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We derive an order-parameter field theory for a quantum phase transition between a disordered metal and an
exotic (non-s-wave) superconductor. Mode coupling effects between the order parameter and other fermionic
soft modes lead to an effective long-range interaction between the anomalous density fluctuations which is
reflected in singularities in the free energy functional. However, this long-range interaction is not strong
enough to suppress disorder fluctuations. The asymptotic critical region is characterized by run-away flow to
large disorder. For weak coupling, this asymptotic region is very narrow. It is preempted by a wide crossover
regime with mean-field critical behavior and, in thep-wave case, logarithmic corrections to scaling in all
dimensions.
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I. INTRODUCTION

Quantum phase transitions are one of the most intriguing
problems in today’s condensed matter physics.1–3 In addition
to being of fundamental interest, they are believed to under-
lie a number of interesting low-temperature phenomena, in
particular, various forms of exotic superconductivity.4–6

In a seminal paper,1 Hertz introduced a general scheme
for the analysis of quantum phase transitions in itinerant
electronic systems. This scheme is based on the Landau-
Ginzburg-Wilson(LGW) approach of integrating out the fer-
mionic degrees of freedom and deriving a free energy func-
tional in terms of the order parameter fluctuations only.
However, in recent years, it has become clear that for many
transitions, there are problems with Hertz’ scheme because in
addition to the order parameter fluctuations, which are soft
(gapless) at the critical point, there are additional fermionic
soft modes in the system. These additional soft modes exist
not only at the critical point but also in the bulk phases. They
are related to conservation laws and/or broken symmetries
and constitute examples of generic scale invariance.7 If the
coupling between the order parameter and these additional
soft modes is sufficiently strong it generates an effective
long-range interaction between the order parameter fluctua-
tions. This is reflected in a nonanalytic wave-number depen-
dence of the vertices of the LGW theory of the correspond-
ing transition.8–10Generically, such nonlocalities in the LGW
theory will lead to non-mean-field critical behavior of the
quantum phase transition.

The precise influence of the mode-coupling effects on a
quantum phase transition depends on the structure of the
additional soft modes and their coupling to the order param-
eter. For the clean ferromagnetic transition, the mode-
coupling effects can either lead to a fluctuation-induced first
order transition or to non-mean-field critical behavior.11,12

For dirty electrons, the transitions is generically of second
order but with highly unusual exponents.13,14 Even stronger

effects were found for the transition between a dirty metal
and a conventional(s-wave) superconductor.15 Here, the
mode-coupling effects lead to a critical point with exponen-
tial scaling, i.e., the correlation length behaves asj,e1/utu,
wheret is the distance from the quantum critical point. Based
on general symmetries of itinerant electronic systems, it was
recently shown16 that homogeneoussq=0d17,18 order param-
eters in the particle-particle(Cooper) and spin-triplet
particle-hole channels are generically affected by mode cou-
pling effects while order parameters in the particle-hole spin-
singlet channel do allow for a local LGW theory.

All of the above examples are quantum phase transitions
with zero angular momentum order parameters. The effect of
mode coupling on order parameters with finite angular mo-
mentum are much less understood. Herbut19 studied the
d-wave superconducting quantum phase transition in two di-
mensions within Hertz’ scheme(which is equivalent to Gork-
ov’s mean-field theory). He found that the typical Cooper
channel(BCS) logarithmic singularities are demoted to irrel-
evant terms by thed-wave symmetry. This raises the impor-
tant general question: How does a finite order parameter an-
gular momentum influence the coupling between order
parameter and additional fermionic soft modes?

In this paper, we study this question for quantum phase
transitions between a metal and an exotic(non-s-wave) su-
perconductor in the presence of nonmagnetic quenched dis-
order. These transitions are of experimental importance since
various superconducting states withp,d and maybe higher
symmetries have been observed recently, and their quantum
phase transitions are experimentally accessible4–6 in prin-
ciple. Experiments performed on the weakly ferromagnetic
compounds UGe2 (Ref. 5) and ZrZn2 (Ref. 6) revealed the
existence of a superconducting phase within the ferromag-
netic phase at temperatures below 1K. It is believed5 that
both superconductivity and ferromagnetism arise from the
same electrons. One possible mechanism for this type of su-
perconductivity isp-wave triplet pairing mediated by mag-
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netic fluctuations in the vicinity of a magnetic quantum criti-
cal point,20,21 although this is still not a settled issue. The
onset of the phenomenon has proven to be very sensitive to
the presence of nonmagnetic disorder, making it observable
only in highly pure samples. This fact also points to a non-
s-wave order parameter. In ZrZn2 the superconducting quan-
tum phase transition as a function of disorder has already
been observed.6

