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We study the effect of nonmagnetic impurities on the local density of states(LDOS) in the mixed state of
s-wave superconductors. The quasiclassical equations of superconductivity in the vortex state are solved
self-consistently to show how the LDOS evolves with impurity concentration. The spatially averaged zero-
energy LDOS is a linear function of magnetic induction in low fields,NsE=0d=astdB/Hc2, for all impurity
concentrations. The coefficienta depends weakly on the electron mean-free path. We evaluate numerically the
differential conductance and spatial profiles of zero-energy LDOS, which can help in extracting the mean-free
path from the measured LDOS.
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I. INTRODUCTION

Since Hess and co-workers1 succeeded in measuring the
local density of states(LDOS) in the superconducting
NbSe2, there have been many reports and theoretical studies
on the electronic structure of superconductors in the mixed
state. The experimental technique, the scanning tunneling
spectroscopy, enables one to measure the differential conduc-
tivity ssr ,Vd as a function of positionsr and bias voltagesV.
ssr ,Vd is closely related to the LDOSNsr ,Ed

ssr,Vd
sN

=E
−`

` dE

4T

Nsr,Ed
N0 cosh2„sE + eVd/2T…

, s1d

where sN is the normal state differential conductivity,e is
electron charge,E is the energy relative to the Fermi level,
andN0 is DOS at the Fermi level in the normal state;kB=1.
At zero temperature,ssr ,Vd and LDOS are proportional:
ssr ,Vd /sN=Nsr , ueuVd /N0. This is not the case forTÞ0; in
general, thessr ,Vd can be considered as a thermally broad-
ened LDOS.

At low temperatures,ssr ,Vd should follow the spatial
structure of the LDOS. Two prominent features should be
mentioned.ssr ,Vd measured at the vortex center of high-
quality NbSe2 crystals revealed a peak at the Fermi level(the
zero-bias peak) that well exceedssN.1 This indicates that
vortex core can not be viewed as being “normal,” at least in
clean superconductors. The zero-bias peak inssrd originates
from the zero energy peak of LDOS at the vortex center,
which is due to the low lying bound states inside the vortex
core. The other remarkable feature revealed in Ref. 1 is a
star-shapedssrd around the vortex core measured at a fixed
voltage, with the star orientation depending on the voltage
bias. The sixfold structure ofssrd in NbSe2 may come from
the effect of the hexagonal vortex lattice, or may be caused
either by the anisotropics-wave pairing or by the anisotropic
Fermi surface. Whatever the dominant effect is, the star-

shapedssrd correlates with the star-shaped LDOS of the
vortex lattice.

Still, the measuredssr ,Vd does not follow the sharp fea-
tures of the theoretically calculated LDOS even when the
experiment is done at very low temperatures.2 The height
and width of the zero-bias peak are found to be sample de-
pendent, indicating the effect of impurities as a plausible
explanation. This calls for a quantitative study of the effect
of impurities upon the LDOS, the purpose of our paper.

Also, we consider the effect of impurities on the field
dependence of specific heat. Ins-wave superconductors, low-
energy quasiparticles are trapped in vortex cores. As a result,
the spatially averaged zero-energy LDOS is proportional to
the density of vortices:NsE=0d~N0j2B (B is the magnetic
induction, j is the vortex core size). This translates to the
linear field dependence of the low-temperature specific heat
given by Cs/T=2p2NsE=0d /3. The nonlinearity in the low
field CssBd should be related to the gap anisotropy. In the
case of anisotropics-wave pairing, nonmagnetic impurities
smear out the gap anisotropy; this affectsCssBd curves. This
kind of experiment has been performed on Nb1−xTaxSe2 (Ref.
3) and YsNi1−xPtxd2B2C with the intention to make the gap
isotropic by adding impurities.3,4 Thus, it is of interest to
study how the field dependence of spatially averaged LDOS
evolves with impurity concentration, starting withs-wave su-
perconductors.

