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We investigate the stability of possible order parameter configurations in clean layered heterostructures of
theSFS. . .FS type, whereS is a superconductor andF a ferromagnet. We find that for most reasonable values
of the geometric parameters(layer thicknesses and number) and of the material parameters(such as magnetic
polarization, wave vector mismatch, and oxide barrier strength) several solutions of theself-consistentmicro-
scopic equations can coexist, which differ in the arrangement of the sequence of “0” and “p” junction types
(that is, with either same or opposite sign of the pair potential in adjacentS layers). The number of such
coexisting self-consistent solutions increases with the number of layers. Studying the relative stability of these
configurations requires an accurate computation of the small difference in the condensation free energies of
these inhomogeneous systems. We perform these calculations, starting with numerical self consistent solutions
of the Bogoliubov-de Gennes equations. We present extensive results for the condensation free energies of the
different possible configurations, obtained by using efficient and accurate numerical methods, and discuss their
relative stabilities. Comprehensive and systematic results as a function of the relevant parameters for systems
consisting of three and seven layers(one or three junctions) are given, and the generalization to larger number
of layers is discussed.
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I. INTRODUCTION

A remarkable manifestation of the macroscopic quantum
nature of superconductivity is seen in the description of the
superconducting state by a complex order parameter with an
associated phase,f, which is a macroscopic quantum vari-
able. For composite materials comprised of multiple super-
conductorsSd layers separated by nonsuperconducting mate-
rials, the phase differenceDf between adjacentS layers
becomes a very relevant quantity. For the case where a non-
magnetic normal metal is sandwiched between two super-
conductors, it is straightforward to see that the minimum free
energy configuration corresponds to that having a zero phase
difference between theS regions, in the absence of current.
The situation becomes substantially modified for
superconductor-ferromagnet-superconductorsSFSd junctions,
where the presence of the magneticsFd layers leads to spin-
split Andreev1 states and to a spatially modulated2,3 order
parameter that can yield a phase difference ofDf=p be-
tweenS layers. These are the so-calledp junctions. Junctions
of this type can occur also in more complicated layered het-
erostructures of theSFSFSF. . . type, where the relative sign
of the pair potentialDsr d can change between adjacentS
layers.

Continual improvements in well controlled deposition and
fabrication techniques have helped increase the experimental
implementations of systems containingp junctions.4–13 Pos-
sible applications to devices and to quantum computing, as
well as purely scientific interest, have stimulated further in-
terest in these devices. The pursuit of thep state has conse-
quently generated ample supporting data for its existence and
properties: The observed nonmonotonic behavior in the criti-

cal temperature was found to be consistent with the existence
of a p state.6 The domain structure inF is expected to
modify the critical temperature behavior however, depending
on the applied field.7 The ground state ofSFSjunctions has
been recently measured,8 and it was found that 0 orp cou-
pling existed, depending on the widthdF of the F layer, in
agreement with theoretical expectations. Similarly, damped
oscillations in the critical currentIC as a function ofdF sug-
gested also a 0 top transition.9 The reported signature in the
characteristicIC curves also indicated a crossover from the 0
to p phase in going from higher to lower temperatures.10

Furthermore, the current phase relation was measured,12

demonstrating a re-entrantIC with temperature variation.
A good understanding of the mechanism and robustness

of the p state in general is imperative for the further scien-
tific and practical development of this area. Thep state in
SFSstructures was first investigated long ago.14 In general,
the exchange field in the ferromagnet shifts the different spin
bands occupied by the corresponding particle and hole qua-
siparticles. This splitting determines the spatial periodicity of
the pair amplitude in theF layer15 and can therefore induce a
crossover from the 0 state to thep state as the exchange field
h0 varies,16 or as a function ofdF. The Josephson critical
current was found to be nonzero at the 0 top transition, as a
result from higher harmonics in the current-phase
relationship.17 It was found that a coexistence of stable and
metastable states may arise in Josephson junctions, which
was also attributed to the existence of higher harmonics.18 If
the magnetization orientation is varied, thep state may
disappear,19 in conjunction with the appearance of a triplet
component to the order parameter. A crossover between 0
and p states by varying the temperature was explained
within the context of a Andreev bound state model that re-
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produced experimental findings.20 In the ballistic limit a tran-
sition occurs if the parameters of the junction are close to the
crossover at zero temperature.21 An investigation into the
ground states of long(but finite) Josephson junctions re-
vealed a critical geometrical length scale which separates
half-integer and zero flux states.22 The lengths of the indi-
vidual junctions were also found to have important implica-
tions, as a phase modulated state can occur through a second
order phase transition.23

Nevertheless, little work has been done that studies the
stability of thep state for anSFSjunction from a complete
and systematic standpoint, as a function of the relevant pa-
rameters. This isa fortiori true for layered systems involving
more than one junction, each of which can in principle exist
in the 0 or thep state, or for superlattices. There are several
reasons for this. The existence or absence ofp junction
states is intimately connected to the spatial behavior ofDsr d
and of the pair amplitudeFsr d (which oscillates in the mag-
netic layers), and thus the precise form of these quantities
must be calculated self-consistently, so that the resultingFsr d
corresponds to a minimum in the free energy. An assumed,
non-self-consistent form for the pair potential, typically a
piecewise constant in theS layers, often deviates very sub-
stantially from the correct self-consistent result, and there-
fore may often lead to spurious conclusions. Indeed, the as-
sumed form may in effect force the form of the final result,
thereby clearly leading to misleading results. Self-consistent
approaches, despite their obvious superiority, are too infre-
quently found in the literature primarily because of the com-
putational expense inherent in the variational or iterative
methods necessary to achieve a solution. A second problem
is that investigation the relative stability of self-consistent
states requires an accurate calculation of their respective con-
densation energies, and that, too, is not an easy problem.

In this paper, we approach in a fully self consistent man-
ner the question of the stability of states containingp junc-
tions in SFSF. . .S multilayer structures. As has already been
shown in trilayers,24 it can be the case that, for a given set of
geometrical and material parameters, more than one self-
consistent solution exists, each with a particular spatial pro-
file for Dsr d involving a junction of either the 0 orp type. It
will be demonstrated below that this is in fact a very com-
mon situation in these heterostructures: one can typically
find several solutions, all with a negative condensation en-
ergy, i.e., they are all stable with respect to the normal state.
Thus a careful analysis is needed to determine whether each
state is a global or local minimum of the condensation free
energy. This determination is, as we shall see, very difficult
to make from numerical self-consistent results, because it
requires a very accurate computation of the free energies of
the possible superconducting states, from which the normal
state counterpart must then be subtracted. This subtraction of
large quantities to obtain a much smaller one makes the
problem numerically even more challenging than that of
achieving self-consistency, since although the number of
terms involved is the same, the numerical accuracy required
is much greater. Until now, this has been seen as a prohibi-
tive numerical obstacle. Removing this obstacle involves a
careful analysis and computation of the eigenstates for each
state configuration, that is, the energy spectrum of the whole
system.

