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We investigate the stability of possible order parameter configurations in clean layered heterostructures of
the SFS..FStype, whereSis a superconductor arfdla ferromagnet. We find that for most reasonable values
of the geometric parametefiayer thicknesses and numband of the material parametgiguch as magnetic
polarization, wave vector mismatch, and oxide barrier strengghieral solutions of thself-consisteninicro-
scopic equations can coexist, which differ in the arrangement of the sequence of “O%anettion types
(that is, with either same or opposite sign of the pair potential in adja8dayery. The number of such
coexisting self-consistent solutions increases with the number of layers. Studying the relative stability of these
configurations requires an accurate computation of the small difference in the condensation free energies of
these inhomogeneous systems. We perform these calculations, starting with numerical self consistent solutions
of the Bogoliubov-de Gennes equations. We present extensive results for the condensation free energies of the
different possible configurations, obtained by using efficient and accurate numerical methods, and discuss their
relative stabilities. Comprehensive and systematic results as a function of the relevant parameters for systems
consisting of three and seven layéosie or three junctionsare given, and the generalization to larger number
of layers is discussed.
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[. INTRODUCTION cal temperature was found to be consistent with the existence
of a 7 state® The domain structure irF is expected to
A remarkable manifestation of the macroscopic quantunmodify the critical temperature behavior however, depending
nature of superconductivity is seen in the description of theon the applied field. The ground state o8FSjunctions has
superconducting state by a complex order parameter with apeen recently measurédnd it was found that O ofr cou-
associated phase;, which is a macroscopic quantum vari- pling existed, depending on the width of the F layer, in
able. For composite materials comprised of multiple superagreement with theoretical expectations. Similarly, damped
conductor(S) layers separated by nonsuperconducting mateoscillations in the critical currerii as a function oflr sug-
rials, the phase differencA¢ between adjacens layers gested ale_;a_o t0wtran5|t|oq? T.he reported signature in the
becomes a very relevant quantity. For the case where a noffharacteristidc curves also indicated a crossover from the 0
magnetic normal metal is sandwiched between two supelt-0  phase in going from higher to lower temperatutes.

conductors, it is straightforward to see that the minimum fred, UTihermore, the current phase relation was ‘meastred,
demonstrating a re-entraht with temperature variation.

e e oo 1 saon A goa Understanding of the mechanis and robstnes
9 ’ ' of the 7 state in general is imperative for the further scien-

The situation becomes substantially mpdnﬂgd for tific and practical development of this area. Thestate in
superconductor-ferromagnet-supercondu€®sts junctions,  gesstructures was first investigated long @gan general,
where the presence of the magne#9 layers leads to spin-  the exchange field in the ferromagnet shifts the different spin
split AndreeV states and to a spatially modulatécorder  pands occupied by the corresponding particle and hole qua-
parameter that can yield a phase differenceAgf=m= be-  siparticles. This splitting determines the spatial periodicity of
tweenSlayers. These are the so-calledunctions. Junctions the pair amplitude in th& layert® and can therefore induce a
of this type can occur also in more complicated layered heterossover from the O state to thestate as the exchange field
erostructures of th&FSFSF.. type, where the relative sign h, varies!® or as a function ofd.. The Josephson critical
of the pair potentialA(r) can change between adjaceht current was found to be nonzero at the Ortéransition, as a
layers. result from higher harmonics in the current-phase
Continual improvements in well controlled deposition andrelationship'’ It was found that a coexistence of stable and
fabrication techniques have helped increase the experimentaletastable states may arise in Josephson junctions, which
implementations of systems containingunctions*'3Pos-  was also attributed to the existence of higher harmoffidfs.
sible applications to devices and to quantum computing, athe magnetization orientation is varied, the state may
well as purely scientific interest, have stimulated further in-disappeat? in conjunction with the appearance of a triplet
terest in these devices. The pursuit of thetate has conse- component to the order parameter. A crossover between 0
quently generated ample supporting data for its existence arehd 7 states by varying the temperature was explained
properties: The observed nonmonotonic behavior in the critiwithin the context of a Andreev bound state model that re-
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produced experimental finding%In the ballistic limit a tran- The numerical method we will discuss and implement
sition occurs if the parameters of the junction are close to thevercomes these difficulties, and therefore enables us to de-
crossover at zero temperatdfeAn investigation into the termine the relative stability of the different states involved,
ground states of longbut finite) Josephson junctions re- as we shall see, for a variety &f/S multilayer structure
vealed a critical geometrical length scale which separatetypes, and broad range of parameters. The condensation en-
half-integer and zero flux statésThe lengths of the indi- ergies for the several states found in a fully self-consistent
vidual junctions were also found to have important implica-manner, are accurately computed as a function of the rel-
tions, as a phase modulated state can occur through a secose¢hnt parameters. The material parameters we investigate in-
order phase transitioff. clude, interfacial scattering, Fermi wave vector mismatch,
Nevertheless, little work has been done that studies thgnd magnetic exchange energy, while the geometrical param-
stability of the state for anSFSjunction from a complete eters are the superconductor and ferromagnet thicknesses,
and systematic standpoint, as a function of the relevant paand total number of layers. We will see that as the number of
rameters. This is fortiori true for layered systems involving g jayers increases, the number of possible stable junction
more than one junction, each of which can in principle existconfigurations correspondingly increases. Our emphasis is on
in the 0 or thew state, or for superlattices. There are severakysiem sizes witts layers of order of the superconducting
reasons for this. The existence or absencemojunction  ,parence lengtty, separated by nanoscale magnetic layers.
states is |nt|m_ately c_onnected to_the SP"?‘“a' be_hawak(ot In order to retain useful information that depends on details
and_ of the pair amplitud&(r) (Wh'Ch oscillates in the Mag- ot the atomic length scale, it is necessary to go beyond the
netic layer$, and thus the precise form of these quantities o rjo s guasiclassical approaches and use a microscopic set

g:;:f;sbpeozzlgutlglt:dﬁiﬁli;cuogsiﬁti?éh?r:g g]r?;rgye fsugzgme f equations that does not average over spatial variations of
non-self-consistent form for the pair potential, typically a h? ordgr of the Fermi wavelength. This is p_arnculquy SI9-
piecewise constant in th® layers, often deviates very sub- _mﬁcant In our r.nultllple layer geometry, where mterfen.ng tra-
stantially from the correct self-consistent result, and therelectories can give Important contrlbuthns to the quaS|part|(_:Ie
f Spectra, owing to the specular reflections at the boundaries,

