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We consider a system where localized bound electron pairs form an array of “Andreev’-like scattering
centers coupled to a fermionic subsystem of uncorrelated electrons. By means of a path-integral approach, that
describes the bound electron pairs within a coherent pseudospin representation, we derive the effective action
for the collective phase modes that arise from the coupling between the two subsystems once the fermionic
degrees of freedom are integrated out. This effective action has features of a quantum phase model in the
presence of a Berry phase term and exhibits a coupling of phase fluctuations to those of the density of bound
pairs and the amplitude of the fermion pairs. Due to the competition between the local and the hopping-induced
nonlocal phase dynamics it is possible, by tuning the exchange coupling or the density of the bound pairs, to
trigger a transition from a phase-ordered superconducting to a phase-disordered Mott insulating state. We
discuss the different mechanisms that control the occurrence and eventual destruction of phase coherence both
in the weak and strong coupling limit, restricting ourself to homogeneous phases.
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I. INTRODUCTION energy yields an increase of the phase fluctuations of the

The problem of interacting Cooper pairs and/or bosons?uperconducting order parameter and hence leads to a phase-

together with the possibility of a quantum control of long- disordered state. Dissipation thereby plays the role of sup-
range phase coherence in low-dimensional systems has rBf€ssing quantum ph'c.lse.fluctuatlons and thus competes with
ceived considerable interest since the experimanisiomo- ~ (N€ charging mechanisniii) Bose-Hubbard models, where
geneous lead and bismuth films, which exhibit a transitionthe superconductlng phase is due to the Bose-Elnsteln con-
from a superconducting to an insulating phase as a functioﬂens"mOn of charge-2e bosons and the insulating phase is
of thickness. ue 1t1014a proliferation of vortices and localization of

It is known, since the work of Abrahanet al,2 that no ~ P&!'s:

. . : : While the SIT was long thought to be a paradigm of the
true met‘?‘”'c behawor can be e>ipected for two dlmen3|ona‘1:1bove theories, recent experiments have cast some doubt on
(2D) noninteracting electrons dt=0, because all the states

. ; Lo ; that. They revealed what seems to be a low-temperature me-
will be localized by an arbitrarily small amount of disorder. y P

h includ lomb i ) he situation is | tallic state that is intertwined in such a SIT and thus requires
When one includes Coulomb interaction, the situation is 188§ qre appropriate theoretical description. In magnetic-field

clgar, but the common belief is that a me'tallic phase shoulg,ned experiments on Mo-Ge samplésn granular super-
still not appear aff =0 in the presence of disorder — though ¢onguctors(Ga films® and Pb film&), and in Josephson
no rigorous proof is availabféYet, in the presence of attrac- junction array a metallic phase has been observed. More-
tive interactions, one expects a superconducting state both g{er, the recent experiments of Mason and Kapitulflil
T=0 and finite temperature, even in presence of a finitayvhich a metallic phase has been observed sandwiched be-
amount of disorder, due to its relative ineffectiveness for aween the superconductor and the insulating phase, suggest
transition of Kosterlitz-Thouless typé&he degree of rel- that perhaps two phase transitions accompany the loss of
evance being given by the Harris criterfon phase coherence in 2D superconduct@ysa superconductor
The existence of a superconducting statefaD in 2D  to a “Bose metal” andii) a Bose metal to an insulator. A
systems is then considered to be directly linked to that of alBose metal in this context, is thought of as just a gapless
insulating state, with no intermediate metallic phase presenhonsuperfluid liquid with metalliclike transpétt
Hence, one should be able to observe a direct These experimental results have led to reconsideration of
superconductor-insulator transitig81T) at zero temperature the whole issue of the SIT. One recent proposal to handle
in 2D as a function of disorder, interaction strength, magnetisuch a new viewpoint of the SIT has been to reexamine the
field, or any other external parameter that can drive the sysstandard onsite charging model. By including nearest-
tem away from the superconducting phase. neighbor charging terms it was shown that the resulting uni-
There are different theoretical scenarios that are comform Bose metal state lacks any trace of either phase or
monly discussed in connection with the salient features otharge ordef! due to a competition between the order pa-
such quantum phase transitiorns: dissipative models, con- rameters that describe the onset of charge order and phase
sidering a network of Josephson-coupled superconductingoherence. A different point of vié#is that in the quantum-
grains shunted by resistorsi® where the competition be- disordered regime a cancellation happens between the expo-
tween the Josephson intergrain coupling and the chargingentially long quasiparticle scattering time and the exponen-
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tially small quasiparticle population, which ultimately leads disordered state in the limit where the pair exchange domi-
to a finite dc conductivity. Finally, intrinsic as well as extrin- nates and the local quantum phase fluctuations do not allow
sic sources of dissipation have been suggested as potentiaflyr long-range phase coherence. As we shall show, the phys-
relevant for the occurrence of a nonsuperfluid metallic phasgs described by this scenario strongly depends on the con-
in proximity to the superconducting phaS&32In this con-  centration of fermions and bosons, on the coupling strength,
text, the dissipation is a relevant perturbativihat, depend- a5 well as on temperature. The purpose of this study is to

ing on the strength of the coupling to the dissipative sourceanalyze how a transition from a superconductor to an insu-
can drive the system from auperconductor-to-insulator |5¢or may occur in such a scenario.

transition to a superconductor-to-metal transitidii?® Sev- The outline of the paper is as follows. In Sec. Il we will

eral other ideas supportgd a Scef?a“o W_her?_the syftem COL”‘f{roduce the BFM and describe its main qualitative features
t_)reak into superco_nductmg and '”Su'a“ﬂg l_slands Weak.lyand the phenomena that can be described by it. In Sec. IlI
linked via percolating paths before going into a metallic '

phase, dominated by vortex dissipatfThis “puddle” sce- we shal! develop a path—lntegral re_presentgtlon of this mpdel
nario matches with the view to describe the 2D and derive an effective coarse-grained action that, after inte-

superconductor-metal transition via superconducting islandg,ra‘.tlng out the fermionic degrees of freedom, is able to. de-
embedded in thin metal filn#. Detailed analysis of the SC'ibe the low-energy dynamics of the phase and amplitude
puddlelike model considered strongly fluctuating superconModes. In Sec. IV we will discuss the phase diagram based
ducting grains embedded in a metallic mafpredicting a  On the simplest approximation of such a coarse-grained ef-
metal-to-superconductor transitiomith a metallic phase just fective action in terms of a phase-only action and explore the
above the transition dominated by Andreev reflections betransition from a superconductor to a phase-disordered state
tween the superconducting grains. Finally, recent investigaas a function of the coupling and the density of bosons. In
tions directed the attention to new phases with Bose metalli&ec. V, we will study the physical features that arise from the
features, where the dissipation is dynamically self-generatedntrinsic Berry phase term in our effective action and from
as in the quantum-phase glass model, where disorder in titee hard-core nature of the bosons, represented by quantum
distribution of the tunneling amplitudes and quantum fluc-pseudospin 1/2 variables. In Sec. VI, we compare the salient
tuations destroy phase cohererte. features of this BFM scenario with similar scenarios, such as
Along similar lines as those dealt with in the different the negative-U Hubbard model, the Bose-Hubbard model,
approaches discussed in the literature, our aim here is tgnd Josephson junction arrays. In the Discussion, Sec. VII,
investigate a system where the breakdown of supercondugge review the main results obtained in this paper and indi-

“fermionic” mechanism for superconductivity suppression.

