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Polarization waves and superconducting instabilities in electron systems
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Electron-electron attractions originating with dynamical correlations are considered for inhomogeneous
systems where the electrons can be explicitly partitioned into two classes: itiigeasericeé and quasilocal-
ized (core. Dynamical correlations in the near homogeneous itinerant class are well captured by analytical
forms of local-field factors when constrained to obey sum rules. For the nonoverlapping quasilocalized elec-
trons a reduced description of their collective dynamical behavior can be given by appealing to bosonic
excitations of polarization wave character. It is argued that in addition to the Kohn-Luttinger mechanism of
intrinsic superconductivity in the itinerant class, there is another attractive pairing ch@mitlhence a
possible further enhancement ©f) arising from the exchange of these polarization waves, again of wholly
electronic origin. Numerical estimates, via solution of the Eliashberg equation, suggest that the polarization
wave channel can be quite significant in mediating electron pairing.
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[. INTRODUCTION Luttinger instability, there is inhomogeneous electron charge
rising from core electrons quasilocalized to the underlying
ns and not themselves unstable with respect to Cooper-pair
ormation. Hitherto, the internal physics of these core elec-

observed high superconducting transition temperatiie, trons has "’!'F“OSt always_, been ignpred in the disqqssion of
electron pairing mechanisms, and instead the traditional fo-

(e.g., in the cuprates, MgB and intercalated fullerengs ! . ) . .
Little? and Ginzburd were among the first to suggest the CUS Nas been on the dynamics of the ions in their entirety
possibility of electron-mediated superconductivity, where th i'(':eé’ gg%‘g%ﬁ:r:r:haen;?gmg r%%jgaéfgfﬁﬁ;vﬁﬁgrllnirTeitglr;s
electrons responsible for the pairing physics are spatiall Y ying

o R S Ys sufficiently large we point out here that the corresponding
separated from those participating in superconductivity. Th roliferation of core electrons, treated dynamically, can sig-

main appeal of such electron-based mechanisms is that thgiany enhance the polarizability of the system. As with
character!st!c energies involved are much higher than thﬁhonons, this new mechanism is not an on-site core &ffect
characteristic Debye temperature of the phonon-basegt rather due to correlatetbherentfluctuations in the as-
mechanism, thereby potentially raising the prefactor in anyemply of ion cores. This provides an additional exciton-like
BCS estimate fofT. channel for dynamical pairing instability of the valence elec-
Kohn and Luttinget considered the possibility of super- trons, so long as there is a clear effective partitioning of the
conductivity without phonons or other intermediaries andtwo classes of electrons, i.e., nonoverlap of core and valence
demonstrated the remarkable result that a homogeneolginds. It is therefore the purpose of this paper to address this
single-band system of fermions with purely repulsive short-additional pairing instability mechanism, following on from
ranged interactions may be unstable against Cooper-pair foan earlier suggestion of its possible importah€&@he Kohn-
mation and eventually form a superconductor at sufficientlyLuttinger question is thus being rephrased, but in the context
low temperatures. Thus a homogeneous electron liquid witlef inhomogeneous electron systems.
repulsive Coulombic interactions, sufficiently screened to Thus, the viewpoint in what follows is to consider pairing
render them short-ranged, and with no other external interin a valence electron system resulting from separation of the
actions can in principle give rise fotrinsic superconductiv- entire electronic charge distribution in a metallic system into
ity. The only condition for this new mechanism is that the formally distinct components. The first, as discussed above,
normal state is a Fermi liquid and thus has a well-defineds the assembly of valence electrons themselves whose dy-
(sharp Fermi-surface. An initial estimateof the supercon- namics, as an interacting system, are typified by the standard
ducting temperature, for electrons in metals with a Fermiplasmon modes. The second originates with the localized
temperature of the order of 4&, using a screened Coulomb charge normally associated with what are termed the ion-
potential, suggested possible observations of the transitiocores, each a many-body system in its own right. These
occurring around 1 mK. clearly present an assembly of long range monopoles, ulti-
However, homogeneous electron liquids can only be amately screened, whose dynamics are embodied in the co-
approximation to real physical systems where, in addition tdherent phonons that emerge from the associated small oscil-
valence electrons which may participate in the Kohn-lations problem. But the next term in the multipole sequence

Electron-based mechanisms of superconductivity aré
sought in materials where the traditional phonon-base
mechanism is known to be insufficient to account for an
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FIG. 1. Second order contribu-
tion to the irreducible scattering
vertex in the original Kohn-
Luttinger argument(Ref. 3: (a)
represents the screened direct in-
teraction, (b) and (c) represent
vertex corrections due to a wave
function modification of the elec-
trons, andd) represents exchange
effects. The full scattering vertex
is obtained by a self-consistent
summation of all diagrams of

these typgsee e.g., Ref. 53

-Pp —p
are of dipolar character, and once again these can also leadforeened and exhibits a long-ranged oscillatory (faitdel
coherent collective excitations, in this case quantized wavegscillationg in real space attributable to the presence of a
of polarization. The corresponding dynamics are on timesingularity in the slope of the dielectric constantgat2ke.
scales different from the phonons and their physical consethus, similarly, there are regions where the effective
quences are well known, for they lead to the van der Waal€lectron-electron potential could become attractive, albeit
interactions between different corésdost importantly for ~ Weakly, suggesting the possible intervention of a Cooper in-
what follows, they are fundamentally nonlocal in an elec-Stability. _ _

tronic context, and not amenable to standard approximations '€ argument for the Kohn-Luttinger mechanism can be

used in many electronic response problems. In this context [’ade more rigorous by considering the contributions to the

is important to remember that the local density approxima-'"edUCible scattering vertex up to second order in a single-

tion of density functional theory fails to capture the essentiapand case. The second order interaction diagrams are shown

: . . : In Fig. 1 and the essential point to note is that in three di-
algebraic forms c_:f van .der Waals interactidnand  their mensions they are all singular when the momentum transfer
proper treatment is crucial to what follows.

