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I. INTRODUCTION

The Hall voltage is commonly used to measure the con-
centration of charge carriers in conductors. In superconduct-
ors this method is not applied, because of a missing theoret-
ical support. In this paper we show that the Bernoulli
potential, which is closely related to the Hall voltage, can be
used to the same end in superconductors.

Any ideal collisionless electric fluid should exhibit a finite
Hall voltage, but superconductors seem to escape this theo-
retical conclusion. The zero Hall voltage was reported the
first time by Kamerlingh Onnes and Hof1 already in 1914.
Though later analyses showed that their samples were in the
mixed state which obscures an interpretation of their experi-
ment, the zero Hall voltage was confirmed anyway.2

From a theoretical point of view, it was clear that there
has to be a voltage balancing the magnetic pressure which
acts on electrons via the Lorentz force. The report of Kamer-
lingh Onnes and Hof thus stimulated various speculations
about the missing Hall voltage, see the critical review by
Lewis.3 From various concepts proposed we mention the so-
called contact potential—a potential step at the interface—
which was expected to cancel the Hall voltage. Such a po-
tential step might exist only if a charge dipole is formed at
the interface of a superconductor. The surface dipole we dis-
cuss here is a similar concept.

The explanation of the zero Hall voltage turned out to be
very simple. By contacts one monitors the differences in the
Gibbs chemical potential, often called the electrochemical
potential.4 The Gibbs potential is composed of three compo-
nents: the electrostatic potential, the kinetic energy, and the
correlation energy. None of these components is constant in
the presence of diamagnetic currents, but their sum is con-
stant in equilibrium in agreement with the observed zero Hall
voltage.

To eliminate the kinetic and correlation energies, Hunt
proposed to access the electrostatic potential with a contact-
less method called the Kelvin capacitive pickup.4 Capacitive
measurements appeared soon and they successfully proved
the existence of a nonzero electrostatic potential.5,6

Both experiments5,6 were done at temperatures well below
Tc, where the electrostatic potential has a simple form resem-
bling the Bernoulli law7–9

ew = −
1

2
mv2, s1d

where e is the elementary charge, positive for holes and
negative for electrons. To avoid confusion we note that the
electrostatic potential in equilibrium superconductors is
called the Bernoulli potential for brevity, even if its actual
form does not coincide with the Bernoulli law.

None of the early experimental data were sufficiently ac-
curate to allow for a discussion of possible corrections to the
plain Bernoulli potential(1). Nevertheless, the authors5,6

made some conclusions in this direction and we find it nec-
essary to comment on them in more detail.

A. Bok and Klein

Bok and Klein5 claimed that their data agree with the
plain Bernoulli potential(1). This conclusion has to be
taken with reservations, however, because they measured the
electrostatic potential as a function of the magnetic fieldB
at the surface. They evaluated the velocityv of the supercon-
ducting electrons(briefly called the condensate velocity)
from the London conditionmv=eA and the exponential
decay A =A0e

−x/l0, using B= ¹ 3A. At low temperatures,
the London penetration depth depends on the densityn of
pairable electronsl0

2=m/ se2m0nd, therefore their experimen-
tal result can be expressed in terms of the magnetic pressure,
enw=−B2/ s2m0d.

According to the above arguments, the relation of the
electrostatic potential to the magnetic pressure seems to be a
consequence of the plain Bernoulli potential and the London
theory. As we show below, the relation to the magnetic pres-
sure is very general and holds also under conditions when
neither the plain Bernoulli potential nor the London theory
applies.

In fact, Bok and Klein measured on indium which, being
a type-I superconductor, is not fully covered by the London
theory. Moreover, they swept the magnetic field from zero to
the critical value, while the plain Bernoulli potential and the
simple form of the London theory used above are restricted
to low magnetic fields. At high fields, the condensate density
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at the surface is suppressed what results inv4 and higher-
order contributions to the electrostatic potential.

Briefly, Bok and Klein have observed the magnetic pres-
sure. But the link of their experiment to the Bernoulli poten-
tial (1) has to be taken with caution.