We focus on determining the possible ground states for in- Il. THE BOSON-FERMION MODEL

teracting Cooper pairs in close relation to the classical no- . .
tions of superfluidity and localization of bosons and, on a 1he boson-fermion mode¢BFM) has in recent years at-

more general basis, how the phase coherence can be tunedf@cted considerable attention as a model capable of captur-
a phase disordered state. More specifically, we considdPg basic physical properties in many body systems with
within the framework of a boson-fermion mod@FM), a  strong interaction, giving rise to the formation of resonant
system where localized bound electron paitsard-core pair states of bosonic nature inside a reservoir of fermions.
bosons form an array of “Andreev’-like scattering centers Such a scenario was initially proposed by one oflIR) as
coupled to a fermionic subsystem of itinerant uncorrelatedin alternative to the scenario of the hypothetical and yet to
electrons(quantum pair exchangeThis scenario goes be- be experimentally verifiedbipolaronic superconductivitylt
yond that of pure phase models widely discussed in the litwas meant to describe the intermediary coupling regime be-
erature. Here one is dealing with bosonic degrees of freedortween the adiabatic and antiadiabatic limits in polaronic sys-
(localized bound paijsas well as fermionic one§tinerant  tems, where an exchange between localized bipolarons and
electron$ for which, due to the emergence of pair correla- pairs of uncorrelated electrons can be assumed to take place
tions, one has to account for both amplitude as well as phagéor a recent intuitive justification of such a scenario see, for
modes. The possibility to tune from short- to long-rangeinstance, Ref. 29.
phase coherence arises from the following competing effects: This boson-fermion scenario has, however, a much wider

(i) on the one hand, the short-range interaction betweerange of applicability than that for which it was initially
bosons and fermion paidoles induces a local phase lock- proposed and seems to apply to very different physical situ-
ing in a configuration with a quantum superposition betweerations, such as hole pairing in semiconduct8rispspin sin-
bosons and electron pairs, leaving the common phase undglet pairing in nuclear mattéf, d-wave hole and antiferro-
termined. magnetic triplet pairing in the positive-U Hubbard model

(i) on the other hand, the itinerancy of the electrons(and possibly also in the t-J modelentangled atoms in
tends to lock and rigidly extend in space these initially arbi-squeezed states in molecular Bose Einstein condensation
trary local phases. As a result, phase coherence developBEC) in traps3® and superfluidity in ultracold fermi gases
over longer distances by suppressing the quantum fluctuanduced by a Feshbach resonafte.
tions of the local phase, which thus involves the dynamics of The BFM is reminiscent of an anisotropic Kondo lattice
amplitude fluctuations. model in terms of a pseudospin 1/2 but characterizing local-

Out of this competition one recovers either a superfluidized electron pairs instead of localized impurity spins in the
state in the regime of a small scattering rate or a phaseékondo analog. The Hamiltonian is given by
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H=(D- cte +(An—2 z, 1 g/t), as WQII as on thg concentrati_on of Fhe bosons as shown
( ’u)% oG+ (Ag ,u)zi (p' 2) by exact diagonalization stugfyon finite-size clusters of this
BFM.
+ 2 t(ch cio+ He) + 9> (o 7 + pi 7). What we shall attempt in the present study is to describe
i#j,0 i this physics in terms of an effective action for the phase and

) . amplitude fields of the bosonic fields. In order to achieve this
The pseudospin operatdrs; , p; , pf] denote the local-bound \ye shall put the discussion on a level that is more familiar,
electron pairs (bosong and [7'=cic|,7 =¢|C;;,77=1  namely, that one of Josephson junction arrays and Bose-
- 7 ], the itinerant pairs of uncorrelated electroft, , ¢;,,] Hubbard models. For that purpose let us briefly sketch the
stand for the creation and annihilation operators of the itin-analogy that existéup to a certain pointbetween the BFM
erant electrons(fermiony and g is the strength of the and those systems that have been widely discussed in the
boson- fermion pairexchange interaction. The hopping in- literature. A physically possible realization of this BFM sce-
tegral for the itinerant electrons, which is assumed to béario can be imagined in the form of a network of supercon-
different from zero only for nearest-neighbor sites, is givenducting grains embedded in a metallic environment and
by t with a band half-width equal t®=zt, z denoting the where the only mechanism of interaction between the grains

coordination number of the underlying lattice. The energya”d the fermionic bgckground is that of Andreev reflections.
level of the bound electron pairs is denotedAy The num- Vi@ such a mechanism an electrdmle) is reflected on the

ber of the ensemble of bosons and fermions being conserveﬁg)al‘m als at hOIE{elfﬁtr?n leaving bbehm:j a su(rijL;sm?f '[\lNO
=N+ + N, + 21, implies & common chemical potental es(electrong in the fermionic subsystem and of two elec-

for both subsystemsig, n | indicate the occupation num- trons(holeg in the grain. If the grains are such that they have

ber per site of the hard-core bosons and of the electrons with I.arge charging energy, the fluctuations of the number of

up- and down-spin states. pairs on them are energetically unfa\_/oraple and hence are
The exchange coupling between the bosons and the feprgely suppressed. We then h{;\ve a situation where the state

mion pairs can be considered as an effective Andreev-lik(—f‘)f the grains switches essentially between zero to double

scattering leading to local states that are quantum superposﬁpcumncy with respect to the average occupation, any time
tions of the form an electron(hole) is reflected at the interface of the grain.

Thus, the quantum dynamics of the single grain can be di-

rectly represented by a pseudoséirin order to account for
| oo :f di[cog 6:/2)cod ¢)p;” + sin(¢)[cod ¢b) the doublets that represent the two possible states of the
grains.
+ 7'sin(6,/2)sin(¢;)]|0). (1) For such a possible experimental setup, the effective sites

in the BFM have to be considered as defining a regular array
Such states evolve gradually out of the system of localize@f grains and having the same periodicity as the underlying
dephased bosons and essentially uncorrelated free fermionattice on which the fermions move with a hopping ampli-
which characterize the high-temperature phase of this modefudet. Moreover the size of the grains has to be such that it
when the temperature is decreased below a ceffaiag is much smaller than the distance between them. A pictorial
where resonant pairingnot bound pairg! starts to be in-  view of such an experimental setup is given in Fig. 1. The
duced in the fermionic subsystem. These pair states alreadyhalogy between the BFM and the array of superconducting
have built-in features that are reminiscent of those that chamgrains, which scatter pairs of fermions in a metallic matrix
acterize Cooper pairing of fermions as well as superfluidityvia Andreev-like reflections, may ultimately serve as an ex-
of bosons. The phases of the two coherent states, which coperimental device on which to test and analyze the theoreti-
respond to the two subsystems, are the same and hence aeg issues that will be discussed in this paper.
locked together, but are averaged over all angles as a conse-
quence of the conserved particle number on any given site/!l- PATH-INTEGRAL REPRESENTATION: DERIVATION
Nw=2. Roughly speaking, the ground state of the system is OF THE EFFECTIVE ACTION
then given by a product stalg|s,.); with cos ¢,=1 and that A. Generalities
exhibits no phase correlations on any finite length scale. Let

us next consider the effect of fermion hopping between adfh LSLKAS n(')tvr: ;:r?nst_ructt an teffe::;cge(;actmn,_ WT'Ch dest_cnbefs
jacent sites. This will give rise to density fluctuations on eacr} € » Wi € aim 1o extract the dynamical properties o

of those individual sites and thus help to stabilize an arbi—thg Iow—%ner%y dtcta]gr%es of free((jjo;n Of. the phasev\?ndtar?%h-
trary but finite average value of the phades} over finite ude modes for theé bosons and fermion pairs. Ve start by
length and time scales. In this way the localized bosons an§pressing the partition function in terms of a coherent-state

fermion pairs acquire itinerangy® that eventually leads to path-integral representatiéh,where the fermionic part is
a superfluid state in both subsystetsyrovided that the formulated by means of the usual Grassmann variables and

effect of the local correlations between the bosons and thzéhe bosonic part is described by a pseudospin-coherent state

fermion pairs can be sufficiently diminished, but remainingrepresematmﬁ@"11
still sufficiently strong to guarantee the formation of pairing

in the fermionic subsystem. Achieved or not this situation

will depend on the relative importance of the local exchange
coupling versus the fermion hopping rdtgven by the ratio  where

z=11 f DD DV, DW ;e AV iVithh] ¥)
i
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A
6¢@(1-cosd
top @ @ @( ) o0
. O = @ [ -
O #(n
0< T
oo o o o o o @ FIG. 2. Spherical representation of the pseudospincluding
the Berry phase factor for one possible trajectdty The Berry
side phase term is eXps$(1-co$d]) dp/ dr]=€SA whereA is the area
of the surface enclosed in the trajectdryThe black part indicates
the differential portion of the surface on the sphere taken with re-
(a) (b) spect to the north pole.