. o Is R, an n nce give ri n attractiv
The division of electronic charge implies two distinct lin- equals 2, and as a consequence give rise to an atiractive

: : ) > interaction in real space. Kohn and Luttinger presented
ear response problems in quite different limits. For the Vasimple arguments to suggest that, for large angular momen-

lence electrons, the unperturbed system can be taken as thgn | of the scattering vertea, the first order contribution
standard translationally invariant interacting electron gasyyst fall off exponentially(A;~e™) and the second order
problem..But, for the Iocalized charge, periqdically arranged contribution must fall off algebraicallfA,;~1/1% so that
the relation between microscopie and E fields must be  eyentually, for large enough the attractive second order
through a dielectric matri%.However, as is well known, if diagrams exceed the repulsive first orgdleare Coulombic
the length scale of interest of a calculated or measured quafnteraction. Later it was showhithat the effective attraction
tity notably exceeds the microscopic scale, the dielectric mag|sg persists down to very lolythough more accurate recent
trix can be averaged to give a scalar relation betweand  caiculations rule out the possibility of intrinsiswave (I
E in systems with sufficient symmetry. Here we shall takezo) pairing in a single-band systethRelatively recently?
the length scale to be the emergent coherence length in @q Kohn-Luttinger effect has been reexamined via the
superconducting state, which significantly exceeds the mifnany-body renormalization grouiRG) approach? demon-
croscopic scale. The approximation amounts to the neglect Qfirating that the Kohn-Luttinger effect is robust and ought to
certain Umklapp cpntnbuuons, and milght well require revi- po 4 generic property of Fermi liquids. In this language, the
sion in systems with small Cooper pairs. The use of a scalafingyar second-order diagrams, although acting as irrelevant
dielectric function below for both valence and core electronsterms, drive the couplings of the theory away from Landau-
is therefore directly tied to the essential length scale of SUEg ;i liquid fixed point towards the BCS instability.
perconducting states. _ The magnitude of the Kohn-Luttinger effect depends on
As suggested above, the two different classes of electronge sharpness of the singularity d-2and there is evidence
can give rise to two distinct coexistent superconductingpat the inclusion of higher order diagrams, capturing higher
channels, above and beyond that arising from phonons, angljer exchange and correlation, and going beyond the static
below we discuss each electronic channel in more detail. approximatiori# can also significantly enhance the singular-
ity. Thus any estimation of . clearly rests on an accurate
assessment and calculation of the dynamical correlation
between electrons. To determine the effective electron-
A simplistic explanation for the Kohn-Luttinger instabil- electron interaction we shall employ a modified
ity, hereafter also denoted as intrinsic superconductivityKukkonen-Overhaus&t formalism, and the required local-
draws upon the fact that the potential from a test chargdield factors are parametrized using a combination of both
immersed in a homogeneous sea of fermions becomeserturbation theory and exact sum-rules. This will be the

A. Kohn-Luttinger instability
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essential input into the numerical solution of the Eliashberdate the modified valence plasmon frequencies in simple met-
equation to determing&.. als with excellent experimental agreemé&ht>

B. Core polarization C. Plan of paper

In both insulators and metals the polarization stemmin In Sec. Il the dynamical effective electron-electron inter-

from the core electrons can significantly screen externa ction is determm.e'd for three—dlmensmngl systems by sum-
ming up both the itinerant and core contributions within the

charge and, for our purposes, valence electrons. The ﬁnitlffamework of linear response theory. Greater attention is
mass associated with the dynamical polarization cloud re- _. : PO Y- .
aid to the novel introduction of the core electron contribu-

sults in its delayed response to a nearby valence electron.” . . X ;
Just as in the conventional phonon mechanism, this delayetbOn in Sec. II B following the seminal work of Ref. 7, and in

charge imbalance may then lead to overscreening and hen?eglsrt'glrjl?er’i\rl]vznearropha\z'iiﬁ ttrk:: :;ﬂlztallpr?:gn%h%rlicﬁrocr)\fotnhio%c;:ﬁ
attraction of another valence electr@and thence to Cooper b gy pole p

pairing). The possibility of superconductivity arising from :Dsugi(;ré'ulsns:deg'ngl ?seaaoisnsi;g:Igs:];::mi[g?g?\{ﬁelntgz(i:ktyllgnim-
the dynamic effective electron-electron interaction in the vi- ’ P

cinity of a polarizable medium was first remarked upon byportance of polarization waves, the strong-coupling Eliash-

Little and Gutfreund® There they discussed the interaction berg equation is numerically solved to determine their effect

in the vicinity of a single dye molecule and suggested that i superconducting transition, and we end with a summary

principle the effective interaction could indeed be attractive.” Sec. IV.