fore may often lead to spurious conclusions. Indeed, the a ; . 26
sumed form may in effect force the form of the final result, @1d normal and Andreev reflections at the interfacethe

thereby clearly leading to misleading results. Self-consistenf)fluence of these microscopic phenomena is neglected in
approaches, despite their obvious superiority, are too infredlternative approaches involving averaging over the momen-
quently found in the literature primarily because of the com-tum space governing the quasiparticle paths. Thus, our start-
putational expense inherent in the variational or iterativdNg point is fully microscopic the Bogoliubov de-Gennes
methods necessary to achieve a solution. A second problefBdG) equationg® which are a convenient and physically

is that investigation the relative stability of self-consistentinsightful set of equations that govern inhomogeneous super-
states requires an accurate calculation of their respective conenducting systems. It is also appropriate for the relatively
densation energies, and that, too, is not an easy problem. small heterostructures we are interested in, to consider the

In this paper, we approach in a fully self consistent man<lean limit.

ner the question of the stability of states containingunc- The outline of the paper is as follows: In Sec. Il, we write
tions in SFSF...S multilayer structures. As has already beendown the relevant form of the real-space BdG equations, and
shown in trilayers;* it can be the case that, for a given set of establish notation. After introducing an appropriate standing
geometrical and material parameters, more than one seliyave basis, we develop expressions for the matrix elements
consistent solution exists, each with a particular spatial propeeded in the numerical calculations of the quasiparticle am-
file for A(r) involving a junction of either the 0 or type. It pjiyudes and spectra. The iterative algorithm which embodies
will be demonstrated below that this is n fact a very com-yhe self-consistency procedure is reviewed. We then explain
mon situation in these heterostructures: one can typically,, 15 yse the self-consistent pair amplitudes and quasipar-
find 5.9"8”1" solutions, all W'th. a negative condensation €Micle spectra to calculate the free energy, as necessary to dis-
ergy, i.e., they are all ;te}ble with respect to t.he iy state( nguish among the possible stable and metastable states. In
Thus a careful analysis is needed to determine whether ea . Ill, we introduce our notation and illustrate it by show-

state Is a global or I'oca'l minimum of the condensatlon fre ng some results for the spatial dependence of the pair am-
energy. This determination is, as we shall see, very difficul litude F(r), which is a direct measure of the proximity ef-

to make from numerical self-consistent results, because ; ! : .
O?Ct and gives a physical understanding of the various self-

requires a very accurate computation of the free energies ; . - >
) ) . onsistent states we find. The stability of systems containing
the possible superconducting states, from which the normal_ . . . . -
. . “various numbers ofr junctions is then clarified through a
state counterpart must then be subtracted. This subtraction of . . : .
" . Series of condensation energy calculations that again take
large quantities to obtain a much smaller one makes thé

. ) hto consideration the material and geometrical parameters
problem numerically even more challenging than that o : . .
S . : entioned above. To conclude, in Sec. IV we summarize the
achieving self-consistency, since although the number o

. ; . . results.
terms involved is the same, the numerical accuracy requweae
is much greater. Until now, this has been seen as a prohibi- Il. METHOD
tive numerical obstacle. Removing this obstacle involves a . )
careful analysis and computation of the eigenstates for each A. Basic equations
state configuration, that is, the energy spectrum of the whole In this section we briefly review the form that the
system. Bogoliubov-de GenneéBdG) equation® take for theS/F
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exchange energi(z2) is given by the Stoner model, and
therefore takes the constant valygin the F layers, and zero
elsewhere. Other relevant material parameters are taken into
account through the variable bandwidEa(z). This is taken
S to beEr(z) =Ergin the Slayers, while in the- layers one has
Er(20=Egy so that in these regions the up and down band-
widths are respectivelyeg =Epy+hy, and Eg| =Egy—ho.
dg |d. The dimensionless parametér defined asl=hy/Egy,
conveniently characterizes the magnets’ strength, it
corresponding to the half-metallic limit. The ratio
A =Egpn/Ers= (kew/keo)? describes the mismatch between
Fermi wave vectors on the andSsides, assuming parabolic
bands withkgg denoting the Fermi wave vector in tHe
(b) S F S F S F S re_giong. We c;onsider here singlet pairing onIy_and., cons:iste_nt
with this choice, we assume that the magnetic orientation in
all magnetic layers, when more than one is present, is the
same. As discussed below, this is a reasonable assumption
for the range ofdg values we will focus on. We neglect also
spin-orbit coupling.

FIG. 1. Examples of the two types of multilayer geometries for ~ The spin-splitting effects of the exchange field coupled
the heterostructures examined in this paper. The system has a totgith the pairing interaction in thés regions, results in a
thicknessd in the z direction, and thé~ layers have thicknesd=.  nontrivial spatial dependence of the pair potential, which is
The general patterns shown hold for structures with an arbitrary od¢yrther compounded by the normal and Andreev scattering
value of the number of layers\,. The seven layer case is dis- eyents that occur at the multip® F interfaces. When these
played. In patterrja) the thicknesses of ea@layer isdg, while in complexities are taken into account, one generally cannot
(b_) the two outeiSlayers have thicknes;, and the inner ones have 555;me any explicit form fak(z) a priori. Thus, when solv-
thickness #ds (see text ing Egs.(1), the pair potential must be calculated in a self-

consistent manner by an appropriate sum over states:
multilayered heterostructures we study. Additional details

@ | SFISF S F

dg [d. | 24,

can be found in Refs. 24, 27, and 28. The BdG equations are _ m9(2IN(0) f b
particularly appropriate for the investigation of the stability A@) = Kesd Eg‘u 5 de.[un(Dvr(2)

of layered configurations in which the pair amplitude may or PN

may not change sign between adjacent superconducting lay- + Uy(2vy(2) JtanH( €,/2T), 2

ers. These are conventionally called “0” ar™junction con-
figurations, respectively.

