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Electron-electron attractions originating with dynamical correlations are considered for inhomogeneous
systems where the electrons can be explicitly partitioned into two classes: itinerant(valence) and quasilocal-
ized (core). Dynamical correlations in the near homogeneous itinerant class are well captured by analytical
forms of local-field factors when constrained to obey sum rules. For the nonoverlapping quasilocalized elec-
trons a reduced description of their collective dynamical behavior can be given by appealing to bosonic
excitations of polarization wave character. It is argued that in addition to the Kohn-Luttinger mechanism of
intrinsic superconductivity in the itinerant class, there is another attractive pairing channel(and hence a
possible further enhancement ofTc) arising from the exchange of these polarization waves, again of wholly
electronic origin. Numerical estimates, via solution of the Eliashberg equation, suggest that the polarization
wave channel can be quite significant in mediating electron pairing.
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I. INTRODUCTION

Electron-based mechanisms of superconductivity are
sought in materials where the traditional phonon-based
mechanism is known to be insufficient to account for an
observed high superconducting transition temperature,Tc
(e.g., in the cuprates, MgB2, and intercalated fullerenes).
Little1 and Ginzburg2 were among the first to suggest the
possibility of electron-mediated superconductivity, where the
electrons responsible for the pairing physics are spatially
separated from those participating in superconductivity. The
main appeal of such electron-based mechanisms is that the
characteristic energies involved are much higher than the
characteristic Debye temperature of the phonon-based
mechanism, thereby potentially raising the prefactor in any
BCS estimate forTc.

Kohn and Luttinger3 considered the possibility of super-
conductivity without phonons or other intermediaries and
demonstrated the remarkable result that a homogeneous
single-band system of fermions with purely repulsive short-
ranged interactions may be unstable against Cooper-pair for-
mation and eventually form a superconductor at sufficiently
low temperatures. Thus a homogeneous electron liquid with
repulsive Coulombic interactions, sufficiently screened to
render them short-ranged, and with no other external inter-
actions can in principle give rise tointrinsic superconductiv-
ity. The only condition for this new mechanism is that the
normal state is a Fermi liquid and thus has a well-defined
(sharp) Fermi-surface. An initial estimate3 of the supercon-
ducting temperature, for electrons in metals with a Fermi
temperature of the order of 104 K, using a screened Coulomb
potential, suggested possible observations of the transition
occurring around 1 mK.

However, homogeneous electron liquids can only be an
approximation to real physical systems where, in addition to
valence electrons which may participate in the Kohn-

Luttinger instability, there is inhomogeneous electron charge
arising from core electrons quasilocalized to the underlying
ions and not themselves unstable with respect to Cooper-pair
formation. Hitherto, the internal physics of these core elec-
trons has almost always been ignored in the discussion of
electron pairing mechanisms, and instead the traditional fo-
cus has been on the dynamics of the ions in their entirety
(i.e., phonons) as an attractive mediator. However, in metal-
lic systems where the atomic number of the underlying ions
is sufficiently large we point out here that the corresponding
proliferation of core electrons, treated dynamically, can sig-
nificantly enhance the polarizability of the system. As with
phonons, this new mechanism is not an on-site core effect4

but rather due to correlatedcoherentfluctuations in the as-
sembly of ion cores. This provides an additional exciton-like
channel for dynamical pairing instability of the valence elec-
trons, so long as there is a clear effective partitioning of the
two classes of electrons, i.e., nonoverlap of core and valence
bands. It is therefore the purpose of this paper to address this
additional pairing instability mechanism, following on from
an earlier suggestion of its possible importance.5,6 The Kohn-
Luttinger question is thus being rephrased, but in the context
of inhomogeneous electron systems.

Thus, the viewpoint in what follows is to consider pairing
in a valence electron system resulting from separation of the
entire electronic charge distribution in a metallic system into
formally distinct components. The first, as discussed above,
is the assembly of valence electrons themselves whose dy-
namics, as an interacting system, are typified by the standard
plasmon modes. The second originates with the localized
charge normally associated with what are termed the ion-
cores, each a many-body system in its own right. These
clearly present an assembly of long range monopoles, ulti-
mately screened, whose dynamics are embodied in the co-
herent phonons that emerge from the associated small oscil-
lations problem. But the next term in the multipole sequence
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are of dipolar character, and once again these can also lead to
coherent collective excitations, in this case quantized waves
of polarization. The corresponding dynamics are on time
scales different from the phonons and their physical conse-
quences are well known, for they lead to the van der Waals
interactions between different cores.7 Most importantly for
what follows, they are fundamentally nonlocal in an elec-
tronic context, and not amenable to standard approximations
used in many electronic response problems. In this context it
is important to remember that the local density approxima-
tion of density functional theory fails to capture the essential
algebraic forms of van der Waals interactions,8 and their
proper treatment is crucial to what follows.