A periodic array of polarizable ions can give rise to quan-
tized long-lived coherent excitations, namely polarization Il. DYNAMICAL EFFECTIVE VALENCE ELECTRON-
waves! 1’ which we then take to be the analog of phonons in ELECTRON INTERACTION
conventional BCS theory of superconductiityfio deter- . . ' .
mine the dispersion relation of polarization waves we use the T.h,e mhomogenqus model consists Mffixed ions at
linear response formalism developed by Lundquist and0SitionsiR} andNZ itinerant valence electrons of mass
Sjslandef who analyzed an idealized model of a van der@! in @ volume() and in a single band. The ions are com-
Waals crystal where the neutral constituents, be they atonf0Sites of nuclei, of chargése andZ;=Z,-Z qL_JasnoEahzed
or molecules, are assumed to interact via static dipolafOre electrongchargeZe) with relative positionsiri(R),!
couplings(i.e., dipole approximation to the general multipole =1 --- Zi}. In the following determination of the effective
expansion of the inherent charge density fluctuatiofie valence elec_tron-electro_n interaction the |0_ns_are_:_regarded as
theoretical justification for such a collective effect was ob-Compact objects meaning that there is insignificant wave
tained by showing that the correct interaction energy of arfunction overlap of core electrons between differing ions, so
atomic lattice is obtained by summing over all coherent poihat a formal multipole expansion can be established.
larization wave contribution§lndeed, the familiar 6 Lon-
don contribution to the cohesion of atomic crystals requires A. ltinerant contribution
that the van der Waals fluctuations be coherent across the

system. An archetypal van der Waals solid is the highly po- The Kukkonen_—Overhgus;(GKO) form of the effective
larizable G fullerite which has provided several pieces of electron—gleqtron mteracpéﬁ conveniently EXPresses the
spectroscopic evidence of polarization wabes renormalization of the direct Coulomb potential in a local

An important difference in the case of metals is that theapproximation via the use of I(_)cal-field factors which encap-
polarization waves are now screened by valenc ulate exchange and correlation effects. We use a modified

electrons®20 Both the core and valence electrons then conJ0M Of the KO expression which includes the self-energy of

. o .
tribute to the dielectric response, the core response becomirjiBe electrons consistentfy;for a single-band system,
more important at higher energi#sThe charge fluctuations —

’ J J J v3(1 - Gy(0, )Ty, )

arising from both classes of electrons must be treated on a Ver(Q, @) =vg + —

completely equal footing. The characteristic energy of the 1-v4(1-Gg(q, w)o(q, ®)

core electron response is in general much greater than the ) =

valence electron plasma frequency but can be comparable in _, vg(Ga(q, @) TIo(q, @) 0
some metallic systems, for example, Cd and In, which pos- 1+0,G4(0, @)To(d, )

sess relatively shallow states. In addition, technologically

important semiconductors such as Ge and GaAs possemherevq:47re/q2 the Fourier-transformebare Coulombic
shallow coreg? and thus an accurate determination of bandpotential, G(q,w)s, are the spin-symmetric and spin-
structure must necessitate a correspondingly accurate treatntisymmetric dynamical local-field factors, agid3 or -1
ment of the effect of core polarization on valence states. Théor singlet or triplet pairing, respectively. The second term in
inclusion of polarization waves has been shown to yield sigEg. (1) arises from charge density fluctuations of the corre-
nificant improvement between the theoretical and experitation hole surrounding each electron and the third term is
mental equations of state of potassfid#f whose ions have the interaction mediated by spin fluctuations. The overbar
quite high polarizability. Long wavelength collective de- over the Lindhard responsél, denotes we must use the
scriptions of the core response have also been used to calcmodified form, constructed using an additional local-field
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+
FIG. 2. Diagrammatic equa-
M tion of the electron-electron scat-
S w - - tering vertex corrections for the
spin-symmetric casélhe interac-
+ /\s + /\s tion lines are screened in the RPA.
- J As in Ref. 27 these diagrams con-
W tribute to the parameterized form
of the local-field factorsG4 and
G, employed in Eq(2).
—— - ————— -
+ by A + Ay A
——— - ——— 2o
factor G,(q, w), which corrects for the self-energy renormal- B. Core contribution
ization of the electron occupation factors, namely, To determine the coupling between different ions we in-
_ T1o(q, ) troduce a density operatpk(r) for the ion atR
(g, 0) = ’ : )
° 1+04Gy(0, @)o(d, ) | 2
~l — _ _ _ _rC
The utility of the KO expression lies in that it only requires PR(N) =Zp8(r =R) = 2 8r —R-r{(R)) (4)

the local-field factors as input which represent the deviation =

of the full effective interaction away from the standard or, in Fourier coordinates,
random-phase approximatigRPA), i.e.