B. Brown and Morris

Brown and Morris have used a different setup which al-
lowed them to achieve a much higher precision.6 They did
not control the magnetic field but the current in a thin wire.
This current was scaled with the critical current. They an-
nounced in 1968 that their data reveal about 20% deviations
from the screened Bernoulli potential

ew = −
ns

n

1

2
mv2, s2d

discussed in more detail below.
It should be noted that Brown and Morris expected devia-

tions which were predicted from the BCS theory in the same
year. Adkins and Waldram had studied the electrostatic po-
tential from changes of the BCS gap due to a current and
they recovered the plain Bernoulli potential for zero tem-
perature, while for finite temperatures they indicated a pres-
ence of additional contributions.9 They were not, however,
capable to derive these contributions in an explicit form or to
estimate their amplitudes.

Some corrections to the Bernoulli potential(1) were de-
rived already before the BCS studies. Historically, the first
example is the theory of Sorokin10 from 1949 which covers
the majority of effects recovered later. Although this paper is
mentioned by London,8 later it became forgotten. In 1964
van Vijfeijken and Staas11 took into account that the electro-
static field acts on normal electrons and arrived at the so-
called quasiparticle screening.

The quasiparticle screening is represented by the fraction
of superconducting electronsns/n by which Eq.(2) differs
from the simple Bernoulli law((1)). In the experiment of
Brown and Morris it accounts for 6% of the observed poten-
tial. In spite of its small magnitude, the quasiparticle screen-
ing is important with respect to the concept of the magnetic
pressure. At finite temperatures one has to take into account
that the London penetration depth also depends on the den-
sity of condensate,l2=m/ se2m0nsd=l0

2n/ns. Combining the
screened Bernoulli potential((2)) with the condensate veloc-
ity v found from the London theory, one finds that the elec-
trostatic potential is temperature independent, i.e., it is given
by the magnetic pressure with the densityn of pairable elec-
trons. Despite this importance of the quasiparticle screening,
it should be noted, however, that the quasiparticle screening
is not responsible for the 20% deviations announced by
Brown and Morris and discussed above.

Corrections capable to explain the observed potential
were obtained by Rickayzen,12 who showed that the electro-
static potential includes a pairing contribution

ew = −
] ns

] n

1

2
mv2 = −

ns

n

1

2
mv2 − 4

nn

n

] ln Tc

] ln n

1

2
mv2. s3d

The pairing term dominates close to the critical temperature
Tc, becausens=ns1−t4d, with t=T/Tc, while nn=n−ns=nt4.

According to Eq.(3), from w close toTc one may deduce
the density dependence ofTc, which would be very attractive
with respect to designing materials. Indeed, this important
material property is otherwise deducible only from measure-
ments applying a hydrostatic pressure or adding impurities to
crystals. Unlike the later methods, a measurement of the Hall
voltage or, respectively, the Bernoulli potential does not af-
fect the electronic bands, the phonon spectrum or the
electron-phonon interaction, therefore it offers a uniquely
clear information about the material.

All expectations were chilled by the next paper of Morris
and Brown.13 They admitted that deviations announced in the
previous paper were due an incorrect estimate of the critical
current and presented new highly accurate data for a wide
range of temperatures. The observed electrostatic potential is
perfectly equal to the magnetic pressure and exhibits no pair-
ing contribution. They reported that this behavior is common
to both type-I and weak type-II superconductors and for the
magnetic field up to the critical value.

C. Surface dipole

The disagreement between theory and experiment re-
mained unexplained for a long time and the question of the
charge transfer in superconductors was left aside until the
discovery of the high-Tc materials. For these layered materi-
als it was predicted14,15 that the superconducting transition
induces a charge transfer from CuO2 planes to charge reser-
voirs. This transfer caused merely by the pairing mechanism
has been confirmed by bulk-oriented experiments like the
positron annihilation,16 the x-ray absorption spectroscopy,17

and the nuclear magnetic resonance.18

Apparently, there are two groups of contradictory experi-
mental results. The pairing contribution is absent in the sur-
face potential but a charge transfer is observed at internal
interfaces in the bulk.