The numerical method we will discuss and implement
overcomes these difficulties, and therefore enables us to de-
termine the relative stability of the different states involved,
as we shall see, for a variety ofF /S multilayer structure
types, and broad range of parameters. The condensation en-
ergies for the several states found in a fully self-consistent
manner, are accurately computed as a function of the rel-
evant parameters. The material parameters we investigate in-
clude, interfacial scattering, Fermi wave vector mismatch,
and magnetic exchange energy, while the geometrical param-
eters are the superconductor and ferromagnet thicknesses,
and total number of layers. We will see that as the number of
S layers increases, the number of possible stable junction
configurations correspondingly increases. Our emphasis is on
system sizes withS layers of order of the superconducting
coherence lengthj0, separated by nanoscale magnetic layers.
In order to retain useful information that depends on details
at the atomic length scale, it is necessary to go beyond the
various quasiclassical approaches and use a microscopic set
of equations that does not average over spatial variations of
the order of the Fermi wavelength. This is particularly sig-
nificant in our multiple layer geometry, where interfering tra-
jectories can give important contributions to the quasiparticle
spectra, owing to the specular reflections at the boundaries,
and normal and Andreev reflections at the interfaces.25 The
influence of these microscopic phenomena is neglected in
alternative approaches involving averaging over the momen-
tum space governing the quasiparticle paths. Thus, our start-
ing point is fully microscopic the Bogoliubov de-Gennes
(BdG) equations,26 which are a convenient and physically
insightful set of equations that govern inhomogeneous super-
conducting systems. It is also appropriate for the relatively
small heterostructures we are interested in, to consider the
clean limit.

The outline of the paper is as follows: In Sec. II, we write
down the relevant form of the real-space BdG equations, and
establish notation. After introducing an appropriate standing
wave basis, we develop expressions for the matrix elements
needed in the numerical calculations of the quasiparticle am-
plitudes and spectra. The iterative algorithm which embodies
the self-consistency procedure is reviewed. We then explain
how to use the self-consistent pair amplitudes and quasipar-
ticle spectra to calculate the free energy, as necessary to dis-
tinguish among the possible stable and metastable states. In
Sec. III, we introduce our notation and illustrate it by show-
ing some results for the spatial dependence of the pair am-
plitude Fsr d, which is a direct measure of the proximity ef-
fect and gives a physical understanding of the various self-
consistent states we find. The stability of systems containing
various numbers ofp junctions is then clarified through a
series of condensation energy calculations that again take
into consideration the material and geometrical parameters
mentioned above. To conclude, in Sec. IV we summarize the
results.

II. METHOD

A. Basic equations

In this section we briefly review the form that the
Bogoliubov-de Gennes(BdG) equations26 take for theS/F
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multilayered heterostructures we study. Additional details
can be found in Refs. 24, 27, and 28. The BdG equations are
particularly appropriate for the investigation of the stability
of layered configurations in which the pair amplitude may or
may not change sign between adjacent superconducting lay-
ers. These are conventionally called “0” or “p” junction con-
figurations, respectively.

We consider three-dimensional slablike heterostructures
translationally invariant in thex-y plane, with all spatial
variations occurring in thez direction. The heterostructure
consists of superconducting,S, and ferromagnetic,F, layers.
Examples are depicted in Fig. 1. The corresponding coupled
equations for the spin-up and spin-down quasiparticle ampli-
tudessun

↓ ,vn
↑d then read

F−
1

2m

]2

]z2 + «' − EFszd + Uszd − h0szdGun
↑szd + Dszdvn

↓szd

= enun
↑szd s1ad

− F−
1

2m

]2

]z2 + «' − EFszd + Uszd + h0szdGun
↓szd + Dszdvn

↑szd

= enun
↓szd, s1bd

where«' is the kinetic energy term corresponding to quasi-
particles with momenta transverse to thez direction,en are
the energy eigenvalues,Dszd is the pair potential, andUszd is
the potential that accounts for scattering at eachF /S inter-
face. An additional set of equations forun

↓ and vn
↑ can be

readily written down from symmetry arguments, and thus is
suppressed here for brevity. The form of the ferromagnetic

exchange energyh0szd is given by the Stoner model, and
therefore takes the constant valueh0 in theF layers, and zero
elsewhere. Other relevant material parameters are taken into
account through the variable bandwidthEFszd. This is taken
to beEFszd=EFS in theS layers, while in theF layers one has
EFszd=EFM so that in these regions the up and down band-
widths are respectivelyEF↓=EFM +h0, and EF↓=EFM −h0.
The dimensionless parameterI, defined as I ;h0/EFM,
conveniently characterizes the magnets’ strength, withI =1
corresponding to the half-metallic limit. The ratio
L;EFM /EFS;skFM /kFSd2 describes the mismatch between
Fermi wave vectors on theF andSsides, assuming parabolic
bands withkFS denoting the Fermi wave vector in theS
regions. We consider here singlet pairing only and, consistent
with this choice, we assume that the magnetic orientation in
all magnetic layers, when more than one is present, is the
same. As discussed below, this is a reasonable assumption
for the range ofdS values we will focus on. We neglect also
spin-orbit coupling.

The spin-splitting effects of the exchange field coupled
with the pairing interaction in theS regions, results in a
nontrivial spatial dependence of the pair potential, which is
further compounded by the normal and Andreev scattering
events that occur at the multipleS/F interfaces. When these
complexities are taken into account, one generally cannot
assume any explicit form forDszd a priori. Thus, when solv-
ing Eqs.(1), the pair potential must be calculated in a self-
consistent manner by an appropriate sum over states:

Dszd =
pgszdNs0d

kFSd
o

enøvD

E de'fun
↑szdvn

↓szd

+ un
↓szdvn

↑szdgtanhsen/2Td, s2d

where Ns0d is the density of states(DOS) per spin of the
superconductor in the normal state,d is the total system size
in the z direction, T is the temperature,vD is the cutoff
“Debye” energy of the pairing interaction, andgszd is the
effective coupling, which we take to be a constantg within
the superconductor regions and zero elsewhere.

