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Effects of nonmagnetic scatterers on the local density of states around a vortex
in sswave superconductors
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We study the effect of nonmagnetic impurities on the local density of s(af@®S) in the mixed state of
s-wave superconductors. The quasiclassical equations of superconductivity in the vortex state are solved
self-consistently to show how the LDOS evolves with impurity concentration. The spatially averaged zero-
energy LDOS is a linear function of magnetic induction in low fielN$E=0)=a(7)B/H,, for all impurity
concentrations. The coefficieatdepends weakly on the electron mean-free path. We evaluate numerically the
differential conductance and spatial profiles of zero-energy LDOS, which can help in extracting the mean-free
path from the measured LDOS.
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I. INTRODUCTION shapedo(r) correlates with the star-shaped LDOS of the
) . ) vortex lattice.

Since Hgss and co—workérsuc_ceeded in measuring the Still, the measured(r,V) does not follow the sharp fea-
local density of stateSLDOS) in the superconducting (res of the theoretically calculated LDOS even when the
NbSe, there have been many reports and theoretical StUd'G&periment is done at very low temperatuteBhe height
on the electronic structure of superconductors in the mixe@nd width of the zero-bias peak are found to be sample de-
state. The experimental technique, the scanning tunnelingendent, indicating the effect of impurities as a plausible
spectroscopy, enables one to measure the differential condugxplanation. This calls for a quantitative study of the effect
tivity o(r,V) as a function of positionsand bias voltage¥. of impurities upon the LDOS, the purpose of our paper.

a(r,V) is closely related to the LDOSI(r,E) Also, we consider the effect of impurities on the field
dependence of specific heat.stwave superconductors, low-
o energy quasiparticles are trapped in vortex cores. As a result,
a(r,V) dE N(r.E) . . :
—= — 7 , (1) the spatially averaged zero-energy LDOS is proportional to
N —» 4T No cost((E + eV)/2T) the density of vorticesN(E=0) < N,&?B (B is the magnetic

induction, ¢ is the vortex core size This translates to the

where oy is the normal state differential conductivitg,is linear field dependence of the low-temperature specific heat
electron chargek: is the energy relative to the Fermi level, given by C/ T=27°N(E=0)/3. The nonlinearity in the low
andNg is DOS at the Fermi level in the normal stakg=1.  field C4(B) should be related to the gap anisotropy. In the
At zero temperatureg(r,V) and LDOS are proportional: case of anisotropis-wave pairing, nonmagnetic impurities
o(r,V)/on=N(r,|e]V)/N,. This is not the case fof #0; in  smear out the gap anisotropy; this affe€tgB) curves. This
general, thes(r,V) can be considered as a thermally broad-kind of experiment has been performed on, Nba,Se, (Ref.
ened LDOS. 3) and Y(Ni;_.Pt),B,C with the intention to make the gap

At low temperaturesg(r,V) should follow the spatial sotropic by adding impuritied* Thus, it is of interest to
structure of the LDOS. Two prominent features should bestudy how the field dependence of spatially averaged LDOS
mentioned.o(r,V) measured at the vortex center of high- evolves with impurity concentration, starting withwave su-
quality NbSe crystals revealed a peak at the Fermi leleé  perconductors.
zero-bias peakthat well exceedsry.! This indicates that So far, the only systematic experimental study of the ef-
vortex core can not be viewed as being “normal,” at least irfect of disorder on LDOS is by Rennet al® In particular,
clean superconductors. The zero-bias peak(in originates  they measured the zero-biagr) at the vortex center in the
from the zero energy peak of LDOS at the vortex centeralloy Nb;_,Ta,Se. The Ta substitution of Nb leads to a sys-
which is due to the low lying bound states inside the vortextematic decrease of the electron mean-free path, whereas the
core. The other remarkable feature revealed in Ref. 1 is &lectronic spectrum is expected to change little, since Nb and
star-shapedr(r) around the vortex core measured at a fixedTa are isoelectronic and have close atomic radii. The zero-
voltage, with the star orientation depending on the voltageenergy o(r) is found to be very sensitive to the impurity
bias. The sixfold structure af(r) in NbSe may come from concentration. It gradually disappears, and fsr0.2, the
the effect of the hexagonal vortex lattice, or may be causedero-energy LDOS at the vortex center is the same as that of
either by the anisotropis-wave pairing or by the anisotropic the normal phashl,. It was even proposed thatr,V) spec-
Fermi surface. Whatever the dominant effect is, the startra can serve as a measure of quasiparticle scattering time.
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In this paper, the problem of LDOS in the presence of 1 1
nonmagnetic impurities is studied with the help of the qua- F= ;<f>: G= ;<9>- (4)
siclassical equations of superconductivity. This approach
(adequate when the coherence lengtis much larger than The Fermi surface is assumed to be isotropic and two dimen-
the atomic scalek;l) has been used by Ullagt al® and  sional(2D).}” Averages over the isotropic cylindrical Fermi
Klein’ to study LDOS for an isolated vortex in clean isotro- surface reduce t¢--)=(1/2m) [ ---de, the average over the
pic sswave materials with only qualitative estimates of im- polar anglee.
purity effects. The full self-consistent analysis of LDOS ina Equations(2) and (3) are supplemented by the self-
vortex lattice has been performed by Ichiokaal. in super-  consistency equations for the gap functibnand the vector
conductors without impuritie$in Refs. 9 and 10 the effect potentialA