The division of electronic charge implies two distinct lin-
ear response problems in quite different limits. For the va-
lence electrons, the unperturbed system can be taken as the
standard translationally invariant interacting electron gas
problem. But, for the localized charge, periodically arranged,
the relation between microscopicD and E fields must be
through a dielectric matrix.9 However, as is well known, if
the length scale of interest of a calculated or measured quan-
tity notably exceeds the microscopic scale, the dielectric ma-
trix can be averaged to give a scalar relation betweenD and
E in systems with sufficient symmetry. Here we shall take
the length scale to be the emergent coherence length in a
superconducting state, which significantly exceeds the mi-
croscopic scale. The approximation amounts to the neglect of
certain Umklapp contributions, and might well require revi-
sion in systems with small Cooper pairs. The use of a scalar
dielectric function below for both valence and core electrons
is therefore directly tied to the essential length scale of su-
perconducting states.

As suggested above, the two different classes of electrons
can give rise to two distinct coexistent superconducting
channels, above and beyond that arising from phonons, and
below we discuss each electronic channel in more detail.

A. Kohn-Luttinger instability

A simplistic explanation for the Kohn-Luttinger instabil-
ity, hereafter also denoted as intrinsic superconductivity,
draws upon the fact that the potential from a test charge
immersed in a homogeneous sea of fermions becomes

screened and exhibits a long-ranged oscillatory part(Friedel
oscillations) in real space attributable to the presence of a
singularity in the slope of the dielectric constant atq=2kF.
Thus, similarly, there are regions where the effective
electron-electron potential could become attractive, albeit
weakly, suggesting the possible intervention of a Cooper in-
stability.

The argument for the Kohn-Luttinger mechanism can be
made more rigorous by considering the contributions to the
irreducible scattering vertex up to second order in a single-
band case. The second order interaction diagrams are shown
in Fig. 1 and the essential point to note is that in three di-
mensions they are all singular when the momentum transfer
equals 2kF, and as a consequence give rise to an attractive
interaction in real space. Kohn and Luttinger presented
simple arguments to suggest that, for large angular momen-
tum l of the scattering vertexL, the first order contribution
must fall off exponentiallysLl <e−ld and the second order
contribution must fall off algebraicallysLl <1/l4d so that
eventually, for large enoughl, the attractive second order
diagrams exceed the repulsive first order(bare) Coulombic
interaction. Later it was shown10 that the effective attraction
also persists down to very lowl, though more accurate recent
calculations rule out the possibility of intrinsics-wave sl
=0d pairing in a single-band system.11 Relatively recently,12

the Kohn-Luttinger effect has been reexamined via the
many-body renormalization group(RG) approach,13 demon-
strating that the Kohn-Luttinger effect is robust and ought to
be a generic property of Fermi liquids. In this language, the
singular second-order diagrams, although acting as irrelevant
terms, drive the couplings of the theory away from Landau-
Fermi liquid fixed point towards the BCS instability.

The magnitude of the Kohn-Luttinger effect depends on
the sharpness of the singularity at 2kF and there is evidence
that the inclusion of higher order diagrams, capturing higher
order exchange and correlation, and going beyond the static
approximation,14 can also significantly enhance the singular-
ity. Thus any estimation ofTc clearly rests on an accurate
assessment and calculation of the dynamical correlation
between electrons. To determine the effective electron-
electron interaction we shall employ a modified
Kukkonen-Overhauser15 formalism, and the required local-
field factors are parametrized using a combination of both
perturbation theory and exact sum-rules. This will be the

FIG. 1. Second order contribu-
tion to the irreducible scattering
vertex in the original Kohn-
Luttinger argument(Ref. 3): (a)
represents the screened direct in-
teraction, (b) and (c) represent
vertex corrections due to a wave
function modification of the elec-
trons, and(d) represents exchange
effects. The full scattering vertex
is obtained by a self-consistent
summation of all diagrams of
these type(see e.g., Ref. 53).
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essential input into the numerical solution of the Eliashberg
equation to determineTc.

B. Core polarization

In both insulators and metals the polarization stemming
from the core electrons can significantly screen external
charge and, for our purposes, valence electrons. The finite
mass associated with the dynamical polarization cloud re-
sults in its delayed response to a nearby valence electron.
Just as in the conventional phonon mechanism, this delayed
charge imbalance may then lead to overscreening and hence
attraction of another valence electron(and thence to Cooper
pairing). The possibility of superconductivity arising from
the dynamic effective electron-electron interaction in the vi-
cinity of a polarizable medium was first remarked upon by
Little and Gutfreund.16 There they discussed the interaction
in the vicinity of a single dye molecule and suggested that in
principle the effective interaction could indeed be attractive.