So far, the only systematic experimental study of the ef-
fect of disorder on LDOS is by Renneret al.5 In particular,
they measured the zero-biasssrd at the vortex center in the
alloy Nb1−xTaxSe2. The Ta substitution of Nb leads to a sys-
tematic decrease of the electron mean-free path, whereas the
electronic spectrum is expected to change little, since Nb and
Ta are isoelectronic and have close atomic radii. The zero-
energy ssrd is found to be very sensitive to the impurity
concentration. It gradually disappears, and forx=0.2, the
zero-energy LDOS at the vortex center is the same as that of
the normal phaseN0. It was even proposed thatssr ,Vd spec-
tra can serve as a measure of quasiparticle scattering time.
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In this paper, the problem of LDOS in the presence of
nonmagnetic impurities is studied with the help of the qua-
siclassical equations of superconductivity. This approach
(adequate when the coherence lengthj is much larger than
the atomic scalekF

−1) has been used by Ullahet al.6 and
Klein7 to study LDOS for an isolated vortex in clean isotro-
pic s-wave materials with only qualitative estimates of im-
purity effects. The full self-consistent analysis of LDOS in a
vortex lattice has been performed by Ichiokaet al. in super-
conductors without impurities.8 In Refs. 9 and 10 the effect
of impurities was studied for single vortices. The effect of
impurities on DOS in extremely high fields, where the Lan-
dau level quantization of the electronic energies should be
taken into account, has been studied by Dukan and
Tešanović;11 these phenomena are beyond the scope of this
text. Also, for the extreme dirty case, the reader is referred to
Refs. 12 and 13 . In this work, we calculate LDOS in the
vortex lattice by systematically changing the impurity con-
centration, and analyze the field dependence of the spatially
averaged zero-energy LDOS and the core radius. These are
done for the isotropics-wave case, which needs to be clari-
fied before the additional effect of gap anisotropy is in-
cluded.

The paper is organized as follows. In Sec. II, the method
of solving Eilenberger equations is described(a reader not
interested in technical details may skip this section). In Sec.
III, the spatial and energy dependencies of the LDOS and
ssr ,Vd for various impurity concentrations are given. In Sec.
IV, the effect of impurities on the specific-heat field depen-
dence is discussed.

II. METHOD

One of the difficulties in the numerical solving of the
Eilenberger equations for the mixed state is in posing the
boundary conditions. One way to overcome this is to use a
special gauge in which the Green’s functions are periodic,
and to work in Fourier space(periodic boundary
condition).14 Another method is based on the fact that during
the integration process, the Green’s functions grow exponen-
tially (explode). Fortunately, unphysical solutions can be ma-
nipulated to form the physical ones; this is the essence of the
so-called “explosion method.”8,15,16 We use an approach
based on transforming Eilenberger equations to the Riccati
form.18,19 The method has a clear advantage of avoiding un-
physical solutions altogether, and the solutions generated are
numerically stable.

For ans-wave superconductor in the presence of nonmag-
netic impurities, the equations for the Eilenberger Green’s
functions f, f†, andg are

fv + u · s= + iAdgf = Cg + Fg − Gf , s2d

fv − u · s=− iAdgf† = C * g + F * g − Gf†. s3d

Here,v= ts2n+1d is Matsubara frequency with an integern,
u is unit vector of the Fermi velocity, and the impurity po-
tentials

F =
1

t
kfl, G =

1

t
kgl. s4d

The Fermi surface is assumed to be isotropic and two dimen-
sional (2D).17 Averages over the isotropic cylindrical Fermi
surface reduce tok¯l=s1/2pde ¯dw, the average over the
polar anglew.

Equations (2) and (3) are supplemented by the self-
consistency equations for the gap functionC and the vector
potentialA

C ln t = 2t o
v.0

Fkfl −
C

v
G , s5d

= 3 = 3 A = −
2t

k̃2Im o
v.0

kugl, s6d

wheret=T/Tc is the reduced temperature.
The Born approximation is assumed in treating scattering

on impurity. For convenience, equations are written in di-
mensionless units: the order parameterC is measured in
unitspTc; R0=v / s2pTcd is taken as a unit of length, wherev
is Fermi velocity; the magnetic field is in unitsH0
=F0/2pR0

2, whereF0 is flux quantum. Furthermore, the vec-
tor potential is in unitsA0=F0/2pR0, the energy in units
E0=spTcd2N0R0

3, and the scattering timet is in units
1/s2pTcd= l /0.882j0, with the electron mean-free pathl and
j0 being the BCS coherence length.