Zi
lim  Ver(Q, ) = Vrpa= —Uq__ 3) f)iR(q) = eiq-R[Z + > (1- eiq-riC(R))] ] (5)
Goan-0 1 -vgllo(q, w) i=1

Although the local-field factors must in principle be deter- Thus in the thermodynamic limit the interaction operator for
mined by a seemingly uncontrolled inclusion of scatteringa System of ions, ignoring conduction electrons for now, in a
diagrams to all orders, accurate approximations can neverolume() is given by
theless be obtained by utilising exact constrafhisum- 1
rules on the asymptotic forms of the local-field factors. In = = AV AL (=

this vein parameterized forms of the local-field factors have Vi ZQE v(@) 2 Pr@p (- ). ©
been determinéd?°with input from both diagrammatic per-
turbation theory and sum-rule constraints. The higher-ordefhis term represents the entire sum of multipole-multipole
electron-electron scattering vertex diagrams used to fix theharge interactions between different ions.

behavior of the parameterized local-field factorsgat2kg At this juncture it is useful to make a further analytical
are shown in Figs. 2 and 3, in contrast to the diagrams uselhk to the introductory remarks made above on excitations
in the original Kohn-Luttinger argument. The parameterizedof a general multipole character. To do so, suppose that the
expressions have so far been shéWiito compare well with  picture is now augmented by inclusion of phonon dynamics.
Quantum Monte Carlo simulatiod$;32 currently available The polarizable cores, originally assigned to fixed sRgs

R,R’

only in the static regiméw=0). are now displaced byg, i.e.,R—R+ug, theug being syn-
— —

Aa - + Aa FIG. 3. Diagrammatic equa-
— | tion of the electron-electron scat-

tering vertex corrections for the
spin-antisymmetric caserhe in-

M teraction lines are screened in the
e - RPA. As in Ref. 27 these diagrams
contribute to the parameterized
+ Aa + Aa formof the local-field factorsG,
- andG,, employed in Eq(1).
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thesized from the normal modes of an initially harmonic

problem. An elementary expansion now gives Vi = 2e292 qu e RR"
R,R’
eph = €9R(Ze+iZeq - Ug +iq - dg + -), @) X(Ze+iq - dg)(Ze-iq - dr). (12)

where dR=—eEZ'1r°(R) is the point-dipole operator at site Collective and coherent excitatioripolarization waves

R. In Eq.(7) it is clear thatiZeq -ug is physically manifest- of the system of core electrons can now occur, and are most
ing terms of long range monopole character, the displacereadily described at the level of dipole-dipole interactions. To
mentsug being coherent and derived from harmonic travel-determine the dispersion of the polarization waves we need
ling waves(i.e., the phonons It has been argued above that only consider the dipole-dipole part of the potential operator,

the dg, stemming from the next term in the multipole expan-Which in real space can be written as

sion, are linked to an underlying problem whose Hamiltonian . 1 o .

has quadratic character, and again are coherent as will be Viigi = = 2 drT(R-R")dg (12
demonstrated below; the travelling waves in this case are the RR’

polarization waves whose time scales may differ markedly

from those of the phonons. Obviously the expansion in EqwhereT is thed®d dipolar coupling matrix,

(7) can be continued to the quadrupolar terms and beyond.

To set an approximate scale for the relative importance of ?(R -R)= & ( 1 ) (13)
the monopole and dipole excitations embodied in @ywe SRSR'\|R-R’|
first let m, be the mass of a nucleus, angy,, a typical _ o
phonon energy. Then we have In Fourier space, the coupling matrik(q)=2gr€9RT(R)
simplifies for a cubic solid in the long wavelength limit' td
ho 1/2 m 1/2
21/2j5 ~ [ ——pho iad (8)
uR Qo 2/2 ’ N
€289 My Imz) T(q) = 477— qq——l (14)
q—

confirming that typical root-mean-square displacements in

the phonon problem can be a fraction of Bohr. Nextddte ~ whereq is the unit vector in the-direction. Note that Eq.
a static dipole polarizability associated with the localized(12) is an approximation of the full dipole-dipole interaction,
electrons, and also led, be a typical excitation energy, also

to be associated with these electrons. Then, \‘/di_di - dr f dr’[dR(r) vV ][dR,(r ).V, ]| Tt
. hon \Y2[ o \13 RR’
dr/e)?? ~<—° ) (—) : 9
( Re) Ch) 82/011/3 ag ( ) (15)

but invokes the same assumption used in @§), i.e., that

the lattice constant is large compared to the ionic size and is
€such that the interionic interaction becomes essentially that
expected of point dipoles. Standard linear-response theory
Mfen involves evaluation of the many-body polarization func-
ion, a(q,w), the linear dipole-dipole response to a
Fequency -dependent external fidldq, w), and is given by

Typical values ofwy, may be an appreciable fraction of an
atomic unit, and for ions with significant core spaces the
polarizability, &, can also be substantial on the scaleaglf
Thus depending on the system, the phonon and dipole term
in Eg. (7) can be comparable; it is immediately clear that
there can be interference between these terms and, again (#
pending on system, this will not always be constructive. It is
also important to note that the phonon approximation ne-
glects anharmonic effects these, as well as disorder etc., lead-
ing to finite mean paths. However, as noted by Bergmann
and Rainet* the phonons with the largest influence Gnare
those whose frequencies approximately satiefy 2kgT, ~ Which can be written as
and for these the mean free paths can be quite long. In a
similar way it is suggested that the frequencies critical to '
polarization wave induced superconductivity are also those a(q,0) = >, f dtd @R V(R 1), 17
of a longer wave character, and therefore also less prone to R
damping.