We consider three-dimensional slablike heterostructure
translationally invariant in the-y plane, with all spatial
variations occurring in the direction. The heterostructure
EonS'StS of supercpnduqtm@_, and ferromagnend,:,_layers. gwe superconductor regions and zero elsewhere.

xamples are depicted in Fig. 1. The corresponding couple

. . . S " The presence of interfacial scattering is expected to
equations for the spin-up and spin-down quasiparticle ampl'?nodify the proximity effect. We assume that eveS§F in-
tudes(u},v/) then read

terface induces the same scattering potential, which we take
of a delta function form:

U(z,2) =Hd(z~-2z) 3

= énUrT](Z) (1a) wherez is the location of the interface aridl is the scatter-
ing parameter. It is convenient to use the dimensionless pa-
1 & I ) rameterHg=mH/kcg to characterize the interfacial scatter-
| T %E +g, —~Eg(29 +U(2) + hO(Z) Un(Z) + A(Z)Un(z) ing strength.
An appropriate choice of basis allows E¢E) to be trans-
= €U5(2), (1b)  formed into a finite R X 2N dimensional matrix eigenvalue
problem in wave vector space:

where N(0) is the density of state€DOS) per spin of the
superconductor in the normal statkis the total system size
th the z direction, T is the temperatureqp is the cutoff
“Debye” energy of the pairing interaction, amyfz) is the
effective coupling, which we take to be a constgnwithin

1 &
[_ SogteL- Er(2) +U(2) - ho(z)] ul(2) + A(2vi(2)

wheree | is the kinetic energy term corresponding to quasi-
particles with momenta transverse to théirection, ¢, are H* D
the energy eigenvalueA(z) is the pair potential, and(z) is D H-
the potential that accounts for scattering at ekél inter-

face. An additional set of equations faf, and v can be where Wl=(uly, ... ,uly, v}, ... vy, are the expansion
readily written down from symmetry arguments, and thus iscoefficients associated with the set of orthonormal
suppressed here for brevity. The form of the ferromagnetibasis vectors, u,ﬂ(z):\s’Z/dZQ:lqu sin(ky2), and u,ﬁ(z)

]\Pn =&V, (4)
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=\2/d2} v}, sinkg2). The longitudinal momentum index B 2H[ N -1
kq is quantized vigk,;=q/7d, whereq is a positive integer. =5 8 " g | 2 - A(20)
m
The labeln encompasses the indexand the value ok | .
The finite range of the pairing interactiasy, implies thatN +E de (N - ) +B(2q)
is finite. In our layered geometry submatrices corresponding Fll d 2 q
to different values ok, are decoupled from each other, so
one considers matrices labeled by théndex, for each rel- + EFS|: d_s( N+ 1) _ B(2q)], (8a)
evant value ok . The matrix elements in E@4) depend in d 2

general on the geometry under consideration, and are given
for two specific cases in the subsections below.
_ 2H
H. ., =-—[A(q-q)-AQ+q)]-[Es -E
B. Identical superconducting layers 44 d [A@=a) - AlQ+a)]-[Er, - Eedl

The first type of structure we consider is one consisting of X[B(g-q')-B(q+q)], q#q’. (8b)
alternatingS and F layers, each of widtllg anddg, respec-
tively. This geometry is shown in Fig(d) for the particular
case ofN_ =7. For a given total number of layegsupercon-
ducting plus magnetjcN,, we have in this case for the in-
terfacial scattering:

The Dy in the off-diagonal part of the left-hand side of
Eq. (4) arise from an integral oveA(z), which scatters a
quasiparticle of a given spin into a quasihole of opposite
spin. One has:

(N_-D)/2 q
= i(dg+ dg), i(ds+dg) —dg),
U(2) 21 [U(i(ds+ dr),2) + U((i(ds+ dr) = dr),2)] qu,:%f dzsink2A@)sin(k2). (9)
(5 0

whereU(z,2) is given in Eq.(3). The matrix elementsi’ . . . 28 .

o ) ) qq It is straightforward to write al$4-%® the self-consistency
and qu, in Eq. (4) are compactly written for this geometry equation in terms of matrix elements.
as

o o 2 P ZH{NL 1 A(ZQ)] C. Half-width superconducting outer layers
a9~ LT -
2m d 2 The previous subsection outlined the details needed to
de (N -1 arrive at the matrix elements when telayers are of the
~Eg d\ 2 +B(2q) same widthds, We are also interested in investigating struc-
tures where the innes layers are twice as thicidg) as the
_E d_s( N+ 1) ~B(29) (6@  Outer onegsee Fig. 1b)] while theF layers remain all of the
Sl d 2 ' same width. This case is of interest because, roughly speak-
ing, the inner layers, being between ferromagnets, should
oH experience about twice the pair-breaking effects of the ex-
H;q, = F[A(q-q') -A(q+0q")]+[Er; — Ergl change field than do the outer ones. Therefore, the results
might depend ornlN, more systematically, particularly for
x[B(q-q)-Bg+q)], q#(q, (6b)  relatively smallNy, if the width of the outer layers is halved.
This has been found to be the case in some steflafshe
where, transition temperature in thin layered systems.
(N2 A slight modification to the previous results yields the
demq) q _ ) following form of the scattering potential(z),
A(Q) = cos< '; ; ) > co{%(stl +de(2i - 1)) |,
i=1
(N_-1)/2
7 .
(e U@= 3 [U((i(2ds+de)~dg,2)
i=1
d .
2. 57 v FUI2ds ) ~ds=dp),2]. (10
T
Bg)=————= 3 o z—g(ds(Zi -1)
™ i=1 The matrix eIementH;q, are now expressed as
+ 2de(i - 1))} . (7b)

+ 2H ) ,
- Hog =~ [A@=0) ~A(@+0)] +[Er; - Eeg]
The matrix eIementhq, are similarly expressed in term of
the coefficientsA(q) andB(q), X[B(a+q’)-B(a-q9’)]. q#q’, (118
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merical computation of the condensation energies that is ac-

curate enough to allow comparison between states of differ-
de(NL -1 ent types requires great care and accuracy. Details will be
d ~B(20) given in the next section.