A periodic array of polarizable ions can give rise to quan-
tized long-lived coherent excitations, namely polarization
waves,7,17 which we then take to be the analog of phonons in
conventional BCS theory of superconductivity.6 To deter-
mine the dispersion relation of polarization waves we use the
linear response formalism developed by Lundqvist and
Sjölander7 who analyzed an idealized model of a van der
Waals crystal where the neutral constituents, be they atoms
or molecules, are assumed to interact via static dipolar
couplings(i.e., dipole approximation to the general multipole
expansion of the inherent charge density fluctuations). The
theoretical justification for such a collective effect was ob-
tained by showing that the correct interaction energy of an
atomic lattice is obtained by summing over all coherent po-
larization wave contributions.7 Indeed, the familiarr−6 Lon-
don contribution to the cohesion of atomic crystals requires
that the van der Waals fluctuations be coherent across the
system. An archetypal van der Waals solid is the highly po-
larizable C60 fullerite which has provided several pieces of
spectroscopic evidence of polarization waves.18

An important difference in the case of metals is that the
polarization waves are now screened by valence
electrons.19,20 Both the core and valence electrons then con-
tribute to the dielectric response, the core response becoming
more important at higher energies.21 The charge fluctuations
arising from both classes of electrons must be treated on a
completely equal footing. The characteristic energy of the
core electron response is in general much greater than the
valence electron plasma frequency but can be comparable in
some metallic systems, for example, Cd and In, which pos-
sess relatively shallowd states. In addition, technologically
important semiconductors such as Ge and GaAs possess
shallow cores,22 and thus an accurate determination of band
structure must necessitate a correspondingly accurate treat-
ment of the effect of core polarization on valence states. The
inclusion of polarization waves has been shown to yield sig-
nificant improvement between the theoretical and experi-
mental equations of state of potassium20,23 whose ions have
quite high polarizability. Long wavelength collective de-
scriptions of the core response have also been used to calcu-

late the modified valence plasmon frequencies in simple met-
als with excellent experimental agreement.24,25

C. Plan of paper

In Sec. II the dynamical effective electron-electron inter-
action is determined for three-dimensional systems by sum-
ming up both the itinerant and core contributions within the
framework of linear response theory. Greater attention is
paid to the novel introduction of the core electron contribu-
tion in Sec. II B following the seminal work of Ref. 7, and in
particular, we emphasize the multipole character of the core
response in analogy with the usual monopole phonon contri-
bution. In Sec. III the possibility of an attractive interaction
is discussed and, as an initial assessment of the possible im-
portance of polarization waves, the strong-coupling Eliash-
berg equation is numerically solved to determine their effect
on superconducting transition, and we end with a summary
in Sec. IV.

II. DYNAMICAL EFFECTIVE VALENCE ELECTRON-
ELECTRON INTERACTION

The inhomogeneous model consists ofN fixed ions at
positionshRj andNZ itinerant valence electrons of massm
all in a volumeV and in a single band. The ions are com-
posites of nuclei, of chargeZAe andZi =ZA−Z quasilocalized
core electrons(chargeZie) with relative positionshr l

csRd , l
=1, . . . ,Zij. In the following determination of the effective
valence electron-electron interaction the ions are regarded as
compact objects meaning that there is insignificant wave
function overlap of core electrons between differing ions, so
that a formal multipole expansion can be established.

A. Itinerant contribution

The Kukkonen-Overhauser(KO) form of the effective
electron-electron interaction15,26 conveniently expresses the
renormalization of the direct Coulomb potential in a local
approximation via the use of local-field factors which encap-
sulate exchange and correlation effects. We use a modified
form of the KO expression which includes the self-energy of
the electrons consistently;27 for a single-band system,

Veffsq,vd = vq +
vq

2s1 − Gssq,vdd2P̄0sq,vd

1 − vqs1 − Gssq,vddP̄0sq,vd

− z
vq

2sGasq,vdd2P̄0sq,vd

1 + vqGasq,vdP̄0sq,vd
, s1d

wherevq=4pe/q2 the Fourier-transformed(bare) Coulombic
potential, Gsq ,vds,a are the spin-symmetric and spin-
antisymmetric dynamical local-field factors, andz=3 or −1
for singlet or triplet pairing, respectively. The second term in
Eq. (1) arises from charge density fluctuations of the corre-
lation hole surrounding each electron and the third term is
the interaction mediated by spin fluctuations. The overbar
over the Lindhard response,P0, denotes we must use the
modified form, constructed using an additional local-field
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factorGnsq ,vd, which corrects for the self-energy renormal-
ization of the electron occupation factors, namely,