The Eilenberger parameterk̃ is the only material constant
that enters the equations

k̃−2 = 2pN0S p

F0
D2 v4

spTcd2 . s7d

It is related to Ginzburg-Landau(GL) parameterk via k̃2

=f7zs3d /18gk2 in the three dimensional(3D) case and

k̃2 =
7zs3d

8
k2. s8d

in the 2D case. Herez is Riemmann’s zeta function. Eilen-
berger Green’s functionsf, f†, andg are normalized so that
g=Î1− f f†.

The quantity of our interest, the LDOS as a function of
position r and quasiparticle energyE, is defined as

Nsr,Ed = N0kRegsr,u,v → d − iEdl, s9d

where the functiong describes normal excitations andd is a
small number taking account of broadening levels. Follow-
ing Schopohl, we introduce auxiliary functionsa and b as
follows:18,19

f =
2a

1 + ab
, f† =

2b

1 + ab
, g =

1 − ab

1 + ab
. s10d

The functionsa andb satisfy the system ofdecoupledRic-
cati’s differential equation

u · = a = − sv + G + iu ·Ada +
C + F

2
−

a2

2
sC * + F * d,

s11d
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u · = b = sv + G + iu ·Adb −
C * + F*

2
+

b2

2
sC + Fd.

s12d

Moreover, asr ,u ,vd and bsr ,u ,vd are not independent.
Once we solve the Eq.(11) for a, the functionb can be
readily calculated:

bsr,u,vd = − a * s− r,u,vd. s13d

It is convenient for our purpose to work in local coordi-
natessr ,hd at the Fermi cylinder, such that the Fermi veloc-
ity direction u coincides with ther axis

r = x cosf + y sinf,

h = y cosf − x sinf. s14d

Then, Eq.(11) reduces to

]a

]r
= − sv + G + iu ·Ada +

C8

2
−

a2C8*

2
, s15d

whereC8=C+F. Unlike the integration of Eilenbereg equa-
tions, as given in Eqs.(2) and (3), where an exponentially
growing (and thus, unphysical) solution dominates, in trans-
formed Eqs.(11) and (12), we have the opposite tendency.
Integrating Eq.(11) along the directionr to a desired point
r8, the numerically stable solutiona+ is obtained. Note that
integrating in the opposite direction, toward decreasingr,
one gets a solutiona−=−1/a+. The initial point in the inte-
gration processr−rmin should be taken far from the pointr8,
which we want to calculate Eilenberger functions. To opti-
mize the numerical calculation, one should always take the
minimum integration pathrmin, along which the numerical
solution is stabilized. The integration pathrmin value depends
on the Matsubara frequencyv (real or complex) and on the
impurity concentration.

We choose the gauge¹ ·A=0 and separate the variable
part of the vector potentialA8 by writing

Asrd =
B 3 r

2
+ A8srd, s16d

whereB is the magnetic induction, andA8srd has the peri-
odicity of the vortex lattice. Then, Eq.(6) takes the form

=2A8 =
2t

k̃2Im o
v.0

kugl. s17d

This equation is linear inA8 andg, and easy to deal with in
Fourier space.

The equilibrium vortex lattice is assumed hexagonal. It
suffices to solve Eq.(15) in a primitive lattice cell; moreover,
we can consider only velocity directions 0,w,p /6. With
the help of symmetry properties ofasr ,u ,vd (which are the
same as those off, see Ref. 8), we can obtaina for all
velocity directions.