of impurities was studied for single vortices. The effect of W

impurities on DOS in extremely high fields, where the Lan- Vint=2t>, {(f) - —] (5)
dau level quantization of the electronic energies should be >0 ®

taken into account, has been studied by Dukan and

TeSanow;!! these phenomena are beyond the scope of this 2t

text. Also, for the extreme dirty case, the reader is referred to VXV XA=- ?Im go (ug), (6)

Refs. 12 and 13 . In this work, we calculate LDOS in the
vortex lattice by systematically changing the impurity con-wheret=T/T, is the reduced temperature.
centration, and analyze the field dependence of the spatially The Born approximation is assumed in treating scattering
averaged zero-energy LDOS and the core radius. These aoa impurity. For convenience, equations are written in di-
done for the isotropis-wave case, which needs to be clari- mensionless units: the order parameferis measured in
fied before the additional effect of gap anisotropy is in-units 7T Ry=v/(27T,) is taken as a unit of length, whewve
cluded. is Fermi velocity; the magnetic field is in unit$l,
The paper is organized as follows. In Sec. II, the method=d,/27R3, wheredy is flux quantum. Furthermore, the vec-
of solving Eilenberger equations is describ@dreader not tor potential is in unitsAy=®,/27R,, the energy in units
interested in technical details may skip this sectidn Sec. EO:(WTC)ZNORg, and the scattering timer is in units
I, the spatial and energy dependencies of the LDOS and /(2#T.)=1/0.882, with the electron mean-free paktand
o(r,V) for various impurity concentrations are given. In Sec. ¢, being the BCS coherence length.
IV, the effect of impurities on the specific-heat field depen-  The Eilenberger paramet&ris the only material constant
dence is discussed. that enters the equations

U4

2
~2_ T
Il. METHOD K ‘2”'\'0(@0) (7To)2 (7)

One of the difficulties in the numerical solving of the It is related to Ginzburg-Landa(GL) parameterx via x>
Eilenberger equations for the mixed state is in posing the=[7{(3)/18]«? in the three dimension&BD) case and
boundary conditions. One way to overcome this is to use a 74(3)
special gauge in which the Green’s functions are periodic, W= =2 (8)
and to work in Fourier space(periodic boundary 8
condition.** Another method is based on the fact that during;;, he 2p case. Heré is Riemmann’s zeta function. Eilen-
the integration process, the Green'’s functions grow exponerj;q,
tially (explodg. Fortunately, unphysical solutions can be ma-
nipulated to form the physical ones; this is the essence of th
so-called “explosion method*>1® We use an approach
based on transforming Eilenberger equations to the Ricca
form1819The method has a clear advantage of avoiding un- N(r,E) = No(Reg(r,u,0 — §—iE)), 9
physical solutions altogether, and the solutions generated a

numerically stable. . small number taking account of broadening levels. Follow-
Eor_ ans-wave superconquctor in the presence of nonmagl-ng Schopohl, we introduce auxiliary functiomsand b as
netic impurities, the equations for the Eilenberger Green’sfouows.ls,lg ’

functionsf, ff, andg are

ger Green'’s functionf fT, andg are normalized so that
=y1-ffT.