Returning to the nonphonon case, we proceed from th&here(n=1)
following expansion of the core charge-density operator Eq. R R
4, i.e. a(R-R",t=t') =i([dr(t),dr(t) Ot - 1), (18

2 €¥dg(w) .
a(Q.0) = g (16)

epk(0) = €9R(Ze+iq dg+ ). (100  with 6(t) being the Heaviside step function. Solving for the
polarizability, in a manner analogous to the application of the
Neglect of higher order multipole terms results in the dipoleRPA in the charge-charge response of an electron liquid, then
approximation for which gives
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@) (19) %—zz,ez .
1 - ag(w)T(q) M(wp = @)
where o, is the exact energy eigenvalue corresponding to
eigenstatga) and w, can be interpreted as the minimum

(26)

a(q,w) =

where ag(w) is the free-ion polarizability,

% characteristic excitation energy of the ioftgpically in the
. ot/ e 5 eV rangé). Another simplification follows by invoking the
ao(w) = 'j dte“[d(t),d(0)]). (20) reasonable limit that the number density of core electrons is
0 greater than the number density of valence electi@es,

Z>7). To satisfy thef-sum rule (i.e., conservation of
arge we know that in the long wavelength limé,(q, )
ust take the form

Note that the core electron wave functions are assumed to
sufficiently localized such that exchange and higher orde
correlation effects between different dipoles can be ignored.

The dielectric tensor, stemming from just the polarizability ) QS_U
of the core electrons, then takes the familiar form, L'TO €(q,0) =1~ 2 (27
4mn,ae(q, w) where wp,=V4mn,€?/m is the bare plasmon energy of the

€oord Q) =1+ (21) valence electrons with density,. With these considerations

we find the following frequencies of the long wavelength
wheren, is the number density of ions. In the long wave- screened polarization waves in a cubic lattice, namely,
length limit, the longitudinal and transverse dielectric func-

1- 4’m']aaTa’(q1‘J")é\] ,

tions bo_th become identical to the familiar Lorenz-Lorentz lim wSm(Q) _ w(2)+ zwﬁc+ “’;Z)w longitudinal ~ (28)
expression, o 3
lim eod ) =1 4 Amha(@) (22) lim w3(0) = 0 = 305+ w5, transverse  (29)
q—0 1- Amn,ap(w) q—0
3 where wp.=\4mme?/m, the plasmon energy of a fictitious

o o homogeneous system of electrons with the same averaged
where we have used the limiting expression in Bd). The  gensityn. as the core electrons. Correspondingly, the plas-
dispersionw(q), of the collective harmonic modes are then 5 energy of the valence electrons is also renormalized,
given by the poles of(q, ), or equivalently, by solutions to  thjs time by the core polarizaticii-37

def1- ap(w)T(q)]=0. (23

Note that these bosonic collective excitations are quite he virtual h fth larizati lead
analogous to the conventional phonon excitations for the cor- The thua_ exchange o these polarization waves can lea
responding quantized disolacement problem in that the di St_o an attractive interaction between two scattering valence

Pe g q n P pre . electrons. This can be seen in the simplest picture in which
persion satisfies(q+K)=w(q), whereK is a reciprocal lat-

. ) . . the effective electron-electron interaction is determined via
tice vector associated with the lattice vectry.

X . the total dielectric response
The presence of mobile conduction electrons has so far P

been ignored in the present discussion of the core polariz- Vet = Uyf €otal (30
ability; it can be showff that inclusion of mobile charge
carriers simply screens the polarization waves in such a waYy
that the dispersion of the collective modes are now given by €roal= €, + €core— 1. (32)
solutions to

C. Combined effective valence electron-electron interaction

here from addition of polarizabilities

Using Eq.(21) the effective longitudinal interaction can then
?(q) be written as
det| 1- ag(w)——— | =0, (24)
v
Veff(qiw) = f(l -

€,(0,0)
wheree,(q,w) is the dielectric function of the valence elec- v
trons. To obtain simple order-of-magnitude estimates for the (32)
dispersion relationship of the polarization waves we may iny, hare o5c=
voke a number of approx[mat[qns. F|r§t, the frequency deﬁrst term in Eq.(32) is the screened Coulomb interaction and
pendence of the free-polarizability functiep(w) is taken o yhe second term is the screened electron-polarization wave
be dominatedby the largest energy eigenstate spacing, afideraction which is opposite in sign for smglipolarization
thus is given by the semiclassical approximation, i.e., wave momentum Some care is neeeded in interpreting Eq.
o —w (32) within the KO formalism if the polarization waves
— 43 " ] - i 1
ag(w) = 2> —LZ 5(ald|BXBldla)  (25) c_ouple only to the electron charge Qensny_fluctuan{mh_e
ap (0= 0p) o first term of Eq.(1)] and not to spin-density fluctuations

4mn,®(q, w) )
1 - 4mn,a(q, w) + 4mn,0°(q, w)

al e, is the screened polarizability function. The
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[third term of Eq.(1)], both of which are present in the nel is quite weak, especially farwave pairing, in compari-
electronic dielectric functior,. son to the traditional phonon channel. In this section we
We re-emphasize here that the core contribution to thevaluate the consequences of a pairing channel based on the
effective interaction is not an on-site core effect but longexchange of polarization waves, in addition to the mecha-
wavelength correlated coherent fluctuations in the coupledism underlying intrinsic superconductivity,and beydad.
assembly of cores. The physics of this contribution is quite The condition for the second term in E§2) to dominate,
analogous to the phonon modulation of the effective interacgiving rise to an attractive total potential, is then
tion.

