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Bernoulli potential in type-I and weak type-Il superconductors: Il. Surface dipole
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The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained
identity links the surface value of the electrostatic potential to the density of free energy at the surface which
allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit
solution of the charge profile.
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I. INTRODUCTION 1

— 2
The Hall voltage is commonly used to measure the con- &= 2mv ’ @
centration of charge carriers in conductors. In superconduct- ) .
ors this method is not applied, because of a missing theorefvhere e is the elementary charge, positive for holes and
ical support. In this paper we show that the Bernoullinegative f(_)r electrons. To av0|_d_ cc_)nfu5|on we note that the
potential, which is closely related to the Hall voltage, can beelectrostatic potential in equilibrium superconductors is
used to the same end in superconductors. called the Bernoulli potential for brevity, even if its actual
Any ideal collisionless electric fluid should exhibit a finite form does not coincide with the Bernoulli law.
Hall voltage, but superconductors seem to escape this theo- None of the early experimental data were sufficiently ac-
retical conclusion. The zero Hall voltage was reported thecurate to allow for a discussion of possible corrections to the
first time by Kamerlingh Onnes and Hoélready in 1914. plain Bernoulli potential(1). Nevertheless, the authéfs
Though later analyses showed that their samples were in theade some conclusions in this direction and we find it nec-
mixed state which obscures an interpretation of their experiessary to comment on them in more detail.
ment, the zero Hall voltage was confirmed any®ay.
From a theoretical point of view, it was clear that there
has to be a voltage balancing the magnetic pressure which A. Bok and Klein
acts on electrons via the Lorentz force. The report of Kamer- gok and Kleird claimed that their data agree with the

lingh Onnes and Hof thus stimulated various speculationaain Bernoulli potential(1). This conclusion has to be

aleogtStrllze missing Hall volteige, see trlje critical tfeVifk‘:V bYtaken with reservations, however, because they measured the
EWIS.” From various concepls proposed we mention e SOgq yostatic potential as a function of the magnetic figld

called contact potential—a potential step at the interface— :
which was expected to cancel the Hall voltage. Such a po"-ﬂ the surface. They evaluated the velosityf the supercon

tential step might exist only if a charge dipole is formed athCting electronsibriefly called the condensate velogity

the interface of a superconductor. The surface dipole we diJ—rom the LO”_‘;‘,Q” co.ndmonmv:eA and the exponential
cuss here is a similar concept. decay A=A g™, usingB=V XA. At low temperatures,

The explanation of the zero Hall voltage turned out to beth® London penetration depth depends on the demsioy
very simple. By contacts one monitors the differences in thairable electronsg=m/ (€’ uon), therefore their experimen-
Gibbs chemical potential, often called the electrochemicafal result can be expressed in terms of the magnetic pressure,
potential* The Gibbs potential is composed of three compo-eWP:—Bz/(ZMo)-
nents: the electrostatic potential, the kinetic energy, and the According to the above arguments, the relation of the
correlation energy. None of these components is constant ielectrostatic potential to the magnetic pressure seems to be a
the presence of diamagnetic currents, but their sum is corsonsequence of the plain Bernoulli potential and the London
stant in equilibrium in agreement with the observed zero Haltheory. As we show below, the relation to the magnetic pres-
voltage. sure is very general and holds also under conditions when
To eliminate the kinetic and correlation energies, Huntneither the plain Bernoulli potential nor the London theory
proposed to access the electrostatic potential with a contacépplies.

less method called the Kelvin capacitive pickugapacitive In fact, Bok and Klein measured on indium which, being
measurements appeared soon and they successfully provadype-l superconductor, is not fully covered by the London
the existence of a nonzero electrostatic poteffial. theory. Moreover, they swept the magnetic field from zero to