% The quantity of our interest, the LDOS as a function of

ﬁositionr and quasiparticle enerdy, is defined as

{fhere the functiorg describes normal excitations aids a

‘= 2a fro 2b _1-ab (10)
[w+Uu-(V+iA)]f =Wg+Fg- Gf, 2 “1+ab | 1+ab 9T 1+ab
The functionsa andb satisfy the system odecoupledRic-
[w—u-(V-iA)ff=¥*g+F*g-Gf. (3) cati's differential equation
. . . _ V+F a®
Here,w=t(2n+1) is Matsubara frequency with an integer u-va=-(w+G+iu-A)a+ -—(P*+F*),

u is unit vector of the Fermi velocity, and the impurity po- 2

tentials (11
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U-Vb=(w+G+iu-Ab \I,*+F*+b2(\If+F) L *\P(r) ! @ (18)
. =(w . -—t — . e, G Y—.
2 2 T+ [P T T+ [W(r)]?
(12)

After solving Eq.(15), the new potentials are obtained from

Moreover, a(r,u,») and b(r,u,») are not independent. the self-consistency Eqg5), (6), and (4). The results are
Once we solve the Eq.1) for a, the functionb can be Plugged back to the Eql5), which is solved again. This

readily calculated: interative procedure is repeated until the self-consistency is
achieved. The maximum frequenay,;=t(2N¢,+1) should
b(r,u,w)=-a* (-r,u,w). (13)  be chose so that the result does not depend on the choice of

wer On the other hand, the number of iteration cycles
needed to stabilize the pair potential increases withNgg
We followed Klein® and choosew,=207T. (in common
unity as appropriate for all temperatures. This givég,

It is convenient for our purpose to work in local coordi-
nates(p, ) at the Fermi cylinder, such that the Fermi veloc-
ity direction u coincides with thep axis

p=XCOS¢+YySing, ~Int(10/t). Fortunately, we do not have to solyE) for all
w's. For high frequencies, the solution can be well approxi-
7=y COS¢—XSin ¢. (14  mated by
. . 2
Then, Eq.(11) reduces to ae }(i, u ,12] . g) >(q,+ o), (19
da v a2yt 2\o0" o w
—=—(w+G+iu-Aa+—- 1 .
ap (@+G+iu-Aja 2 2 (15 where o' =w+1/7 and II=V+iA. We use Eq.(19) for
N> Ng,/ 2.

whereW’' =¥ +F. Unlike the integration of Eilenbereg equa-
tions, as given in Eq92) and (3), where an exponentially R
growing (and thus, unphysicakolution dominates, in trans-
formed Eqgs.(11) and (12), we have the opposite tendency.
Integrating Eq(11) along the directiorp to a desired point a(r + Ry v, ») = a(r,v, w)eX R (20)
p', the numerically stable solutioa, is obtained. Note that
integrating in the opposite direction, toward decreasing
one gets a solutioa_=-1/a,. The initial point in the inte- mx  y(n+mcosp)

gration procesp— pmi, should be taken far from the poipt, X=m —-——————+nm+tn-m|, (21
which we want to calculate Eilenberger functions. To opti- 8 2 sin B

mize the numerical calculation, one should always take theand 8==/3 is the angle between primitive vectors.
minimum integration pathp;,, along which the numerical Once ¥(r),A(r), and F(r,w),G(r,w) are calculated, the
solution is stabilized. The integration patl;, value depends Eijlenberger equations are solved again, but this timeafor
on the Matsubara frequency (real or complexand on the =§-jE. It has been noté82! that the density of stateN(E

The solution we look for is quasiperiodic: translations by
am=Nry{+mr, (rq,r> are primitive cell vectorsp,m are inte-
gerg amount to a phase factor

where

impurity concentration. =0) is sensitive to the value of. The point is thats has
We choose the gaugeé-A=0 and separate the variable roughly the same effect as impurities in suppressing the peak
part of the vector potentiah’ by writing in the DOS at the vortex center. For small values &f
BXr N(r,E=0) has sharp maxima at the vortex centers, and a fine
A(r) = +A'(r), (16)  mesh is needed to evaluate LDOS and their spatial averages.

