the weak field
limit. This agrees with the results of Ref. 35, where the gra-
dient term linear inB andD was introduced on the phenom-
enological grounds for a surface superconductor. The order
parameter which occurs atTc at nonzeroB is modulated in
the xy plane:hsrd=h0e

iQr, with Q~ sẑ3Bd,35 see also Ref.
24. It should be noted though that the field-induced increase
in Tc may indicate the onset of a magnetic instability of the
superconducting state, the investigation of which is beyond
the scope of the present work.

V. CONCLUSIONS

We studied the magnetic properties of a clean supercon-
ductor with spin-orbit coupling. We focused on the weak-
field limit near the critical temperature, where the Ginzburg-
Landau theory is applicable. Starting from the effective
single-band Hamiltonian in the magnetic field, we obtained
the expressions for the GL effective masses and the internal
magnetic moments of the Cooper pairs in terms of the Fermi-
surface averages, for an arbitrary pairing symmetry and crys-
tal structure, both in the centrosymmetric and noncentrosym-
metric cases.

For a superconductor without inversion symmetry, un-
usual terms, linear in both the magnetic field and the order
parameter gradients, were found in the free energy expan-
sion. The order parameter itself corresponds to the pairing of
electrons in the time-reversed states within the same nonde-
generate band. As a simple application of our general formal-
ism, we derived the GL functional for CePt3Si. It was found
that although the unusual gradient term does not affect the
upper critical field in a bulk sample, it could result in a
field-induced enhancement ofTc in a thin film.
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APPENDIX A: DERIVATION OF EQ. (34)

To derive the free energy for a nonuniform distribution of
the order parameter, we start with a representation of the
partition function for the BCS Hamiltonian(27) in terms of a
functional integral over the Grassmann fieldsckastd and
c̄kastd:

Z =E DcDc̄e−S, sA1d

where S=e0
bdtfokc̄ka]tcka+Hstdg. The interaction term in

the action can be written as
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Sint = −
V

4o
a
E

0

b

dto
q

Ba
†sq,tdBasq,td,

where

Basq,td = o
k

Ca,ab
† skdc−k+q/2,astdck+q/2,bstd.

The interaction term is then decoupled by means of the
Habbard-Stratonovich transformation, introducing a complex
bosonic fieldhasq,td:

e−Sint →E Dha
*Dha expH− o

a
E

0

b

dt

3o
q
F 1

V
uhau2 +

1

2
sBa

†ha + ha
*BadGJ .

The last two terms in the exponent can be written as

1

2
E

0

b

dto
k,q

Dabsk,q;tdc̄k+q/2,astdc̄−k+q/2,bstd + H.c.,

where

Dabsk,q;td = o
a

hasq,tdCa,abskd sA2d

is the order parameter matrix in the pseudospin space[cf. Eq.
(33)].

The next step is to integrate out the fermionic degrees of
freedom, which can be achieved by using the four-
component Nambu spinor fieldsCkstd=fckastd , c̄−kastdgT and
calculating a Gaussian fermionic integral. As a result we ar-
rive at the following representation of the partition function:

Z =E Dha
*Dhae

−Sef ffh
* ,hg, sA3d

where

Seff =
1

Vo
a
E

0

b

dto
q

uhau2 −
1

2
Tr lns1 − G0Sd sA4d

is the effective action for the superconducting order param-
eter. HereG0 is the Gor’kov-Nambu Green’s function ath
=h* =0 (i.e., in the normal state):

G0 = SG 0

0 − GTD , sA5d

where G=s−]t−Ed−1 is a 232 matrix in the pseudospin
space, which satisfies Eq.(7), andS is the 434 matrix self-
energy function describing the superconducting pairing:

S = S 0 D

D† 0
D , sA6d

with the order parameter matrix defined by Eq.(A2). The
trace in the action(A4) should be understood as the matrix
trace in the four-dimensional Nambu3 pseudospin space,
accompanied by the operator trace in thekt-space.

Using the partition function(A3), we can calculate the
free energy of the system:F=−s1/bdln Z. The BCS mean-

field approximation corresponds to a stationary saddle point
of the effective action(A4). For hasq,td=hasqd, the saddle-
point action becomesSeff

sp =bF, with the free energy(or,
more precisely, the difference between the free energies of
the superconducting and the normal states at the same tem-
perature) given by

F =
1

Vo
a

o
q

uhasqdu2 −
1

2b
Tr lns1 − G0Sd. sA7d

The order parameter components satisfy the saddle-point
equationsdF /dha

* =0 (the GL equations). In the vicinity of
the critical temperature at arbitrary magnetic field, the order
parameter is small, so we can keep only the quadratic inha
terms in the expansion of the trace in the free energy(A7). In
terms of the Fourier-transformed basis functions