" —ﬁ-+ ZH{NL— 1 A(Zq)} calculate the free energy. As pointed out in Ref. 24, a nu-

d
- EFS|:ES(NL -+ B(ZQ)} , (11b lll. RESULTS

As explained in the Introduction, the chief objective of
this work is to study the relative stability of the different
deq (N -D)/2 q states that are obtained through self-consistent solution of the
Alg) = CO{ﬁ) > co E(ZI - 1)(2ds+dg) |, BdG equations for this geometry. These solutions differ in
i=1 the nature of the junctions. Each junction between two con-
(12 secutive S layers can be of the “0” typ&with the order
parameter in botl® layers having the same phase of the
2A(q) de g “7" type (opposite phage As the number of layers, and
Bl@=—7 ﬂ(ﬁ) junctions, increases, the number of order parametejunc-
tion) configurations which are in principle possible increases

In a similar manner, The matrix elemeri§ , are written as ~ also. As we shall see, for any set of parameter valges-
metrical and materialnot all of the possible configurations

where the coefficienté\(q) andB(q) now read,

- 2H| N -1 are realized: some do not correspond to free energy local
Hoo= om LT gl 2 ~A(20) minima. Among those that do, the ogexcept for accidental
degeneracigswhich is the absolute stable minimum must be
+E {%(NL‘ 1) _ B(2q)} determined: the other ones are metastable. We will discuss
Fll d 2 these stability questions as a function of the material and
d geometrical properties, as represented by dimensionless pa-
+ Eps[ HS(NL -1+ B(Zq)}, (133 rameters as we shall now discuss.
2H A. General considerations
Hyy =~ F[A(q —q') ~AQ+d)] - [Er ~ Eesl Three material parameters are found to be very important:
one is obviously the magnet strengthWe will vary this
x[B(@+q)-B@-9)], g#q". (13b)  parameter in the range from zero to one, that is, from non-

The matrix elements oD are as in the previous subsec- magnetic to half-metallic, while focusing on intermediate

tion, and the self-consistent equation can be similarly rewritY2/ues. The second IS the wave vector mismatch character-

ten ized by A= (kepm/keg)*. The importance of this parameter
can be understood by considering that, even in the non-self-
consistent limit, the different amplitudes for ordinary and

D. Free energy Andreev scattering depend strongly on the wave vectors in-

As discussed in the Introduction, the condensation fre¢/0lved, as it follows from elementary considerations. We
energies of the different self-consistent solutions found musWill vary A in the range from unityno mismatch down to
be comparetf in order to find the most stable configuration, 1/10. We have not considered values larger than unity as
as opposed to those that are metastable. While for homogg;ese are in practice mfreque.nt. The th|rd. important dimen-
neous systems this quantity is found in standaros'0n|e$s parameter is the barrier heglgtdefmeq below Eq.
textbooks®3Lthe case of an inhomogeneous system is moré3)- This we will vary from zero to unity, at which value the

complicated. We will use the convenient expression found in> layers become, as we shall see, close to being decoupled.
Ref. 32 for the free energy: We will keep the superconducting correlation length fixed at

keséo=E=100. This quantity sets the length scale for the
. A2 superconductivity and therefore can be kept fixed, recalling
F=-2TD, |n[2 cosl(—”)] + f dz——, (14) only that, to study thels dependence, one needs to consider
n 2T g the value ofdg/ &,. Finally the cutoff frequencywp can be
kept fixed(we setwp=0.04¢g) since it sets the overall en-
where the sum can be taken over states of energy less thangy scale and we are interested in relative shifts. The dimen-
wp. For a uniform system the above expression properly resionless coupling constagiN(0) can be derived from these
duces to the standard textbook restiiThe corresponding quantities using standard relations. In this study we will fo-
condensation free energpr, at T=0, the condensation en- cus on very low temperatures limit, fixing to T:0.0ng
ergy) is obtained by subtracting the corresponding normatwhereT?: is the bulk transition value The geometrical pa-
state quantity, as discussed below. Thus, in principle, onlyameters are obviously the number of layéts, and the
the results forA(z) and the excitation spectra are needed tothicknessesl andds. We will consider two examples of the

d
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first: N.=3 andN,=7. For the larger value we will study expense obviously depend also on the dimension of the ma-
both of the geometries in pandlg) and (b) of Fig. 1. The trix to be diagonalized, dictated by the number of basis func-
thicknesses will be usually expressed in terms of the dimentions, N, which scales linearly with system sikegd. Thus,
sionless quantitie®s=krgds and Dr=krde. We will con-  the computational time then increases approximately as
centrate here on the case whekgis of order of or larger (kegd)?, which can be a formidable issue. For the largest
than &, (typically &, and up to %, while d- is much structures considered in this paper, the resultant matrix di-
smaller, in the rangdg=~10. At larger values ofdr the  mension is then 29X 2N=2000x 2000 for eacte , .
proximity effect for the intermediatel values chiefly The number of iterations needed for self-consistency de-
studied here is negligible. For values d§ smaller than pends on the initial guess. If the self-consistent state turns
dmin=0.5¢, superconductivity disappears as we shall seeut to be composed of junctions of the same types as the
(this is true als&’ in the dirty limit). Also, atdg values just initial guess, as specified by the signs in thi,#then 40 or
aboved, it is found® in the dirty limit that the transition 50 iterations are usually sufficient. But a crucial point is that,
temperature may depend on the relative orientagarallel  as we shall see, not all of the initial junction configurations
or antiparallel of consecutiveF layers. This occurs onfy in lead to self-consistent solutions of the same type. Since the
a narrow range of material parameter values. Here, in theelf-consistency condition is derived from a free energy
N_=7 case, we consider onlls= &, in which case the par- minimization condition, this means that some of the initial
allel and antiparallel magnetic states are degenerate with rgguesses do not lead to minima in the free energy with the
spect to the transition temperattfté® and it is sufficient to  same junction configuration as the initial guess, and thus that
consider the parallel case only. locally stable states of that type do not exist, for the particu-
As we study the effect of each one of these parameters biar parameter values studied. In this case, the number of it-
varying it in the appropriate range, we will be holding the erations required to get a self-consistent solution increases
others constant at a certain value. Unless otherwise indicatedramatically, since the pair potential has to reconfigure itself
the values of the parameters held constant will take the “deinto a much different profile. The number of iterations in
fault” values 1=0.2, Dg=100=F, Dg=10, A=1, and those cases can exceed 400.
Hg=0. One important derived length i& —k )%, wherek; The computation of the condensation free energies of the
andk, are the Fermi wave vectors of the up and down magself-consistent states found is still a difficult task, even after
netic bands. As is well know#,?” this quantity determines the spectra are computed: considering for illustration
the approximate spatial oscillations of the pair amplitude inthe T=0 limit, recalf® that the bulk condensation energy,
the magnet. In terms of the quantitieand A we can define:  given by