We find a negligible difference in LDO&patially averaged
whereB is the magnetic induction, andl’(r) has the peri- for 6=0.01 and 0.001. Thus, the parame$er0.001 suffices

odicity of the vortex lattice. Then, E@6) takes the form for our calculation, to avoid an additional broadening effect
due toé in spatially averaged LDOS.

2t
VZA’ = 25 Im X (ug). (17)
K ®>0 I1l. LOCAL DENSITY OF STATES AND DIFFERENTIAL

. L . o CONDUCTANCE
This equation is linear iM\’ andg, and easy to deal with in

Fourier space. Properties of the vortex core are governed by Andreev
The equilibrium vortex lattice is assumed hexagonal. Itbound states in the clean limit, while in the dirty case they

suffices to solve Eq15) in a primitive lattice cell; moreover, are governed by normal electroffsThe Andreev scattering

we can consider only velocity directions<Qp<</6. With  from the pair potentia{the order parametginside the core

the help of symmetry properties afr,u, ) (which are the turns the electronlike excitations into holelike, and vice

same as those of, see Ref. 8§ we can obtaina for all ~ versa. At certain energies, the coherent superposition of par-

velocity directions. ticle and hole states is constructive, and bound states are
_ formed. The energy of the lowest bound staté&is A/Kkg¢.
Iteration procedure In the quasiclassical limikeé>1, the lowest bound state
As a starting ansatz we take the Abrikosov solution forenergy is pushed to zero. The zero-energy bound state in the
W(r),A’(r)=0, with the impurity potentials in the form core manifests itself as a peak in zero-energy LDOS at the

104510-3



MIRANOVIC, ICHIOKA, AND MACHIDA PHYSICAL REVIEW B 70, 104510(2004

[ Y1
- l
1
11
l-‘
A
4
Eo 1‘ — E_,O/l=0.0
=~ i - §/1=0.1
1 L
w <« & /1=4.0
= 05} | * 0
P4
FIG. 2. The zero-energy DOS within the vortex lattice for su-
perconductors withéy/€=0.0, 0.1, and 4.Qin order from left to
0 A".-rl-g.;..,,._-;_.;L— right). Only data pointdN(E=0)/Ny<1 are presented. The small
0 0.5 1

parameterd=0.03 is used for clean limit data to clarify the spatial

Nearest neighbor direction distribution.

FIG. 1. The spatial variation of zero-energy DOS along the=0.1, reveals a change of the vortex core size by a factor of
nearest-neighbor direction. The solid line corresponds to the clead. It should be noted tha¥l(0,r) averaged over the lattice
limit; dashed lines are calculated fég/€=0.1 andé,/¢=4.0. The  cell is approximately the same in all cases: an increase of the
calculation is performed at approximately the same relative fieldcore size is accompanied by a reduction of the peak height.
B=0.1H,. It is instructive to see how the spatial structure of the
zero-energy DON(0,r) within the vortex lattice evolves
vortex center. Scattering on impurities randomizes the quasivhen impurities are added. In the clean linhi(,0,r) around
particle motion, and they lose information on their initial the single vortex is cylindrically symmetric. As soon as the
state. Thus, the impurities smear out the sharp structure afortex lattice is formed, the cylindrically symmetrid(0,r)
LDOS. To illustrate this, we focus on the spatial structure ofgives way to a star-shaped structure within the hexagonal
zero-energy LDON(r ,E=0). lattice® This is seen in Fig. 2. The effect of the vortex lattice
In Fig. 1, the spatial variation of the LDOS along the line notwithstanding, the other factors, such as anisotropies of the
connecting two nearest-neighbor vortices is shown. Data fopairing functiorf® and of the Fermi surface, can also contrib-
a clean superconductog,/¢=0.0, for a relatively large ute to the details of the star-shaped structure. By reducing the
mean-free pathg,/¢=0.1, and for an impure cas&/{  mean-free path, the star-shaped modulatioN(@¥,r) gradu-
=4.0, are presented. The points 0 and 1 on the horizontal axigily disappears and is completely absent in the dirty limit,
are the position of vortex centers. even at relatively high fields. Thus, the periodicity of the
To remind the reader again, in the clean limit, the heightorder parameter is not the only element determining the
and width of the LDOS peak depend on the small parametestructure ofN(0,r) in Fig. 2. Only in pures-wave supercon-
6, which measures how far we are from the pole of the Greegjuctors do the coherent superposition of electron and hole
functiong. In this sense, the height and width of the peak instates in the periodic lattice account for the star-shaped
the clean limit are arbitrary. However, spatial integration ofN(Q r).
this LDOS peak is almost independent of the paramétéfr In Fig. 3a), the LDOS at the vortex center is plotted as a