Iteration procedure

As a starting ansatz we take the Abrikosov solution for
Csrd,A8srd=0, with the impurity potentials in the form

F =
1

t

Csrd
Îv2 + uCsrdu2

, G =
1

t

v

Îv2 + uCsrdu2
. s18d

After solving Eq.(15), the new potentials are obtained from
the self-consistency Eqs.(5), (6), and (4). The results are
plugged back to the Eq.(15), which is solved again. This
interative procedure is repeated until the self-consistency is
achieved. The maximum frequencyvcut= ts2Ncut+1d should
be chose so that the result does not depend on the choice of
vcut. On the other hand, the number of iteration cycles
needed to stabilize the pair potential increases with theNcut.
We followed Klein15 and choosevcut=20pTc (in common
units) as appropriate for all temperatures. This givesNcut
, Ints10/td. Fortunately, we do not have to solve(15) for all
v’s. For high frequencies, the solution can be well approxi-
mated by

a <
1

2
S 1

v8
−

u · P

v82 +
su · Pd2

v83 DsC + Fd, s19d

where v8=v+1/t and P==+ iA. We use Eq.(19) for
n.Ncut/2.

The solution we look for is quasiperiodic: translations by
Rnm=nr1+mr2 (r1,r2 are primitive cell vectors,n,m are inte-
gers) amount to a phase factor

asr + Rnm,v,vd = asr,v,vdeixsr,Rnmd, s20d

where

x = pFmx

a0
−

ysn + mcosbd
a0 sinb

+ nm+ n − mG , s21d

andb=p /3 is the angle between primitive vectors.
Once Csrd,Asrd, and Fsr ,vd,Gsr ,vd are calculated, the

Eilenberger equations are solved again, but this time forv
=d− iE. It has been noted20,21 that the density of statesNsE
=0d is sensitive to the value ofd. The point is thatd has
roughly the same effect as impurities in suppressing the peak
in the DOS at the vortex center. For small values ofd,
Nsr ,E=0d has sharp maxima at the vortex centers, and a fine
mesh is needed to evaluate LDOS and their spatial averages.
We find a negligible difference in LDOS(spatially averaged)
for d=0.01 and 0.001. Thus, the parameterd=0.001 suffices
for our calculation, to avoid an additional broadening effect
due tod in spatially averaged LDOS.

III. LOCAL DENSITY OF STATES AND DIFFERENTIAL
CONDUCTANCE

Properties of the vortex core are governed by Andreev
bound states in the clean limit, while in the dirty case they
are governed by normal electrons.22 The Andreev scattering
from the pair potential(the order parameter) inside the core
turns the electronlike excitations into holelike, and vice
versa. At certain energies, the coherent superposition of par-
ticle and hole states is constructive, and bound states are
formed. The energy of the lowest bound state isE,D /kFj.
In the quasiclassical limitkFj@1, the lowest bound state
energy is pushed to zero. The zero-energy bound state in the
core manifests itself as a peak in zero-energy LDOS at the
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vortex center. Scattering on impurities randomizes the quasi-
particle motion, and they lose information on their initial
state. Thus, the impurities smear out the sharp structure of
LDOS. To illustrate this, we focus on the spatial structure of
zero-energy LDOSNsr ,E=0d.

In Fig. 1, the spatial variation of the LDOS along the line
connecting two nearest-neighbor vortices is shown. Data for
a clean superconductor,j0/,=0.0, for a relatively large
mean-free path,j0/,=0.1, and for an impure casej0/,
=4.0, are presented. The points 0 and 1 on the horizontal axis
are the position of vortex centers.

To remind the reader again, in the clean limit, the height
and width of the LDOS peak depend on the small parameter
d, which measures how far we are from the pole of the Green
functiong. In this sense, the height and width of the peak in
the clean limit are arbitrary. However, spatial integration of
this LDOS peak is almost independent of the parameterd, if
we use sufficiently smalld.

At the vortex center, zero-energy DOS,NsE=0,r =0d in
the clean limit, greatly exceeds the normal state valueN0.
When this was originally observed,1 it looked at odds with
the generally accepted naive picture of the vortex core as
being “normal.” Analyzing the zero-E DOS, Ns0,rd in the
impure case, we see that the purity of the sample is crucial in
forming the main peak at the vortex center. In the dirty limit
sj0/,→`d , Ns0,rd within the vortex core approaches the
normal state valueN0, and only in this limit can one view the
vortex core as being “normal.” Even a weak impurity scat-
tering has a strong impact on theNs0,rd profile.