The presence of interfacial scattering is expected to
modify the proximity effect. We assume that everyS/F in-
terface induces the same scattering potential, which we take
of a delta function form:

Uszl,zd = Hdsz− zld s3d

wherezl is the location of the interface andH is the scatter-
ing parameter. It is convenient to use the dimensionless pa-
rameterHB;mH/kFS to characterize the interfacial scatter-
ing strength.

An appropriate choice of basis allows Eqs.(1) to be trans-
formed into a finite 2N32N dimensional matrix eigenvalue
problem in wave vector space:

FH+ D

D H−GCn = enCn, s4d

where Cn
T=sun1

↑ , . . . ,unN
↑ ,vn1

↓ , . . . ,vnN
↓ d, are the expansion

coefficients associated with the set of orthonormal
basis vectors, un

↑szd=Î2/doq=1
N unq

↑ sinskqzd, and un
↓szd

FIG. 1. Examples of the two types of multilayer geometries for
the heterostructures examined in this paper. The system has a total
thicknessd in the z direction, and theF layers have thicknessdF.
The general patterns shown hold for structures with an arbitrary odd
value of the number of layers,NL. The seven layer case is dis-
played. In pattern(a) the thicknesses of eachS layer isdS, while in
(b) the two outerS layers have thicknessdS, and the inner ones have
thickness 2ddS (see text).
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=Î2/doq=1
N vnq

↓ sinskqzd. The longitudinal momentum index
kq is quantized viakq=q/pd, whereq is a positive integer.
The labeln encompasses the indexq and the value of«'.
The finite range of the pairing interactionvD, implies thatN
is finite. In our layered geometry submatrices corresponding
to different values of«' are decoupled from each other, so
one considers matrices labeled by theq index, for each rel-
evant value of«'. The matrix elements in Eq.(4) depend in
general on the geometry under consideration, and are given
for two specific cases in the subsections below.

B. Identical superconducting layers

The first type of structure we consider is one consisting of
alternatingS andF layers, each of widthdS anddF, respec-
tively. This geometry is shown in Fig. 1(a) for the particular
case ofNL=7. For a given total number of layers(supercon-
ducting plus magnetic) NL, we have in this case for the in-
terfacial scattering:

Uszd = o
i=1

sNL−1d/2

fUsisdS+ dFd,zd + UssisdS+ dFd − dFd,zdg

s5d

whereUszl ,zd is given in Eq.(3). The matrix elementsHqq8
+

andHqq8
− in Eq. (4) are compactly written for this geometry

as

Hqq
+ =

kq
2

2m
+ e' +

2H

d
FNL − 1

2
− As2qdG

− EF↑FdF

d
SNL − 1

2
D + Bs2qdG

− EFSFdS

d
SNL + 1

2
D − Bs2qdG , s6ad

Hqq8
+ =

2H

d
fAsq − q8d − Asq + q8dg + fEF↑ − EFSg

3fBsq − q8d − Bsq + q8dg, q Þ q8, s6bd

where,

Asqd = cosSdFpq

2d
D o

i=1

sNL−1d/2

cosFpq

2d
s2dSi + dFs2i − 1ddG ,

s7ad

Bsqd =

2 sinSdSpq

2d
D

pq
o
i=1

sNL+1d/2

cosFpq

2d
sdSs2i − 1d

+ 2dFsi − 1ddG . s7bd

The matrix elementsHqq8
− are similarly expressed in term of

the coefficientsAsqd andBsqd,

Hqq
− = −

kq
2

2m
− «' −

2H

d
FNL − 1

2
− As2qdG

+ EF↓FdF

d
SNL − 1

2
D + Bs2qdG

+ EFSFdS

d
SNL + 1

2
D − Bs2qdG , s8ad

Hqq8
− = −

2H

d
fAsq − q8d − Asq + q8dg − fEF↓ − EFSg

3fBsq − q8d − Bsq + q8dg, q Þ q8. s8bd

The Dqq8 in the off-diagonal part of the left-hand side of
Eq. (4) arise from an integral overDszd, which scatters a
quasiparticle of a given spin into a quasihole of opposite
spin. One has:

Dqq8 =
2

d
E
0

d

dzsinskqzdDszdsinskq8zd. s9d

It is straightforward to write also24,28 the self-consistency
equation in terms of matrix elements.

C. Half-width superconducting outer layers

The previous subsection outlined the details needed to
arrive at the matrix elements when theS layers are of the
same widthdS. We are also interested in investigating struc-
tures where the innerS layers are twice as thicks2dSd as the
outer ones[see Fig. 1(b)] while theF layers remain all of the
same width. This case is of interest because, roughly speak-
ing, the inner layers, being between ferromagnets, should
experience about twice the pair-breaking effects of the ex-
change field than do the outer ones. Therefore, the results
might depend onNL more systematically, particularly for
relatively smallNL, if the width of the outer layers is halved.
This has been found to be the case in some studies29 of the
transition temperature in thin layered systems.

A slight modification to the previous results yields the
following form of the scattering potentialUszd,

Uszd = o
i=1

sNL−1d/2

fUssis2dS+ dFd − dSd,zd

+ Ussis2dS+ dFd − dS− dFd,zdg. s10d

The matrix elementsHqq8
+ are now expressed as

Hqq8
+ =

2H

d
fAsq − q8d − Asq + q8dg + fEF↑ − EFSg

3fBsq + q8d − Bsq − q8dg, q Þ q8, s11ad
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Hqq
+ =

kq
2

2m
+ «' +

2H

d
FNL − 1

2
− As2qdG

− EF↑FdF

d
SNL − 1

2
D − Bs2qdG

− EFSFdS

d
sNL − 1d + Bs2qdG , s11bd

where the coefficientsAsqd andBsqd now read,

Asqd = cosSdFpq

2d
D o

i=1

sNL−1d/2

cosFpq

2d
s2i − 1ds2dS+ dFdG ,

s12d

Bsqd =
2Asqd

pq
tanSdFpq

2d
D .

In a similar manner, The matrix elementsHqq8
− are written as

Hqq
− = −

kq
2

2m
− «' −

2H

d
FNL − 1

2
− As2qdG

+ EF↓FdF

d
SNL − 1

2
D − Bs2qdG

+ EFSFdS

d
sNL − 1d + Bs2qdG , s13ad

Hqq8
− = −

2H

d
fAsq − q8d − Asq + q8dg − fEF↓ − EFSg

3fBsq + q8d − Bsq − q8dg, q Þ q8. s13bd

The matrix elements ofD are as in the previous subsec-
tion, and the self-consistent equation can be similarly rewrit-
ten.