As it was indicated recently,19 there is a charge transfer at
the surface which is the interface of superconductor and
vacuum. This transfer forms a surface dipole which causes a
stepwd in the electrostatic potential. The value of the poten-
tial step has been evaluated from the Budd-Vannimenus
theorem20

ewd = n
]

] n

fel

n
, s4d

where fel is the electronic part of the free energy density(it
does not include the electrostatic and magnetic parts). Rick-
ayzen has obtained formula(3) from the general stability
conditionew=−]fel/ ]n and the free energyfel=ns1/2mv2.
Using the same free energy one finds that the potential at the
surface,w0=ws0d+wd, equals the screened Bernoulli poten-
tial (2). The surface dipolewd thus explains the observed
magnetic pressure.
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In spite of the agreement between observed and theoreti-
cally derived voltage one should be reserved about claims
that the theory correctly describes the profile of the electro-
static potential in superconductors. Arguments against the
theory are similar to those already raised in relation to the
interpretation of the measurement of Bok and Klein.

First, the measurement of Morris and Brown explores the
entire range of magnetic fields from low up to critical values.
The free energy employed by Rickayzen, however, applies in
the limit of low magnetic fields only.

Second, materials studied by Morris and Brown are type-I
and weak type-II materials so that their behavior is not fully
covered by the London theory. As we have shown recently,21

even for low magnetic fields the electrostatic potential de-
pends on the Ginzburg-Landau(GL) parameterk. Rick-
ayzen’s formula is recovered for the extreme type-II super-
conductork→`. For measured materials withk<1/Î2 the
potentialws0d at the surface is reduced by a factor 1/3 com-
pared to Rickayzen’s formula.

Third, the surface dipolewd derived from the free energy
that covers only the low-field perturbation in the London
approximation has the same shortcomings as Rickayzen’s
formula. Apparently,ws0d obtained from Rickayzen’s for-
mula can be far from the correct value and the same applies
to wd. Since the sum agrees with the experimental result, one
can see that eventual errors tend to compensate each other in
the resulting electrostatic potential. In this sense, the surface
dipole wd is consistent with the internal potentialw, since
both are evaluated using the same free energy.

D. Plan of the paper

As demonstrated for Rickayzen’s theory, the internal elec-
trostatic potentialw and the surface dipolewd ought to be
derived from the same free energy. We have shown21 that for
type-I and weak type-II superconductors, the GL theory
yields the internal electrostatic potential which is quite dif-
ferent from the one predicted by Rickayzen’s formula. In this
paper we derive the surface dipole within the GL theory.

As in Ref. 19 we use the Budd-Vannimenus theorem.
Here we employ this identity within Bardeen’s extension22 of
the GL theory. Bardeen’s extension offers two advantages.
First, it naturally interpolates between the GL theory close to
Tc and the London theory at low temperatures. Second, it
uses material parameters of the Gorter-Casimir two-fluid
model, which have a transparent density dependence. In con-
trast, the parameters of the original GL theory are introduced
in the limit T→Tc andT is replaced byTc wherever possible.
Since T is an independent thermodynamic variable while
]Tc/]nÞ0, one has to be careful when taking density deriva-
tives. To evaluate the density dependence of the GL param-
eters, one has to recall the microscopic theory of Gorkov and
take the density derivatives of the corresponding parameters
before the limitT→Tc is applied.

The plan of the paper is as follows. In Sec. II we assume
temperatures close toTc and an infinitesimally weak mag-
netic field. In this limit we derive a modification of the
Budd-Vannimenus theorem which takes into account a non-
zero charge density near the surface. In Sec. III we discuss a

general system in the Meissner state and show that the for-
mula for the surface dipole derived in Sec. II applies to any
temperature and magnetic field below critical values. Section
IV includes a summary.

II. SURFACE DIPOLE

Let us first estimate the thickness of the surface dipole
from thermodynamic considerations. The pairing correlation
is weaker on the surface than in the bulk, what results in
forces pulling the Cooper pairs inside. Such forces are al-
ways balanced by the electrostatic field. The full understand-
ing of this effect will require microscopic studies which are
not yet feasible. From the BCS studies it is known, however,
that close to the surface on the scale of the BCS coherence
lengthj0, the gap profile differs from the value given by the
GL theory.23 We thus expect that the surface dipole is some-
how linked to this “microscopic” modulation of the gap pro-
file.

To introduce the surface dipole on an intuitive level, let us
assume that the system is close to the critical temperature. In
this regime, the London penetration depthl and the GL co-
herence lengthj are much larger than the BCS coherence
length j0. Since the electrostatic potential induced by the
diamagnetic current extends on scales ofl and j from the
surface,21 the surface dipole is very narrow on these scales.