In summary, the full expression of the effective valence a(q,») > ) (35)
electron-electron interaction is then Amm,
204 N If Eq. (26) is used for the expression of the free-
Ver(Qiw) = (Uq+ vg(1 ~Gy(@,iw)) Hi(q’lw) polarizability then the frequency condition that satisfies Eq.
1-v4(1 -G4q,iw)Iy(q,iw) (35) is given in the long wavelength limit by
G0 ilya,io) ) lim (@) > 0§~ S, (36
1+04Ga(0,i )T, iw)

In the weak-couling regime the effective electron-electron
41, a°9(q,iw) interaction modifies T, by entering into the

X\ L= 1 - dmn,a(q,iw) + 4m,e’(q,iw) ) pseudopotentig® which in the case of mediation by polar-

ization waves, is expressed as

(33
Writing the effective interaction in imaginary frequencies n* = S (37)
simplifies the later numerical work and is also useful, when 1+ pIn(Ee/wpo)

the Mastubara frequencié®, are introduced in the next Thys the high characteristic energy scale of polarization
section, for carrying out the calculations for the electron Pailwavesw,, could either raisd,, as mentioned in Sec. | but
ing function at finite temperatures. The finite temperaturesgyld also lowerT, by raising the Coulomb pseudopotential
frequency-dependence of any physical quantity is then obg» To accurately determine wheth& may be enhanced or
tained by analytic continuationo, — w+ié. lowered we must therefore resort to a numerical solution of
The effect of polarization stemming from the coherentihe fyli strong-coupling Eliashberg equatifit” Previous
motion of the ions may also be implemented by simply add<t,died7:2248have demonstrated the importance in this goal

ing the traditional electron-phonon coupling term, of the frequency-dependence in the intrinsic electron-
a w2.(q) ele_ctron interaction; the _BCS s.uperconductivity—for_malism
Vor(Q,iw) = = 2( 5 p“2 ) (34) which assumes a static interaction becomes unsuitable for
1+(a/2ke)"\ @ + wpr(a) determining superconductivity with electron-based pairing

to Eq.(32), thus treating the valence electrons, polarizationMechanisms. _ _
waves and phonons all on an equal footing. Note that the '€ Eliashberg equation, decomposed inteave spheri-
screened phonon dispersian(q) in this case is actually cal hgrmomcs., gives a self-consistent equation for the pairing
softened by both the valence electrons and polarizatioﬁuncuo_n ®y(k,iwy) of I-wave superconductivity at tempera-
waves® The parametea in Eq. (34) is determined by requir- € T=Te,

ing that the correct electron-phonon coupling parametee N , o

reproduced. The phonon contribution will not be discussed Di(k,ion) = T; %: IG(K" o) (K Twn K Twny)

further except to say that the lowering of phonon frequencies !
ought to enhance the coupling to electréfs. X Ok’ iwpy), (39

where the frequency summation runs over fermionic Matsub-
ll. ELECTRON PAIRING ara frequencies,= 7T(2n+1) with integern, andG(k,iw,)

The case of intrinsic superconductivity has been discusse't thle full mFerzctmgl Gfef” S :gnctl_on{&k,lwi]; kt "w”’)l 'St
in deptht:3%-44where the virtual exchange of correlated he 'W?V.e ireducible interaction in the electron-electron
charge-density fluctuationiplasmon$ and spin-density fluc- channel, 1.e.,
tuations presages an attractive interaction within a homoge- m
neous electron liquid. However, the necessary inclusion of C 1 .
vertex corrections in the effective Cooper-pair interaction, h(k,ion K" iwn) = 2 de'sin 9P)(coso)
beyond the RPA, can significantly reduce the magnitude of 0
T, in the plasn]on mechanism. As emphasized in Refs. 39 X Vg0 i 0 = 10y, (39)
and 43 Migdal's theorem does not hold for the Coulomb
interaction and therefore does not support the omission ofvhere cog=(k -k’)/(kk’), P,(cosé) are the Legendre poly-
vertex corrections in the effective Cooper-pair interaction.nomials, andj= |k —k’|. The angular momentum of the Coo-
Hitherto, numerical estimates indicate that this pairing chanper pairs remains a valid quantum number in the crystalline
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lattice since the typical size of the pair is much larger than TABLE I. Estimates ofT; evaluated from the effective valence
the lattice constant. The same argument holds in the tradilectron-electron interaction for both the homogenefits. (1)]
tional phonon-coupling theory of electron pairing. and inhomogeneouiEq. (33)] cases. For illustrative purposes the
Replacing the momentum summation in §88) by an  parameters have been chosen tafeb, Z=2, andfiwy=5 eV.
integral we can then write the gap equation in the form

hi inh
; l-wave Za T (K) LSS
(K iwy)=-T>, f dK K (K,iwn K iwn) s 30 0 0
g S 48 0 1.1
o d 30 0.3 116
XDk’ iwy), (40) d 48 0.3 18.5
where
k+k’ tion into a matrix equation with the structure
. . G(K' iy )|k’
Ki(K,iog; K iwy)=——— dq M ® =P, (46)
47K
k=K'l The solution of the gap equation then consists of converting
<k2— K'2— q2> the matrix equation Eq46) into an eignenvalue equation,
X P| =
: 2kk’ q M@, = v, (47)
X Ver(d,iwn = Twp). (41)  and determining the gap functich, when the largest posi-

tive eigenvalue of Eq(47) equals unity, i.e.;y=1. At tem-
peratures greater than the transition temperatyréne larg-
est positive eigenvalue is always less than unity and at
1 temperatures below, the largest positive eigenvalue is al-
ko) =3 (ki) (42)  ways greater than unity.
Jwp) (K iwp) . .