P̄0sq,vd =
P0sq,vd

1 + vqGnsq,vdP0sq,vd
. s2d

The utility of the KO expression lies in that it only requires
the local-field factors as input which represent the deviation
of the full effective interaction away from the standard
random-phase approximation(RPA), i.e.

lim
Gs,a,n→0

Veffsq,vd = VRPA =
vq

1 − vqP0sq,vd
. s3d

Although the local-field factors must in principle be deter-
mined by a seemingly uncontrolled inclusion of scattering
diagrams to all orders, accurate approximations can never-
theless be obtained by utilising exact constraints28 (sum-
rules) on the asymptotic forms of the local-field factors. In
this vein parameterized forms of the local-field factors have
been determined27,29with input from both diagrammatic per-
turbation theory and sum-rule constraints. The higher-order
electron-electron scattering vertex diagrams used to fix the
behavior of the parameterized local-field factors atq=2kF
are shown in Figs. 2 and 3, in contrast to the diagrams used
in the original Kohn-Luttinger argument. The parameterized
expressions have so far been shown29,30to compare well with
Quantum Monte Carlo simulations,31–33 currently available
only in the static regimesv=0d.

B. Core contribution

To determine the coupling between different ions we in-
troduce a density operatorrR

i sr d for the ion atR

r̂R
i sr d = ZAdsr − Rd − o

i=1

Zi

dsr − R − r i
csRdd s4d

or, in Fourier coordinates,

r̂R
i sqd = eiq·RFZ + o

i=1

Zi

s1 − eiq·r i
csRddG . s5d

Thus in the thermodynamic limit the interaction operator for
a system of ions, ignoring conduction electrons for now, in a
volumeV is given by

V̂ii =
1

2V
o
q

vsqd o
R,R8

r̂R
i sqdr̂R8

i s− qd. s6d

This term represents the entire sum of multipole-multipole
charge interactions between different ions.

At this juncture it is useful to make a further analytical
link to the introductory remarks made above on excitations
of a general multipole character. To do so, suppose that the
picture is now augmented by inclusion of phonon dynamics.
The polarizable cores, originally assigned to fixed sitesR,
are now displaced byuR, i.e.,R→R+uR, theuR being syn-

FIG. 2. Diagrammatic equa-
tion of the electron-electron scat-
tering vertex corrections for the
spin-symmetric case. The interac-
tion lines are screened in the RPA.
As in Ref. 27 these diagrams con-
tribute to the parameterized form
of the local-field factors,Gs and
Gn, employed in Eq.(1).

FIG. 3. Diagrammatic equa-
tion of the electron-electron scat-
tering vertex corrections for the
spin-antisymmetric case. The in-
teraction lines are screened in the
RPA. As in Ref. 27 these diagrams
contribute to the parameterized
formof the local-field factors,Ga

andGn, employed in Eq.(1).
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thesized from the normal modes of an initially harmonic
problem. An elementary expansion now gives

er̂R
i = eiq·RsZe+ iZeq ·uR + iq · d̂R + ¯ d, s7d

where d̂R;−eoi=1
Zi r i

csRd is the point-dipole operator at site
R. In Eq. (7) it is clear thatiZeq ·uR is physically manifest-
ing terms of long range monopole character, the displace-
mentsuR being coherent and derived from harmonic travel-
ling waves(i.e., the phonons). It has been argued above that

the d̂R, stemming from the next term in the multipole expan-
sion, are linked to an underlying problem whose Hamiltonian
has quadratic character, and again are coherent as will be
demonstrated below; the travelling waves in this case are the
polarization waves whose time scales may differ markedly
from those of the phonons. Obviously the expansion in Eq.
(7) can be continued to the quadrupolar terms and beyond.

To set an approximate scale for the relative importance of
the monopole and dipole excitations embodied in Eq.(7) we
first let mn be the mass of a nucleus, andvpho a typical
phonon energy. Then we have

uR
2 1/2/a0 < S "vpho

e2/2a0
D1/2S m

mn
D1/2

, s8d

confirming that typical root-mean-square displacements in
the phonon problem can be a fraction of Bohr. Next, leta be
a static dipole polarizability associated with the localized
electrons, and also letv0 be a typical excitation energy, also
to be associated with these electrons. Then,

sd̂R/ed21/2/a0 < S "v0

e2/a1/3D1/2S a

ao
3D1/3

. s9d

Typical values ofv0 may be an appreciable fraction of an
atomic unit, and for ions with significant core spaces the
polarizability, a, can also be substantial on the scale ofa0

3.
Thus depending on the system, the phonon and dipole terms
in Eq. (7) can be comparable; it is immediately clear that
there can be interference between these terms and, again de-
pending on system, this will not always be constructive. It is
also important to note that the phonon approximation ne-
glects anharmonic effects these, as well as disorder etc., lead-
ing to finite mean paths. However, as noted by Bergmann
and Rainer34 the phonons with the largest influence onTc are
those whose frequencies approximately satisfyv;2pkBTc
and for these the mean free paths can be quite long. In a
similar way it is suggested that the frequencies critical to
polarization wave induced superconductivity are also those
of a longer wave character, and therefore also less prone to
damping.