1 1 ED= - (1/2)N(0)A3 (16)
E,= kes(k; = ki)_l =12 . (19 .
AT @+n-V@a-n represents a fraction of the energy of the relevant electrons of

order(A/wp)?, a quantity of order 1¢ or less. The conden-

At 1=0.2 andA=1 one has=,=4.97 increasing to 15.7 at sation free energies of the inhomogeneous states under dis-
A=0.1. This motivates our default choif=10. cussion are usually much small@y about an order of mag-

The numerical algorithm used in our self-consistent calnijtude as we shall sgéhan that of the bulk. Distinguishing
culations follows closely that of previous developed codesamong competing states by comparing their often similar
used in simpler geometri€$” There are however some ex- condensation free energies, requires computing these indi-
tra complexities that arise for the larger multilayered struc-idual condensation energies to very high precision. This
tures studied here, and from the increased number of selfask is numerically difficult. Here the advantages of the ex-
consistent states to be analyzed. As usual, one must assussion from Ref. 32 which we ugsee Eq(14)] are obvi-
an initial particular form for the pair potential, to start the gys. Only the energies are explicitly needed in the sums and
iteration process. This permits diagonalization of the matrixntegrals on the right-hand side, the influence of the eigen-
given in Eq.(4) for a given set of geometrical and material functions being only indirectly felt through the relatively
parameters, for each value of the transverse energyThe  smooth functionA(z). The required quantities are obtained
initial guess ofA(2) is always chosen as a piecewise constantyith sufficient precision, as we shall demonstrate, from our
+Ao, WhereAq is the zero temperature bulk gap, and thepumerical calculations. Some of the different but equivalent
signs depend on the possible configuration being investigategkpressions found in the literature for the condensation en-
(see below Self-consistency is deemed to have beengrgies or free energiéd;34 contain explicit sums over eigen-
achieved when the difference between two succesSigEs  functions, which can lead to cumulative errors. Also, the ap-
averaged over (kegd) values ofZ is less than 10A,. The  proximate formula used for the condensation energy of
minimum number ofe, variables needed for self consis- trilayers in Ref. 24, consisting of replacing, in §46), the
tency is around\, =500 different values of . In practice  pair amplitude with its spatial average, while plausible, is
however, use of a value close to this minimum is insufficientdifficult to validate in general, and becomes inaccurate for
to produce smooth results for quantities such as the localystems involving a larger number of thinner layers, particu-
DOS?’ Therefore, we first calculatd(z) self-consistently |arly with S widths of order of&,.
using N, =500, after which the iteration is continued with  Using this procedure, the task then becomes feasible but
N, increased by a factor of 10. The computed DOS is themot trivial as it involves a sum over more than®i@rms.
smooth. The convergence properties and net computationallso, to obtain the condensation energy one still has to sub-
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iteration process with an initial guess of that form. Clearly
such an attempt fails at small mismatch=0.7) indicating
that a solution of this type is unstable. At larger mismatch, a
0 state solution is found. We found also that if one instead
starts with an initial guess of ther” type, a self-consistent
solution of this type is then always obtained. Thus, for small
mismatch there is only one self-consistent solution, which is
g of the 7r type, while when the mismatch is large there are two
00 ’ ) competing solutions and their relative stability becomes an
issue.

The effect of the barrier height, as represented by the
parameterHg, can be similarly studied. We find that for
small values oHg(Hg=0.3) only a= type solution is found,
while for larger values solutions of the 0 andtype com-
pete.

We now turn to seven layesFSFSFSstructures. In our
study, where as explained above, all of thedayers have

parallel orientation, it is sufficient in classifying the different
107 0 possible configurations to establish a notation that envisions

FIG. 2. (Color onling The pair amplitude=(2), normalized to ~ the seven layer geometry as consisting of three adj&8E8t
its bulk T=0 value, for a three layeSFSstructure, plotted as a Junctions. Thus, up to a trivial reversal, we can then denote
function of Z=kgsz and of the mismatch parametdr, at Hg=0. ~ as “000” the structure when adjaceBtlayers always have
The Z=0 point is at the center of the structure. We havg the same sign ofA(z), and as ‘rmrn” the structure where
=krsds=100 andDg= ke<dr=10. The results shown correspond to successivé layers alternate in sign. There are also two other
self-consistent results obtained with an initial guess where the junodistinct symmetric states: one in whick(z) has the same
tion is of the “0” type. In this case, a solution of the 0 type is sign in the first twoS layers, and in the last two it has the
obtained only for large mismatcismall A). We havel=0.2 and  opposite sign(this is labeled as the “B0” configuration),
T=0.01T¢ here. See text for discussion. and the other corresponding to the two oudayers having

the same sign foA(z), opposite to that of the two inne3
tract from the superconducting the corresponding normal layers: these are referred to asO%” structures in this no-
quantity F . It is from subtracting these larger quantities thattation. We will focus our study on these symmetric configu-
the much smaller condensation free energy is obtained. Th&tions. Asymmetric configurations corresponding in our no-
normal state energy spectra used to evalUg{eare com- tation to the700, and7#0 states are not forbidden, but
puted by takingdD =0 in Eq.(4), and diagonalizing the result- occur very rarely and will be addressed only as need may
ing matrix. The presence of interfacial scattering and misarise. In Fig. 3 we repeat the plot in Fig. 2 for seven layer
match in the Fermi wave vectors still introduces off-diagonalstructures. We include the cases in which&lhyers are of
matrix elements. In performing the subtraction, care must b¢he same thicknegsop panej and the case where the thick-
taken(as in fact is also the case in the bulk analytic gase ness of the two inne§ layers is doubledbottom panel, see
include exactly the same number of states in both calculaFig. 1). The initial guess is always of the 000 type. In the
tions, rather than loosely using the same energy cutoff: nease of identica$ layer widths, we see that a 000 gu¢sa.
states overall are created or lost by the phase transition. Witk(@)] yields a self-consistent state of the same 000 form only
all of these precautions, results of sufficient precision andor larger mismatchA < 0.5, while for smaller mismatch the
smoothness are obtained. Results obtained with alternativeonfiguration obtained is clearly of thed7 form. Thus there
equivalent® formulas are consistent but noisier. We haveis a value of A where two self-consistent solutions cross
also verified that in the limiting case of large superconduct-over. However, arma guess(not shown results in a self-
ing slabs our procedure reproduces the analytic bulk resultsonsistentrrar configuration for the whole\ range. Thus,
there is a clear competition betweahleastthese three ob-