To understand the LDOS behavior in more detail, we also
consider the profile of the order parameteruCsrdu, and define
the core radiusj by 1/j=(]uCsrdu /]r)r=0/ uCNNu, where
uCNNu is the maximum value of the order parameter along the
nearest-neighbor direction, and a derivative is taken along
the same direction. A comparison of the ideal case of a clean
superconductorj0/,=0, with the rather pure case ofj0/,

=0.1, reveals a change of the vortex core size by a factor of
2. It should be noted thatNs0,rd averaged over the lattice
cell is approximately the same in all cases: an increase of the
core size is accompanied by a reduction of the peak height.

It is instructive to see how the spatial structure of the
zero-energy DOSNs0,rd within the vortex lattice evolves
when impurities are added. In the clean limit,Ns0,rd around
the single vortex is cylindrically symmetric. As soon as the
vortex lattice is formed, the cylindrically symmetricNs0,rd
gives way to a star-shaped structure within the hexagonal
lattice.8 This is seen in Fig. 2. The effect of the vortex lattice
notwithstanding, the other factors, such as anisotropies of the
pairing function23 and of the Fermi surface, can also contrib-
ute to the details of the star-shaped structure. By reducing the
mean-free path, the star-shaped modulation ofNs0,rd gradu-
ally disappears and is completely absent in the dirty limit,
even at relatively high fields. Thus, the periodicity of the
order parameter is not the only element determining the
structure ofNs0,rd in Fig. 2. Only in pures-wave supercon-
ductors do the coherent superposition of electron and hole
states in the periodic lattice account for the star-shaped
Ns0,rd.

In Fig. 3(a), the LDOS at the vortex center is plotted as a
function of quasiparticle excitation energyE (in units of
pTc) for the clean case. The LDOS oscillates with energy,
the result previously reported in Ref. 24. This phenomenon
has the same origin as oscillations of DOS in
superconducting-normal proximity systems:25,26,28 the inter-
ference of quasiparticles reflected at the superconducting-
normal interface. The mixed state can be viewed as periodi-
cally arranged “normal”-superconducting boundaries. In Fig.
3(b), we show the differential conductivity atT=0.1Tc cal-
culated according to Eq.(1). It is seen that at this tempera-
ture, ssEd is the thermally broadened LDOS, but the oscil-
lating pattern is still visible.

In Fig. 4, the LDOS at the vortex center as a function of
energy is plotted for a few values of the mean-free path,.
The amplitude of oscillations is sensitive to impurities and is
nearly lost even in clean samples withj0/,=0.1. Proliferat-
ing impurities cause a flattening of the LDOS at the vortex
center: the zero-energy peak of the LDOS disappears, and so
do the deep minima forE,CsB=0d. In the dirty limit,

FIG. 1. The spatial variation of zero-energy DOS along the
nearest-neighbor direction. The solid line corresponds to the clean
limit; dashed lines are calculated forj0/,=0.1 andj0/,=4.0. The
calculation is performed at approximately the same relative field,
B=0.1Hc2.

FIG. 2. The zero-energy DOS within the vortex lattice for su-
perconductors withj0/,=0.0, 0.1, and 4.0(in order from left to
right). Only data pointsNsE=0d /N0,1 are presented. The small
parameterd=0.03 is used for clean limit data to clarify the spatial
distribution.
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j0/,→`, Nsr =0,Ed=N0 for all quasiparticle energies.12,13