D. Free energy

As discussed in the Introduction, the condensation free
energies of the different self-consistent solutions found must
be compared24 in order to find the most stable configuration,
as opposed to those that are metastable. While for homoge-
neous systems this quantity is found in standard
textbooks,30,31 the case of an inhomogeneous system is more
complicated. We will use the convenient expression found in
Ref. 32 for the free energyF:

F = − 2To
n

lnF2 coshS en

2T
DG +E

0

d

dz
uDszdu2

g
, s14d

where the sum can be taken over states of energy less than
vD. For a uniform system the above expression properly re-
duces to the standard textbook result.31 The corresponding
condensation free energy(or, at T=0, the condensation en-
ergy) is obtained by subtracting the corresponding normal
state quantity, as discussed below. Thus, in principle, only
the results forDszd and the excitation spectra are needed to

calculate the free energy. As pointed out in Ref. 24, a nu-
merical computation of the condensation energies that is ac-
curate enough to allow comparison between states of differ-
ent types requires great care and accuracy. Details will be
given in the next section.

III. RESULTS

As explained in the Introduction, the chief objective of
this work is to study the relative stability of the different
states that are obtained through self-consistent solution of the
BdG equations for this geometry. These solutions differ in
the nature of the junctions. Each junction between two con-
secutiveS layers can be of the “0” type(with the order
parameter in bothS layers having the same phase) or of the
“p” type (opposite phase). As the number of layers, and
junctions, increases, the number of order parameter(or junc-
tion) configurations which are in principle possible increases
also. As we shall see, for any set of parameter values(geo-
metrical and material) not all of the possible configurations
are realized: some do not correspond to free energy local
minima. Among those that do, the one(except for accidental
degeneracies) which is the absolute stable minimum must be
determined: the other ones are metastable. We will discuss
these stability questions as a function of the material and
geometrical properties, as represented by dimensionless pa-
rameters as we shall now discuss.

A. General considerations

Three material parameters are found to be very important:
one is obviously the magnet strengthI. We will vary this
parameter in the range from zero to one, that is, from non-
magnetic to half-metallic, while focusing on intermediate
values. The second is the wave vector mismatch character-
ized by L;skFM /kFSd2. The importance of this parameter
can be understood by considering that, even in the non-self-
consistent limit, the different amplitudes for ordinary and
Andreev scattering depend strongly on the wave vectors in-
volved, as it follows from elementary considerations. We
will vary L in the range from unity(no mismatch) down to
1/10. We have not considered values larger than unity as
these are in practice infrequent. The third important dimen-
sionless parameter is the barrier heightHB defined below Eq.
(3). This we will vary from zero to unity, at which value the
S layers become, as we shall see, close to being decoupled.
We will keep the superconducting correlation length fixed at
kFSj0;J0=100. This quantity sets the length scale for the
superconductivity and therefore can be kept fixed, recalling
only that, to study theds dependence, one needs to consider
the value ofdS/j0. Finally the cutoff frequencyvD can be
kept fixed(we setvD=0.04EFS) since it sets the overall en-
ergy scale and we are interested in relative shifts. The dimen-
sionless coupling constantgNs0d can be derived from these
quantities using standard relations. In this study we will fo-
cus on very low temperatures limit, fixingT to T=0.01TC

0

(whereTC
0 is the bulk transition value). The geometrical pa-

rameters are obviously the number of layersNL, and the
thicknessesdF anddS. We will consider two examples of the
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first: NL=3 andNL=7. For the larger value we will study
both of the geometries in panels(a) and (b) of Fig. 1. The
thicknesses will be usually expressed in terms of the dimen-
sionless quantitiesDS;kFSdS andDF;kFSdF. We will con-
centrate here on the case wheredS is of order of or larger
than j0, (typically j0, and up to 3j0) while dF is much
smaller, in the rangeDF<10. At larger values ofdF the
proximity effect for the intermediateI values chiefly
studied here is negligible. For values ofdS smaller than
dmin<0.5j0 superconductivity disappears as we shall see
(this is true also33 in the dirty limit). Also, atdS values just
abovedmin it is found29 in the dirty limit that the transition
temperature may depend on the relative orientation(parallel
or antiparallel) of consecutiveF layers. This occurs only33 in
a narrow range of material parameter values. Here, in the
NL=7 case, we consider onlydSùj0, in which case the par-
allel and antiparallel magnetic states are degenerate with re-
spect to the transition temperature29,33 and it is sufficient to
consider the parallel case only.

As we study the effect of each one of these parameters by
varying it in the appropriate range, we will be holding the
others constant at a certain value. Unless otherwise indicated,
the values of the parameters held constant will take the “de-
fault” values I =0.2, DS=100=J0, DF=10, L=1, and
HB=0. One important derived length issk↑−k↓d−1, wherek↑
andk↓ are the Fermi wave vectors of the up and down mag-
netic bands. As is well known,15,27 this quantity determines
the approximate spatial oscillations of the pair amplitude in
the magnet. In terms of the quantitiesI andL we can define:

J2 ; kFSsk↑ − k↓d−1 =
1

L1/2

1
Îs1 + Id − Îs1 − Id

. s15d

At I =0.2 andL=1 one hasJ2=4.97 increasing to 15.7 at
L=0.1. This motivates our default choiceDF=10.

The numerical algorithm used in our self-consistent cal-
culations follows closely that of previous developed codes
used in simpler geometries.24,28There are however some ex-
tra complexities that arise for the larger multilayered struc-
tures studied here, and from the increased number of self-
consistent states to be analyzed. As usual, one must assume
an initial particular form for the pair potential, to start the
iteration process. This permits diagonalization of the matrix
given in Eq.(4) for a given set of geometrical and material
parameters, for each value of the transverse energy«'. The
initial guess ofDszd is always chosen as a piecewise constant
±D0, where D0 is the zero temperature bulk gap, and the
signs depend on the possible configuration being investigated
(see below). Self-consistency is deemed to have been
achieved when the difference between two successiveDszd’s
averaged over 4skFSdd values ofZ is less than 10−5D0. The
minimum number of«' variables needed for self consis-
tency is aroundN'=500 different values of«'. In practice
however, use of a value close to this minimum is insufficient
to produce smooth results for quantities such as the local
DOS.27 Therefore, we first calculateDszd self-consistently
using N'=500, after which the iteration is continued with
N' increased by a factor of 10. The computed DOS is then
smooth. The convergence properties and net computational

expense obviously depend also on the dimension of the ma-
trix to be diagonalized, dictated by the number of basis func-
tions, N, which scales linearly with system sizekFSd. Thus,
the computational time then increases approximately as
skFSdd2, which can be a formidable issue. For the largest
structures considered in this paper, the resultant matrix di-
mension is then 2N32N.200032000 for each«'.