Our results can be summarized as follows: Mode-
coupling induced singularities exist for all order parameter
angular momentaL. However, with increasingL, they are
more and more suppressed(by a factoruqu2L.) As a result, the
LGW theory of our superconducting transition is equivalent
to that of the itinerant antiferromagnetic transition.1,22–24

While the asymptotic critical behavior of this theory is not
understood because of runaway flow to large disorder, we
also show that for weak bare disorder the asymptotic region
is exponentially narrow. It is preempted by a wide crossover
regime with mean-field critical behavior and(in the p-wave
case) logarithmic corrections to scaling. The paper is orga-
nized as follows. In Sec. II we derive the LGW free energy
functional. In Sec. III, we study the LGW theory by means of
the renormalization group and determine the critical behav-
ior. In Sec. IV, we analyze our findings from a mode-
coupling point of view, and discuss differences between
paramagnetic and ferromagnetic as well as clean and dirty
systems.

II. LANDAU-GINZBURG-WILSON THEORY

A. p-wave pairing case

In this section, we derive an effective LGW theory for the
disorder-driven quantum phase transition between a para-
magnetic metal and ap-wave triplet superconductor. Our
starting point is a microscopic action for interacting electrons
in d.2 dimensions and subject to a static, single-particle
random potentialVsxd. We assume a Gaussian distributed
potential with fVsx1dVsx2dgdis=Wdsx1−x2d, with W being
measure of disorder strength. The partition functionZ can be
written as a functional integral over Grassmann variables

c ,c̄:

Z =E Dfc̄,cgeSfc̄,cg. s1d

We decompose the actionS=Sp+S0 into thep-wave interac-
tion partSp and a reference systemS0 which comprises the
single-particle part, the random potential andSint (the inter-
action in all channels other than thep-wave channel):

S0 =E dxo
s

c̄ssxdF]t +
¹2

2m
+ mGcssxd s2d

+E dxo
s

c̄ssxdVsxdcssxd + Sint, s3d

Sp = o
hsj

Gt
hsj

2
E dxn̄ss8sxd ·ns1s18

sxd. s4d

We use a(d+1)-vector notation, withx=sx ,td, k=sk ,Vd,
edx=eV ddxe0

b dt and ok=ok ToV , x is a real space coor-
dinate,t imaginary time,k momentum vector, andV Mat-
subara frequency.nss8sxd is the p-wave anomalous density
whose Fourier transform in terms of the fermion fields is
given by

nss8sqd = o
k

êk cssk + q/2dcs8sk − q/2d, s5d

with êk =k / uk u, s, s8 being spin indices and where a centered
dot denotes a scalar product in the orbital space. Due to the
Pauli principle the spin state of the Cooper pair has to be a
triplet, i.e.,ss8P hs↑↑d ,s↓↓d ,1 /Î2s↑↓ + ↓↑dj. Which combi-
nation of the three possible triplet components is actually
realized depends on the system under consideration. The ref-
erence ensembleS0 describes interacting electrons in the
presence of nonmagnetic quenched disorder and no bare in-
teraction in thep-wave Cooper channel.(A nonvanishing
interaction in this channel will be generated in perturbation
theory.) S0 thus describes a general system of disordered in-
teracting electrons with the only restriction being that it must
not undergo a phase transition in the parameter region we are
interested in.

A standard procedure1 is used to derive a LGW order-
parameter field theory. We decouple the interaction term us-
ing a Hubbard-Stratonovich transformation25,26 introducing a
complex fieldDss8sxd which plays the role of an order pa-
rameter. Quenched disorder treated using the replica trick,27

and fermionic degrees are integrated out, leading to an ex-
pression for the critical part of the partition function in terms
of the order parameter only

Z =E DfDg e−FfDg. s6d

Since our emphasis is on the mode-coupling effects, and in
order to avoid unnecessary complications in notation, we re-
strict our analysis to a certain spin componentfss8=s↑↑dg of
the order parameter. The LGW free energyFfDg is expanded
in powers of the order parameterD;D↑↑. Up to quartic order
it reads