FIG. 1. (a) Schematic 1D representation of the BFM on a lattice
(top and side views The bosonic and fermionic particles move on (Kl L ) Gi(r—7)=8(r—7) (5)
two different arrays having the same periodicity; the fermions are L K, ! '
indicated by circles and the bosons by squares on the respective
arrays.(b) The single site configurations for the pseudospin andwhere K;=(-d,+u)&;+tj, Ky=(-d,—u)&;—t;, and L
fermionic variables. =g sin (7)€ %7, L being the conjugate field df. Inte-
grating out the fermionic part, one obtains the action in terms

_ of, exclusively, the bosonic fields
AL, 6, ] = f dr) [is(1 - cos6)d.¢ + (Ag
i

— A:—TrInG‘1+fdr is(1 - cosé(7)d.¢(7) + (A
~ 2u)cos 6]+ 2 Wi(nGMWi(7). (3) Eil[ ( (D0 + (R
I
v ~ 2)c0s 64(7)], ®)
7 denotes the imaginary Matsubara time variable and avhere the trace has to be carried out over all internal as well
Nambu spinor representation for the Grassmann variabless space-time indices.
related to that of the original fermionic operators by Up to this point no approximation has been made in the
derivation of the action that describes the coupling between
the bosonic and fermionic degrees of freedom. It is important
Cip _ to note that the variation of the bosonic varialtler) de-
b= (a) ¥i=(C o). @ scribes both the density fluctuations of the bosonic sub-
system(via the projection of the pseudospin vector on the
axis, i.e., co#)(7), being the longitudinal componenand
The pseudospin is described by a bosonic field that, inhe amplitude fluctuations of the fermionic pair figida the
spherical coordinates, is given by s  transverse part as projection of the pseudospin vector onto
=s(sin 6, cos ¢;,sin G;sin ¢;,cos) (see Fig. 2 6 de- the basal plane, i.e. sif(7)] (see Fig. 2 The variableg(7)
scribes the polar angle of the vectgrwith respect to the determines the rotational degrees of freedom of the pseu-
north pole of thez axis, while ¢; is the azimuthal angle, dospin vector, expressing its phase dynamics.
which defines the angular position of the basal plane projec- For extracting the relevant terms that control the low-
tion of this vector. The first term of the actignis the Wess-  energy dynamics of the coupled phase and amplitude modes
Zumino term?'4? ensuring the correct quantization of the and performing an expansion, which is meaningful in terms
guantum-pseudospin variable. For any path, parametrized hyf the phase variable, it is judicious to take the following
¢(7) and 6(7), the contribution of this term is equal ics  stepsi(i) gauge away the phase dependence from the term
times the surface area of the sphere between this path and ttiet permits one to separate the trace into a part that does not
north pole. For closed paths this has exactly the form of thelepend on the phase of the bosonic field and another part that
Berry phasé? The second term is linked to the density of the contains only spatial and time variations f(7),** and (ii)
bosonsng(7) through the cog)(r) dependence of the pseu- rewrite the ternlL after the gauge transformation, as a sum of
dospin. Finally, the last contribution of the action containstwo pieces, one not dependent on tiaich is linked to the
the coupling between the fermionic and bosonic subsysteraverage density of bosonand another term containing the
through the Green’s functio;;, determined by fluctuations with respect to its mean value.
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1 9 =g(sin4]). (14

From this point onwardve shall assume the average den-
16(7)] () sity of bosons to be homogeneously distribused! thus
f’ given by nB:§(1+<cos 6)). This implies that the bare cou-
pling g is renormalized t@ as a consequence of the spheri-
\ cal constraint of the pseudospin variable. Moreover, since
> e (sin §)=/1—-(cos #)* and the density of bosons is fixed in
3 J " average via a suitable choice of the chemical potential and of
- AT the on-site bosonic energy, one can treat the exchange cou-
#(7) pling as an external boson-density tunable parameter. The
variation in thed variable is then simply related to the varia-
tion of the bosonic density such thatéfvaries in the range
[0,7] thenng varies in the interval0,1].
FIG. 3. Representation of a possible path for the local pseu- Before expanding the trace, let us write down explicitly

dospin motion. The field[6(7)] indicates the undulation of the the expression of the zero-order Green’s function, as it will

pseudospin vector along the polar direction as it arises from thge frequently used in the following steps:
fluctuations of the average boson densityos 6)) and of the pair-

ing amplitude({sin 6)), while it precesses around tizeaxis due to ap 1 B N
the time evolution of the phase variat{ié(7). Gy, (7) = B% Go; (wnexd—1 w, 7] (15

The first operation is performed by applying to the opera-With
tors under the trace the rotatith=¢€ #(7932 whereo; de-
note the Pauli matrices. Hence,

—iw. + | 2_ 2
nTMH Nog—u

2 2 2 2

= Ut = B i n 2 2 R
TrinG*=TrInUGU"=Tr InG™~, (7) i Vw2 — 12 —iwg—p
where W+ w) i+ )

Galz {— .09+ |:i§o",rd)i(7') - ,LL:| o3z3tg sin 0i(7')0'1} 5”'

+ tijei[¢i(7)_¢j(7)]03/2. )

and where we introduced,=.

B. Second-order loop expansion

_ _ o _ We now evaluate the contribution of the self-enekgyto

Since the bosonic density is fixed in average, we nowthe effective action. This is done in the usual way by making
separate the part that depends on the polar angle in a timg-loop expansion in the traééWe shall construct that ex-
independent contribution and its time-dependent correctiorpansion up to second order in the time and space derivatives
That is, the term sirg(7) is decomposed into its average of the phase variable and in the terms that contain both the
value(sin 6) (which is determined by fixing the density of fluctuations of the density and the amplitude. For that pur-
bosons due to the spherical constrapitis a time-dependent pose we use the standard identity
contribution(6(7)) which contains the fluctuations around _
its average valugFig. 3) as follows: TrInG™'=Tr In[Gy ' +3]=Tr InGy™ '+ Tr In[1 +Gy3]

sin 6(7) = (sin 6) +1(6(7). (9) (17)
and then expand the second term of this expression up to

Thus this local field, due to the constraint, will describe . L
econd order ik, such as to keep all the contributions up to

both the time-dependent variation of the density as well as of

the pairing amplitude. quadratic order in the gradient of the phase. This gives
. Next, let us write the Green’s function in the usual form TrInG1=Tr NGy + Tr{ G - %Tr[GOE]Z. (18)
.1 The first term of this expression is just a constant and does
G =Gg, *+ 3 (100 not contribute to the dynamics. In the second term
with GB;Z[—(?,.(TO—/J,U'3+§0'1]5” and 2” :Tij + Di + Ki! where Tr[G()E] = Tr[GoT] + Tr[GoD] + Tr[GoK] (19)
i 9 ¢(7) the only parts different from zero ar@r[GgyK;] and
Di= > g, O3 (1) Tr[GuD;]. Tr[GyT;] gives no contribution once one makes

the trace over the site indicebt[G;D;] introduces a contri-
bution that is proportional to the chemical potential multi-

Ki =gl(6(7) o, (12)  plied by the time derivative of the phaseiud,$. We will
‘ see below that this contribution describes an effectifiset
Ty = te ADdMog2, (13)  charge(in terms of the terminology of a similar Josephson
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junction array scenarjp which arises from the total fermi- lowest order in their time derivatives. This is done by con-
onic and bosonic static-density distribution via their depensidering the expansion of the produ&;(7»—7)D;(7—7)
dence on the chemical potenti@k] Gy;K;] describes the low- aroundr=0 in order to separate the parts that depend exclu-
est order fluctuations of the bosoni@rmion paiy density  sively on the local variable of the Green’s function and those
due to the presence of the spontaneous pair and/or hole crirat are linked to the phase and density fluctuations. The
ation out of the condensate. Its direct evaluation gives a corexpansion then reads as follows:

tribution

IKi(n)
Ki(7=n)Di(n+ 7) = Ki(7)Dj(7) + T{— ——Di(n)

A= j drydr;TrodGoi(7, K (7, 7)) (20 | | S an
whereTr, represents the trace over the internal pseudospin My Ki(n) | +O(7) (26)
index. With K(7,, 1) =K;(7)8(7,— 1) and integrating over 7
the Matsubara times gives Due to the symmetry of the Green’s functio(even for r

——7), the linear contribution of the series expansion of
Al:f d7rTr,{Ggi(0)K;(7) = 29Gg(0) J dA(6(7) = Ki(p—7nD;(7—7) cancels in the effective action after inte-
' grating over the time. Hence, to the lowest order one obtains,

g tanh By f

- | dd(6(7), (21 1
on A= > drd 7 Tr,{Gei( DKi(7)Ggi(— 7)Dj(7))

or in a compact form
= g f dGA(m)Gg (= 7) + G (DG (— 7)
Al = Elf d7‘|(0(7'))
— G (MG (= 7) = GgA(NGH(= 7]
_ gtantBug]

o

.- 22) <[ any " 210 @7

Let us next come to the evaluation of the terms that CONyrin a compact form,

tribute to the quadratic order in this loop expansion of the
trace. The parts that are nonzero in these terms are the fol- 9 d(7)
lowing: A= Ezf dn ia—|(9(77)). (28)
n
Ao =Tr[Gy K; Gy Dil, - . .
where the coefficieri,, after integrating over the Matsubara

As=TI[Gy K Gy K], time, is given by
9 - sin
A,=Tr[Ggy D; Gy D], E,= g_,u(f @o LB wol) . (29
4 wy(1 +coshB wg))
As=Tr[Goi Ty Goj Tjil. (23) Let us next consider the terms, which expresses the

The termA, contains processes where the fermionic back-.coupling of the fermionic field to the fluctuations of bosonic
ground locally couples at different times to the quctuationsde”S_'ty at dlffe_ren_t times. In order to extract the lowest-order
of the bosonic density and to the phase fluctuations gradient contributions, we follow the same procedure as that

just used above, giving us

A =Tr[Gy i K Gy | Di]:deldTZTrpe[GO (71
As=3 f d7 dyTrpd Gai(K;i(77 = 7)Gai(= DKi(7+ 7)].