Ca,absrd = o
k

eikrCa,abskd sA8d

and the Green’s functions(8), we have

F = o
ab
E dr1dr2ha

*sr1dSabsr1,r2dhbsr2d, sA9d

with the kernel

Sabsr1,r2d =
1

V
di jdsr1 − r2d −

1

2
To

n
E dr1dr2

3Ca,ab
† sr1dGbgSr1 +

r1

2
,r2 +

r2

2
;vnD

3Cb,gdsr2dGadSr1 −
r1

2
,r2 −

r2

2
;− vnD .

sA10d

Substitution of the factorized Green’s function(10) in (A10)
gives the phase factor

expFiwSr1 +
r1

2
,r2 +

r2

2
D + iwSr1 −

r1

2
,r2 −

r2

2
DG

= expF2iwsr1,r2d + i
e

4"c
Bsr1 3 r2dG

[to prove this, one can use the Taylor expansions of thew’s
with respect tor1,2, and also the identities(11)]. The next
step is to use

expHi
2e

"c
E

r1

r2

AsrddrJhsr2d = e−isr1−r2dD1hsr1d,

where D=−i¹r +s2e/"cdA, to cast the free energy(A9) in

the form (34), with the functionS̄sRd given by
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S̄absRd =
1

2
To

n
E dr1dr2Ca,ab

† sr1dCb,gdsr2d

3expFi
e

4"c
Bsr1 3 r2dG

3 ḠbgSR +
r1 − r2

2
,vnDḠadSR −

r1 − r2

2
,− vnD .

sA11d

Finally, taking the Fourier transform of this expression, we
arrive at Eq.(36).

The analysis in the noncentrosymmetric case can be done
in a similar fashion, the only difference being that there is no
pseudospin degrees of freedom, andG, C, and D become
just scalar functions. The partition function still has the form
(A3), but the effective action now reads

Seff =
1

2Vo
a
E

0

b

dto
q

uhau2 −
1

2
Tr lns1 −G0Sd, sA12d

where G0 and S are 232 matrix operators in the Nambu
space and thekt-space. Repeating all the steps leading to Eq.
(A11), we arrive at Eqs.(55) and (56).

APPENDIX B: GRADIENT ENERGY NEAR Tc

In this Appendix we estimate the lowest eigenvalue of the

matrix differential operatorK̂ab=Kab,i jDiDj, whereKab,i j are
constant coefficients,a,b=1. . .d, andi , j =x,y,z. We choose
B along thez axis, i.e.,B=Bẑ (one can always achieve that
by rotating the coordinate system, which is equivalent to a
redefinition ofKab,i j). It is convenient to introduce new op-
erators

a± =
1

2
Î"c

eB
sDx ± iDyd,

a3 =Î"c

eB
Dz. sB1d

It is easy to check that the operatorsa± satisfy the relations
a+=a−

† andfa−,a+g=1, and therefore have the meaning of the
lowering and the raising operators, respectively, while the
operatora3=a3

† commutes with both of them:fa3,a±g=0.

RepresentingK̂ab in terms of the operators(B1), we have

K̂ab =
eB

"c o
n,m=±,3

K̃ab,nman
†am, sB2d

where the coefficientsK̃ab,nm are linear combinations ofKab,i j
and therefore do not depend onB. It immediately follows

from the last expression that all eigenvalues ofK̂ are linear
in B.

To calculate the eigenvalues explicitly, it is convenient to
choose the basis of statesuN,pl such that

a+uN,pl = ÎN + 1uN + 1,pl,

a−uN,pl = ÎNuN − 1,pl,

a3uN,pl = puN,pl,

whereN=0,1, . . . has themeaning of the Landau level index
and p is a real number which is proportional to the wave
vector along thez-axis: p=kz

Î"c/eB. Expanding the eigen-

functions of K̂ in this basis:hasrd=oN,pCa,N,pkr uN,pl, we
arrive at a system of linear equations for the coefficients
Ca,N,p, which is infinite in general. The upper critical field
then corresponds to the minimum eigenvalue of this system
with respect top (while it is usually assumed that the mini-
mum is achieved forp=0, some exceptions are discussed,
e.g., in Ref. 5).

In some simple cases, the diagonalization procedure out-
lined above can be carried out analytically. For example, for
a one-component order parameter in an isotropics-wave su-
perconductor we have

K̂ = KsDx
2 + Dy

2 + Dz
2d =

eB

"c
Ks4a+a− + a3

2 + 2d. sB3d

Sincea+a−uN,pl=NuN,pl, we have

K̂uN,pl =
eB

"c
Ks4N + p2 + 2duN,pl. sB4d

The lowest eigenvalue corresponds toN=p=0, which gives
the standard expression for the critical temperature sup-
pressed by the field,

TcsBd = TcsB = 0d −
2e

"c

K

a
B. sB5d
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