Returning to the nonphonon case, we proceed from the
following expansion of the core charge-density operator Eq.
(4), i.e.

er̂R
i sqd = eiq·RsZe+ iq · d̂R + ¯ d. s10d

Neglect of higher order multipole terms results in the dipole
approximation for which

V̂ii =
1

2e2V
oq vq o

R,R8

eiq·sR−R8d

3sZe+ iq · d̂RdsZe− iq · d̂R8d. s11d

Collective and coherent excitations(polarization waves)
of the system of core electrons can now occur, and are most
readily described at the level of dipole-dipole interactions. To
determine the dispersion of the polarization waves we need
only consider the dipole-dipole part of the potential operator,
which in real space can be written as

V̂di-di =
1

2 o
R,R8

d̂RT̄sR − R8dd̂R8 s12d

whereT̄ is thed^ d dipolar coupling matrix,

T̄sR − R8d =
d2

dRdR8
S 1

uR − R8u
D . s13d

In Fourier space, the coupling matrixT̄sqd=oReiq·RT̄sRd
simplifies for a cubic solid in the long wavelength limit to7,17

lim
q→0

T̄sqd = 4p
N

V
Sq̂q̂ −

1

3
1D , s14d

where q̂ is the unit vector in theq-direction. Note that Eq.
(12) is an approximation of the full dipole-dipole interaction,

V̂di-di =
1

2 o
R,R8

E dr E dr 8fd̂Rsr d ·¹rgfd̂R8sr 8d ·¹r8g
e2

ur − r 8u
,

s15d

but invokes the same assumption used in Eq.(10), i.e., that
the lattice constant is large compared to the ionic size and is
such that the interionic interaction becomes essentially that
expected of point dipoles. Standard linear-response theory
then involves evaluation of the many-body polarization func-
tion, asq ,vd, the linear dipole-dipole response to a
frequency-dependent external fieldEsq ,vd, and is given by

asq,vd =
oR

eiq·Rkd̂Rsvdl

Esq,vd
s16d

which can be written as

asq,vd = o
R
E
−`

`

dteisq·R−vtdasR,td, s17d

wheres"=1d

asR − R8,t − t8d = ikfd̂Rstd,d̂R8st8dglust − t8d, s18d

with ustd being the Heaviside step function. Solving for the
polarizability, in a manner analogous to the application of the
RPA in the charge-charge response of an electron liquid, then
gives7
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asq,vd =
a0svd

1 − a0svdT̄sqd
s19d

wherea0svd is the free-ion polarizability,

a0svd = iE
0

`

dteivtkfd̂std,d̂s0dgl. s20d

Note that the core electron wave functions are assumed to be
sufficiently localized such that exchange and higher order
correlation effects between different dipoles can be ignored.
The dielectric tensor, stemming from just the polarizability
of the core electrons, then takes the familiar form,

ecoresq,vd = 1 +
4pnaasq,vd

1 − 4pnaq̂
Tasq,vdq̂

, s21d

wherena is the number density of ions. In the long wave-
length limit, the longitudinal and transverse dielectric func-
tions both become identical to the familiar Lorenz-Lorentz
expression,

lim
q→0

ecoresq,vd = 1 +
4pnaa0svd

1 −
4pnaa0svd

3

s22d

where we have used the limiting expression in Eq.(14). The
dispersion,vsqd, of the collective harmonic modes are then
given by the poles ofasq ,vd, or equivalently, by solutions to

detf1 − a0svdT̄sqdg = 0. s23d

Note that these bosonic collective excitations are quite
analogous to the conventional phonon excitations for the cor-
responding quantized displacement problem in that the dis-
persion satisfiesvsq+K d=vsqd, whereK is a reciprocal lat-
tice vector associated with the lattice vectorshRj.