Both experimenf® were done at temperatures well below the critical value, while the plain Bernoulli potential and the
T., where the electrostatic potential has a simple form resensimple form of the London theory used above are restricted
bling the Bernoulli lav/—? to low magnetic fields. At high fields, the condensate density
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at the surface is suppressed what results“rand higher- angl nl , ndinTc1l

order contributions to the electrostatic potential. ep=-— mo® = mo*® =
. . . an 2 n2
Briefly, Bok and Klein have observed the magnetic pres-

sure. But the link of their experiment to the Bernoulli poten-The pairing term dominates close to the critical temperature
tial (1) has to be taken with caution. T., becausag=n(1-t%), with t=T/T,, while n,=n-ns=nt*.
According to Eq(3), from ¢ close toT, one may deduce
the density dependence ©f, which would be very attractive
with respect to designing materials. Indeed, this important
: . . material property is otherwise deducible only from measure-
Iowirgvtvr?e;n?ohg?:rr:;:vga;eﬁjgﬁ r?lig?:g?rsgc?sg(t)#ev)\ihé?g al'ments applying a hydrostatic pressure or adding impurities to
' crystals. Unlike the later methods, a measurement of the Hall

not control the magnetic f|e_Id but thg currentin a thin ere'voltage or, respectively, the Bernoulli potential does not af-
This current was scaled with the critical current. They an-

; . 2 7 fect the electronic bands, the phonon spectrum or the
nounced in 1968 that their data reveal about 20% dev'at'onélectron-phonon interaction therg‘ore it off%rs a uniquely
from the screened Bernoulli potential ’

clear information about the material.
All expectations were chilled by the next paper of Morris
and Brown!® They admitted that deviations announced in the
ep=— n_SEmvz, ) previous paper were due an incorrect estimate of the critical
n2 current and presented new highly accurate data for a wide
range of temperatures. The observed electrostatic potential is
perfectly equal to the magnetic pressure and exhibits no pair-
discussed in more detail below. ing contribution. They reported that this behavior is common
It should be noted that Brown and Morris expected deviato both type-I and weak type-Il superconductors and for the
tions which were predicted from the BCS theory in the samanagnetic field up to the critical value.
year. Adkins and Waldram had studied the electrostatic po-
tential from changes of the BCS gap due to a current and
they recovered the plain Bernoulli potential for zero tem-
perature, while for finite temperatures they indicated a pres- The disagreement between theory and experiment re-
ence of additional contributiorfsThey were not, however, mained unexplained for a long time and the question of the
capable to derive these contributions in an explicit form or tocharge transfer in superconductors was left aside until the
estimate their amplitudes. discovery of the highr, materials. For these layered materi-
Some corrections to the Bernoulli potentid) were de-  als it was predicted-'® that the superconducting transition
rived already before the BCS studies. Historically, the firstinduces a charge transfer from Cuflanes to charge reser-
example is the theory of Sorokfhfrom 1949 which covers voirs. This transfer caused merely by the pairing mechanism
the majority of effects recovered later. Although this paper ishas been confirmed by bulk-oriented experiments like the
mentioned by Londof,later it became forgotten. In 1964 positron annihilatiort® the x-ray absorption spectroscopy,
van Vijfeijken and Stad$ took into account that the electro- and the nuclear magnetic resonate.
static field acts on normal electrons and arrived at the so- Apparently, there are two groups of contradictory experi-
called quasipatrticle screening. mental results. The pairing contribution is absent in the sur-
The quasiparticle screening is represented by the fractioface potential but a charge transfer is observed at internal
of superconducting electromg/n by which Eq.(2) differs interfaces in the bulk.
from the simple Bernoulli law((1)). In the experiment of As it was indicated recentf, there is a charge transfer at
Brown and Morris it accounts for 6% of the observed potenthe surface which is the interface of superconductor and
tial. In spite of its small magnitude, the guasiparticle screenvacuum. This transfer forms a surface dipole which causes a
ing is important with respect to the concept of the magnetistepe; in the electrostatic potential. The value of the poten-
pressure. At finite temperatures one has to take into accoutil step has been evaluated from the Budd-Vannimenus
that the London penetration depth also depends on the detheoreni®
sity of condensatex®=m/(e?ugny) =\3n/ns. Combining the
screened Bernoulli potenti&l2)) with the condensate veloc- - nif_m 4)
ity v found from the London theory, one finds that the elec- ®o inn’
trostatic potential is temperature independent, i.e., it is given
by the magnetic pressure with the densitgf pairable elec- wheref, is the electronic part of the free energy dengity
trons. Despite this importance of the quasipatrticle screeningloes not include the electrostatic and magnetic pariEk-
it should be noted, however, that the quasiparticle screeningyzen has obtained formui@) from the general stability
is not responsible for the 20% deviations announced byonditionep=-df./dn and the free energfy=ns1/2mv?.
Brown and Morris and discussed above. Using the same free energy one finds that the potential at the
Corrections capable to explain the observed potentiasurface,po=¢(0)+¢s equals the screened Bernoulli poten-
were obtained by Rickayzéi,who showed that the electro- tial (2). The surface dipolep; thus explains the observed
static potential includes a pairing contribution magnetic pressure.