(30)

— )Ki(72)Gq (12 — 7)Di(71)]. (24)

Since Ggi(m,—7,) depends exclusively on the time differ-

ences, we introduce the new variables(m,—7,)/2 andn  Performing again the expansion in time up to quadratic order
=(m+7)/2, after which the integral over the Matsubara timein the time derivatives oK;(7), we have

variables becomes

Ki —TKi + 7 :Ki 2+7-2|:_M2
Ar=3 f drd#nTr,d Goi(DKi(7 = 7)Ggi(= I)Di(7+ 7)]. (7= DKilo+ 0 =Kl an
PK;
(25 + ;2’7) Km]

As we are interested in the gradient expansion in the bosonic
phase and density, relateddg7) and é(7), we keep only the and hence can rewrit@; in the following way:
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Ag=1 f dr dTr,dGo( IKi(7)Gol= DKi(7)]

(- )aK(m
an

+f drdy TZTFpS[GOi(T)&
(31)
Carrying out the trace over the internal indices gives
Trpd Gail DKi(7) Goi( — DKi(7)) = [GA(D Gy (— 7)
+2 GRATGA- 1) + GH(nGF (- DG (U(m)?]
(32)

so that

(33)

(6
A3:Esafdm(ﬁ(??))z‘Egbfd??L:]))z

By evaluating the integrals over the Matsubara times we ob-

tain

G Bwg§® + u?sint{ Bu]

Esa= 2 w31+ coshpB wp))

E. = @_2 secHi(,BwOIZ)]Z(— 6,3,(1,2000 + ﬁs(— ,uzwg + a)g)
B 2008

) 6M23im’[,3wo])}_ o

24wy

Applying the same procedure for the evaluation Af
(which has the same functional form Ag but involving the

coupling between the fermionic degrees of freedom and the
phase velocity at different timeone gets an analogous ex-
pression, providing we discard terms of higher order in the

derivatives thar (d¢(7)/ dr)?

1
Ay= 5 f dr dyTr,dGi(7)D;i(7)Go(— 7)Di(7))

_1 J ¢ 77))2
- scof dy]( an ) (35
Here
Co= J dr{- [G})il(r)Géil(— -2 Gcl,f( T)Ggf(— 7)
GANGH(- 7}, (36)

which after evaluating the integration over the Matsubara

PHYSICAL REVIEW B 70, 104509(2004)

ogy of a similar Josepson junction array scengaiod, more-
over, will generate an effective hopping-induced intersite
phase coupling that turns out to be similar to the Josepshon
coupling in arrays of superconducting grains.

Considering again the lowest-order gradient expansion
contributions we have

1
A5: Tr[GOi T” GO] T“] = 5 f dT d77TI’pS

X{GOi(T)Tij(ﬁ)GOj(— DTji(n) -7

T, T,
X[GOi(T)a_{;J%Goj(— )‘%%”

=P+ P, (39

The termsP, , are given by

Py=-t2 j dr (GY(nGE- ) J dy cog () - ()]

2
- % f dr TZ[Géli(T)Gélj(— 7)

[Mﬁ.(n) agy(n) )T'

+GRmER(- 7 [ o =

(39)

By carrying out the integration over the Matsubara times one
obtains for the hopping-induced intersite amplitude and
phase coupling

Py= EJJ d# cod ¢i(7) — ¢j(7)]

t G°(— Bwgsechi Bwy/2]* + 2 tanti fwy/2])

3
8&)0

E;= . (40

Similarly, by calculating the coefficient of the terfy,
one obtains the strength ofmautual capacitancéerm(in the
terminology of a similar Josephson junction array scenario
for neighboring effective sites

pu=t, [y 10 200
8 an an

B2
Ci=-¢[ 4 AGHAGH- 9+ GG 7]
-BI2

times gives, ~ ) 33 2. 2
Seclﬁ(ﬁwOIZ)]z(,B,uzw fo ZSinl’[,Bw 1) - _tﬁ|:exd,3wo]( 6697wy *+ B (;)o(S,U« + wp)
Co= 2w3° 0 ol (37 12(1 + exg Bwo)) 2wy
’ 65°sinH Bwo))
Finally, we come to the evaluation of the last tefw, 12(1 + exfi Bwg))?wd | (41)

which involves the coupling between phase fluctuations on
different sites and the process of single particle hopping. The final effective action is then given by the sum of all
This contribution will yield terms that are quadratic in the the terms evaluated above that are grouped together in form
time derivative of the phasgharging like in the terminol-  of three different contributions:
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between the time derivative of the phase and the time-
5=f A S, + Sy + Syl (42 dependent boson density or amplitude-fluctuating field to-
o o . gether with the Gaussian part of the fi&{d (7)), the relative
S_¢, Sp» Sy-p are the C.OHF.I’IbutIOI’\S arising from, excluswelly, action would have the following structure:
(i) the phase dynamicsii) the fluctuations of the bosonic

densit d of th litudgg], and(iii ) th ling be- (6
ensity and of the amplitudg ], and(iii) the coupling be S’:fdrlm(e'(ﬂ)} 2I(0( Den ¢|( —

tween them. They are given by —1(6(7),
9 ¢i(7) 1 d¢i(n)d¢i(n) 46
p=3 (co+q< e ) 2{801 SO (49
T (. T T wherew, is the frequency of the normal mode oscillation for
(7') the bosonic field(6;(7)) andX is the constant controlling the
+E; codi(7) - ¢J(T)]] * 'E K coupling between the phase velocity and the amplitude of the
bosonic field. By integrating out tHéé,(7)) mode, the effec-
a1(6(n) |2 tive action acquires a form with local correlations of the
Sy= 2 | Eal(8:(7) + Egl (6:(7)? - Egp Q| [ phase velocity at different timés that is
i

J i\7, J iT/ 2
| S22

and where the form of the kern&(7—7') depends on the
(43) frequencyw,, in the following way:

S¢-a=2{i a¢,()[1 cos{ﬂ(r))]HEz

We expand the Berry phase contributigthe first term in

S,-0) Up to second order ii(6(7)) and subsequently redefine K(r) = _g K(iwp)e™ ",

this field asl(a(r))=a+l_(0(r)), with the time-independent ’

constanta chosen in such a way as to eliminate the terms 2 2

linear inl in the the actiorS,, i.e.,a=—(E;/2E;,). We then Kliwn) = anz +nw2- (48)
n a

find two contributions to the action that are linear in
d¢(7) 197 one that is time independent and can be absorbed This term correlates the phase velocity at different times
into the chemical potential and another one that is quadratignd, indirectly, the phase variable. Itis similar, except for the
in 1(6(). With this, S,_, can be rewritten as follows: T dependence of the kernel, to the case studied in Ref. '23,
where it has been shown to load to a different universality
d ¢i(7) _ class for the superconductor-insulator transition. In the
S¢—9=2 ! or [ai +ai()], (44) present case, it is the feedback of the boson density fluctua-
' tions that induce nonlocal time correlations in the local phase
velocity that can eventually give rise to such features upon
Gi=p/g+1-ng, (45 approaching the SIT boundary. An analysis on this issue is in
where we have rescaled the chemical potential and introProgress and will be discussed elsewhere.
duced the local offset-charge varialjethat sets the average
number of particles on the island made up by the bosonic and
fermionic sites, whileq;(7) describes the time-dependent IV. THE SUPERCONDUCTOR-INSULATOR PHASE
fluctuations of the local offset-charge and to the lowest the BOUNDARY