The presence of mobile conduction electrons has so far
been ignored in the present discussion of the core polariz-
ability; it can be shown20 that inclusion of mobile charge
carriers simply screens the polarization waves in such a way
that the dispersion of the collective modes are now given by
solutions to

detF1 − a0svd
T̄sqd

evsq,vd
G = 0, s24d

whereevsq ,vd is the dielectric function of the valence elec-
trons. To obtain simple order-of-magnitude estimates for the
dispersion relationship of the polarization waves we may in-
voke a number of approximations. First, the frequency de-
pendence of the free-polarizability functiona0svd is taken to
be dominatedby the largest energy eigenstate spacing, and
thus is given by the semiclassical approximation, i.e.,

a0svd = 2o
ab

va − vb

sva − vbd2 − v2kaud̂ublkbud̂ual s25d

<
Zie

2

msv0
2 − v2d

s26d

where va is the exact energy eigenvalue corresponding to
eigenstateual and v0 can be interpreted as the minimum
characteristic excitation energy of the ions(typically in the
eV range6). Another simplification follows by invoking the
reasonable limit that the number density of core electrons is
greater than the number density of valence electrons(i.e.,
Zi @Z). To satisfy the f-sum rule (i.e., conservation of
charge) we know that in the long wavelength limitevsq ,vd
must take the form

lim
q→0

evsq,vd = 1 −
vpv

2

v2 s27d

where vpv=Î4pnve
2/m is the bare plasmon energy of the

valence electrons with densitynv. With these considerations
we find the following frequencies of the long wavelength
screened polarization waves in a cubic lattice, namely,

lim
q→0

vpol
2 sqd = v0

2 +
2

3
vpc

2 + vpv
2 , longitudinal s28d

lim
q→0

vpol
2 sqd = v0

2 − 1
3vpc

2 + vpv
2 , transverse s29d

where vpc=Î4pnce
2/m, the plasmon energy of a fictitious

homogeneous system of electrons with the same averaged
densitync as the core electrons. Correspondingly, the plas-
mon energy of the valence electrons is also renormalized,
this time by the core polarization.35–37

C. Combined effective valence electron-electron interaction

The virtual exchange of these polarization waves can lead
to an attractive interaction between two scattering valence
electrons. This can be seen in the simplest picture in which
the effective electron-electron interaction is determined via
the total dielectric response

Veff = vq/etotal s30d

where from addition of polarizabilities

etotal = ev + ecore− 1. s31d

Using Eq.(21) the effective longitudinal interaction can then
be written as

Veffsq,vd =
vq

ev
S1 −

4pnaascsq,vd
1 − 4pnaasq,vd + 4pnaascsq,vdD

s32d

whereasc=a /ev is the screened polarizability function. The
first term in Eq.(32) is the screened Coulomb interaction and
the second term is the screened electron-polarization wave
interaction which is opposite in sign for smallq (polarization
wave momentum). Some care is neeeded in interpreting Eq.
(32) within the KO formalism if the polarization waves
couple only to the electron charge-density fluctuations[the
first term of Eq. (1)] and not to spin-density fluctuations
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[third term of Eq. (1)], both of which are present in the
electronic dielectric functionev.

We re-emphasize here that the core contribution to the
effective interaction is not an on-site core effect but long
wavelength correlated coherent fluctuations in the coupled
assembly of cores. The physics of this contribution is quite
analogous to the phonon modulation of the effective interac-
tion.

In summary, the full expression of the effective valence
electron-electron interaction is then

Veffsq,ivd = Svq +
vq

2s1 − Gssq,ivdd2P̄0sq,ivd

1 − vqs1 − Gssq,ivddP̄0sq,ivd

− z
vq

2sGasq,ivdd2P̄0sq,ivd

1 + vqGasq,ivdP̄0sq,ivd
D

3S1 −
4pnaascsq,ivd

1 − 4pnaasq,ivd + 4pnaascsq,ivdD .

s33d

Writing the effective interaction in imaginary frequencies
simplifies the later numerical work and is also useful, when
the Mastubara frequenciesivn are introduced in the next
section, for carrying out the calculations for the electron pair-
ing function at finite temperatures. The finite temperature
frequency-dependence of any physical quantity is then ob-
tained by analytic continuationivn→v+ id.

The effect of polarization stemming from the coherent
motion of the ions may also be implemented by simply add-
ing the traditional electron-phonon coupling term,

Vphsq,ivd = −
a

1 + sq/2kFd2S vph
2 sqd

v2 + vph
2 sqd

D , s34d

to Eq. (32), thus treating the valence electrons, polarization
waves and phonons all on an equal footing. Note that the
screened phonon dispersionvphsqd in this case is actually
softened by both the valence electrons and polarization
waves.6 The parametera in Eq. (34) is determined by requir-
ing that the correct electron-phonon coupling parameterl be
reproduced. The phonon contribution will not be discussed
further except to say that the lowering of phonon frequencies
ought to enhance the coupling to electrons.38

III. ELECTRON PAIRING

The case of intrinsic superconductivity has been discussed
in depth,11,39–44 where the virtual exchange of correlated
charge-density fluctuations(plasmons) and spin-density fluc-
tuations presages an attractive interaction within a homoge-
neous electron liquid. However, the necessary inclusion of
vertex corrections in the effective Cooper-pair interaction,
beyond the RPA, can significantly reduce the magnitude of
Tc in the plasmon mechanism. As emphasized in Refs. 39
and 43 Migdal’s theorem does not hold for the Coulomb
interaction and therefore does not support the omission of
vertex corrections in the effective Cooper-pair interaction.
Hitherto, numerical estimates indicate that this pairing chan-

nel is quite weak, especially fors-wave pairing, in compari-
son to the traditional phonon channel. In this section we
evaluate the consequences of a pairing channel based on the
exchange of polarization waves, in addition to the mecha-
nism underlying intrinsic superconductivity,and beyondl =0.