we use sufficiently smalb. _ function of quasiparticle excitation enerdy (in units of
At the vortex center, zero-energy DOB(E=0,r=0) in 7)) for the clean case. The LDOS oscillates with energy,

the clean limit, greatly exceeds the normal state valge  the result previously reported in Ref. 24. This phenomenon
When this was originally observédt looked at odds with s the same origin as oscillations of DOS in

the generally accepted naive picture of the vortex core agyperconducting-normal proximity systeRi€6-2the inter-
being “normal.” Analyzing the zer& DOS, N(O,r) in the  ference of quasiparticles reflected at the superconducting-
impure case, we see that the purity of the sample is crucial iRormal interface. The mixed state can be viewed as periodi-
forming the main peak at the vortex center. In the dirty limit cally arranged “normal”-superconducting boundaries. In Fig.
(&/€—=), N(O,r) within the vortex core approaches the 3(b), we show the differential conductivity &t=0.1T, cal-
normal state valudly, and only in this limit can one view the culated according to Eq1). It is seen that at this tempera-
vortex core as being “normal.” Even a weak impurity scat-ture, o(E) is the thermally broadened LDOS, but the oscil-
tering has a strong impact on th&0,r) profile. lating pattern is still visible.

To understand the LDOS behavior in more detail, we also In Fig. 4, the LDOS at the vortex center as a function of
consider the profile of the order paramet¥(r)|, and define  energy is plotted for a few values of the mean-free path
the core radiusé by 1/&=(d|W(r)|/dr),=o/|¥nnl, Where  The amplitude of oscillations is sensitive to impurities and is
|W\n| is the maximum value of the order parameter along thenearly lost even in clean samples wighy/ ¢=0.1. Proliferat-
nearest-neighbor direction, and a derivative is taken alongng impurities cause a flattening of the LDOS at the vortex
the same direction. A comparison of the ideal case of a cleacenter: the zero-energy peak of the LDOS disappears, and so
superconductog,/ €=0, with the rather pure case @f/¢ do the deep minima foE<W¥(B=0). In the dirty limit,
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FIG. 3. (a) The LDOSN(E,r=0)/N, at the vortex center as a 0
function of excitation energ¥ (in units 7T.). (b) o(E)/ oy at the
vortex center aff=0.1T.. The two graphs are calculated for the
clean limit.

0.5
B/Hc2

FIG. 5. The field dependence of spatially averaged zero-energy
LDOS in the clean limit. The straight line is a guide for the eye. The

£,]0— o0, N(r=0,E)=N, for all quasiparticle energié§'13 inset: the normalized core siZ€B)/&(0) as a function oB/H,.