A weak energy dependence of the LDOS at the vortex
center was observed in dirty alloys NbxTa1−xSe2 (see Ref. 5),
a behavior expected for disordered superconductors. Also, a
similar energy dependence of LDOS at the vortex center was
measured in YNi2B2C.27 It is now well established that non-
magnetic borocarbide superconductors(LuNi2B2C and
YNi2B2C) have nodes in the superconducting gap. Impurities
smear out the gap anisotropy and anisotropic borocarbide
superconductors with disorder can be considered as dirty
s-wave materials. It was also found that the DOS measured
at the vortex center in YNi2B2C has a weak energy depen-
dence, similar to the local density of states shown in Fig. 5
for dirty materials. From the residual resistivity ratio, the
electron mean-free path in the sample used in Ref. 27 is
estimated to be about 4 nm. This is shorter than the coher-
ence length as estimated from the upper critical field. How-

ever, BCS coherence lengthj0="vF /pD0 is estimated to be
much larger j0<30 nm. Thus, superconducting sample
YNi2B2C studied by Sakataet al. can be considered to be in
the dirty limit due to a small ratio, /j0=0.133. The absence
of a clear peak of DOS at zero energy near the vortex center,
as the well as the weak energy dependence of the density of
states, is a consequence of a strong disorder in studied
samples.

IV. LOCAL DENSITY OF STATES AND SPECIFIC HEAT

The low-energy quasiparticle excitations play an impor-
tant role in the low-temperature thermodynamics. The spe-
cific heatCssTd of a superconductor is given by

Cs

T
= 2E

−`

`

dE
]NsEd

]T
HlnF2 coshS E

2T
DG −

E

2T
tanh

E

2T
J

+ 2E
−`

` E2

4T3

NsEddE

cosh2sE/2Td
. s22d

One can utilize this expression only if the spatially averaged
LDOS NsEd is provided. However, in the limitT→0, the
first integral is zero. For smallT, the integrand in the second
integral is nonzero only in the small vicinity ofE=0. There-
fore, we can replaceNsEd with NsE=0d:

gs = lim
T→0

Cs

T
= 2E

−`

` E2

4T3

NsE = 0ddE

cosh2sE/2Td
=

2p2NsE = 0d
3

.

s23d

In the normal phase,Cn/T=2p2N0/3, and we obtain the
well-known result

lim
T→0

Cs

Cn
=

NsE = 0d
N0

. s24d

If the low-energy quasiparticles are localized in the vortex
cores, which is true fors-wave superconductors at least in

FIG. 3. (a) The LDOSNsE,r =0d /N0 at the vortex center as a
function of excitation energyE (in units pTc). (b) ssEd /sN at the
vortex center atT=0.1Tc. The two graphs are calculated for the
clean limit.

FIG. 4. The LDOS at the vortex center as a function of energyE
plotted for four values of the mean-free path,. s /sN is almost
indistinguishable fromNsE,r =0d /N0 at T=0.1Tc.

FIG. 5. The field dependence of spatially averaged zero-energy
LDOS in the clean limit. The straight line is a guide for the eye. The
inset: the normalized core sizejsBd /js0d as a function ofB/Hc2.
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small fields, thenNsE=0d~j2/Scell. HereScell=F0/B is the
lattice cell area andj is the size of the vortex core. If
we further assume thatj2~F0/Hc2, then we arrive at the
following scaling relationshipNsE=0d~B/Hc2, for s-wave
superconductors. However, there are a number of reports on
the nonlinear field dependence ofgssHd in s-wave supercon-
ductors. One of the offered explanations is that the vortex
core sizej itself is field dependent which, in turn, leads to
the nonlinear field dependence of the zero-energy DOS. The
shrinking of the vortex core with increasing field is detected
in NbSe2 (Ref. 29) and YBa2Cu3O6.60.

30 This is further sup-
ported by numerical calculations in the dirty13,29 and clean8

limits. Such an explanation brings out another puzzle. An
experimental study on the influence of nonmagnetic impuri-
ties on thegssHd in YsNi1−xPtxd2B2C and Nb1−xTaxSe2 re-
vealed that lineargssHd is achieved only in dirty samples.3

This result suggests that the vortex core size in the dirty
superconductors is field independent. However, numerical
calculations by Golubov and Hartman,13 and by Sonnieret
al.29 show, that even in the dirty limit,j should shrink with
increasing field.