3

ndlnn2 '

B. Brown and Morris

C. Surface dipole
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In spite of the agreement between observed and theoreti-
cally derived voltage one should be reserved about claims
that the theory correctly describes the profile of the electro-
static potential in superconductors. Arguments against the
theory are similar to those already raised in relation to the
interpretation of the measurement of Bok and Klein.

First, the measurement of Morris and Brown explores the Supercon&uctor
entire range of magnetic fields from low up to critical values. '

I |
PP | Prat

The free energy employed by Rickayzen, however, applies in =
the limit of low magnetic fields only. eq, /
Second, materials studied by Morris and Brown are type-I ep(0) -
and weak type-Il materials so that their behavior is not fully 1 L
covered by the London theory. As we have shown recéhtly, & L
even for low magnetic fields the electrostatic potential de- T '
pends on the Ginzburg-LandaiGL) parameterx. Rick- 0 A & X

ayzen’s formula is recovered for the extreme type-Il super-
conductork— . For measured materials with~1/2 the
potentialp(0) at the surface is reduced by a factor 1/3 com-
pared to Rickayzen’s formula.

FIG. 1. Electrostatic potential at the surface. On the scale of the
London penetration depth and the GL coherence length the
electrostatic potentiap is linear in the GL wave functions. The

. . . schematic short-dashed line in the expanded detail shows the devia-
Third, the surface dipole; derived from the free energy tion of the potential from the GL value on the scale of the BCS

that cqverg only the low-field perturbat!on n the' London coherence lengtlj,. The surface potentiapg is the experimentally
approximation has the same_shortcomlngs as R'?kayzenéoserved value, while(0) is the internal GL potential extrapolated
formula. Apparently,¢(0) obtained from Rickayzen's for- 5 the surface. In the inset, we show the virtual compression of the
mula can be far from the correct value and the same appliegystal lattice on the scalé, as it is employed in the Budd-

to ¢;. Since the sum agrees with the experimental result, ongannimenus theorem. The compression removes the lattice charge
can see that eventual errors tend to compensate each othefigm the infinitesimal layersL and correspondingly increases the
the resulting electrostatic potential. In this sense, the surfacénarge density in the region framed by the long-dashed line.
dipole ¢; is consistent with the internal potential since

both are evaluated using the same free energy. general system in the Meissner state and show that the for-
mula for the surface dipole derived in Sec. Il applies to any
temperature and magnetic field below critical values. Section

) _ IV includes a summary.
As demonstrated for Rickayzen’s theory, the internal elec-

trostatic potentialp and the surface dipoles ought to be

derived from the same free energy. We have sldwrat for Il. SURFACE DIPOLE

type-lI and weak type-ll superconductors, the GL theory

yields the internal electrostatic potential which is quite dif- Let us first estimate the thickness of the surface dipole

ferent from the one predicted by Rickayzen’s formula. In thisfrom thermodynamic considerations. The pairing correlation

paper we derive the surface dipole within the GL theory. is weaker on the surface than in the bulk, what results in
As in Ref. 19 we use the Budd-Vannimenus theoremforces pulling the Cooper pairs inside. Such forces are al-

Here we employ this identity within Bardeen’s extengfosf ~ ways balanced by the electrostatic field. The full understand-

the GL theory. Bardeen’s extension offers two advantagesng of this effect will require microscopic studies which are

First, it naturally interpolates between the GL theory close tonot yet feasible. From the BCS studies it is known, however,

T. and the London theory at low temperatures. Second, ithat close to the surface on the scale of the BCS coherence

uses material parameters of the Gorter-Casimir two-fluidengthé&,, the gap profile differs from the value given by the

model, which have a transparent density dependence. In cofsL theory?® We thus expect that the surface dipole is some-

trast, the parameters of the original GL theory are introducediow linked to this “microscopic” modulation of the gap pro-

in the limit T— T, andT is replaced byl wherever possible. file.