FfDg = o
q,a

D̄asqdf1 − Gtx
s2dsqdgDasqd

− o
q1. . .q3

a,b

Gt
2xab

s4dsq1,q2,q3dD̄asq1dDasq2d

3 D̄bsq3dDbsq1 + q3 − q2d + OsD6d, s7d

where Gt
↑↑;Gt. Here a ,b are replica indexes. The coeffi-

cients of the LGW functional are determined by the two-
point and four-point anomalous density correlation functions
of the reference systemS0 which can be written asxs2d

=kn̄anal0 and xab
s4d =kn̄an̄bnbnal0 (with the spin and compo-

nent indices suppressed).
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B. Anomalous density correlation functions
in the p-wave channel

In this subsection we use diagrammatic perturbation
theory in disorder and interactions to calculatexs2d and xs4d

of the reference ensembleS0, focusing on the behavior for
weak disorder. Thus, we neglect all diagrams with crossed
impurity lines, i.e., all weak localization effects, which be-
come important only at higher impurity concentrations. This
is justified for the ferromagnetic superconductors5,6 where
the superconducting quantum phase transition occurs at very
small disorder.

We start our analysis by examining the two-point correla-
tion functionxs2d=kn̄anal0. The leading contributions are ob-
tained from the diagrams shown in Fig. 1(details of the
calculation of these diagrams are given in Appendix A).
Here, the external vertices represent anomalousp-wave den-
sities, the solid lines are fermionic propagators in Born ap-
proximation

Gs
−1sk,vd = iv − ek,s + m + si/2tdsgnsvd, s8d

whereek,s is the dispersion relation andt is the scattering
time. The double line represents a particle-particle impurity
ladder

WRsq,V,vd = W51 if VsV + vd , 0,

1

u2V + vut + ,2uqu2/d
if VsV + vd . 0.

s9d

,=kFt /m is the elastic mean free path andW=1/s2pNFtd
with NF being the density of states at the Fermi level. The
calculation of the diagrams in Fig. 1 foruqu=v=0 leads to
xs2d=sNF /3dlns2eFtd. The well-known logarithmic Cooper
channel(BCS) singularities are cut off by the disorder, re-
flecting the suppression of exotic superconductivity by non-
magnetic scatterers in analogy to the suppression ofs-wave
superconductivity by magnetic impurities.28,29 [We note that,
in contrast,s-wave superconductivity is not influenced by
weak nonmagnetic scatterers, as is signified by Anderson’s
theorem.30] However, a closer investigation of Fig. 1(b) for
finite uqu reveals that a nonanalyticity of the form
uqu2 lns1/uqud survives. Thus, thep-wave symmetry has de-
moted the BCS singularity to quadratic order inuqu because
each of the renormalized external vertices picks up an extra
power of uqu.31

In addition to the BCS logarithmsxs2d contains nonanaly-
ticities similar to that in the itinerant ferromagnet. They are
caused by the leading corrections to scaling at the dirty
Fermi liquid fixed point32 and can be viewed as particle-
particle analogs of the well known Altshuler-Aronov correc-
tions to density of states and conductivity.33 For s-wave order
parameters these singularities(which only arise for interact-
ing electrons) are of the formuqud−2.32 For p-wave order pa-
rameters, an inspection of the corresponding contributions
(for details see Appendix B) reveals that they are suppressed
by a factor uqu2 by the same mechanism as the BCS loga-
rithms. (Note that an analogous suppression occurs in the
particle-hole channel, as can be seen from a power counting
analysis of the Altshuler-Aronov correction to the conductiv-
ity: ds=dk j j l /v,vsd−2d/2,uqud−2. Thus, the correction to
the current-current correlation functionk j j l, which is propor-
tional to the p-wave density, behaves asdk j j l,uqud. This
means it has picked up an additional factoruqu2 compared to
the zero angular momentum channel.)

As a result, we find that the leading singularities inxs2d

are the Cooper channel logarithms, and the leading behavior
of xs2d for suqu ,vd→0 is given by

xi j
s2dsq,vd =

NF

3
Fln s2eFtd − uvut −

,2uqu2

10
Gdi j

+
NF

3
qiqj,

2F−
1

5
+

1

3
ln S,2uqu2

3
DG , s10d

where i , j are the order parameter component indices. The
anisotropicq dependence in the last term reflects the spatial
anisotropy of thep-wave order parameter.