B. Pair amplitude structure served states, resulting from multiple minima of the free en-

ergy. Solutions of the 80 type are not present in this figure
We begin by briefly presenting some results for the pairbut they will be discussed below. In the bottom panel we see

amplitudeF(z), which show how the spatial dependence ofthe same effects when the thickness of the irBéayers is

the pair correlations can vary as a function of the interfacedoubled. As explained above, this describes a more balanced
scattering parametely and the Fermi wave vector mis- situation, since the inner layers have magnetic neighbors on
match A. This is best done by means of three-dimensionaboth sides. It is evident from the figure that the pairing cor-
plots. In the first of these, Fig. 2, we show the pair amplituderelations are increased in tl&layers. In Fig. 8b), there is
(normalized toAy/g) for a three layerSFS system, with  also a noticeable shift in the crossover point separating the
De=10 andDg=100, as a function of position and of mis- 000 and#07 self-consistent states, occuring now at smaller
match parametek, atHg=0. The figure shows the results of mismatchA =0.7. Again we find the competition between
attempting to find a solution of the “0” type by starting the the various states extends through the entire range ain-

o
o

o
7]

0.5

-1.0

Normalized pair Amplitude
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C. Condensation free energy: Stability

One must, in view of the results in the previous subsec-
tion, find a way to determine in each case the relative stabil-
ity of each configuration and the global free energy mini-
mum. This is achieved by computing the free energy of the
several self consistent states, using the accurate numerical
procedures explained earlier in this section. Results for this
quantity, which at the low temperature studied is essentially
the same as the condensation energy, are given in the figures
below. The quantity plotted in these figures, which we call
the normalizedAE,, is the condensation free enerfps cal-
culated from Eq(14) after normal state subtractibnormal-
ized to N(O)AS, which is twice the zero temperature bulk
value[see Eq(16)]. Therefore, at the low temperatures stud-
ied, the bulk uniform value of the quantity plotted is very

close to €1/2).

In Fig. 4 we plotAE,, defined and normalized as ex-
plained, for a three layeBFSsystem. As in previous figures,
we have Dg=100, Dg=10, and[=0.2. Results for self-
consistent states of both the 0 amdtype are plotted as
indicated. The top panel showsE, as a function of the
barrier thickness parametéty at A=1. The bottom panel
plots the same quantity as a function of mismatclat zero
barrier and should be viewed in conjunction with Fig. 2.
Looking first at the top panel, one sees that the zero state is
stable(has nonzero condensation energuly for Hg greater
than about 0.31, consistent with tR&€z) results mentioned
above. An attempt to find a solution of the 0 type Fy just
below its “critical” value by using a solution of that type
previously found for a slightly higheHg as the starting
guess, and iterating the self-consistent process, leads after
many iterations to a solution of the type. This is indicated
by the vertical arrow. At larger barrier heights, the two states

become degenerate. This makes sense physically: as the bar-
) _ . ) riers become higher the proximity effect becomes less impor-
FIG. 3. (Color onling The normalized pair amplitud&(Z) fora 5 and thes layers behave more as independent supercon-
seven layeiISFSFSFSstructure, plotted as in Fig. 2 for the same y,\+ing slabs. The relative phase is then immaterial. For even
parameter_ va_1|ues. In pan&) Fhe thickness of aI_B layers is the larger Hg we expect, from Eq(16) and the geometry, the
same, while in panglb) the thickness of the two inneé layers is normalized quantity plotted to trend, from above, toward a
doubled to ®4=200 (see Fig. 1. Both panels correspond to an limit ~—0.51-Dg/2Dg)=-0.48 and £his is seen ir,1 the to
initial guess of the “000” typésee text The configuration of the ) F s - i . P
plotted self consistent results can be “000,” ai0%" as explained panel. One can also see that in the region of mte{t@hers
in the text. not too high, the absolute value of the condensation energy
is substantially below that of the bulk. In the bottom panel
similar trends can be seen: in the absence of mismatch

) ) o o (A=1) only the 7 state is found, and its condensation energy
sidered. As in the three layer case, a similar situation ocCurgy,nipits a somewhat oscillatory behavior As decreases

also as a function dffg, with smallHg corresponding again - from unity. The 0 state does not appear urtiis about 0.7
to small mismatch. and attemptgby the procedure just describet find it lead
These results, which include for brevity only a very smalltg a 7 solution upon iteratiorfarrow). This is in agreement
subset of those obtained, are sufficient, we believe, to pefith the results in Fig. 2. For large mismatch the absolute
suade the reader that although for some parameter valuesyalue of AE, increases, as th® slabs become more weakly
unique self-consistent solution exists, this is comparativelycoupled, with a trend toward the limiting value just dis-
rare, and that in general several solutions of differing sym-cussed. A very important difference between the top and bot-
metry types can be found. These self-consistent solutiontom panels, however, is the crossing of the curves near
correspond to local free energy minima: they are at leasth=0.33 in Fig. 4b). This is in effect a first order phase

metastable. Furthermore, it is clear that the uniqueness aransition between ther and 0 configurations as the mis-
multiplicity of solutions depends in a complicated way not match changes.

only on the geometry, but also on the specific material pa- The results of performing the same study for a seven layer
rameter values.

system with fourS layers can be seen in the next figure.