Since T is an independent thermodynamic variable while To introduce the surface dipole on an intuitive level, let us

dT./dn# 0, one has to be careful when taking density deriva-assume that the system is close to the critical temperature. In

tives. To evaluate the density dependence of the GL paranthis regime, the London penetration depttand the GL co-

eters, one has to recall the microscopic theory of Gorkov antierence lengtt¢ are much larger than the BCS coherence

take the density derivatives of the corresponding parametetsngth &. Since the electrostatic potential induced by the

D. Plan of the paper

before the limitT— T, is applied. diamagnetic current extends on scales\oénd ¢ from the
The plan of the paper is as follows. In Sec. Il we assumesurface?! the surface dipole is very narrow on these scales.
temperatures close td, and an infinitesimally weak mag- We can then define an intermediate sdalsuch thaté,

netic field. In this limit we derive a modification of the <L<§,\, as sketched in Fig. 1. On the scdle the GL
Budd-Vannimenus theorem which takes into account a nonwave function changes only negligibly, i.e{x) = (x— 0)
zero charge density near the surface. In Sec. Ill we discuss= (0) for 0<x<L. We note that the GL boundary condi-
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tion d,y=0 supports the slow change ¢fclose to the sur- face is merely shifted. The magnetic free energy changes
face. negligibly, because the number of electrons in the ldyées

As shown by de Gennes the GL wave function is lin- not changed by the deformation. Since the condensate veloc-
early proportional to the BCS gap, except for the surfacdty changes on the scale>L, changes of the screening cur-
region on the scale of the BCS coherence lergtiFollow-  rent vanish in the limit./x —0.
ing microscopic theories giving the electrostatic potential in _ The first term in Eq(7) results from the reduced volume,
terms of the BCS gaH.1524we expect the electrostatic po- _SL—> S(L-4L), and the secondi one from the corresppndmg
tential to have similar features, see Fig. 1. increase of the electron density,—~n(1+4L/L). Equating

For &<x<L, the potential is well described by the GL EGs. (6) and (7) we obtain a modification of the Budd-
value ¢(x). SinceL <\, & the GL prediction of the electro- Vannimenus theorem
static potential changes only negligibly in this region and it B B 9ty
is convenient to introduce the extrapolated valyéx) Plat®s = Piad ®o — ¢(0)] = o= Lpppet (8)
=~ p(x— 0) = ¢(0). The extrapolation of the GL potential to- _ .
ward the surfacep(0), has to be distinguished from the true It descrlbgs thg step of the potential at the sgrface (_jue_to the
surface potentialp,. The differenceps=go— ¢(0) is caused surface dipole in terms of the free energy. This relation is the

; ; main result of the present paper. In the remaining part we
by the surface dipole we aim to evaluate. demonstrate how E@8) can be used and show that it applies

_ _ ) also at low temperatures, where the intermediate region can-
A. Budd-Vannimenus theorem at intermediate scale not be defined.

Close to the critical temperature, we can take the interme- Formula(8) differs from the original Budd-Vannimenus
diate regionx~L as a homogeneous “bulk’ and follow (BV) theorem in four points. First, in the original BV
the idea of Budd and Vannimen#&2S Let us assume a vir- theorem one evaluates the total potential step at the surface.
tual compression of the crystal lattice such that the backlts values are of the order of volts. Here we evaluate only the

ground or the lattice charge density is removed from theghange of the potential step which appears as the system

surface layer of an infinitesimal widtbL. The perturbation cﬁg(r)]meeiss (S):‘J[t)ﬁercgrré((jalr‘%;nr?éngcgltéypslceilorzgagi]r?Ittrlljg%\(/)fthtgés-
of the lattice charge density in the infinitesimal layer 9 X ’

0<x<dL iS Sp=—pr. The compression leads to an in- rem the surface potential is related to the potentiatieep in

o the bulk. In Eq(8), the extrapolation of the internal potential
crease of the charge density in the laygr<x<L, where a4 the surfacep(0) appears instead. Third, in order