A weak energy dependence of the LDOS at the vortex . .
center was observed in dirty alloys Nia,_,Se (see Ref. 5 €ver, BCS coherence lengfh=rwg/ mA, is estimated to be
a behavior expected for disordered superconductors. Also, BUcCh larger &=30 nm. Thus, superconducting sample

similar energy dependence of LDOS at the vortex center was Ni232C studied by Sakatat al. can be considered to be in

measured in YNB,C 2’ It is now well established that non- the dirty limit due to a small ratid/£,=0.133. The absence
magnetic borocarbide superconductotsuNi,B,C and of a clear peak of DOS at zero energy near the vortex center,
YNi,B,C) have nodes in the superconducting gap. ImpuritieS the well as the weak energy dependence of the density of
smear out the gap anisotropy and anisotropic borocarbidg@tes, is @ consequence of a strong disorder in studied
superconductors with disorder can be considered as dirty@MPIes

s-wave materials. It was also found that the DOS measured,,, | ocAL DENSITY OF STATES AND SPECIFIC HEAT

at the vortex center in YNB,C has a weak energy depen-

dence, similar to the local density of states shown in Fig. 5 The low-energy quasiparticle excitations play an impor-
for dirty materials. From the residual resistivity ratio, the tant role in the low-temperature thermodynamics. The spe-
electron mean-free path in the sample used in Ref. 27 isific heatC4(T) of a superconductor is given by

estimated to be about 4 nm. This is shorter than the coher-

ence length as estimated from the upper critical field. How- Cs - wa dEM(E) Inl 2 cos}<E> - EtanhE
T aT 2T 2T 2T

—00

o 2 =N
J E2  N(E)dE 22

_, 4T3 cosR(E/2T)’

One can utilize this expression only if the spatially averaged
LDOS N(E) is provided. However, in the limiT—0, the
17 ] first integral is zero. For small, the integrand in the second

1 7 7 integral is nonzero only in the small vicinity &=0. There-
fore, we can replacBl(E) with N(E=0):

1 | =05 | =lim==2 — -
' YT IMT T 7). 4T cosR(E/2T) 3

D 23

{1t 1 In the normal phaseC,/T=27°N,/3, and we obtain the
1 r 1 well-known result

0 1 | | 1 1 | 1 | 1

11 1 C f” E? N[E=0)dE _27*N(E=0)

-3 -1 1 3 -3 -1 1 3 ~ C. N(E=0
E E Ilmgsz—(N ). (24)
T—0
FIG. 4. The LDOS at the vortex center as a function of en&gy " 0
plotted for four values of the mean-free path o/oy is almost If the low-energy quasiparticles are localized in the vortex
indistinguishable fromN(E,r=0)/Ng at T=0.1T... cores, which is true fos-wave superconductors at least in

104510-5



MIRANOVIC, ICHIOKA, AND MACHIDA PHYSICAL REVIEW B 70, 104510(2004

small fields, therN(E=0) x £?/S.¢). Here So=®o/B is the 1 : ]

lattice cell area and is the size of the vortex core. If 4/
we further assume thaP=®dy/Hg,, then we arrive at the ¢ goxfg'; .//A"
following scaling relationshigN(E=0) = B/H,, for s-wave : 20/1;1:0 .2 v
superconductors. However, there are a number of reports 0 R §0/1=2.0 . (‘; A

the nonlinear field dependence gf{H) in s-wave supercon- Z &0/1=40 ',.{.fv.

ductors. One of the offered explanations is that the vortexé : §°/1_6'0 ././'11

core size{ itself is field dependent which, in turn, leads to 1l 05 ¢ sl e 7]
the nonlinear field dependence of the zero-energy DOS. Thz ./..,‘

shrinking of the vortex core with increasing field is detected Vv /f-: ¢

in NbSe (Ref. 29 and YBgCu;0g 6,>° This is further sup- I ‘,:"Av‘

ported by numerical calculations in the dity° and cleaf <}

limits. Such an explanation brings out another puzzle. An l“

experimental study on the influence of nonmagnetic impuri- Cad

ties on theyg(H) in Y(Ni;—Pt),B,C and Nh_TaSe re- 06" : 05 ' 1
vealed that lineary(H) is achieved only in dirty samplés. B/H_,