order is a function of(8(7)) andl(6(7))?. In a very preliminary attempt to analyze the stability re-
The effective action thus constructed for the BFEls. gion of long-range phase superconducting coherence, let us
(42) and(43)] is a generalization of that for Josephson junc-now examine the effective actidigs.(42) and (43)] upon
tion arrays with self and nearest-neighlmapacitance, Jo- restricting ourselves to the phase-only part of it. This implies
sephsorcoupling, andffset charggerms. The action for the a SIT driven by a competition between the phase coherence
BFM goes beyond that for such Josephson junction arrays immduced by pair hopping anthe charging effectlue to the
the following respects. We have extra terms that control théocal boson densityor, equivalently, pair-field amplitude
dynamics of the amplitude modes given 8yand an intrin-  fluctuations and the single-particle intersite processes. Within
sic Berry phase term that gives rise to a direct phasethis framework our study is equivalent to that of Josephson
amplitude couplingEq. (45)], where the dynamical ampli- junction arrays, except that the effective coupling constants
tude fluctuations would correspond to a time-dependengntering in such an action depend in a highly nontrivial way
offset charggerm in an analogous Josephson junction arrayon the parameters that characterize the original BFM Hamil-
picture. Finally, the Berry phase term, being an intrinsic to-tonian. This, as we shall see, will lead to features concerning
pological term, results in a Magnus force on vortices, as willthe phase diagram with a SIT for the BFM when we examine
be discussed in Sec. V. it in terms of the boson-fermion exchange couplgyg, the
If one considers just the linear part of the couplingtotal density, and the boson concentratign
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We determine the phase diagram by means of the so- The general form of the action we then have to examine is
called coarse-graining approximation, which has been sugiven by
cessfully applied for this kind of problem and which permits 8 9 (1)
one to capture the relevant qualitative and quantitative fea- :f > i—iq» -E,>, o codehi(7) = (7))
tures of such a Josephson junction arraylike actfgnlt is Sphose o T ar T i I :
known for such systems that, as a consequence of the uncer-

tainty relation between the phage and the total pair num- +> }Mci_ﬁ_d’j@_ (49)
ber operato; =i d/ d¢;, the system can switch from a phase- i;j8 ar Yot

ordered to a disordered state. The essential part of this stqu( ) )
will concern how the relevant parameters of the BFM- he first term describes the effect of a staiftset charge g

Hamiltonian influence the equivalent amplitudes of the Jo2nd. as said before, takes into account the amplitude of the
sephson coupling, theapacitance and theoffset charge total charge on the island given by both the bosons and the
terms. fermion pairs. The second term contains the physics of the
Let us stress the subtle role played by the particle numbep@i-nopping processes and an analog of the Josephson tun-
in controlling the onset of the superfluid phase coherence?€ling processes, and has a coupling strerigfiwith o
Once the total density per sitg,=n;+2n, is fixed, i.e., as- ~— 1 if (.| ,j) are nearest-neighbors and zero otherwise. Finally,
signing a definite value to the offset charge the relative  the third term describes theharging term arising from the
concentration of bosons and fermion pairs has to adjust t§cal exchange of boson and fermion pairs and from quasi-
this constraint. In other words, it is possible to fix the totalParticle hopping between nearest-neighbor sites. The
density and tune the average density of bosons with respegf’ength of thischargingtype interaction is given byCj
to that of the fermion pairs. This control of the relative con-=(Co+2C1)6;—C1Zp 6 4p, Which represents an effective
centration of bosons and fermion pairs can be achieved b?eneralcapacna_ncematrlx, with the vectorp running over
suitably changing the parametdg, which acts like an ex- (he nearest-neighborsC, denotes the self-capacitance
ternal field for the boson density. Alternatively it is possible @1d C1 the mutual capacitancez being the coordination
to change the total charge, made up by the sum of boson af#MmPel-

fermion pairs on the local island, by varying the value of the,, N order to extract the phase q(i;%gram we now make use of
offset charge. the coarse-graining approximatiohThe main idea of this

our final aoal is to show how a transition between a Su_approach is to introduce a Hubbard-Stratonovich auxiliary
9 field that is conjugate to the average(ef¥) and plays the

perconductor and a Mott insulator emerges out of the COMole of an order parameter for the transition from a supercon-
petition between the Josephson and charging energy, as . °f para . up
ucting to an insulating state. Since the phase transition has a

function of the above-mentioned parameters. Since we sha ontinuous character, one can expand the action in powers of
neglect the long-range part of the charging term, the Mot - : ’ exp P
he auxiliary field and determine the occurrence of phase

Lnsulatlng state ha_s an excitation gap for adding or reMovINd sherence by looking at the coefficients of the quadratic term
osongfermion pairg but does not have any breaking of the i'ﬂ the limit of long wavelengths and zero frequency
A g

translational symmetry. There are three parameters that c We briefly sketch the main steps of such an approximation
be independently controlled and are relevant for the compe- y P PP

tition between charging and Josephson energy: thakjs and adapt it to the present scenario of the BFM. The partition

ng, andg/t. We shall show how the superconductor to Mott function for Sphase is given by_ the sum (.)f all t_he p035|_ble

: . L .paths of the phase variables in the imaginary time and in the

insulator transition can be tuned by considering all the physi?
. . : . ; real space

cally realizable conditions in order to investigate the role

played by each of the above-mentioned parameters. : B A di(7)

Exploring the possible microscopic realizations at zeroZ = H D exp . 2 e qi+EJZ ajj cod(¢(7)
temperature, by fixing the total average concentration and the ' ' U
bosonic one, one finds that the variation of the ratio between
the Josephson coupling energy and thecharging energy
Ec=C;*/2, which controls the phase-density interplay, in-
creases from zero, goes through a maximum, and then de- To perform the Hubbard-Stratonovich transformation, one
creases to zero with growing/t. Alternatively, if one fixes rewrites the  Josephson coupling term as
the couplingg/t and the total concentration by varying the (E;/2)Z;; exdi¢i]a;; exdi¢;] and then, by using the usual
density cﬁ the bosons, one is able to control the effectiveGaussian identity, introduces an auxiliary fiefe( 7). The
coupling g=2gyng(ng—1) that appears irE; and Cj;. It is partition functionZ then becomes
thus immediately evident that in the BFM scenario there is a B PN
nontrivial interplay between the renormalization of the Jo- Z:IH Dy DD ex f dr (_)E ot

X . i I i i <) 7
sephson coupling and the charging effect. If one goes to the i 0 E; /7
limit of empty (ng=0) and full bosonic occupatiofng=1), B 3 (7
the effective couplingg— 0, and the critical temperature, X ex J dT[E iﬂqi—z (¢iei¢i_¢i*e—i¢i)
consequently, reduces to zero. Furthermore, by changing the 0 arT i

- g - 53 L0 290 ""(T)} |

ij T b ot

total charge on the island, it is possible to go toward configu- 1w di(n)_ ddi(n)
rations with charge frustration so that the superfluid state is -> = ﬂcij—d’l—T] ) (50)
always favored for any finite value of the coupligdt. iy 8% dT arT
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Starting from this effective action for the auxiliary field, nary time evolution of the phase into a periodic pEmT)

we perform an expansion up to second ordersiand thus  gand an nonperiodic part, one introduces the following param-
derive a Ginzburg-Landau-type free-energy functional thaktrization:

permits us to determine the boundary line between the super-

conducting and the insulating states. The corresponding ef- 2T
fective action for these auxiliary fields, i) = ¢'(T) g B (58)
S, =In JH Dé, exp(fﬁd > iw _ with ¢,(0)=¢(B) and n; being an integer that counts how
Y _ i . di ) . . .
i 0 i arT many times the phase winds over an angle that is a multiple
. . . of 2.
- 2 [h(NEH? -y (e 4] The use of such a relation allows one to express the sum
' over all ¢; as an integration ove; plus a sum over all the
2 1(9¢)I J ¢i(7) possible integer values of the winding numinerAfter per-
Cij 9 (51 forming a number of suitable algebraic operatibhsine
ends up with the following expression for the two-time phase
when expanded to second order is given by correlator:
B -1
’ AWM exd - 2C:
5= f drd7' x; (7.7 )i (Dy(7) + O (52) (D=4, =26 1]
0 Z{n} exd- Z 2BC;™NiN;]
xij(7,7) = (A0 (53 x 2 expf~ 2 2BC ' NiN; = 2 4C !Ny,
{ni ij k

denotes the two-time phase correlator, which is equal to the
second derivative 0§, with respect to the auxiliary fielgs (59

and its conjugate at different time and space positions, evaluyhere N, =¢;+n,. This two-time phase correlator is local in
ated around their zero values. By performing the functionakpace and its time dependence follows an exponential behav-

derivation, one gets the following expression for it: ior, if one assumes that the statitfset charge ghas a dis-
_ tribution that is homogeneous in space.
[1, D44 lex - ] Having obtained the expression for the local two-time
Yi(r7) = (54) phase correlator in the time and space representation, we can
e now express the effective Ginzburg-Landau free-energy
Hi D¢ exd-S] functional in the Fourier space in the following way:
with §, being the part of the action which contains exclu- — 1 * -1_
sively thecharging contributions, i.e., Fy= o2 didonlai’ = xdonlu(wn)- (60)
S = ex f d 2 (7¢. T) ,_2 19 ¢i(7) T) 9 ¢y(7) ' Expanding the inverse matrix;* in the form o;'=(1/2)
8 odr Ci 7 +k%(@/2%) +..., this free-energy functional finally is written
(55 &S
According to the scheme outlined above, we now develop F./,:—E i —Xo+ak2+bw +ikon+ ... | [l wn),
the partition functionZ up to second order in the auxiliary BLn
fields, thus putting it into a familiar form (61)
= Dy Dure v 56 whereb and\ are the coefficients of the expansionygfw,,)
%D (56)
i

around the limitw,=0.