5p'a|\tl:p'at&/ L is ﬁetlﬁctebd t9 c_(()jnservfeﬂt]heéotgtlj (i?arg_e ) to cover systems at finite temperatures, we use the free en-
ow we recall the basic idea of the budd- annlmenusergy instead of the ground-state energy. Fourth, within the
theorem. The lattice charge enters the jellium modgl of mety iginal Budd-Vannimenus approach, the electron charge
als as :;m et>r(ltern_?l p;arameter. I oge tchznges th'sk extetrrr:a nsity and the lattice charge density have to be equal be-
parameter, the situation corresponds 1o doing work on e, se of the charge neutrality. In our approach, the density of

system electronic charge differs locally from the lattice charge den-
af sity, en# —p,y, due to the charge transfer induced by the
W= SJ dx 5p|at$ = Sf dX Spiae, (5  magnetic fieldg!
lat

In the limit of extreme type-Il superconductors and weak
wheref is the density of the free energy including the elec-magnetic fields one can compare form@awith the surface
trostatic interaction, an& is the sample area. According to dipole evaluated in Ref. 19. In this limit, the free energy
the Feynman-Hellmann theorem, the change of the electrssimplifies to f=f.—nsl/2mv2 The second term provides
static potential does not contribute to the work up to the firsthe current induced changes of the surface dipole derived in
order indp,,.. Now we can proceed with the algebra. We split Ref. 19. Due to the bulk free enerdy one finds from Eq.
the integral into three partg0,48L), (L,&), and (&,L). (8) a finite potential step also in the absence of diamagnetic
SincedL is an infinitesimal displacement, the potential in the currents.

layer 0<x< &L can be replaced by the surface valpge The For the purpose of the plot in Fig. 1, we have used a small
surface regionsL <x< &, gives a negligible contribution of magnitude of the potential step at the surfatee short-
the order of&,/L. In the remaining bulk regiod,<x<L, dashed line is rather close to the full linén reality, even the
the electrostatic potential is nearly constant and equéds.  current induced part of the steps might achieve a magni-

The work thus reads tude much larger than the internal poteniidD). A simple
estimate of surface step for the experiment of Morris and
W = SéLpiad ¢(0) = g (6)  Brown'3ranges from a few percent fdr=0.6 T, to about 30

times of the observed potential a=0.97T,, see Ref. 19.
Since we assume the limft— T, the large values are more
appropriate.

The work increases the free energyof the system
a(foSU Jf
sw=or=-UeStgy - (—fe|+n—e'>86L, (7)
9(Sh an B. Application within the GL theory
wherefg, is the spatial density of the electronic free energy. Now we demonstrate how the relatigB) can be used
Note that only the change of the electronic part in the “bulk”within the GL theory. To this end we introduce the GL free
is assumed. The surface energy does not change as the sanergy
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_ . netic properties this approximation works very well, since

(=il V = €AY + Foong (9 the relative charge deviatidp+en/ py is typically of the
order of 100, leading to comparably small corrections in the
wherey is the GL wave functionA is the vector potential, GL equation. With the same accuracy one obtains the elec-
m =2m ande’ =2e are the mass and the charge of the Coo+ronic free energy,,. Therefore it is possible to evaluate the
per pair, and.,nqis the free energy of the condensate. It cansurface potential using the approximation
be either the Gorter-Casimir free energy ¢
el

1 .2 1 [ Po=——_ (16)
fcond:_Z'yT(Z:E|¢|2_§'yT2 1_H|¢|2 (10) €N

which follows from Eq.(15) if terms proportional to(p;y

fel =

*

2m

used by Bardeé# or the GL free energy +en)/p, are neglected. Byn, we have denoted the
1 asymptotic value oh deep in the bulk, i.e., the density of
feona= a|Uf? + 5/3|l//|4- (11) pairable electrongy,;=—en..

Within approximation(16) one does not have to evaluate

The GL parametera=y(T2~T2)/2n and 8= yT2/n? depend the potential profile and the related charge inside the super-
on the temperatur& and tche electron density=n, +2| y/2 conductor. This is advantageous, in particular for systems of
=n, ,

wheren,, is the density of normal electrons. Finally, we add unknown material parametes3/on and dy/ on.

the electromagnetic energy so that the free energy reads Turning the argument ar.ound, from EQ6) one can see
that the electrostatic potential at the surface cannot be used to