The number of iterations needed for self-consistency de-
pends on the initial guess. If the self-consistent state turns
out to be composed of junctions of the same types as the
initial guess, as specified by the signs in the ±D0, then 40 or
50 iterations are usually sufficient. But a crucial point is that,
as we shall see, not all of the initial junction configurations
lead to self-consistent solutions of the same type. Since the
self-consistency condition is derived from a free energy
minimization condition, this means that some of the initial
guesses do not lead to minima in the free energy with the
same junction configuration as the initial guess, and thus that
locally stable states of that type do not exist, for the particu-
lar parameter values studied. In this case, the number of it-
erations required to get a self-consistent solution increases
dramatically, since the pair potential has to reconfigure itself
into a much different profile. The number of iterations in
those cases can exceed 400.

The computation of the condensation free energies of the
self-consistent states found is still a difficult task, even after
the spectra are computed: considering for illustration
the T=0 limit, recall30 that the bulk condensation energy,
given by

E0
b = − s1/2dNs0dD0

2 s16d

represents a fraction of the energy of the relevant electrons of
ordersD /vDd2, a quantity of order 10−2 or less. The conden-
sation free energies of the inhomogeneous states under dis-
cussion are usually much smaller(by about an order of mag-
nitude as we shall see) than that of the bulk. Distinguishing
among competing states by comparing their often similar
condensation free energies, requires computing these indi-
vidual condensation energies to very high precision. This
task is numerically difficult. Here the advantages of the ex-
pression from Ref. 32 which we use[see Eq.(14)] are obvi-
ous. Only the energies are explicitly needed in the sums and
integrals on the right-hand side, the influence of the eigen-
functions being only indirectly felt through the relatively
smooth functionDszd. The required quantities are obtained
with sufficient precision, as we shall demonstrate, from our
numerical calculations. Some of the different but equivalent
expressions found in the literature for the condensation en-
ergies or free energies,31,34 contain explicit sums over eigen-
functions, which can lead to cumulative errors. Also, the ap-
proximate formula used for the condensation energy of
trilayers in Ref. 24, consisting of replacing, in Eq.(16), the
pair amplitude with its spatial average, while plausible, is
difficult to validate in general, and becomes inaccurate for
systems involving a larger number of thinner layers, particu-
larly with S widths of order ofj0.

Using this procedure, the task then becomes feasible but
not trivial as it involves a sum over more than 106 terms.
Also, to obtain the condensation energy one still has to sub-
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tract from the superconductingF the corresponding normal
quantityFN. It is from subtracting these larger quantities that
the much smaller condensation free energy is obtained. The
normal state energy spectra used to evaluateFN are com-
puted by takingD=0 in Eq.(4), and diagonalizing the result-
ing matrix. The presence of interfacial scattering and mis-
match in the Fermi wave vectors still introduces off-diagonal
matrix elements. In performing the subtraction, care must be
taken(as in fact is also the case in the bulk analytic case) to
include exactly the same number of states in both calcula-
tions, rather than loosely using the same energy cutoff: no
states overall are created or lost by the phase transition. With
all of these precautions, results of sufficient precision and
smoothness are obtained. Results obtained with alternative
equivalent35 formulas are consistent but noisier. We have
also verified that in the limiting case of large superconduct-
ing slabs our procedure reproduces the analytic bulk results.

B. Pair amplitude structure

We begin by briefly presenting some results for the pair
amplitudeFszd, which show how the spatial dependence of
the pair correlations can vary as a function of the interface
scattering parameterHB and the Fermi wave vector mis-
matchL. This is best done by means of three-dimensional
plots. In the first of these, Fig. 2, we show the pair amplitude
(normalized toD0/g) for a three layerSFS system, with
DF=10 andDS=100, as a function of position and of mis-
match parameterL, atHB=0. The figure shows the results of
attempting to find a solution of the “0” type by starting the

iteration process with an initial guess of that form. Clearly
such an attempt fails at small mismatchsL*0.7d indicating
that a solution of this type is unstable. At larger mismatch, a
0 state solution is found. We found also that if one instead
starts with an initial guess of the “p” type, a self-consistent
solution of this type is then always obtained. Thus, for small
mismatch there is only one self-consistent solution, which is
of thep type, while when the mismatch is large there are two
competing solutions and their relative stability becomes an
issue.

The effect of the barrier height, as represented by the
parameterHB, can be similarly studied. We find that for
small values ofHBsHB&0.3d only ap type solution is found,
while for larger values solutions of the 0 andp type com-
pete.

We now turn to seven layerSFSFSFSstructures. In our
study, where as explained above, all of theF layers have
parallel orientation, it is sufficient in classifying the different
possible configurations to establish a notation that envisions
the seven layer geometry as consisting of three adjacentSFS
junctions. Thus, up to a trivial reversal, we can then denote
as “000” the structure when adjacentS layers always have
the same sign ofDszd, and as “ppp” the structure where
successiveS layers alternate in sign. There are also two other
distinct symmetric states: one in whichDszd has the same
sign in the first twoS layers, and in the last two it has the
opposite sign,(this is labeled as the “0p0” configuration),
and the other corresponding to the two outerS layers having
the same sign forDszd, opposite to that of the two innerS
layers: these are referred to as “p0p” structures in this no-
tation. We will focus our study on these symmetric configu-
rations. Asymmetric configurations corresponding in our no-
tation to thep00, andpp0 states are not forbidden, but
occur very rarely and will be addressed only as need may
arise. In Fig. 3 we repeat the plot in Fig. 2 for seven layer
structures. We include the cases in which allS layers are of
the same thickness(top panel) and the case where the thick-
ness of the two innerS layers is doubled(bottom panel, see
Fig. 1). The initial guess is always of the 000 type. In the
case of identicalS layer widths, we see that a 000 guess[Fig.
3(a)] yields a self-consistent state of the same 000 form only
for larger mismatch,L&0.5, while for smaller mismatch the
configuration obtained is clearly of thep0p form. Thus there
is a value ofL where two self-consistent solutions cross
over. However, appp guess(not shown) results in a self-
consistentppp configuration for the wholeL range. Thus,
there is a clear competition betweenat leastthese three ob-
served states, resulting from multiple minima of the free en-
ergy. Solutions of the 0p0 type are not present in this figure
but they will be discussed below. In the bottom panel we see
the same effects when the thickness of the innerS layers is
doubled. As explained above, this describes a more balanced
situation, since the inner layers have magnetic neighbors on
both sides. It is evident from the figure that the pairing cor-
relations are increased in theS layers. In Fig. 3(b), there is
also a noticeable shift in the crossover point separating the
000 andp0p self-consistent states, occuring now at smaller
mismatchL<0.7. Again we find the competition between
the various states extends through the entire range ofL con-