We now turn our attention to the four-point correlation
function xs4dwhich can be split into a replica-diagonal part
and a replica-off-diagonal partxab

s4d =dabxdiag
s4d +xoff

s4d. A detailed
discussion of our calculation is given in Appendix C. We find
that the leading contributions toxdiag

s4d in the long-wavelength,
low-frequency limit are coming from the diagrams shown in
Fig. 2. While each of the two diagrams individually diverges
for sq ,vd→0, their leading singularities cancel, and the re-
maining contribution is finite and proportional toNFt2. The
leading contribution to the replica-off-diagonal part ofxs4d is
produced by the diagram shown on the Fig. 3. Thus, we
finally obtain

FIG. 1. Contributions to the leading terms of the Gaussian part
of the LGW functional.(a) Provides a constants,NFd and the
frequency dependenceuvut while (b) gives the leading momentum
dependence,uqu2 ln s1/uqud. FIG. 2. Leading singular contributions toxdiag

s4d . After expansion
in small q, the leading order terms of(a) and (b) cancel(see Ap-
pendix C).
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xdiag
s4d = Ad NFt2 Fdsqi,vid, s11d

xoff
s4d = A0sNF

2/kF
3dF0sqi,vid, s12d

where Fd and F0 are dimensionless functions with values
between 0 and 1 andAd andA0 are dimensionless prefactors
of order 1.

The results(11) and (12) have been obtained from low
order perturbation theory. Within perturbation theory, it is
nontrivial to prove the leading nonanalyticity to all orders.
Therefore we follow the guidance of the corresponding re-
sults for thes-wave case which have been rigorously estab-
lished using Q field theory and renormalization group
arguments.32 (Corresponding rigorous results for finite angu-
lar momentum modes do not yet exist.) Indeed, simply cor-
recting thes-wave results from Ref. 15 for theq dependence
of the renormalized vertex leads tox2n,uqu4−2n in agreement
with Eqs. (11) and (12). Note that the singularity becomes
stronger in the higher order anomalous density correlation
functions, in agreement with general mode-coupling
arguments.16,34

Inserting Eqs.(10)–(12) into Eq. (7) we obtain the LGW
functional up to quartic order inD,

F = o
q,a

i

D*aisqdst + uvu + c2uqu2dDaisqd

+ o
q,a

i j

D*aisqdclqiqjF−
1

5
+

1

3
ln S 1

,2uqu2DGDa jsqd

+ Uo
a
E drdt uDasr ,tdu4

− Vo
ab
E drdtdt8 uDasr ,tdu2uDbsr ,t8du2. s13d

Here we have scaled the order parameter withsGtNFtd1/2 and
replaced the quartic coefficients by numbers which is suffi-
cient for power counting purposes. The coefficients aret

,1/tf1/G̃−lns2eFtdg, c2,cl ,,2/t, U,1/NF, and V

,1/skF
3t2d, with G̃=GtNF being a dimensionless measure of

the interaction strength. The parametert represents the dis-
tance from the quantum critical point. Generically,U.0,
which leads to a second order transition.35 This completes
the derivation of the LGW theory.

C. Higher angular momentum channels

In this subsection we generalize the findings to pairings in
higher angular momentumsLd channels. For angular mo-

mentumL.0, the renormalized anomalous density vertex is
proportional touquL. The leading non-analyticity in the static
anomalous density susceptibilityxL

s2dsqd is given by the BCS
logarithms in Fig. 1(b). They take the form

dxL
s2dsqd = dkn̄L

MsqdnL
Msqdl , uqu2L ln s1/uqud, s14d

i.e., they are suppressed by a factoruqu2L compared to the
s-wave case. HerenL

Msqd=ok YL
Msêkdcssk+q/2dcs8sk−q/2d

is a component of the anomalous density for angular momen-
tum L. Note that forL.1 the BCS logarithm is subleading
compared to the regularuqu2 term coming from Fig. 1(a)
while in the p-wave case the BCS logarithm provides the
leading wave-number dependence in the LGW functional.
The same mechanism also suppresses the interaction induced
mode-coupling singularities related to corrections to scaling
at the dirty Fermi liquid fixed point. An explicit calculation
outlined in Appendix B shows that these mode coupling sin-
gularities behave at most asuqu2Luqud−2 (d is the spatial di-
mensionality). Therefore they are subleading compared to
the BCS logarithms for alld.2. We now turn to the four-
point anomalous density correlation functionxL

s4d. Because of
the momentum dependence of the renormalized anomalous
density vertex,xL

s4d picks up an extra power ofuqu4L com-
pared to thes-wave case. More generally, any 2n-point
anomalous density correlation functionxs2nd picks up an ex-
tra power ofuqu2nL compared to thes-wave case, i.e.,xs2nd