The condition for the second term in Eq.(32) to dominate,
giving rise to an attractive total potential, is then

asq,vd .
1

4pna
. s35d

If Eq. (26) is used for the expression of the free-
polarizability then the frequency condition that satisfies Eq.
(35) is given in the long wavelength limit by

lim
q→0

v2sqd . v0
2 − 5

3vpc
2 s36d

In the weak-couling regime the effective electron-electron
interaction modifies Tc by entering into the
pseudopotential,45 which in the case of mediation by polar-
ization waves, is expressed as

m * =
m

1 + m lnsEF/vpold
. s37d

Thus the high characteristic energy scale of polarization
wavesvpol could either raiseTc, as mentioned in Sec. I but
could also lowerTc by raising the Coulomb pseudopotential
m*. To accurately determine whetherTc may be enhanced or
lowered we must therefore resort to a numerical solution of
the full strong-coupling Eliashberg equation.46,47 Previous
studies27,29,48have demonstrated the importance in this goal
of the frequency-dependence in the intrinsic electron-
electron interaction; the BCS superconductivity-formalism
which assumes a static interaction becomes unsuitable for
determining superconductivity with electron-based pairing
mechanisms.

The Eliashberg equation, decomposed intol-wave spheri-
cal harmonics, gives a self-consistent equation for the pairing
function Flsk , ivnd of l-wave superconductivity at tempera-
ture T=Tc,

Flsk,ivnd = − To
vn8

o
k8

uGsk8,ivn8du
2I lsk,ivn;k8,ivn8d

3 Flsk8,ivn8d, s38d

where the frequency summation runs over fermionic Matsub-
ara frequenciesvn;pTs2n+1d with integern, andGsk, ivnd
is the full interacting Green’s function.I lsk, ivn;k8 , ivn8d is
the l-wave irreducible interaction in the electron-electron
channel, i.e.,

I lsk,ivn;k8,ivn8d =
1

2
E
0

p

du sinuPlscosud

3Veffsq,ivn − ivn8d, s39d

where cosu;sk ·k8d / skk8d, Plscosud are the Legendre poly-
nomials, andq;uk −k8u. The angular momentum of the Coo-
per pairs remains a valid quantum number in the crystalline
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lattice since the typical size of the pair is much larger than
the lattice constant. The same argument holds in the tradi-
tional phonon-coupling theory of electron pairing.

Replacing the momentum summation in Eq.(38) by an
integral we can then write the gap equation in the form

Flsk,ivnd = − To
vn8

E
0

`

dk8Klsk,ivn;k8,ivn8d

3Flsk8,ivn8d, s40d

where

Klsk,ivn;k8,ivn8d =
uGsk8,ivn8du

2k8

4pk
E

uk−k8u

k+k8

dq

3 PlSk2 − k82 − q2

2kk8
Dq

3Veffsq,ivn − ivn8d. s41d

The expression for the required full Green’s function
Gsk , ivnd

Gsk,ivnd =
1

G0sk,ivnd−1 − Ssk,ivnd
, s42d

with

G0sk,ivnd ;
1

ivn − ek − m
, s43d

can be evaluated self-consistently using the modified KO
approximation for the self-energy. Thus, the self energyS
takes the form

Ssk,ivnd = − To
nn

E d3q

s2pd3Vsesq,inn;q − k,inn − ivnd

3 Gsq,innd s44d

where the self-energy potentialVse has contributions from
both the screened Coulombic interaction11 and the polariza-
tion waves, i.e.

Vse=
vq

1 − vqP̄0sq,ivdf1 − Gssq,ivdg

3S1 −
4pnascsq,ivd

1 − 4pnasq,ivd + 4pnascsq,ivdD . s45d

As described in Ref. 49, the Green’s function with full
normal-state self-energy effects can be solved by an iterative
method. Note that electronic vertex corrections are incorpo-

rated in the number-renormalized Lindhard responseP̄0.
To solve the Eliashberg equation we utilise a technique

pioneered by Rietschel and Sham39 and Takada,49 originally
developed for intrinsic strongly-coupled superconductivity:
the pairing functionFsk , ivnd is first evaluated on a grid of
discrete points in momentum and frequency space thereby
transforming the Eliashberg equation from an integral equa-

tion into a matrix equation with the structure

M lFl = F. s46d

The solution of the gap equation then consists of converting
the matrix equation Eq.(46) into an eignenvalue equation,

M lFl = gF, s47d

and determining the gap functionFl when the largest posi-
tive eigenvalue of Eq.(47) equals unity, i.e.,g=1. At tem-
peratures greater than the transition temperatureTc, the larg-
est positive eigenvalue is always less than unity and at
temperatures belowTc the largest positive eigenvalue is al-
ways greater than unity.