_ €0 ) measure the material parametéfs/ on anddy/ dn. This fact
f=fo+ @(pa+en - EE + 2_B , (12) s already known from the experiment of Morris and
Ho Brown 13

with the magnetic fieldB=V XA and the electric field

E=-V ¢. Here the standard local function expression for the

two-point  Coulomb interaction  1/f(r)p(r')/4mey|r IIl. MAGNETIC PRESSURE

—r'|drdr’ = [(¢pp—1/2¢,E?)dr was used. This form allows us

to regard the scalar potential as an independent variable

and simplifies the variational procedure employed below.
Variations of the free energy with respect to its indepen

dent variable\, ¢, ¢, n, yield the equations of motion in

Lagrange’s form

So far we have discussed systems close to the critical
temperature, when the validity conditions of the GL theory
are well satisfied. In many cases, however, the GL theory is
used beyond the limits of its nominal applicability. In these
cases the GL coherence lengtland/or the London penetra-
tion depth\ are comparable to, or even shorter than the BCS

af af coherence lengtl§, so that the intermediate scalecannot
v, 70 (13 pe introduced.
It is possible, however, to follow the original formulation
For v=A the variational conditior(13) yields the Ampere- of Budd and Vannimenus and defiheas the sample thick-
Maxwell equation, forv=¢ the Poisson equation, far=¢  ness, i.e.|.> &,\. In this case it is necessary to account for
the GL equation, and for=nj, the condition of zero dissipa- the energy of the magnetic field, since the infinitesimal com-
tion, pressiondL shifts the screening layer inwards into the super-
oty conductor.

an’

ep = (14)

. . . A. Budd-Vannimenus theorem
This condition allows one to evaluate the electrostatic poten-
tial in the bulk of the superconduct®t.Of course, one can For L>¢,\, the charge removed from the surface is
add any constant to the electrostatic potential. placed deep in the bulithe region of the scale @f,\ gives
Formula (14) does not cover the surface dipole on thea negligible contribution so that the work on the charge
scaleé,, therefore at the surface it provides the extrapolatedeads
bulk value ¢(0). We can thus use E@14) to rearrange the

Budd-Vannimenus theore®) as W= SAL(¢- = ¢o)prat 1n
_ Compared to the previous treatment we have merely re-
Piao = fer + (0)(piar + €N). (15 placed the potential close to the surface by the value deep in

Now all terms on the right-hand side are explicit quantitiesthe bulk. Similarly, the electronic part of the total free energy
which one obtains within the GL theory extended by thechanges by
electrostatic interactioff )5
8F o= (— 2 + n—e'>SéL. (18)
C. Convenient approximation an
In customary GL treatments, the electrostatic potentiaFinally, the shift of the screening layer b}t changes the
and the corresponding charge transfer are omitted. For magragnetic energy by an amouﬁf—‘B:S&_Bglzuo, given by
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the magnetic pressure. HelBg is the value of the magnetic quite generally by the Legendre transformation of the free
field at the surface. energy
From SW=6Fg+ 6Fg follows: ot
B _B_S . ﬂ:l g:f—EmVV. (23)
PraPo = @) = 5 +fg+n, an (19 v
Ho Indeed, if the fields’ obey the equations of motiqii3), the
As L is the thickness of the sample one can use the charggradientVg=0 vanishes, i.eg=const. Deep in the bulk all
neutrality p,=—en.. Since the value of the potential deep in gradients vanish, therefoge=f7,
the sample is given by conditiofi4), usingeg,.=—df,/dn From Eqgs.(9)<12) one finds
from Eq. (19) one obtains

af h? B2
B2 £ D V=—| V- B2+ —. (24)
®o=— 0 _ el (20) S dVuv m Mo
2ugen, en,

i _ i With the help of Eqs(23) and(24) and definition(12), one
The electrostatic potential observed at the surface is thusyp express the electronic free energy as

given by the magnetic pressure as observed by Morris and
Brown 13 g #? v P €E?> B?
Note that deriving formulg20) we have not used many o=l = - 5 7 2u0 ¢lpacten. (25
assumptions about the system. The condition of zero dissipa- .
tion (14) is a general thermodynamic relation. The Budd-At the surfe}ce, .the GL boundary condition demands that
Vannimenus relation(19), however, is limited to systems V#=0 whatimplies=0. The free energy at the surface thus
with a homogeneous jelly-like background charge. This apfeads
proximation is acceptable for conventional superconductors, B2
where characteristic scal€gcs, & and\ are much larger fa=fa+ == 0(0)(p+e€N. (26)
than the elementary cell of the crystal. The applicability is 2o
questionable for the higii; materials which due to the lay- From Eq.(26) and the surface relatiofl5) it follows that
gre_d structure and a short coherence length are far from ”ﬁat@o:Bz/(ZMo)”oecr This value is identical to Eq20).
jellium model. _ . Apparently, we can reverse the procedure. Starting from
As noticed already by Bok and Klefnthere is a simple  the general Budd-Vannimenus relatig20) and the general
argument for the formula like Eq20). If one assumes a slab jntegral of motion(23), we can derive the surface relation
with magnetic fieldsB_ and Bg on the left/right sides, the (15 Accordingly, the surface relation holds for any tempera-