,uqu4+s2L−4dn. Therefore their singular contributions are de-
moted to subleading order and do not play a role for the
critical behavior. As a result, the leading terms in the LGW
functional for d-wave and higher order parameter angular
momentum take the same form(13) as in thep-wave case
except for the missing logarithmic wave number dependence
in the Gaussian part.19

III. RENORMALIZATION GROUP ANALYSIS

In this section, we analyze the LGW theory(13) by means
of the renormalization group. There is a Gaussian fixed point
with mean-field static exponentsn=1/2, g=1, h=0, and a
dynamical exponent ofz=2. In the p-wave case there are
logarithmic corrections to the mean-field behavior in all di-
mensions. In order to check the stability of this Gaussian
fixed point we study the importance of quantum and disorder
fluctuations. The scale dimensions ofU andV at the Gauss-
ian fixed point can be calculated by power counting. We
obtainfUg=2−d andfVg=4−d. Thus, the conventional fluc-
tuation term(theU term) is renormalization group irrelevant
for d.2, but the disorder term(the replica-off-diagonal
quarticV term) is relevant ford,4. In three dimensions the
Gaussian fixed point is unstable with respect to the disorder
term, and thus the calculation of loops is necessary to deter-
mine the asymptotic critical behavior. This includes the pos-
sibility of replica-symmetry breaking in the replica-off-
diagonal quartic term.

Rather than carrying out this program explicitly, we
use the analogy between our transition and the disordered

FIG. 3. Leading contribution to thexoff
s4d (see Appendix C).
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itinerant antiferromagnetic quantum phase transition to dis-
cuss the asymptotic critical behavior: Except for the logarith-
mic corrections, the LGW theory, Eq.(13) is identical to that
of a disordered itinerant antiferromagnet. This transition has
been investigated in great detail in recent years.22–24By tak-
ing into account rare disorder fluctuations it was found that
there is no critical fixed point in the perturbative region of
parameter space, and the asymptotic critical behavior is char-
acterized by run-away flow toward large disorder(Fig. 4)
rendering the perturbation expansion unjustified. The physi-
cal implications of this runaway flow are not fully under-
stood so far. Possible scenarios include a nonperturbative
fixed point with conventional(power-law) scaling, an infinite
randomness fixed point(relative magnitude of inhomogene-
ities increases without limit under coarse graining), resulting
in activated scaling, or a complete destruction of a sharp
phase transition. Thus, from the analogy with the quantum
phase transition in itinerant antiferromagnets we conclude
that the asymptotic critical behavior of our theory is uncon-
ventional and, at present, unknown.

However, in many relevant experimental systems the bare
disorder is actually very small. Thus, one may ask at what
length scale disorder effects start to play a role. The cross-
over scale between the Gaussian and the asymptotic critical
behavior can be determined from the condition that the
renormalized dimensionless disorder coupling constantVR

=V/Îtc2
3<1. Now, the quantum phase transition occurs att

=0 which leads to 1/G̃c=lns2eFtd, with G̃c being the dimen-
sionless critical coupling. Thus, the quantum phase transition
occurs at an exponentially small bare disorder strength which
implies that VR,1 requires an exponentially large length
scale. Using the results above we find a Ginzburg-type
criterion

uG̃ − G̃cu

G̃c

, G̃c
3 expF−

1

G̃c
G . s15d

Therefore, disorder effects become important only inside an

exponentially narrow region surroundingG̃c. This asymptotic
critical region is preempted by a wide Gaussian crossover
region (region below dashed line on Fig. 4) with mean-field
critical behavior. Forp-wave symmetry there are logarithmic
correction to the power-law scaling whose theuqu depen-
dence reflects the underlyingp-wave symmetry of the order
parameter.