FIG. 2. (Color online) The pair amplitudeFsZd, normalized to
its bulk T=0 value, for a three layerSFSstructure, plotted as a
function of Z;kFSz and of the mismatch parameterL, at HB=0.
The Z=0 point is at the center of the structure. We haveDS

;kFSdS=100 andDF;kFSdF=10. The results shown correspond to
self-consistent results obtained with an initial guess where the junc-
tion is of the “0” type. In this case, a solution of the 0 type is
obtained only for large mismatch(small L). We haveI =0.2 and
T=0.01Tc

0 here. See text for discussion.
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sidered. As in the three layer case, a similar situation occurs
also as a function ofHB, with smallHB corresponding again
to small mismatch.

These results, which include for brevity only a very small
subset of those obtained, are sufficient, we believe, to per-
suade the reader that although for some parameter values a
unique self-consistent solution exists, this is comparatively
rare, and that in general several solutions of differing sym-
metry types can be found. These self-consistent solutions
correspond to local free energy minima: they are at least
metastable. Furthermore, it is clear that the uniqueness or
multiplicity of solutions depends in a complicated way not
only on the geometry, but also on the specific material pa-
rameter values.

C. Condensation free energy: Stability

One must, in view of the results in the previous subsec-
tion, find a way to determine in each case the relative stabil-
ity of each configuration and the global free energy mini-
mum. This is achieved by computing the free energy of the
several self consistent states, using the accurate numerical
procedures explained earlier in this section. Results for this
quantity, which at the low temperature studied is essentially
the same as the condensation energy, are given in the figures
below. The quantity plotted in these figures, which we call
the normalizedDE0, is the condensation free energy[as cal-
culated from Eq.(14) after normal state subtraction] normal-
ized to Ns0dD0

2, which is twice the zero temperature bulk
value[see Eq.(16)]. Therefore, at the low temperatures stud-
ied, the bulk uniform value of the quantity plotted is very
close to −s1/2d.

In Fig. 4 we plot DE0, defined and normalized as ex-
plained, for a three layerSFSsystem. As in previous figures,
we have DS=100, DF=10, and I =0.2. Results for self-
consistent states of both the 0 andp type are plotted as
indicated. The top panel showsDE0 as a function of the
barrier thickness parameterHB at L=1. The bottom panel
plots the same quantity as a function of mismatchL at zero
barrier and should be viewed in conjunction with Fig. 2.
Looking first at the top panel, one sees that the zero state is
stable(has nonzero condensation energy) only for HB greater
than about 0.31, consistent with theFszd results mentioned
above. An attempt to find a solution of the 0 type forHB just
below its “critical” value by using a solution of that type
previously found for a slightly higherHB as the starting
guess, and iterating the self-consistent process, leads after
many iterations to a solution of thep type. This is indicated
by the vertical arrow. At larger barrier heights, the two states
become degenerate. This makes sense physically: as the bar-
riers become higher the proximity effect becomes less impor-
tant, and theS layers behave more as independent supercon-
ducting slabs. The relative phase is then immaterial. For even
larger HB we expect, from Eq.(16) and the geometry, the
normalized quantity plotted to trend, from above, toward a
limit <−0.5s1−DF /2DSd=−0.48 and this is seen in the top
panel. One can also see that in the region of interest(barriers
not too high), the absolute value of the condensation energy
is substantially below that of the bulk. In the bottom panel
similar trends can be seen: in the absence of mismatch
sL=1d only thep state is found, and its condensation energy
exhibits a somewhat oscillatory behavior asL decreases
from unity. The 0 state does not appear untilL is about 0.7
and attempts(by the procedure just described) to find it lead
to a p solution upon iteration(arrow). This is in agreement
with the results in Fig. 2. For large mismatch the absolute
value ofDE0 increases, as theS slabs become more weakly
coupled, with a trend toward the limiting value just dis-
cussed. A very important difference between the top and bot-
tom panels, however, is the crossing of the curves near
L=0.33 in Fig. 4(b). This is in effect a first order phase
transition between thep and 0 configurations as the mis-
match changes.

The results of performing the same study for a seven layer
system with fourS layers can be seen in the next figure.

FIG. 3. (Color online) The normalized pair amplitudeFsZd for a
seven layerSFSFSFSstructure, plotted as in Fig. 2 for the same
parameter values. In panel(a) the thickness of allS layers is the
same, while in panel(b) the thickness of the two innerS layers is
doubled to 2DS=200 (see Fig. 1). Both panels correspond to an
initial guess of the “000” type(see text). The configuration of the
plotted self consistent results can be “000,” or “p0p” as explained
in the text.
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Panels(a) and(c) of Fig. 5 correspond to the case where all
the S layers have the same thickness(DS=100, and all other
parameters also as in the previous figures), while panels(b)
and (d) in Fig. 5 the thickness of the two innerS layers is
doubled. Results for the four possible symmetric junction
configurations mentioned in conjunction with Fig. 3 are
given, as indicated in the legends of Fig. 5. Three of those
configurations, 000,ppp, and p0p have appeared among
the results in Fig. 3. The other configuration corresponds to
the 0p0 sequence. We see that there are some striking dif-
ferences between these examples and the three layer system.
While in the latter case a configuration ceases to exist only
when its condensation energy tends to zero, now configura-
tions can become unstable even when, for nearby values of

the relevant parameter, they still have a negative condensa-
tion energy. As this occurs, the vertical arrows in each panel
indicate(an inset is needed in one case for clarity) how the
states transform into each other as one varies the parameters
from the unstable to the stable region. Regardless of whether
the inner layers are doubled or not, the tendency is for the
innermost junction to remain of the same type, while the two
outer junctions flip. Comparing panels(a) and (c) to panels
(b) and (d), respectively, in Fig. 5, we see that the doubling
of the inner layers has a clear quantitative effect without
having any strong qualitative influence. An important differ-
ence between the two cases is that in the first(all S layer
widths equal) the two possible states) (p0p and ppp) at
zero barrier and no mismatch are nearly degenerate, while in