We can then define an intermediate scaleL such thatj0
!L!j ,l, as sketched in Fig. 1. On the scaleL, the GL
wave function changes only negligibly, i.e.,csxd<csx→0d
;cs0d for 0,x,L. We note that the GL boundary condi-

FIG. 1. Electrostatic potential at the surface. On the scale of the
London penetration depthl and the GL coherence lengthj, the
electrostatic potentialw is linear in the GL wave functionc. The
schematic short-dashed line in the expanded detail shows the devia-
tion of the potential from the GL value on the scale of the BCS
coherence lengthj0. The surface potentialw0 is the experimentally
observed value, whilews0d is the internal GL potential extrapolated
to the surface. In the inset, we show the virtual compression of the
crystal lattice on the scaleL, as it is employed in the Budd-
Vannimenus theorem. The compression removes the lattice charge
from the infinitesimal layerdL and correspondingly increases the
charge density in the region framed by the long-dashed line.
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tion ]xc=0 supports the slow change ofc close to the sur-
face.

As shown by de Gennes,23 the GL wave function is lin-
early proportional to the BCS gap, except for the surface
region on the scale of the BCS coherence lengthj0. Follow-
ing microscopic theories giving the electrostatic potential in
terms of the BCS gap,14,15,24we expect the electrostatic po-
tential to have similar features, see Fig. 1.

For j0!x,L, the potential is well described by the GL
valuewsxd. SinceL!l ,j, the GL prediction of the electro-
static potential changes only negligibly in this region and it
is convenient to introduce the extrapolated valuewsxd
<wsx→0d;ws0d. The extrapolation of the GL potential to-
ward the surface,ws0d, has to be distinguished from the true
surface potentialw0. The differencewd=w0−ws0d is caused
by the surface dipole we aim to evaluate.

A. Budd-Vannimenus theorem at intermediate scale

Close to the critical temperature, we can take the interme-
diate regionx,L as a homogeneous “bulk” and follow
the idea of Budd and Vannimenus.20,25 Let us assume a vir-
tual compression of the crystal lattice such that the back-
ground or the lattice charge density is removed from the
surface layer of an infinitesimal widthdL. The perturbation
of the lattice charge density in the infinitesimal layer
0,x,dL is drlat=−rlat. The compression leads to an in-
crease of the charge density in the layerdL,x,L, where
drlat=rlatdL /L is selected to conserve the total charge.

Now we recall the basic idea of the Budd-Vannimenus
theorem. The lattice charge enters the jellium model of met-
als as an external parameter. If one changes this external
parameter, the situation corresponds to doing work on the
system

dW = SE dx drlat
] f

] rlat
= SE dx drlatw, s5d

where f is the density of the free energy including the elec-
trostatic interaction, andS is the sample area. According to
the Feynman-Hellmann theorem, the change of the electro-
static potential does not contribute to the work up to the first
order indrlat. Now we can proceed with the algebra. We split
the integral into three parts,s0,dLd, sdL ,j0d, and sj0,Ld.
SincedL is an infinitesimal displacement, the potential in the
layer 0,x,dL can be replaced by the surface valuew0. The
surface regiondL,x,j0 gives a negligible contribution of
the order ofj0/L. In the remaining bulk regionj0,x,L,
the electrostatic potential is nearly constant and equalsws0d.
The work thus reads

dW = SdLrlatfws0d − w0g. s6d

The work increases the free energyF of the system

dW = dF = −
] sfelSLd
] sSLd

SdL = S− fel + n
] fel

] n
DSdL, s7d

where fel is the spatial density of the electronic free energy.
Note that only the change of the electronic part in the “bulk”
is assumed. The surface energy does not change as the sur-

face is merely shifted. The magnetic free energy changes
negligibly, because the number of electrons in the layerL is
not changed by the deformation. Since the condensate veloc-
ity changes on the scalel@L, changes of the screening cur-
rent vanish in the limitL /l→0.

The first term in Eq.(7) results from the reduced volume,
SL→SsL−dLd, and the second one from the corresponding
increase of the electron density,n→ns1+dL /Ld. Equating
Eqs. (6) and (7) we obtain a modification of the Budd-
Vannimenus theorem

rlatwd ; rlatfw0 − ws0dg = fel − n
] fel

] n
. s8d

It describes the step of the potential at the surface due to the
surface dipole in terms of the free energy. This relation is the
main result of the present paper. In the remaining part we
demonstrate how Eq.(8) can be used and show that it applies
also at low temperatures, where the intermediate region can-
not be defined.