IV. CONCLUSIONS

In this paper, we have studied the quantum phase transi-
tion from a dirty metal to an exotic superconductor. Starting
from a microscopic action of disordered interacting elec-
trons, we have derived the LGW theory for this quantum
phase transition which proved to be equivalent(up to loga-
rithmic corrections in the Gaussian part in the case ofp-wave
pairing) to the extensively studied LGW theory of the dirty
itinerant antiferromagnetic transition. A renormalization
group analysis yielded runaway flow toward large disorder.
As a result, the asymptotic fate of the quantum phase transi-
tion is presently unknown. However, we could derive a
Ginzburg-type criterion for the importance of the disorder
fluctuations. For weak bare disorder, as is realized in many
experimental systems, the true asymptotic behavior is ob-
served only exponentially close to the quantum critical point.
It is preempted by a wide region with mean-field behavior
(and logarithmic corrections forp-wave pairing). In this last
section we analyze our results from a general mode-coupling
point of view, and we also discuss experiments.

In deriving the LGW functional, we have paid particular
attention to the coupling between the order parameter and
additional soft modes. Mode-coupling-induced singularities
are indeed present in all angular momentum channels, but
they are increasingly suppressed for higher angular momen-
tum: In the static order parameter susceptibility the singular
terms pick up an extra power ofuqu2L. This suppression can
be understood as follows. In the presence of nonmagnetic
quenched disorder, the dominant electronic soft modes are
those that involve fluctuations of the number density, spin
density, or anomalous density in the zero angular momentum
channel32 while the corresponding densities in higher angular
momentum channels are not soft. Since the different angular
momentum modes are orthogonal at zero wave number, the
coupling between a finite angular momentum order param-
eter and the zero angular momentum soft modes must in-
volve powers of the wave numberuqu. These arguments sug-
gest a very general difference between the mode-coupling
effects in clean and dirty electronic systems. While the only
soft modes in the dirty case are in the zero angular momen-
tum channel, in clean systems, the charge, spin, and anoma-
lous density fluctuations in all angular momentum channels
are soft(corresponding to an infinite number of Fermi liquid
parameters). Therefore, one expects the mode coupling sin-
gularities in a clean systemnot to be suppressed by a higher

FIG. 4. Schematic flow diagram on the critical surface. The
GaussiansGd fixed point is unstable; the flow goes toward large
disorderV. For weak bare disorder, the flow stays close to theU
axis until it almost reaches the Gaussian fixed point before crossing
over (black dots) to the asymptotic destination. The dashed line
separates the region described by the Gaussian fixed point from the
strong disorder region.
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order parameter angular momentum. This is known to be true
for the Cooper channel logarithmic singularities which do
not pick up an extrauqu2L in clean electronic systems. A
systematic investigation of this question will be published
elsewhere.36

The explicit calculations in this paper were for a super-
conducting quantum phase transition in a paramagnetic sys-
tem. We now discuss to what extent the results change if the
transition happens in a ferromagnetic system. Let us assume
the magnetization is in thez direction. Obviously, not all
possible order parameter components are equivalent. Specifi-
cally, the symmetric triplet 1/Î2s↑↓ + ↓↑d (for p- or f-wave
pairing) as well as the singlet 1/Î2s↑↓−↓↑d (for s- and
d-wave pairing) are suppressed because the exchange gap
cuts off the Cooper-channel singularities. In contrast, for
equal spin pairing(↑↑ and ↓↓), the leading behavior is the
same as discussed in Secs. II and III of this paper.

Possible candidates for an experimental verification of our
predictions are the ferromagnetic superconductors UGe2
(Ref. 5) or ZrZn2.

6 For these systems, a likely mechanism for
superconductivity isp-wave triplet pairing mediated by mag-
netic fluctuations due to the vicinity to a magnetic quantum
critical point,21 although this has not yet been established
beyond doubt. In ZrZn2 the vanishing of superconductivity
as a function of disorder has actually already been observed.6

A systematic study of this transition would therefore be very
interesting.37
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APPENDIX A: TWO-POINT LGW VERTEX

In this appendix we sketch the derivation of expression
(10) for the anomalous density susceptibilityxs2d in 3D. In a
suitable parametrization and forp-wave pairing, Fig. 1(a)
can be written as

Dij
asq,vd = To

k,V
Y1

i sêkdY1
j sêkdGsk + q,V + vdGs− k,− Vd,

sA1d

with i, j being the order parameter component indices and
q ,v the external momentum and frequency.YL

Msêkd
=YL

Msu ,fd is a spherical harmonic and Green’s functionG is
given by Eq.(8). A straightforward calculation leads to

Dij
a =

NF

3
Flns2eFtd − uvut −

1

10
,2uqu2Gdi j −

NF

15
,2qiqj .

sA2d

,=kFt /m is elastic mean free path andNF the density of
states at the Fermi level. Similarly, the diagram in Fig. 1(b) is

Dij
b =

NF

9
,2qiqj ln Svt +

,2uqu2

3
D . sA3d

Adding Eqs.(A2) and(A3) completes derivation of Eq.(10).
For general angular momentumL, the analogous calculation
shows that the BCS logarithm inDb picks up an extra factor
uqu2L compared to thes-wave case.