FIG. 4. (Color online) The normalized con-
densation free energyDE0 (see text) of a three
layer SFSstructure, plotted as a function of bar-
rier height(top) and mismatch parameterL (bot-
tom) for self consistent states of both the 0 andp
types, as indicated. All other material parameters,
geometrical values, and temperature, are as in
Fig. 2. The vertical arrow marks the end, as either
HB increases(top) or L increases(bottom), of the
region of stability of the 0 state in this case.
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the other case, theppp configuration is favored. In the first
case, the degeneracy is removed as the barrier height begins
to increase, butL has a small effect in relative stability. In
panels(b) and (d) the oscillatory effect ofL near the no-
mismatch limit is seen, as in the three layer case. For large
mismatch or barrier, the results become again degenerate and
trend towards the appropriate limit. We expect these seven
layer results to be at least qualitatively representative of what
occurs for larger values ofNL: thus, states of the types
000¯000, pp¯pp, and p00¯00p (outer junctions one
way and inner ones the other) should predominate for large
NL.

It is at least of equal interest to study how the stability
depends on the geometry and onI. We discuss this question
in the next four figures. First, in Fig. 6 we present results for
the condensation free energy of a three layer system as a
function of dS/j0 at fixed DF=10, I =0.2, HB=0, L=1. We
see thatdS must be at least half a correlation length for su-
perconductivity to be possible at all in this system. Conver-
gence near that value is rather slow, requiring approximately
200 iterations. The superconducting state then begins occur-
ring, for this value ofDF, in ap configuration only. WhendS

reachesj0, the p state condensation energy reaches already
an appreciable value that is consistent with that seen in the
appropriate limits of the panels in Fig. 4. The 0 state is still
not attainable(again, consistent with Fig. 4) until dS reaches
a somewhat larger value. The condensation energies of the
two states converge slowly toward each other upon increas-
ing dS, but remain clearly nondegenerate well beyond the
range plotted. The small breaks in the 0 state curve corre-
spond to specificS widths that permit only thep state.

The behavior seen in Fig. 6 depends strongly onI. This
dependence is displayed in Fig. 7 where we show the nor-
malizedDE0 for the same system, as a function ofI, for two
different values ofdS. For the valueI =0.2, the results shown
are consistent with Fig. 6, including the nonexistence of the
0 state atdS=x0. We now see, however, that it is not always
the p state which is favored, but that the difference in con-
densation energies is an oscillatory function ofI. This of
course reflects that whether the 0 or thep state is preferred
depends, all other things being equal, on the relation between
DF and sk↑−k↓d−1, and this quantity[see Eq.(15)] depends
on I. At intermediate values ofI (centered aroundI =0.5) the
zero state is favored, and whenI becomes very small, thep

FIG. 5. (Color online) The normalizedDE0 for a seven layerSFSFSFSstructure plotted as a function of barrier height(panels(a) and
(b)) and mismatch parameterL (panels(c) and (d)) for self-consistent states of the types indicated(see text for explanation). In the top
panels,(a) and(c), the thickness of allS layers is the same, while in panels(b) and(d) the thickness of the innerS layers is doubled. Material
parameter and geometrical values are as in previous figures, and allS layers are of the same thickness. The vertical arrows mark the end, as
HB decreases(top) or L increases(see inset for panel(c)) of the region of stability of a certain state(see text).
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state ceases to exist altogether. AsI →0 the condensation
energy of the 0 state remains somewhat above the bulk value
and, as one would expect, decreases slightly with increasing
dS. At larger values ofI, the absolute values ofDE0 increase
with dS and on the average decrease slowly withI.

The oscillations in Fig. 7 as a function ofI at constantdF
can also be displayed by considering results as a function of
dF at constantI. We do so in Fig. 8 where we plot, for a three
layer SFS system, DE0 as a function ofDF at constant
I =0.2 for two values ofdS/j0. One sees again that for this
value ofI the 0 state does not exist atdS=j0 andDF=10 but
that it appears at larger values ofdS/j0. The damped oscilla-
tory behavior is quite evident. At larger values ofdF the
condensation energies of the two states trend towards a com-
mon value that increases in absolute value withdS. At a very
small value ofdF, which depends ondS, thep state begins to
vanish, and the condensation free energy of the 0 state tends
then towards the bulk value. All of this is consistent with
simple physical arguments.

In Fig. 9 we extend the results of Fig. 8 to the seven layer
system. In this case we consider only one value ofdS
sdS=j0d but include a finite barrier thickness,HB=0.5. The
finite barrier allows for the possibility of more distinct states
coexisting(see Fig. 5). We consider both the cases where all
S layers thicknesses are equal(top panel) and the case where
the inner ones are doubled(bottom panel). All possible sym-
metric self-consistent states were studied, as indicated in the
figure. In contrast with the three layer example with no bar-
rier, in the seven layer cases withHB=0.5 all of the four
symmetric states(000, ppp ,p0p ,0p0) are at least meta-
stable over a range ofdF, even atdS=j0. In the top panel we
see however that only the 0p0 state is stable over the whole
dF range. Theppp state reverts to the 0p0 state in the range
1.6&dF&4.2, while thep0p state reverts to 000 state for
1.8&dF&2.4. The 000 state is unstable for much of the
range for 6&dF&12. It appears that in this range the 000
state is sufficiently close to a crossover(see, e.g., Fig. 5) that
attempts to find it sometimes converge to an asymmetricp00
state, rather than the expectedp0p. In these cases the num-

ber of iterations to convergence is substantially increased, as
the order parameter attempts to readjust its profile. For the
situation where the innerS layers are twice the width of the
outer ones, we see(bottom panel) that all four symmetric
configurations are either stable or metastable for the whole
dF range. This is consistent with Fig. 5[panel(b)], where at
HB=0.5 all four states are present simultaneously. The con-
densation energy is of course lower than in the previous case,
due to the increased pairing correlations associated with the
thickerSslabs. For both geometries oscillations arising from
the scattering potential lead to deviations from the estimated
periodicity determined bysk↑−k↓d−1. For sufficiently largedF

the difference in energies becomes small. One can infer from
these results than in superlattices with realistic oxide barri-
ers, where as the number of layers increases a larger number
of nontrivial possible states arise, the number of local free
energy minima that can coexist will increase.