In Table | we report some numerical estimatesTgin a
with three-dimensional electron liquid for both the cases of with
1 or without polarization waves, corresponding to inhomoge-
Gk iwy) = ——, (43) neous and homogeneous systems, respectively. As can be
lon = €~ 1 seen, the inclusion of polarization-wave coupling leads to an

can be evaluated self-consistently using the modified Kcghhancement of, even forl=0 (s-wave) pairing, where no

approximation for the self-energy. Thus, the self ene¥gy solutions were previously found in the case of just intrinsic
takes the form superconductivity.

SKio)=-T> J

The expression for the required full Green’s function
G(k,iw,)

G(k,iw,) =

3
(gqgsvse(q'i”niq —K,ivy—iw) IV. DISCUSSION
The calculations summarized above show that dynamical
X G(q,ivy) (44)  correlation within both classes of electrofmore and va-
lence can cause the effective valence electron-electron po-
tential to become attractive in an otherwise static lattice. The
physics in each class is different. The intrinsic pairing
mechanism attributed to the valence electrons arises from the
_ Ug exchange of correlated charge-spin and spin-density fluctua-
ST _ ; tions, and the pairing mechanism due to the core electrons
1=vqllo(@ 1)1 =~ Gy, iw)] arises from the exchange of polarization waves. Note that
« ( 4ma®q(q,iw)

where the self-energy potenti&l, has contributions from
both the screened Coulombic interactiband the polariza-
tion waves, i.e.

Vs

these additional pairing channels occur independent of the

_1—4wna(q,iw)+47rna3°(q,iw) . (49 traditional phonon channel which has been omitted in the
present calculations of the superconducting transition. The
As described in Ref. 49, the Green’s function with full 3ssumption of independence of the phonon and polarization
normal-state self-energy effects can be solved by an iterativigave channels rests upon the the disparity of the relevant
method. Note that electronic vertex corrections are incorpOgnergy scales, i.ewp0> wpn If, however, there exist sys-
rated in the number-renormalized Lindhard respdrige tems such that these energies are comparable then interfer-

To solve the Eliashberg equation we utilise a techniquesnce will occur between the pairing channels and will bear
pioneered by Rietschel and Sh&mand Takadd? originally ~ consequences OR.
developed for intrinsic strongly-coupled superconductivity: The presence of multiple-band structure, with the ensuing
the pairing function®(k ,iw,) is first evaluated on a grid of electron-hole interactions, can provide a possible further en-
discrete points in momentum and frequency space therebdyancement of intrinsic pairing. It has been shéwimat an
transforming the Eliashberg equation from an integral equaadditional attractive term arises in the effective electron in-
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teraction in two-band systems because of correlated charde the noble metals where there exists a significant overlap
(electron-holé fluctuations between the bands, these everbetween thed-state core electron@vith considerable polar-
allowing the possibility of intrinsics-wave pairing. izability in principle) and thes-state valence electrons.

An interesting question yet to be investigated is the role of |t is interesting to record that in a limiting sense the po-
disorder on the polarization wave pairing channel. Generallyigrization wave mechanism developed here and eafliisr
weak quenched disorder is expected to soften the dispersigibt unrelated to the bipolaron mechanism of superconductiv-
and broaden the spectral peak of collective excitations, €SPy, recently suggested as a possible candidate for thehigh

cially at higher _energies anq wave vectors. However, ir_1 th"gairing mechanism in the cuprat®8! and metal-ammonia
numerical solution of the Eliashberg equation, the dominant, tionss2 The soft limit of polarization wave§.e., collec-

contribution to the pairing arises @& 2k and, so long as the tive static waves at finite wave vectprsan be viewed as

self-energy(in real frequer_lmesof the polarization waves reducing the valence electron-electron repulsion in a physi-
possess only a small imaginary part, we may expect disorder,

to have relatively little effect off cally_ similar manner to the bipolaron mechanism.

In the pairing analyses preserc{ted in this paper it is impor- Finally, we note that the cglculated va_Iues of are
tant to remember that the effective partitioning of the twostr_o_ngly sensltlvg to the resolution of the grid on which the
classes of electrons only becomes possible under the a airing function is evaluated gnd_ on the form of the local-

: 4 fleld factors. In a future publication we hope to present a
sumption of nonoverlapping core and valence bands. Thi

assumption permits neglect of correlation and exchange be. ¢ comprehensive set of numerical results for both two
P P 9 9€ P&nd three dimensions. Nonetheless, the trend reported so far

tween Fhe two classes of_e_lectronsz Wh'(?h could otherW|s«?s quite clear: polarization waves are an additional and viable
dramatically reduce the pairing amplitude in a manner analo-

gous to the lowering off; in plasmon-based models of in- mechanism to enhanck,
trinsic superconductivity when vertex corrections are
included?® Thus although polarization waves may still occur,
albeit with a smaller lifetime, in systems of overlapping
bands, their contribution to collective electron pairing would This work was supported by the NSF under Grant No.
be diminished. Indeed, we draw attention to the observatioDMR-0302347. We thank P. Allen for helpful comments on
that there is no experimental evidence of superconductivitthe manuscript.