The transition line is then given by the condition that the
coefficient of the quadratic term vanishes in the limit of van-
ishing k and w, that is,

with
B
F¢,:J drdr 2 ¢ (Dl (7= 1) = xii(7, 7)Jeh(7).
0 i

(57)

The determination of the conditions for the boundary line For a quantitative analysis, one has to determine the ex-
between the superconducting and the insulating phase theslicit zero-frequency limit of the two-time phase correlator.
reduces to the explicit evaluation gf(7,7’). The result for ~ As mentioned above, the inclusion of the time-dependent
that has been first obtained in Ref. 47, and we sketch belowffset chargecoming from the fluctuations of the bosonic
the main steps of this derivation. density can modify the low-frequency behavior of the local

In determiningy;(7,7’) it is essential to treat the phase phase correlations. Such a feature will be addressed in a
variable¢; in a compact form. In order to separate the imagi-future study.

1- 220 =0. 62
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In order to gain insight into the underlying physics at play 0.5 . .
here we evaluate the two-time phase correlator in the limit of
a purely localcapacitancegthe so-calledself-chargingimit), 0.4 8
by keeping only the on-site part in the original structure of
the capacitancamatrix. Under those conditions the two time 03 .
phase correlator at finite frequency is given by E
0.2 8
_1 1 ; -1n)2 o
Xi(on) = 2 FIN| =~ (lon = 4Ci"N)? | (63) 0.1 1
0 {m} i MI
. _l 2 00 . . L L .
with F[Ni]=exd-=; 28C;"N;] and Zo==,F[N;]. 00 05 1.0 15 2.0 25 3.0
With these expressions, one can finally cast(@&8) in the g/t
form >
FIG. 4. Phase diagram as a function @ft describing the
exfd— 4BEc(n+ q)Z] boundary between a Mott-insulatiriiyll) state with homogeneous
7E En 1 —4(n+q)2 charge distribution and a superconductif®C) phase with long-
= =0, (64) range phase coherence for the case of fully symmetric limit, i.e.,
4Ec Em exf - 4EcB(m+q)?] total d;nsit{)is given by one pair in average for gifg;=0,ng;

expressed in terms of théosephson coupling jEand the
charging energy E=C;'/2, as given by the Eq$37), (40), critical line decreases to zero, goes through a maximum start-
and(41). ing at a finiteT#(ng=1), and finally shows a SIT at a critical

Given this defining equation for the boundary between thalensity.
superconducting and the insulating phases, let us see now Let us finally consider the case where the local charge on
how the intrinsic dependence of the Josephson and charginpe island formed by the bosonic and fermionic site is varied
energy on the exchange coupling and the density of bosortsy tuning the value of the offset chargewhile keeping the
manifests itself in the competition between phase and densitiyoson density fixed. Since we are considering only the self-
degrees of freedom. In the loop expansion given in the Secharging case, the boundary line will again separate a super-
11, for the BFM we have obtained the amplitude of the in- conducting from a homogeneous Mott-like state. As shown
tersite phase coupling and tlekarging effect as a function in previous studies on Josephson junction arfédy¥the ef-
of temperature, the ratig/t, and the bosonic density. It is the fect of the offset charge is to induce a charge frustration due
nontrivial dependencef those coupling constants on the pa-to a degeneracy in the space of configurations, such as to
rameters of the original microscopic Hamiltonian of the reduce the effective charging energy and favoring the super-
BFM that leads to the interesting features in the competitiorconductivity for an arbitrarily small ratio dg;/Ec. This is a
between the phase, the boson, and total density. Thus, up@onsequence of the behavior of the zero-frequency correla-
increasing the pair exchange coupling it is expected that théon function in Eq.(64), which is dominated at low tempera-
Josephsorcoupling is reduced while thehargingenergy is  ture by the integer-valued charge=0 in the sum, that pro-
increased because of the local transfer between fermion paittices the smallest exponential and becomes infinitely large
and bosons as well as because of the single particle processgsproaching the limig=1/2 due to thedivergence in the
of fermions between nearest-neighbor sites.

We determine the critical line for the casgp(iii) men-
tioned above in order to highlight the role played, on the one
hand, by the coupling and, on the other hand, by the boson

040}

density and the total average concentration. In Fig. 4, we 030
illustrate the transition lind 4, separating a phase coherent . Y
state from a phase-disordered one, as a function of the cou- = 020
pling strength and the effective boson density The evo-

lution of the transition line is nonmonotonic as a function of 0.10
g/t and goes through a maximum @t,~t. The quantum

critical point, where the SIT occurs, is given Iy, ~ 2t. 0-08 00 020 040 060 080 100
The critical behavior close to the transition is that oK% ’ : e : ‘
model ind+1 dimensions.

More interesting still is the behavior af, as a function of FIG. 5. Phase boundary lines between the supercondu@idyg
the ng. The variation ofT, is qualitatively different for the  and Mott-insulating(MI) state at different values of the coupling
different parameter regimega) the weak coupling case for and upon varying the average density of bosons, keeping fixed the
0<Omax (0) the intermediate one witl,,x<9<0.it, and  total average density to one pair for site. Solid, dotted, and dashed
(c) the strong coupling limit foilg> g (See Fig. » Going lines stand for values of the coupling constants for whjehgas
from the limit a to ¢ we find that with increasingng the  g>9> dma» andgeit > derit, respectively.

B
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denominator of eXfp-4BEc(n+q)?]/[1-4(n+qg)?]. This cor-  new relative variable —R, which defines the intrinsic posi-

responds to an effective renormalization of the ratio betweetion dependence of the variables with respect to the vortex

E,/Ec, which tends to favor the superconducting phase bycenter.

shrinking the Mott insulator region as one tunes the total Starting from the above-mentioned expression for the La-

density toward the limig=1/2. grangianLg and making a simple change in the time deriva-
tive we can rewrite it in the following form:

V. ROLE OF BERRY PHASE TERM: AN INTRINSIC
MAGNUS FORCE ON VORTICES Lg f d’r cog b(r - R1)]4d(r - R}t) (65)

In Sec. IV we have analyzed the basic physics resulting
from the effective action by neglecting@) the influence of dr
any feedback between the density and amplitude fluctuatiors™ d’r cog0(r ~R)IV,(r - R1). (66)
(included in the field[6]) on the phase dynamics, afid)
the contribution from the Berry phase term, responsible for At this point, one recognizes that the terfd’r cog 6(r
the correct quantization of the pseudospin variable, which is-R,t)]V,#(r —R,t) plays the role of an effective vector po-
given by the integral over all the possible pathsisfl  tential Ag and dR/dt represents the velocity of the vortex.
—-co46])d.¢;. In this section, we discuss the consequencedhis Lagrangian is thus equivalent to that of a charged par-
of the presence of such a Berry phase term in the case whetiele in presence of an effective magnetic field in thairec-
the phase action has a vortex solution. The existence of gon given byB=V X A. B hence creates a Magnus force
vortex solution is assured for 2D systems where the phasey,=—(dR/dtx 2)27 cog6,] which is transverse and pro-
correlations are described byXay-type dynamics. We shall portional to the vortex velocity and whose strength is linked
show here that the Berry phase term will produce an intrinsico the magnitude of this effective magnetic field,
Magnus Force on the vortex, which is analogous to the Lor=-27 cog 6,]. Its magnitude is given by the asymptotic
entz force for a charged particle, whose effective magnetigalue of the background bosonic density at large distance
field depends on the spatial distribution of thdield. Using  cog 6,] for r — .
the correspondence with the bosonic pseudospin variable, |In case of a 2D superconductor described by the BFM
this implies a relation with the spatial-density distribution of scenario, the usual effective magnetic fieldmp2 arising
the bosons. The Magnus force has been widely discussed from the supercurrent of the electrons circling the vortex has
the context of normal BCS-type superconductors, where ithus to be supplemented by the above-mentioned contribu-
has been shown that it arises from the Berry phase caused lgign B (intrinsic to such a scenafi@nd permits one, in prin-
the adiabatic motion of a vortex along a closed loop coming:iple, to modulate the total Magnus force upon changing the
back to its starting positioff. The adiabatic vortex motion on  density of the bosons. Clearly, a full description of such an
a loop in the superconducting state turns out to be affectedventuality, which is beyond the scope of the present analy-
by an effective magnetic field generated by the supercurrendis, has to be studied in more detail and has to include the
arising from the gradient of the phase that encircles such gerivation of the effective action in the presence of the mag-
vortex. In the BFM scenario discussed here, we find that ometic field such as to determine the superfluid density of the
top of the usual contribution due to the superfluid electronselectronsp.
there is an intrinsic Berry phase term that will generate such At this stage we simply want to point out that the sign of
a Magnus force and which has an intensity proportional tahe magnetic field arising from the Berry phase term in the
2nz—1, whereng is the bosonic density. This Magnus force, action of the BFM changes if one tunes the bosonic density
arising solely from the quantum nature of the pseudospino between zero and unity. In terms of the variabld 6bthis
variable, is clearly independent on any superconducting stafgnplies a variation in the range-1, 1. In other words, the
and does not require a coherent superfluid current induced l:g{gn of the intrinsic Berry phase-induced Magnus force will
the presence of the vortex itself. Moreover, simgecan be  change ang=1/2 when going from the limit of small den-
controlled externally, one has the possibility to tune thesjty of bosons to high density. This extra contribution to the

strength of the effective magnetic field acting on the vortexagnus force has to be added of course to the conventional
and hence to alter its dynamical properties. This will result ingne known for standard superconductors.

a possible measurable effect on transport coefficients, such
as the Hall coefficient, resistance, etc.

To be more explicit and following the procedures used in
different approaches treating with the Magnus force problem,
let us assume that one has a vortex centered at the poRition A frequently asked question concerns the qualitative dif-
Let us furthermore consider that we are in the continuum anderences that exist between the BFM and similar scenarios,
at zero temperature so that the Berry phase term in the Lauch as the negative-U Hubbard model, and pure bosonic
grangian now readsg=[d?r cod 6(r,t)]3,¢(r,t). The contri-  systems, such as the Bose-Hubbard model and Josephson
butions linear ing,¢(r,t) and having time-independent coef- junction arrays.
ficients do not contribute to the dynamics. Moreover, since Let us start with a comparison of the BFM and the
we consider that the phageand the variable are linked to  negative-U Hubbard model, which has been studied in a
a vortex solution centering &, it is judicious to introduce a great variety of different approaches and discussed especially

VI. COMPARISON WITH NEGATIVE-U AND BOSE-
HUBBARD MODELS
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in connection with the BCS-BEC crossover. The main issuavave function where all the bosons are strongly coupled with
of such a comparison is the occurrence or not of a quanturpairs of fermions, thus resulting in a product state of local
critical point in the negative-U Hubbard scenario at a finitebonding states

value of the couplingJ, which introduces the pairing among 1

the electrons. As we have shown in this paper, in the BFM Iy =11 =(p" + 7)|0). (69)
there exists a critical value for the exchange coupliig i \2

responsible for the pairing in the fermionic subsystem above., . . . L
which the system undergoes a SIT. We have seen that with%hIS wave f_unctlon can be weyvgd as a ferromagnetic Ising-
a path-integral formalism, one can extract an effective actio pe state in the sense that it is made up of a ferro-type

describing such a transition as being primarily due to thé)ondlng order and is not degenerate with respect to all the

interplay between thiocal quantum pair exchangbetween ;).the'rt post5|ple kl)oca;ll' cor;)flgudrgtlons. l\/llotr'eover, byl construc-
a boson and a fermion paiand thenonlocalintersite pair o1 It contains bonding-bonding correiations on a long range

hopping leading to a phase dynamics originating from th bonding solid, but has a zero-phase corrglation Iength. The
itinerancy of the fermions. Due to the nontrivial dependenc atter can be shown by evaluating the static correlation func-

of the strength of these two competing mechanisms on thon for the+bosons or, equivalgntly, the fermion pa_irs, which
microscopic parameters of the BFM, there occurs a SIT for %lvgs (Yolpi pjl¢0=0 and (47 7[o)=0 for any distance
finite density as well as finite exchange couplglg. For the

i=jl. _ o
negative-U Hubbard scenario this is not the case and the SIT Next, let us consider the low-energy configurations that
does not occur at any finite value of the ratigt.5! This @€ mixed into such g/t=o giound state.when. the kinetic
model merely describes a continuous crossover between &1€r9y operatoH=Xi.; ; t;(c;,cj,+H.c) is switched on.
BCS superconductor and a BEC of tightly bound electronAPPIYINg Hy to |4), there will occur states that are separated
pairs as U is increased from 0 ta by an energy gap with respect|i). The low-energy states

In order to better understand this difference between thé&® be considered as the relevant quantum mixed configura-
BFM and the negative-U Hubbard model, let us consider twdions are of a nonbonding nature, suchGig0)=c;,|0) and
scenarios in equivalent situations, i.e., the half-filled bandS/0)=piC,|0). In order to construct those states, let us be-
case for the negative-U Hubbard model and the fully symgin by considering a local excitation on two adjacent sitgs
metric case for the BFMwith the bosonic level lying in the given by S,C{_|0) in the background of bonding states.
middle of the fermionic band such that both the fermionicThis configuration can be seen as a ferro-type order inter-
band as well as the bosonic level are half occupigde then ~ rupted by two domain walls of a nonbonding nature. Now let
address the question how, in the strong coupling limit, the!S consider the dynamics of such objects and under which
pair hopping is generated out of the basic configurations ofonditions they can be rendered itinerant in a way that leaves
states and processes that contribute in this regime. the number of bonding configurations unchanged. The prob-

For the case of the negative-U Hubbard model with fer-lem is thus analogous to that of domain wall dynamics in an
mions interacting via a local attractive potential, the groundJsing-type system. It so happe(@detailed discussion of this
state wave function in the limit df —c and at half filing is IS beyond the scope of the present study and will be given at
highly degenerate and is composed of all the possible corf later stage elsewhegrthat the local degeneracy of the non-
figurations comprising equal distribution of zero and doublybonding states will be removed by the action of the kinetic
occupied site. In this limit, one can perform a mapping ofterm. In this way it induces a global lowering of their exci-
this model on the hard-core boson model described by thEtion energy due to the dispersion of each domain wall,

Hamiltonian which is of the form
, , Eow(K) = 3lec+ 69+ V(e— 29 + 4], (69
2t 2t¢
Hy=->, —'Lbf'bj +> —'Lninj - . (67)  and wheres(k)=-2zt cosk. Only after the condensation of
i Y a Y i the domain wall-like excitations in the presence of the

bonding-state background one can meet the conditions for

b/ (b;) andn;=b’b; stand for the creatio(destruction opera-  setting up long-range boson and fermion-pair phase correla-
tors of hard-core bosonic particlgsightly bound electron tions.
pairs and for their density operator, respectively. Due to the This simple sketch of the nature of the excitations in the
presence of a coupling, which is isotropic both in the bosorBFM implies that the onset of phase coherence cannot be
hopping and in the charge interacting channel, one has activated for an arbitrarily small hopping amplitude because
superconducting state for any finite value of the rati¢tt, ~ one has to overcome the energy gap between the ground state
and possibly a supersolid phase due to the symmetry of thand the manifold of nonbonding states, which is of the order
charging interactions characterized by a coexistence of diag®f ~29. As we can see from the expression for the dispersion
onal and off-diagonal long-range order. This implies that theof the domain walls, this is achieved wheg,(k) becomes
quantum critical point is strictly pushed td— . zero fork=0, i.e., wheng/t=%(2+\s“2+4zz). For z=2 this

In the BFM the phase space in the lage limit is com-  givesg/t~ 2.0, which determines when those defectlike ex-
pletely different. In the fully symmetric case of this model citations become gapless and thus induce a proliferation
[corresponding to a total density equal twice the number ofvithin the background of the bonding states. It is worth
sites (n,=2)], the ground-state configuration is given by a pointing out that this value for the critical exchange coupling