Normalized Pair Amplitude

Normalized Pair Amplitude
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Panels(@) and(c) of Fig. 5 correspond to the case where all the relevant parameter, they still have a negative condensa-
the S layers have the same thickneg&s=100, and all other tion energy. As this occurs, the vertical arrows in each panel
parameters also as in the previous figuregile panelgb) indicate(an inset is needed in one case for claritpw the

and (d) in Fig. 5 the thickness of the two inn& layers is  states transform into each other as one varies the parameters
doubled. Results for the four possible symmetric junctionfrom the unstable to the stable region. Regardless of whether
configurations mentioned in conjunction with Fig. 3 arethe inner layers are doubled or not, the tendency is for the
given, as indicated in the legends of Fig. 5. Three of thosénnermost junction to remain of the same type, while the two
configurations, 0007r7w, and w07 have appeared among outer junctions flip. Comparing paneglga) and(c) to panels

the results in Fig. 3. The other configuration corresponds tgb) and(d), respectively, in Fig. 5, we see that the doubling
the 070 sequence. We see that there are some striking difef the inner layers has a clear quantitative effect without
ferences between these examples and the three layer systdmaving any strong qualitative influence. An important differ-
While in the latter case a configuration ceases to exist onlgnce between the two cases is that in the fiadt S layer
when its condensation energy tends to zero, nhow configurawidths equal the two possible stateg70m and 77rm) at
tions can become unstable even when, for nearby values akro barrier and no mismatch are nearly degenerate, while in
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FIG. 5. (Color onling The normalizedAE, for a seven layeSBFSFSFStructure plotted as a function of barrier heigbanels(a) and
(b)) and mismatch parametér (panels(c) and (d)) for self-consistent states of the types indicatede text for explanationin the top
panels(a) and(c), the thickness of alE layers is the same, while in pan€ly and(d) the thickness of the inn&layers is doubled. Material
parameter and geometrical values are as in previous figures, adthgéirs are of the same thickness. The vertical arrows mark the end, as
Hg decreasegtop) or A increasegsee inset for pandk)) of the region of stability of a certain stafsee text

the other case, thew configuration is favored. In the first reachess,, the 7 state condensation energy reaches already
case, the degeneracy is removed as the barrier height begias appreciable value that is consistent with that seen in the
to increase, but\ has a small effect in relative stability. In appropriate limits of the panels in Fig. 4. The O state is still
panels(b) and (d) the oscillatory effect ofA near the no- not attainablgagain, consistent with Fig.)4intil ds reaches
mismatch limit is seen, as in the three layer case. For larga somewhat larger value. The condensation energies of the
mismatch or barrier, the results become again degenerate atwlo states converge slowly toward each other upon increas-
trend towards the appropriate limit. We expect these seveing ds, but remain clearly nondegenerate well beyond the
layer results to be at least qualitatively representative of whatange plotted. The small breaks in the O state curve corre-
occurs for larger values oN,: thus, states of the types spond to specifi€S widths that permit only ther state.
000 --000, 77 -7, and 700- --007 (outer junctions one The behavior seen in Fig. 6 depends stronglyl oiihis
way and inner ones the otheshould predominate for large dependence is displayed in Fig. 7 where we show the nor-
N,. malizedAE, for the same system, as a functionlpfor two

It is at least of equal interest to study how the stability different values ofls. For the valud =0.2, the results shown
depends on the geometry and lor'We discuss this question are consistent with Fig. 6, including the nonexistence of the
in the next four figures. First, in Fig. 6 we present results forO state atls=yo. We now see, however, that it is not always
the condensation free energy of a three layer system asthe 7 state which is favored, but that the difference in con-
function of dg/ &, at fixed Dp=10, 1=0.2, Hg=0, A=1. We  densation energies is an oscillatory function lofThis of
see thatds must be at least half a correlation length for su-course reflects that whether the O or thestate is preferred
perconductivity to be possible at all in this system. Conver-depends, all other things being equal, on the relation between
gence near that value is rather slow, requiring approximatelfpr and (k;—k )™, and this quantitysee Eq(15)] depends
200 iterations. The superconducting state then begins occuon |. At intermediate values df (centered arount=0.5) the
ring, for this value oDg, in a7 configuration only. Whenls  zero state is favored, and whétecomes very small, the
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state ceases to exist altogether. As 0 the condensation ber of iterations to convergence is substantially increased, as
energy of the 0 state remains somewhat above the bulk valube order parameter attempts to readjust its profile. For the
and, as one would expect, decreases slightly with increasingjtuation where the inne layers are twice the width of the
ds. At larger values of, the absolute values &E, increase outer ones, we seg@ottom panel that all four symmetric
with dg and on the average decrease slowly with configurations are either stable or metastable for the whole
The oscillations in Fig. 7 as a function bft constantl:  dg range. This is consistent with Fig.[panel(b)], where at
can also be displayed by considering results as a function dfig=0.5 all four states are present simultaneously. The con-
dr at constant. We do so in Fig. 8 where we plot, for a three densation energy is of course lower than in the previous case,
layer SFS system, AE, as a function ofDr at constant due to the increased pairing correlations associated with the
=0.2 for two values ofdg/&. One sees again that for this thickerSslabs. For both geometries oscillations arising from
value ofl the 0 state does not exist@$=¢&, andDg=10 but  the scattering potential lead to deviations from the estimated
that it appears at larger valuesayl &. The damped oscilla- periodicity determined bykT—kl)‘l. For sufficiently largede
tory behavior is quite evident. At larger values @f the the difference in energies becomes small. One can infer from
condensation energies of the two states trend towards a corthese results than in superlattices with realistic oxide barri-
mon value that increases in absolute value wighAt a very  ers, where as the number of layers increases a larger number
small value ofdg, which depends ods, the 7 state begins to  of nontrivial possible states arise, the number of local free
vanish, and the condensation free energy of the 0 state tendsiergy minima that can coexist will increase.
then towards the bulk value. All of this is consistent with

simple physical arguments. IV. CONCLUSIONS
In Fig. 9 we extend the results of Fig. 8 to the seven layer
system. In this case we consider only one valuedgf In summary, we have found self consistent solutions to

(ds= &) but include a finite barrier thicknesslz=0.5. The  the microscopic BdG equations f8IF Sand SFSFSFStruc-
finite barrier allows for the possibility of more distinct states tures, for a wide range of parameter values. We have shown
coexisting(see Fig. 5. We consider both the cases where allthat, in most cases, several such self-consistent solutions co-
Slayers thicknesses are equadp pane) and the case where exist, with differing spatial dependence of the pair potential
the inner ones are doublgbottom panel All possible sym-  A(r) and the pair amplitud&(r). Thus, there can be in gen-
metric self-consistent states were studied, as indicated in theyal competing local minima of the free energy. Determining
figure. In contrast with the three layer example with no bar-their relative stability requires the computation of their re-
rier, in the seven layer cases withg=0.5 all of the four spective condensation free energies, which we have done by
symmetric state$000, w77, w07, 070) are at least meta- using an efficient, accurate approach that does not involve
stable over a range af, even atds=&,. In the top panel we the quasiparticle amplitudes directly, and requires only the
see however that only then@ state is stable over the whole eigenenergies and the pair potential.