This result suggests that the vortex core size in the dirty

superconductors is field independent. However, numerical FIG. 6. The field dependence of the spatially averaged zero-
calculations by Golubov and Hartm&hand by Sonnieet  energy LDOS for a few mean-free path

al.?% show, that even in the dirty limit should shrink with

increasing field. _ _ reduced fieldB/H,,, the radius is a nonmonotonic function

Here we emphasize the necessity to evaluate the zergs ¢ /¢: starting with the clean case, it increases sharply and
energy DOSN(O,r) at low temperatures in order to analyze then slowly decreases with increasing scattering. In the dirty
the specific-heat data. In Ref. 8, a calculation T6+0.5Tc  |imit, the core shrinks with increasing field, which is consis-
revealed thaN(E=0) = £&(B)B, where the vortex core radius tent with the previous calculatiodd29in sharp contrast with
&(B) is independently calculated from the pair potential pro-the vortex core enlargement with increasing field in the clean
file. At lower temperatures, Kramer and Pe¥cH predict  |imit. A small core size at low fields and temperatures is in
that the core radius shrinks and it might have a different fieldhccord with Kramer and Peséh33The core radius is calcu-
dependence compared to higher temperatures, as shown heged to be proportional to the temperature for a single vortex

The field dependence ®i(0,r) in the clean limit forT  in the clean limit. Since the core radius has to become as
=0.1T, is shown in Fig. 5. In the inset we plot the field large as the order of the coherence length rdgr it is
dependence of the core radius at the same temperature. Coreasonable that the core radius increases with increasing field
pared to the previously reported result &t 0.5T,, where  at low temperatures. Our results also suggest that the
&B) decreases with fieltl,the vortex core radius al  Kramer-Pesch result does not work in the dirty case.
=0.1T. is nearly constant at low fields. As a consequence, the The experimental data, however, revealed thafl in the
zero-energyN(0,r) is a linear function of the magnetic in- dirty limit.®> This experimental data also shows the scaling
duction. N(E=0,B)/Ng=a(7)B/H, for all field values, a remarkable

In the clean limit the quantityN(O,r) between vortices feature still to be explained. It is worth mentioning that in
and far from the cores is negligible in fields as largeBas

=0.4H,. In other words, the main contributions &0,r) is - T T - T

coming from the vortex cores. On the other hand, in the dirty | o E/=0.0

limit, N(O,r) is not confined to the vortex cores, but it is o—e &/i=0.1

spread throughout the vortex lattice cell. It is large even in 1.2 w—u & /=05 ]
between vortices. Thus, the scaling relatidd(E=0) ¥ &4 §/I=1.0

« &(B)B is of no use in the dirty limit. This is the reason g 1k §y/1=20 |
why we do not attempt to correlate the core siB) and & e yi=40

field dependence of LDOS in the impure case. However, 2 s 5yl=60 o
N(E=0,B) is a linear function of magnetic induction at low g 0.8 |
fields for any impurity concentration:N(E=0,B)/N, £

=a(7)B/H,. Numerical results foN(E=0,B)/Ny as a func-

tion of ¢ are presented in Fig. 6. The constant of proportion- 0.6 7]
ality a(7) depends weakly on the electron mean-free path s

and saturates tee=0.8 in the dirty limit. The constant of '"'."”'T".“... | . | . | .
proportionality goes from a value-1 (convey in the clean 0'40 0.2 0.4 0.6 0.8 1
case, to a valuell (concave in the dirty case. These results B/H_,

are similar to the analysis by Kita done ne#y,.3!

Figure 7 shows the field dependence of the core raglius  FIG. 7. Field dependence of the vortex core size for a few mean-
as calculated from pair potential profilads(r). For a fixed free path.
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Ref. 4, C(B) is nonlinear in YNi;_Pt),B,C for all  conductor, scattered electrons lose the information on their
0<x<1. In these materials, we need to take into account thénitial state, and the sharp features of LDOS are flattened. We
gap anisotropy. have calculated how the differential conductivity spectra
evolve with the electron mean-free path. Although the impu-

rities have a great impact on the LDOS, the spatially aver-

V. SUMMARY aged LDOS shows a weak dependence on the reduced field

In this paper we examined effect of nonmagnetic scatter—B/HcZ'

ing on LDOS in the vortex lattice state in isotromevave
superconductors, by systematically changing the impurity
concentration. We showed that the purity of the supercon- We acknowledge the useful communication with T. Dahm
ducting sample is crucial in forming the spatial structure ofat the initial stage of this work. Also, we would like to thank
LDOS. As soon as impurities are introduced into the superV. G. Kogan for critically reading the text.
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