104509-13



M. CUOCO AND J. RANNINGER PHYSICAL REVIEW B0, 104509(2004)

matches rather well the value obtained from our functional In spite of this, initial similarity between the BFM and
integral approach discussed in this pasre Fig. 3. those scenarios, we would like to stress that in a system
The picture that hence emerges for the BFM is very simi-where the dynamics is described by the BFM scenario, the
lar to that of aXY model in a transverse field. There, the interplay between the phase and amplitude fluctuations is
hopping term is responsible of theY dynamics, while the intrinsically related to the coupling between the fermionic
local boson-fermion pair exchange provides the role of theynd bosonic degrees of freedom. This introduces amplitudes
effective transverse field. This itself is already a strong indi-f the different processes at work in the form of a nontrivial
cation_ that this model is of a_different nature from that of thedependence on the microscopic parameters of the starting
negative-U Hubbard scenario, for which we know that it is, 45 miltonian. Furthermore, as we have seen in the above dis-
on the contrary, ak|.n to an isotropic Heisenberg model. cussion of the effective action of the BFM, this model con-
A f_urther essential difference between the BFM and thetains features that go beyond those that characterize the pure
negative-U Hubbard model can be seen from their respectiv osephson-type dynamics to those that arise from the pecu-

Faa':itg;: T;eggﬁls{g g:ggafg??ﬁi'svr\ﬁ;%%t;‘i ?i?;?;?éiﬂrsag ?ﬁ;izenﬁar feedback between the fluctuations of the bosonic density

use of a Hubbard-Stratonovich transformation to rewrite thd®" amplitude pair fielgiand quctgatlpns of the phase. Last.
quartic interaction term in a bilinear form, where the fermi- N0t l€ast, the appearance of an intrinsic Berry phase term in

onic operators are now coupled to random auxiliary fieldsth® BFM scenario together with the effect of dissipation due
Limiting oneself to purely superconducting order, the usualo the fermionic dynamics can give rise to an unconventional
procedure for manipulating such a bilinear action is to sepaPhenomenology when topological phases play a role, and
rate the complex auxiliary field into its modulus and a pure€specially in the presence of vortices.
phase part before performing an expansion around the
sa(_jdle-point sqution.for the amplitude of this auxiliary field. VIl. CONCLUSION
This way of proceeding allows one then to extract an effec-
tive action for the slow phase dynamics. This is distinctly In this paper we examined the possibility of a
different from the functional integral representation for thesuperconductor-insulator transition in a system of localized
BFM, which we have presented above and where from théosons and itinerant fermions coupled together via a pair
very beginning and throughout such a procedure the fermiexchange term. An effective action was derived from such a
onic pair fields are coupled to physically real bosonic modesnicroscopic model, which, after integrating out the fermi-
that have their own proper dynamics. As we have seen ionic fields, could be phrased in terms of amplitude and phase
Sec. lll, the bosonic part of the action is treated within afluctuations of the bosons. In order to make the presentation
coherent pseudospin representation where the dynamics ofore familiar we discussed the action in a terminology fre-
the pseudospin are parametrized by the time dependence gfiently employed in connection with the study of Josephson
the spherical variables. The role of the dynamics within thgunction arrays. We stress that our system does not necessar-
spherical representation of the bosonic field and of the Berryly imply any charged fermions and bosons.
phase termgwhich is a consequence of the quantum interfer- Considering the phase-only part of the effective action it
ence in the local pseudospin sppé® a distinct feature of is fully equivalent to the quantum-phase model for the Jo-
this BFM and presents specific differences with respect t@ephson junction arrays, discussed in termgigpfa Joseph-
the negative-U model. Such differences imply, in particular,son couplingterm, (i) a charging or capacitancéerm, and
that in the BFM case one has feedback effects between th@i) an offset chargeerm. Equivalent to that in our scenario
amplitude and the phase fluctuations, which are totally abis (i) a boson hopping ternij) a term that takes into account
sent in an equivalent description of the negative-U Hubbardhe reduction in hopping amplitude due to a fluctuating local
model. Such features are important because of intrinsic digsoson density arising from the intrinsic on-site exchange
sipation effects that eventually can change the nature of theoupling between the bosons and the fermions, @ing a
transition and possibly are relevant for the emergence of ahemical potential term controlling the total concentration.
‘bosonic metal’ in proximity of the SIT, a feature which In the present study, within already the lowéshase-only
seems to be outside the framework of the negative-U Hubapproach to the boson-fermion system, is the intricacy of the
bard model. dependence of the effective Josephson coupling, the capaci-
Let us conclude this comparison of the BFM with similar tance term, and the offset charge term on the parameters of
models with a brief discussion on the Bose-Hubbard modethe initial Hamiltonian, i.e., the exchange coupling and the
and Josephson junction arrays. The main aspect that emergésnsity of bosons. It turns out that already within the phase-
as a common denominator in all those models, at least as fanly part of the effective action, a superconductor-to-Mott
as the phenomenon of the SIT is concerned, is that theasulator transition can be triggered not only by a change in
mechanism responsible for the degrading of the phase cohethe exchange coupling, but also by a variation of the boson
ence is analogous and originates from the competition bedensity. The latter evidently presents an interest from the
tween the phase and charge degrees of freedom. In the Bossxperimental point of view and can possibly be tested in
Hubbard model this manifests itself as a competitionsuch transition in optical lattices for ultracold fermi gases
between the boson hopping and their charge repulsion, whileith Feshbach resonance pairing.
in the Josephson junction array scenario it appears as an Apart from the phase-only part of the effective action we
interplay between the Josephson tunneling amplitude and thestablished the existence of an intrinsic Berry phase term that
charging energy. arises from the hard-core nature of the bosons and gives rise
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to an additional Magnus force when the system is such thahat, for the boson fermion model the ground state is nonde-
topological ground-state configurations, such as vortices, argenerate(corresponding to a ferro pseudomagnetic Ising-
stabilized. This again should be of potential interest for extype system of singlets formed by bosons and fermion pairs
periments since, in principle, one can change the sign of thgnich, after switching on the fermion hopping term, gives
Magnus force upon changing the density of bosons and thysse to propagating domainlike structures. The topological
change the motion of a vortex from one direction into thegi,ctures appearing in the ground state might have measur-
Gble consequences in the transport properties near the
superconductor-insulator transition.

Apart from the more basic features of the model discussed
this paper, there are a number of very subtle questions that

with in greater detail in some future studies.

A further property of the Berry phase term is that it gives
rise to a coupling between phase and amplitude fluctuations
and is hence much more direct and relevant than simila’ ) . ) ;

se themselves in connection with the nature of the insulat-

terms in, for instance, scenarios based on the negative- ; .
Hubbard model where they occur only at a much higher or"d state. The boundary line of the phase diagram presented

der in a corresponding loop expansion of the trace in thd" the paper was determined by considering only the homo-
effective action. This again merits being investigated in som§€neous Mott-insulator phase once the superconducting state
detail with the aim to study the retarded in time correlations'S suppressed. In doing that, we have neglected long-range
introduced by such amplitude-phase coupling and its effecgharge interactiongwhich arise when inverting the capaci-
on the nature of the transition, in view of exploring the pos-tance matrix and kept only the local charging energy. We
sibility of an intermediary bosonic metallic ground state. ~ can expect, as also shown in systems of interacting bosons

A frequently asked question concerns the differences bewith short-range repulsion, that for a total concentration of
tween the negative-U Hubbard scenario, mainly studied irabout 1/2 pair per site, the long-range charge interaction will
connection with the BCS-BEC cross-over, and the presentljnduce breaking of translational symmetry and the formation
studied boson-fermion model. Far from being able to give af a charge-density wave, possibly allowing for the occur-
complete account for the major differences, we found mainlyrence of supersolid phases. Such eventualities have been
two aspects that distinguish the physics of these models onstudied both for bosonic models with short-rangjiest or
qualitative and robust level. One is that in the negative-Unext nearest-neighbor sijesepulsiori® as well as for long-
Hubbard model a superconductor-insulator transition cannatange interaction. The possibility of commensurate charge
take place at any finite coupling U, nor can such a transitioristribution, away from the situation of one pair per island,
be triggered by the change in particle concentration. Théias been consideréd.Moreover, the competing local and
second point is that the ground states in the strong couplingonlocal phase correlations, which characterize the BFM,
limit of the two models are quite different: a highly degen- may give rise to exotic topological phases in the insulating
erate ground state for the negative-U Hubbard model wittstate. These very subtle questions certainly merit a detailed
excitations being controlled by an isotropic Heisenberganalysis. They are beyond the scope of the present paper and
model when the hopping term is switched on. Contrary towill be addressed in some future work.
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