d- range. Therwrr state reverts to thesD state in the range For SFStrilayers(single junctiony we found that bothr
1.6<d-=4.2, while the#O state reverts to 000 state for and O junction states exist for a range of values of the rel-
1.8<d-=2.4. The 000 state is unstable for much of theevant parameters. We have displayed results for the pair am-
range for 6sd-=<12. It appears that in this range the 000 plitude, which give insight into the superconducting correla-
state is sufficiently close to a crossoysee, e.g., Fig.Bthat  tions, and for the condensation free energies of each
attempts to find it sometimes converge to an asymme®i@  configuration, to determine the true equilibrium state. We
state, rather than the expecte@r. In these cases the num- have shown that a transitiqwhich is in effect of first order
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FIG. 7. (Color onling The normalized\E for a three layeSFS D
junction, as a function of the parameterfor two differentS thick- F
nesses(as labeleyl and fixed Dp=10. Results for 0 and self-
consistent states are given as indicated. FIG. 8. (Color onling The normalized\E, for a three layeSFS

system, as a function afg, (rather than ofl as in Fig. 7 for two

in parameter spagean occur between the 0 amdstates for  gifferent S thicknessesgas labelegiand fixed! =0.2, Hg=0, A=1.
a critical value ofA. The difference in condensation energies
between the two possible states exhibits oscillations as #on of d.. The oscillations become better defined, and the
function of I. This behavior is strongly dependent on the possibility of both O andm states coexisting increases, at
width of the S layers, in the range studied. Fdg equal to  largerds. As expected, we find that the condensation energy
one coherence length, there exists a range ofin which ~ has very similar properties when eithéy¢ or | varies. The
eithe a 0 or 7 state survives, but not both. Increasing he period approximately agrees with the estimate given by
width by abouté,/2 restores the coexistence of both states.(kT—kl)'l, which governs the oscillations of the pair ampli-

Several interesting phenomena arise when one exploraade and in general, of other single particle quantities.
the geometrical parameters of trilayer structures. For a fixed As the number of layers increases, so does the number of
ferromagnet widtldg, and parameters values that lead t8 a competing stable and metastable junction configurations. We
state, we foundsee Fig. 6 that thes configuration remains considered two types of seven layers structures, and found
the ground state of the system ésvaries. Ther state first  that doubling the width of the inne$ layers (which are
appears at smallls (ds=&/2), and then its condensation bounded on each side by ferromagpgetesulted typically in
energy declines monotonically towards the bulk limit. Thedifferent quasiparticle spectra and pair amplitudes, compared
metastable O state begins at largegr= &, and its condensa- to the situation when afb layers have the santk. For large
tion energy declines also slowly over the rangelgstudied.  mismatch or barrier strength, the phase of the pair amplitude
The other relevant length that was considereddds The in each layer is independent, and configurations are nearly
condensation energy is, for both states, an oscillatory funcdegenerate, but as each of these parameters diminishes there
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00 m T ! T ' For seven layers, we studied in detail the condensation
free energies of the four symmetric junction states, 000,
7, w0, and Or0, in the previously introduced notation.
We first investigated the stable states as a function ehd

Hg. In contrast to the three layer system, we found that states
could become unstable even when the condensation energy
did not tend to zero for nearby values of the relevant param-
eters. For double width inner layered structures, we found a
greater spread in the free energies between the four states,
and the instability found in certain cases for the 000 anfl O
states was shifted il and Hg, in agreement with the pair
amplitude results. It is reasonable to assume that these results
are representative of what occurs for superlattices. We again
found transitions upon varying and the number and se-
guence of the transitions is nhow more intricgsee Fig. 3.

The analysis of the geometrical properties revealed that scat-
tering at the interfaces modifies the expected damped oscil-
latory behavior of the condensation energy as a function of
de. In effect, the barriers introduce significant atomic scale
oscillations that smear the periodicity. This underlines the
importance of a microscopic approach for the investigation
of nanostrucutres. As with the\ dependence, we also
showed that the global minima in the free energy is different
for the two structures ad- changes. The configuration of the
ground state of the system with layers of uniform width

was more variable in parameter space compared to when the
inner layers are double@ee Fig. 3.

Our results were obtained in the clean limit, which is
appropriate for the relatively thin structures envisioned here.
Furthermore, as shown in Ref. 28 in conjunction with real-
istic comparison with experiment8 the influence of impu-

D rities can be taken into account by replacing the clean value

F of & with an effective one. A separate important issue is that
of the free energy barriers separating the different free en-
ergy minima we have found, and hence to which degree are
metastable states long lived. Our method cannot directly an-
wer this question, but from the macroscopic symmetry dif-

Normalized AE 0

FIG. 9. (Color online The normalized condensation free energy
for a seven layeSFSFSFSystem, as a function ddg, for fixed
1=0.2,ds=&y, A=1, andHg=0.5. Results for the four possible sym-

metric self-consistent states are given, as indicated, for both th . . . ;
cases where aB layers are identicaltop) and where the thickness erences in the pair amplitude structure o_f the d|ffe_rent states
of the inner ones is doubleottom. Lines are guides to the eye. € would have to conclude that the barriers are high and the

Breaks(top pane) indicate regions where a certain configuration is Metastable states could be very long lived. We expect that the
not found. transitions found here in parameter space at constant tem-
. . o ~ perature will be reflected in actual first order phase transi-
is a crossing over to a situation where the free energies afons as a function of. Such transitions would presumably

each configuration_are V\{ell-separated. At certain values of pe very hysteretic. We hope to examine this question in the
andHg, some configurations become unstable. These valuggtyre.

are different depending on the type of systésingle or

double inner layens For fixedl and dr we found that if a

state is stable at no mismatch and zero barrier, then it re- ACKNOWLEDGMENTS

mains at least metastable over a very wide rangk ahdHg
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