Formula (8) differs from the original Budd-Vannimenus
(BV) theorem in four points. First, in the original BV
theorem one evaluates the total potential step at the surface.
Its values are of the order of volts. Here we evaluate only the
change of the potential step which appears as the system
becomes superconducting. The typical magnitude of this
change is of the order of nanovolts. Second, in the BV theo-
rem the surface potential is related to the potentialw` deep in
the bulk. In Eq.(8), the extrapolation of the internal potential
toward the surfacews0d appears instead. Third, in order
to cover systems at finite temperatures, we use the free en-
ergy instead of the ground-state energy. Fourth, within the
original Budd-Vannimenus approach, the electron charge
density and the lattice charge density have to be equal be-
cause of the charge neutrality. In our approach, the density of
electronic charge differs locally from the lattice charge den-
sity, enÞ−rlat, due to the charge transfer induced by the
magnetic fields.21

In the limit of extreme type-II superconductors and weak
magnetic fields one can compare formula(8) with the surface
dipole evaluated in Ref. 19. In this limit, the free energy
simplifies to fel= f`−ns1/2mv2. The second term provides
the current induced changes of the surface dipole derived in
Ref. 19. Due to the bulk free energyf` one finds from Eq.
(8) a finite potential step also in the absence of diamagnetic
currents.

For the purpose of the plot in Fig. 1, we have used a small
magnitude of the potential step at the surface(the short-
dashed line is rather close to the full line). In reality, even the
current induced part of the stepwd might achieve a magni-
tude much larger than the internal potentialws0d. A simple
estimate of surface step for the experiment of Morris and
Brown13 ranges from a few percent forT=0.6 Tc to about 30
times of the observed potential atT=0.97Tc, see Ref. 19.
Since we assume the limitT→Tc, the large values are more
appropriate.

B. Application within the GL theory

Now we demonstrate how the relation(8) can be used
within the GL theory. To this end we introduce the GL free
energy
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fel =
1

2m* us− i" ¹ − e*Adcu2 + fcond, s9d

wherec is the GL wave function,A is the vector potential,
m* =2m ande* =2e are the mass and the charge of the Coo-
per pair, andfcond is the free energy of the condensate. It can
be either the Gorter-Casimir free energy

fcond= −
1

4
gTc

22

n
ucu2 −

1

2
gT2Î1 −

2

n
ucu2 s10d

used by Bardeen22 or the GL free energy

fcond= aucu2 +
1

2
bucu4. s11d

The GL parametersa=gsTc
2−T2d /2n andb=gT2/n2 depend

on the temperatureT and the electron densityn=nn+2ucu2,
wherenn is the density of normal electrons. Finally, we add
the electromagnetic energy so that the free energy reads

f = fel + wsrlat + end −
e0

2
E2 +

1

2m0
B2, s12d

with the magnetic fieldB= ¹ 3A and the electric field
E=−¹w. Here the standard local function expression for the
two-point Coulomb interaction 1/2ersr drsr 8d/4pe0u r
−r 8udrdr 8=eswr−1/2e0E

2ddr was used. This form allows us
to regard the scalar potentialw as an independent variable
and simplifies the variational procedure employed below.

Variations of the free energy with respect to its indepen-
dent variablesA , w , c , nn yield the equations of motion in
Lagrange’s form

− ¹
] f

] ¹ n
+

] f

] n
= 0. s13d

For n=A the variational condition(13) yields the Ampere-
Maxwell equation, forn=w the Poisson equation, forn=c
the GL equation, and forn=nn the condition of zero dissipa-
tion,

ew = −
] fel

] n
. s14d

This condition allows one to evaluate the electrostatic poten-
tial in the bulk of the superconductor.26 Of course, one can
add any constant to the electrostatic potential.