Here we emphasize the necessity to evaluate the zero-
energy DOSNs0,rd at low temperatures in order to analyze
the specific-heat data. In Ref. 8, a calculation forT=0.5Tc
revealed thatNsE=0d~j2sBdB, where the vortex core radius
jsBd is independently calculated from the pair potential pro-
file. At lower temperatures, Kramer and Pesch32,33 predict
that the core radius shrinks and it might have a different field
dependence compared to higher temperatures, as shown here.

The field dependence ofNs0,rd in the clean limit forT
=0.1Tc is shown in Fig. 5. In the inset we plot the field
dependence of the core radius at the same temperature. Com-
pared to the previously reported result atT=0.5Tc, where
jsBd decreases with field,8 the vortex core radius atT
=0.1Tc is nearly constant at low fields. As a consequence, the
zero-energyNs0,rd is a linear function of the magnetic in-
duction.

In the clean limit the quantityNs0,rd between vortices
and far from the cores is negligible in fields as large asB
=0.4Hc2. In other words, the main contributions toNs0,rd is
coming from the vortex cores. On the other hand, in the dirty
limit, Ns0,rd is not confined to the vortex cores, but it is
spread throughout the vortex lattice cell. It is large even in
between vortices. Thus, the scaling relationNsE=0d
~j2sBdB is of no use in the dirty limit. This is the reason
why we do not attempt to correlate the core sizejsBd and
field dependence of LDOS in the impure case. However,
NsE=0,Bd is a linear function of magnetic induction at low
fields for any impurity concentration:NsE=0,Bd /N0

=astdB/Hc2. Numerical results forNsE=0,Bd /N0 as a func-
tion of , are presented in Fig. 6. The constant of proportion-
ality astd depends weakly on the electron mean-free path
and saturates toa<0.8 in the dirty limit. The constant of
proportionality goes from a value.1 (convex) in the clean
case, to a value,1 (concave) in the dirty case. These results
are similar to the analysis by Kita done nearHc2.

31

Figure 7 shows the field dependence of the core radiusj
as calculated from pair potential profilesCsrd. For a fixed

reduced fieldB/Hc2, the radius is a nonmonotonic function
of j0/,; starting with the clean case, it increases sharply and
then slowly decreases with increasing scattering. In the dirty
limit, the core shrinks with increasing field, which is consis-
tent with the previous calculations,13,29 in sharp contrast with
the vortex core enlargement with increasing field in the clean
limit. A small core size at low fields and temperatures is in
accord with Kramer and Pesch:32,33The core radius is calcu-
lated to be proportional to the temperature for a single vortex
in the clean limit. Since the core radius has to become as
large as the order of the coherence length nearHc2, it is
reasonable that the core radius increases with increasing field
at low temperatures. Our results also suggest that the
Kramer-Pesch result does not work in the dirty case.

The experimental data, however, revealed thata=1 in the
dirty limit.3 This experimental data also shows the scaling
NsE=0,Bd /N0=astdB/Hc2 for all field values, a remarkable
feature still to be explained. It is worth mentioning that in

FIG. 6. The field dependence of the spatially averaged zero-
energy LDOS for a few mean-free path,.

FIG. 7. Field dependence of the vortex core size for a few mean-
free path.
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Ref. 4, CsBd is nonlinear in YsNi1−xPtxd2B2C for all
0,x,1. In these materials, we need to take into account the
gap anisotropy.

V. SUMMARY

In this paper we examined effect of nonmagnetic scatter-
ing on LDOS in the vortex lattice state in isotropics-wave
superconductors, by systematically changing the impurity
concentration. We showed that the purity of the supercon-
ducting sample is crucial in forming the spatial structure of
LDOS. As soon as impurities are introduced into the super-

conductor, scattered electrons lose the information on their
initial state, and the sharp features of LDOS are flattened. We
have calculated how the differential conductivity spectra
evolve with the electron mean-free path. Although the impu-
rities have a great impact on the LDOS, the spatially aver-
aged LDOS shows a weak dependence on the reduced field
B/Hc2.
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