In Table I we report some numerical estimates ofTc in a
three-dimensional electron liquid for both the cases of with
or without polarization waves, corresponding to inhomoge-
neous and homogeneous systems, respectively. As can be
seen, the inclusion of polarization-wave coupling leads to an
enhancement ofTc, even forl =0 (s-wave) pairing, where no
solutions were previously found in the case of just intrinsic
superconductivity.

IV. DISCUSSION

The calculations summarized above show that dynamical
correlation within both classes of electrons(core and va-
lence) can cause the effective valence electron-electron po-
tential to become attractive in an otherwise static lattice. The
physics in each class is different. The intrinsic pairing
mechanism attributed to the valence electrons arises from the
exchange of correlated charge-spin and spin-density fluctua-
tions, and the pairing mechanism due to the core electrons
arises from the exchange of polarization waves. Note that
these additional pairing channels occur independent of the
traditional phonon channel which has been omitted in the
present calculations of the superconducting transition. The
assumption of independence of the phonon and polarization
wave channels rests upon the the disparity of the relevant
energy scales, i.e.,vpol@vph. If, however, there exist sys-
tems such that these energies are comparable then interfer-
ence will occur between the pairing channels and will bear
consequences onTc.

The presence of multiple-band structure, with the ensuing
electron-hole interactions, can provide a possible further en-
hancement of intrinsic pairing. It has been shown11 that an
additional attractive term arises in the effective electron in-

TABLE I. Estimates ofTc evaluated from the effective valence
electron-electron interaction for both the homogeneous[Eq. (1)]
and inhomogeneous[Eq. (33)] cases. For illustrative purposes the
parameters have been chosen to bers=5, Z=2, and"v0=5 eV.

l-wave ZA Tc
shomd (K) Tc

sinhomd (K)

s 30 0 0

s 48 0 1.1

d 30 0.3 11.6

d 48 0.3 18.5
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teraction in two-band systems because of correlated charge
(electron-hole) fluctuations between the bands, these even
allowing the possibility of intrinsics-wave pairing.

An interesting question yet to be investigated is the role of
disorder on the polarization wave pairing channel. Generally,
weak quenched disorder is expected to soften the dispersion
and broaden the spectral peak of collective excitations, espe-
cially at higher energies and wave vectors. However, in the
numerical solution of the Eliashberg equation, the dominant
contribution to the pairing arises atq=2kF and, so long as the
self-energy(in real frequencies) of the polarization waves
possess only a small imaginary part, we may expect disorder
to have relatively little effect onTc.

In the pairing analyses presented in this paper it is impor-
tant to remember that the effective partitioning of the two
classes of electrons only becomes possible under the as-
sumption of nonoverlapping core and valence bands. This
assumption permits neglect of correlation and exchange be-
tween the two classes of electrons, which could otherwise
dramatically reduce the pairing amplitude in a manner analo-
gous to the lowering ofTc in plasmon-based models of in-
trinsic superconductivity when vertex corrections are
included.39 Thus although polarization waves may still occur,
albeit with a smaller lifetime, in systems of overlapping
bands, their contribution to collective electron pairing would
be diminished. Indeed, we draw attention to the observation
that there is no experimental evidence of superconductivity

in the noble metals where there exists a significant overlap
between thed-state core electrons(with considerable polar-
izability in principle) and thes-state valence electrons.

It is interesting to record that in a limiting sense the po-
larization wave mechanism developed here and earlier5,6 is
not unrelated to the bipolaron mechanism of superconductiv-
ity, recently suggested as a possible candidate for the highTc
pairing mechanism in the cuprates50,51 and metal-ammonia
solutions.52 The soft limit of polarization waves(i.e., collec-
tive static waves at finite wave vectors) can be viewed as
reducing the valence electron-electron repulsion in a physi-
cally similar manner to the bipolaron mechanism.

Finally, we note that the calculated values ofTc are
strongly sensitive to the resolution of the grid on which the
pairing function is evaluated and on the form of the local-
field factors. In a future publication we hope to present a
more comprehensive set of numerical results for both two
and three dimensions. Nonetheless, the trend reported so far
is quite clear: polarization waves are an additional and viable
mechanism to enhanceTc.
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