Formula (14) does not cover the surface dipole on the
scalej0, therefore at the surface it provides the extrapolated
bulk valuews0d. We can thus use Eq.(14) to rearrange the
Budd-Vannimenus theorem(8) as

rlatw0 = fel + ws0dsrlat + end. s15d

Now all terms on the right-hand side are explicit quantities
which one obtains within the GL theory extended by the
electrostatic interaction.26

C. Convenient approximation

In customary GL treatments, the electrostatic potential
and the corresponding charge transfer are omitted. For mag-

netic properties this approximation works very well, since
the relative charge deviationsrlat+end /rlat is typically of the
order of 10−10, leading to comparably small corrections in the
GL equation. With the same accuracy one obtains the elec-
tronic free energyfel. Therefore it is possible to evaluate the
surface potential using the approximation

w0 < −
fel

eǹ
s16d

which follows from Eq.(15) if terms proportional tosrlat

+end /rlat are neglected. Byn` we have denoted the
asymptotic value ofn deep in the bulk, i.e., the density of
pairable electrons,rlat=−eǹ .

Within approximation(16) one does not have to evaluate
the potential profile and the related charge inside the super-
conductor. This is advantageous, in particular for systems of
unknown material parameters]Tc/]n and]g /]n.

Turning the argument around, from Eq.(16) one can see
that the electrostatic potential at the surface cannot be used to
measure the material parameters]Tc/]n and]g /]n. This fact
is already known from the experiment of Morris and
Brown.13

III. MAGNETIC PRESSURE

So far we have discussed systems close to the critical
temperature, when the validity conditions of the GL theory
are well satisfied. In many cases, however, the GL theory is
used beyond the limits of its nominal applicability. In these
cases the GL coherence lengthj and/or the London penetra-
tion depthl are comparable to, or even shorter than the BCS
coherence lengthj0 so that the intermediate scaleL cannot
be introduced.

It is possible, however, to follow the original formulation
of Budd and Vannimenus and defineL as the sample thick-
ness, i.e.,L@j ,l. In this case it is necessary to account for
the energy of the magnetic field, since the infinitesimal com-
pressiondL shifts the screening layer inwards into the super-
conductor.

A. Budd-Vannimenus theorem

For L@j ,l, the charge removed from the surface is
placed deep in the bulk(the region of the scale ofj ,l gives
a negligible contribution) so that the work on the charge
reads

dW = SdLsw` − w0drlat. s17d

Compared to the previous treatment we have merely re-
placed the potential close to the surface by the value deep in
the bulk. Similarly, the electronic part of the total free energy
changes by

dFel = S− fel
` + n

] fel
`

] n
DSdL. s18d

Finally, the shift of the screening layer bydL changes the
magnetic energy by an amountdFB=SdLB0

2/2m0, given by
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the magnetic pressure. HereB0 is the value of the magnetic
field at the surface.

From dW=dFel+dFB follows:

rlatsw0 − w`d =
B0

2

2m0
+ fel

` + n`

] fel
`

] n
. s19d

As L is the thickness of the sample one can use the charge
neutralityrlat=−eǹ . Since the value of the potential deep in
the sample is given by condition(14), usingew`=−]fel

` /]n
from Eq. (19) one obtains

w0 = −
B0

2

2m0eǹ
−

fel
`

eǹ
. s20d

The electrostatic potential observed at the surface is thus
given by the magnetic pressure as observed by Morris and
Brown.13

Note that deriving formula(20) we have not used many
assumptions about the system. The condition of zero dissipa-
tion (14) is a general thermodynamic relation. The Budd-
Vannimenus relation(19), however, is limited to systems
with a homogeneous jelly-like background charge. This ap-
proximation is acceptable for conventional superconductors,
where characteristic scalesjBCS, j, and l are much larger
than the elementary cell of the crystal. The applicability is
questionable for the high-Tc materials which due to the lay-
ered structure and a short coherence length are far from the
jellium model.

As noticed already by Bok and Klein,5 there is a simple
argument for the formula like Eq.(20). If one assumes a slab
with magnetic fieldsBL and BR on the left/right sides, the
voltage difference gives

rlatsw0
L − w0

Rd =
1

2m0
sBL

2 − BR
2d. s21d

The left-hand side of this relation represents the electrostatic
force (per unit area) on the lattice

Felst=E
L

R

dx Erlat = rlatsw0
L − w0

Rd. s22d

The right-hand side is the Lorentz forceFLor=BJ with the
mean magnetic fieldB=1/2sBL+BRd and the net currentJ
=eL

Rdx j given by Ampere’s rule,BL−BR=m0J. Since the
electrostatic field provides the only mechanism by which the
force is passed from the electrons to the lattice, the two
forces have to be equal,FLor=Felst. This argument was, how-
ever, overlooked in the later studies.