APPENDIX B: INTERACTION EFFECTS

In this appendix we analyze the leading corrections toxs2d

due to the interactionsSint in the reference ensembleS0. They
can be understood as corrections to scaling at the dirty Fermi
liquid fixed point32 and are particle-particle analogs of the
well known Altshuler-Aronov corrections to density of states
and conductivity.33 We first consider a paramagnetic refer-
ence ensemble. To first order in the interactions, the relevant
diagrams are those in Fig. 5 and their counterparts with bare
external vertices. The wiggly line represents the interaction
which is assumed to be short ranged and can thus be approxi-
mated by a numberGss8 (wheres ,s8 denote the spin at the
two ends of the interaction line).

Particular attention must be paid to the diagramsa, b and
c with bare vertices. In these diagrams the spherical harmon-
ics in the two external vertices are not independent. There-
fore, their contributions can potentially produce stronger
terms thanuqu2Luqud−2. However, it turns out that these con-
tributions do not produce any nonanalytic terms and only
contribute to the regular terms. In the remaining contribu-
tions the angular variables of the external vertices are inde-
pendent. They can be analyzed along the lines presented in
Ref. 38. After a straightforward calculation one finds that the
interaction corrections produce singularities of at most of the
order uqu2L uqud−2 which means they are suppressed by a fac-
tor uqu2L compared to the zero angular momentum case.13

The above conclusion is easily generalized to ferromagnetic
reference ensembles: If the magnetization is in thez direc-
tion, the↑↑ and↓↓ components of the order parameter have
the same type of singularity as discussed above, while the
leading singularities in the↑↓ components are cutoff by the
exchange gap.

FIG. 5. Diagrams arising in the first order perturbation theory in
interaction of the reference ensembleS0, and produce a non analytic
uqu2Luqud−2 term, which is a consequence of the mode-coupling
effects.
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APPENDIX C: 4-POINT VERTICES

In this appendix we present details of calculation of four-
point susceptibilityxs4d in 3D, Eqs.(11) and (12). We start
with replica diagonal partxdiag

s4d which is calculated from the
diagrams shown on Fig. 2. The most singular contributions
are produced if the frequencies structure permits all four ex-
ternal vertices to be renormalized by an active(retarded-
advanced) ladder(four-ladder diagrams). A direct calculation
of the first diagram[Fig. 2(a)] leads to

Da =
2,5t2uqu4cos4sad

81p
o

V

QfVsV + vdg

Su2V + vut +
,2uqu2

3
D4

3 s1 − 9u2V + vut − ,2uqu2d. sC1d

An analogous calculation for Fig. 2(b) gives (the frequency
constraint requires the extra impurity line to act as a single
impurity line rather than an active ladder):

Db = −
,5t2uqu4cos4sad

81p
o

V

QfVsV + vdg

Su2V + vut +
,2uqu2

3
D4

3 s1 − 12u2V + vut − 2,2uqu2d. sC2d

Each of these two diagrams individually has an divergence
,1/uqu2. However, because the relative combinational factor
of Db is 2, the divergent contributions cancel, rendering the
final value forxdiag

s4d finite [Eq. (11)].
Similar cancellations among individually diverging dia-

grams take place in the replica off-diagonal case, with the
strongest singularities coming from diagrams with the largest

number of active ladders. A set of such diagrams is shown on
Fig. 6. Here, at most six ladders can be active, leading to an
infrared singularity in each of the diagrams of the form 1/uqu.
Similar calculations to the ones carried out above reveal that
the singular contributions of diagrams(a), (b), and (c) can-
celed each other. The remaining contribution is finite and can
be estimated from the simple diagram in Fig. 3.

We emphasize once more that all the results for the sin-
gularities in the anomalous density correlation functions in
the Appendixes A–C have been obtained in low-order pertur-
bation theory. Within perturbation theory one cannot prove
that the terms obtained indeed represent the leading singu-
larities to all orders. We are nonetheless confident that we
indeed identified the leading terms, because in thes-wave
case we reproduce the known rigorous results fromQ-field
theory.15,32
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