voltage difference gives ture, provided that the free energy is a functional of the GL
1 wave function and its first derivative onli= [, V ¢]. This
Pral @5 — ¢5) = —— (B2 - B3). (21)  functional can be an arbitrary one.

2o Perhaps we should explain why we have derived the sur-

The left-hand side of this relation represents the electrostatitace dipole from the Budd-Vannimenus theorem on the inter-
force (per unit arepon the lattice mediate scale, although the more general derivation from the
" integral of motion is available. There are two reasons. First,
_ _ L_ R the intermediate scale provides at least a qualitative picture

Ferst= fL dX Bpta = prad ¢ = ¢o)- @2 ot the potential in the vicinity of the surface. This picture

might be helpful if measurements sensitive to layers close to
The right-hand side is the Lorentz forég,=BJ with the  the surface will be designed.
mean magnetic fiel=1/2(B +Bg) and the net currend Second, within the intermediate scale the surface dipole is
=[Tdx j given by Ampere’s rule B -Bg=puoJ. Since the treated as a property of the superconducting condensate,
electrostatic field provides the only mechanism by which thevhat encourages us to hope that form(il&) or its approxi-
force is passed from the electrons to the lattice, the twanation(16) can be used to obtain the surface potential also
forces have to be equdt o, =F This argument was, how- for cases when the magnetic field has a component perpen-
ever, overlooked in the later studies. dicular to the surface. In particular, we expect that it will be
applicable to the superconductors in the mixed state, espe-
cially to evaluate the electric field generated by vortices pen-

etrating the surfac#.
The Budd-Vannimenus theorem provides the electrostatic

potential(20) in terms of the magnetic field with no regard to
the actual potential inside the superconductor. To link for-
mula(20) with the more intuitive derivation from Sec. II, we In conclusion, the Budd-Vannimenus theorem was modi-
show that Eq(15) results in the surface potentié20) for  fied so that it is applicable to the surface of a superconductor.
any temperature. It allows one to evaluate the electrostatic potential on the
For the assumed geometry, the GL equation has an intesurface from the free energy and the bulk electrostatic poten-
gral of motion, see Barde@A.This integral can be obtained tial nearby. Formula(16) offers the approximation of the

B. Test of the surface relation

IV. CONCLUSIONS
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surface potential from the free energy without the actuabut knowledge of any other material parameters.
knowledge of the bulk potential. In this paper we have derived only the amplitude of the
For plain surfaces we have recovered the experimentallpotential step. The detailed profile of the electrostatic poten-
established fact that the electrostatic potential equals thgal including its modulation at the surface can be obtained
magnetic pressure divided by the density of pairable elechy a microscopic approach like the Bogoliubov-de Gennes
trons. This experimental law was confirmed also for type-ltheory extended recently to cover the electrostatic
and weak type-Il superconductors, while the previous theophenomeng®-3! For microscopic calculations, the Budd-
retical treatments were restricted to weak magnetic fields an_?annimenus theorem can serve as a test of accuracy of the

extreme type-Il superconductors. The presented theory iymerical procedure, similarly as it is used in the theory of
free of these limitations. metal surfaces

It was shown that thermodynamic corrections do not in-
fluence the surface electrostatic potential, measurable, e.g.,
via contactless capacitive pickup. Consequently, contrary to
earlier expectations, the density dependence of the critical
temperature cannot be estimated in this way. On the other This work was supported by MSMT program Kontakt
hand, the relation between the surface electrostatic potentiME601 and GA'R 202/03/0410, GAAV A1010312 grants.
and the magnetic pressure shows, that such a measuremdite EuropeanESFH program VORTEX is also acknowl-
allows one to determine the density of charge carriers withedged.
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