IV. CONCLUSIONS

In summary, we have found self consistent solutions to
the microscopic BdG equations forSFSandSFSFSFSstruc-
tures, for a wide range of parameter values. We have shown
that, in most cases, several such self-consistent solutions co-
exist, with differing spatial dependence of the pair potential
Dsr d and the pair amplitudeFsr d. Thus, there can be in gen-
eral competing local minima of the free energy. Determining
their relative stability requires the computation of their re-
spective condensation free energies, which we have done by
using an efficient, accurate approach that does not involve
the quasiparticle amplitudes directly, and requires only the
eigenenergies and the pair potential.

For SFStrilayers(single junctions), we found that bothp
and 0 junction states exist for a range of values of the rel-
evant parameters. We have displayed results for the pair am-
plitude, which give insight into the superconducting correla-
tions, and for the condensation free energies of each
configuration, to determine the true equilibrium state. We
have shown that a transition(which is in effect of first order

FIG. 6. (Color online) The normalizedDE0

for a three layerSFSsystem, as a function of the
thicknessdS of the S layers(given in units ofj0)
at fixed DF=10, I =0.2 and without a barrier or
mismatch. Results for 0 andp self-consistent
states are given as indicated.
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in parameter space) can occur between the 0 andp states for
a critical value ofL. The difference in condensation energies
between the two possible states exhibits oscillations as a
function of I. This behavior is strongly dependent on the
width of the S layers, in the range studied. FordS equal to
one coherence lengthj0, there exists a range ofI in which
either a 0 orp state survives, but not both. Increasing theS
width by aboutj0/2 restores the coexistence of both states.

Several interesting phenomena arise when one explores
the geometrical parameters of trilayer structures. For a fixed
ferromagnet widthdF, and parameters values that lead to ap
state, we found(see Fig. 6) that thep configuration remains
the ground state of the system asdS varies. Thep state first
appears at smalldS sdS<j0/2d, and then its condensation
energy declines monotonically towards the bulk limit. The
metastable 0 state begins at largerdS<j0, and its condensa-
tion energy declines also slowly over the range ofdS studied.
The other relevant length that was considered isdF. The
condensation energy is, for both states, an oscillatory func-

tion of dF. The oscillations become better defined, and the
possibility of both 0 andp states coexisting increases, at
largerdS. As expected, we find that the condensation energy
has very similar properties when eitherdF or I varies. The
period approximately agrees with the estimate given by
sk↑−k↓d−1, which governs the oscillations of the pair ampli-
tude and in general, of other single particle quantities.

As the number of layers increases, so does the number of
competing stable and metastable junction configurations. We
considered two types of seven layers structures, and found
that doubling the width of the innerS layers (which are
bounded on each side by ferromagnets), resulted typically in
different quasiparticle spectra and pair amplitudes, compared
to the situation when allS layers have the samedS. For large
mismatch or barrier strength, the phase of the pair amplitude
in each layer is independent, and configurations are nearly
degenerate, but as each of these parameters diminishes there

FIG. 7. (Color online) The normalizedDE0 for a three layerSFS
junction, as a function of the parameterI, for two differentS thick-
nesses(as labeled) and fixed DF=10. Results for 0 andj self-
consistent states are given as indicated. FIG. 8. (Color online) The normalizedDE0 for a three layerSFS

system, as a function ofdF, (rather than ofI as in Fig. 7) for two
different S thicknesses(as labeled) and fixedI =0.2, HB=0, L=1.
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is a crossing over to a situation where the free energies of
each configuration are well-separated. At certain values ofL
andHB, some configurations become unstable. These values
are different depending on the type of system(single or
double inner layers). For fixed I and dF we found that if a
state is stable at no mismatch and zero barrier, then it re-
mains at least metastable over a very wide range ofL andHB
values. Our results showed that self-consistency cannot be
neglected as the number of layers increases, due to the non-
trivial and intricate spatial variations inFsr d that become
possible.

For seven layers, we studied in detail the condensation
free energies of the four symmetric junction states, 000,
ppp, p0p, and 0p0, in the previously introduced notation.
We first investigated the stable states as a function ofL and
HB. In contrast to the three layer system, we found that states
could become unstable even when the condensation energy
did not tend to zero for nearby values of the relevant param-
eters. For double width inner layered structures, we found a
greater spread in the free energies between the four states,
and the instability found in certain cases for the 000 and 0p0
states was shifted inL and HB, in agreement with the pair
amplitude results. It is reasonable to assume that these results
are representative of what occurs for superlattices. We again
found transitions upon varyingL and the number and se-
quence of the transitions is now more intricate(see Fig. 5).
The analysis of the geometrical properties revealed that scat-
tering at the interfaces modifies the expected damped oscil-
latory behavior of the condensation energy as a function of
dF. In effect, the barriers introduce significant atomic scale
oscillations that smear the periodicity. This underlines the
importance of a microscopic approach for the investigation
of nanostrucutres. As with theL dependence, we also
showed that the global minima in the free energy is different
for the two structures asdF changes. The configuration of the
ground state of the system withS layers of uniform width
was more variable in parameter space compared to when the
inner layers are doubled(see Fig. 5).

Our results were obtained in the clean limit, which is
appropriate for the relatively thin structures envisioned here.
Furthermore, as shown in Ref. 28 in conjunction with real-
istic comparison with experiments,36 the influence of impu-
rities can be taken into account by replacing the clean value
of j0 with an effective one. A separate important issue is that
of the free energy barriers separating the different free en-
ergy minima we have found, and hence to which degree are
metastable states long lived. Our method cannot directly an-
swer this question, but from the macroscopic symmetry dif-
ferences in the pair amplitude structure of the different states
one would have to conclude that the barriers are high and the
metastable states could be very long lived. We expect that the
transitions found here in parameter space at constant tem-
perature will be reflected in actual first order phase transi-
tions as a function ofT. Such transitions would presumably
be very hysteretic. We hope to examine this question in the
future.
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FIG. 9. (Color online) The normalized condensation free energy
for a seven layerSFSFSFSsystem, as a function ofDF, for fixed
I =0.2,dS=j0, L=1, andHB=0.5. Results for the four possible sym-
metric self-consistent states are given, as indicated, for both the
cases where allS layers are identical(top) and where the thickness
of the inner ones is doubled(bottom). Lines are guides to the eye.
Breaks(top panel) indicate regions where a certain configuration is
not found.
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