B. Test of the surface relation

The Budd-Vannimenus theorem provides the electrostatic
potential(20) in terms of the magnetic field with no regard to
the actual potential inside the superconductor. To link for-
mula (20) with the more intuitive derivation from Sec. II, we
show that Eq.(15) results in the surface potential(20) for
any temperature.

For the assumed geometry, the GL equation has an inte-
gral of motion, see Bardeen.22 This integral can be obtained

quite generally by the Legendre transformation of the free
energy

g = f − o
n

] f

] ¹ n
¹ n. s23d

Indeed, if the fieldsn obey the equations of motion(13), the
gradient¹g=0 vanishes, i.e.,g=const. Deep in the bulk all
gradients vanish, thereforeg= fel

`.
From Eqs.(9)–(12) one finds

o
n

] f

] ¹ n
¹ n =

"2

m* u ¹ cu2 − e0E
2 +

B2

m0
. s24d

With the help of Eqs.(23) and (24) and definition(12), one
can express the electronic free energy as

fel = fel
` +

"2

m* u ¹ cu2 −
e0E

2

2
+

B2

2m0
− wsrlat + end. s25d

At the surface, the GL boundary condition demands that
¹c=0 what impliesE=0. The free energy at the surface thus
reads

fel = fel
` +

B2

2m0
− ws0dsrlat + end. s26d

From Eq. (26) and the surface relation(15) it follows that
rlatw0=B2/ s2m0d+ fel

`. This value is identical to Eq.(20).
Apparently, we can reverse the procedure. Starting from

the general Budd-Vannimenus relation(20) and the general
integral of motion(23), we can derive the surface relation
(15). Accordingly, the surface relation holds for any tempera-
ture, provided that the free energy is a functional of the GL
wave function and its first derivative only,f ; ffc , ¹cg. This
functional can be an arbitrary one.

Perhaps we should explain why we have derived the sur-
face dipole from the Budd-Vannimenus theorem on the inter-
mediate scale, although the more general derivation from the
integral of motion is available. There are two reasons. First,
the intermediate scale provides at least a qualitative picture
of the potential in the vicinity of the surface. This picture
might be helpful if measurements sensitive to layers close to
the surface will be designed.

Second, within the intermediate scale the surface dipole is
treated as a property of the superconducting condensate,
what encourages us to hope that formula(15) or its approxi-
mation (16) can be used to obtain the surface potential also
for cases when the magnetic field has a component perpen-
dicular to the surface. In particular, we expect that it will be
applicable to the superconductors in the mixed state, espe-
cially to evaluate the electric field generated by vortices pen-
etrating the surface.27

IV. CONCLUSIONS

In conclusion, the Budd-Vannimenus theorem was modi-
fied so that it is applicable to the surface of a superconductor.
It allows one to evaluate the electrostatic potential on the
surface from the free energy and the bulk electrostatic poten-
tial nearby. Formula(16) offers the approximation of the
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surface potential from the free energy without the actual
knowledge of the bulk potential.

For plain surfaces we have recovered the experimentally
established fact that the electrostatic potential equals the
magnetic pressure divided by the density of pairable elec-
trons. This experimental law was confirmed also for type-I
and weak type-II superconductors, while the previous theo-
retical treatments were restricted to weak magnetic fields and
extreme type-II superconductors. The presented theory is
free of these limitations.

It was shown that thermodynamic corrections do not in-
fluence the surface electrostatic potential, measurable, e.g.,
via contactless capacitive pickup. Consequently, contrary to
earlier expectations, the density dependence of the critical
temperature cannot be estimated in this way. On the other
hand, the relation between the surface electrostatic potential
and the magnetic pressure shows, that such a measurement
allows one to determine the density of charge carriers with-

out knowledge of any other material parameters.
In this paper we have derived only the amplitude of the

potential step. The detailed profile of the electrostatic poten-
tial including its modulation at the surface can be obtained
by a microscopic approach like the Bogoliubov-de Gennes
theory extended recently to cover the electrostatic
phenomena.28–31 For microscopic calculations, the Budd-
Vannimenus theorem can serve as a test of accuracy of the
numerical procedure, similarly as it is used in the theory of
metal surfaces.
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