ACKNOWLEDGMENTS

1W. A. Little, Phys. Rev.134, A1416(1964). 193. J. Rehr, E. Zaremba, and W. Kohn, Phys. RevlB 2062
2V. L. Ginzburg, Zh. Eksp. Teor. Fiz47, 2318(1964). (1975.
3W. Kohn and J. M. Luttinger, Phys. Rev. Lett5, 524 (1965. 20J. Cheung and N. W. Ashcroft, Phys. Rev.23, 2484 (1981).
4A. Zangwill and P. Soven, Phys. Rev. 21, 1561(1980. 2lc. C. Montanari, J. E. Miraglia, and N. R. Arista, Phys. Rev. A
5N. W. Ashcroft, inNovel SuperconductivitgPlenum, New York, 66, 042902(2002.

1987, p. 301. 22E . L. Shirley, X. Zhu, and S. G. Louie, Phys. Rev. 55, 6648
6N. W. Ashcroft, inRecent Progress in Many-Body Theor{@e- (1997).

num, New York, 1988 Vol. 1, p. 39. 23], Cheung and N. W. Ashcroft, Phys. Rev.2, 1636(1981).
S. Lundgvist and A. Sjolander, Ark. Fy£6, 17 (1963. 24g. Zaremba and K. Sturm, Phys. Rev. Lei6, 750 (1985.

8K. Rapcewicz and N. W. Ashcroft, Phys. Rev.43, 4032(1991). 25K, Sturm, E. Zaremba, and K. Nuroh, Phys. Rev.4B, 6973
9H. Ehrenreich, inThe Optical Properties of Solid$roceedings (1990.
of the International School of Physics “Enrico Fermi,” Course 26G. Vignale and K. S. Singwi, Phys. Rev. 82, 2156(1985).
34, Varenna, 1965, edited by J. Tagacademic Press, New 27C. F. Richardson and N. W. Ashcroft, Phys. Rev.58, 8170

York, 1996, Chap. 13. (1994

10D, Fay and A. Layzer, Phys. Rev. Let20, 187 (1968. 28N. lwamoto, Phys. Rev. A30, 3289(1984.

1C. F. Richardson and N. W. Ashcroft, Phys. Rev.58, 15130  2°G. S. Atwal, |. G. Khalil, and N. W. Ashcroft, Phys. Rev. &,
(1997, 115107(2003.

12R. Shankar, Rev. Mod. Phy$6, 129 (1994). 30M. Lein, E. K. U. Gross and J. P. Perdew, Phys. RevB 13431

133. Polchinski, inProceedings of the 1992 TASI in Elementary  (2000.
Particle Physicsedited by J. Harvey and J. Polchingkiorld 31D. M. Ceperley and B. J. Alder, Phys. Rev. Le#5, 566(1980.

Scientific, Singapure, 1992 82Quantum Monte Carlo Methods in Physics and Chemistdjted
14y, M. Galitski and S. D. Sarma, Phys. Rev.&, 144520(2003. by M. P. Nightingale and C. J. UmrigaKluwer, Dordrecht,
15C. A. Kukkonen and A. W. Overhauser, Phys. Rev.2B, 550 1999.

(1979. 333, Moroni(private communication, 2002
6. A. Little and H. Gutfreund, Phys. Rev. B, 817 (1971). 34G. Bergmann and D. Rainer, Z. Phy263 59 (1973.

A, Lucas, PhysicgAmsterdam 35, 353 (1967). 35A. Fleszar, R. Stumpf, and A. G. Eguiluz, Phys. Rev58 2068
18p Lambin, A. A. Lucas, and J.-P. Vigneron, Phys. Rev4B (1997).
1794(1992. 36K. widder, M. Knupfer, O. Knauff, and J. Fink, Phys. Rev.58,

104513-9



G. S. ATWAL AND N. W. ASHCROFT

10154(1997).

87C. L. Bastidas, A. Liebsch, and W. L. Mochan, Phys. Rev6B
165407(2002).

38B. T. Matthias, H. Suhl, and C. S. Ting, Phys. Rev. L&, 245
(1972).

394, Rietschel and L. J. Sham, Phys. Rev.2B, 5100(1983.

4OM. Grabowski and L. J. Sham, Phys. Rev.2®, 6132(1984).

41J. Ruvalds, Phys. Rev. B5, 8869(1987.

42y, Takada, Phys. Rev. B7, 155(1989.

43T. Buche and H. Rietschel, Phys. Rev.4, 8691(1990.

44p. Longe and S. M. Bose, J. Phys.: Condens. Matteri811
(1992

45p. Morel and P. W. Anderson, Phys. Re\25, 1263(1962).

PHYSICAL REVIEW B70, 104513(2004

46G. M. Eliashberg, Zh. Eksp. Teor. Fi&8, 966 (1960.

47p, B. Allen and B. Mitrovic,Solid State Physic&Academic, New
York, 1982, Vol. 37.

48D, J. W. Geldart, Can. J. Phyd5, 3139(1967.

49Y. Takada, Phys. Rev. B7, 5202(1993.

50A. S. Alexandrov and N. F. Mott, Rep. Prog. Phys7, 1197
(1994).

51A. S. Alexandrov and P. P. Edwards, Physica381, 97 (2000).

52p p. Edwards, J. Superconti3, 933(2000.

S3A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskilethods
of Quantum Field Theory in Statistical Physi¢®over, New
York, 1975.

104513-10



