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We consider a system where localized bound electron pairs form an array of “Andreev”-like scattering
centers coupled to a fermionic subsystem of uncorrelated electrons. By means of a path-integral approach, that
describes the bound electron pairs within a coherent pseudospin representation, we derive the effective action
for the collective phase modes that arise from the coupling between the two subsystems once the fermionic
degrees of freedom are integrated out. This effective action has features of a quantum phase model in the
presence of a Berry phase term and exhibits a coupling of phase fluctuations to those of the density of bound
pairs and the amplitude of the fermion pairs. Due to the competition between the local and the hopping-induced
nonlocal phase dynamics it is possible, by tuning the exchange coupling or the density of the bound pairs, to
trigger a transition from a phase-ordered superconducting to a phase-disordered Mott insulating state. We
discuss the different mechanisms that control the occurrence and eventual destruction of phase coherence both
in the weak and strong coupling limit, restricting ourself to homogeneous phases.
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I. INTRODUCTION

The problem of interacting Cooper pairs and/or bosons,
together with the possibility of a quantum control of long-
range phase coherence in low-dimensional systems has re-
ceived considerable interest since the experiments1 on homo-
geneous lead and bismuth films, which exhibit a transition
from a superconducting to an insulating phase as a function
of thickness.

It is known, since the work of Abrahamset al.,2 that no
true metallic behavior can be expected for two-dimensional
(2D) noninteracting electrons atT=0, because all the states
will be localized by an arbitrarily small amount of disorder.
When one includes Coulomb interaction, the situation is less
clear, but the common belief is that a metallic phase should
still not appear atT=0 in the presence of disorder — though
no rigorous proof is available.3 Yet, in the presence of attrac-
tive interactions, one expects a superconducting state both at
T=0 and finite temperature, even in presence of a finite
amount of disorder, due to its relative ineffectiveness for a
transition of Kosterlitz-Thouless type(the degree of rel-
evance being given by the Harris criterion4).

The existence of a superconducting state atT=0 in 2D
systems is then considered to be directly linked to that of an
insulating state, with no intermediate metallic phase present.
Hence, one should be able to observe a direct
superconductor-insulator transition(SIT) at zero temperature
in 2D as a function of disorder, interaction strength, magnetic
field, or any other external parameter that can drive the sys-
tem away from the superconducting phase.

There are different theoretical scenarios that are com-
monly discussed in connection with the salient features of
such quantum phase transitions:(i) dissipative models, con-
sidering a network of Josephson-coupled superconducting
grains shunted by resistors,5–10 where the competition be-
tween the Josephson intergrain coupling and the charging

energy yields an increase of the phase fluctuations of the
superconducting order parameter and hence leads to a phase-
disordered state. Dissipation thereby plays the role of sup-
pressing quantum phase fluctuations and thus competes with
the charging mechanism.(ii ) Bose-Hubbard models, where
the superconducting phase is due to the Bose-Einstein con-
densation of charge-2e bosons and the insulating phase is
due to a proliferation of vortices and localization of
pairs.11–14

While the SIT was long thought to be a paradigm of the
above theories, recent experiments have cast some doubt on
that. They revealed what seems to be a low-temperature me-
tallic state that is intertwined in such a SIT and thus requires
a more appropriate theoretical description. In magnetic-field
tuned experiments on Mo-Ge samples,15 in granular super-
conductors(Ga films16 and Pb films17), and in Josephson
junction arrays18 a metallic phase has been observed. More-
over, the recent experiments of Mason and Kapitulnik,19 in
which a metallic phase has been observed sandwiched be-
tween the superconductor and the insulating phase, suggest
that perhaps two phase transitions accompany the loss of
phase coherence in 2D superconductors:(i) a superconductor
to a “Bose metal” and(ii ) a Bose metal to an insulator. A
Bose metal in this context, is thought of as just a gapless
nonsuperfluid liquid with metalliclike transport20.

These experimental results have led to reconsideration of
the whole issue of the SIT. One recent proposal to handle
such a new viewpoint of the SIT has been to reexamine the
standard onsite charging model. By including nearest-
neighbor charging terms it was shown that the resulting uni-
form Bose metal state lacks any trace of either phase or
charge order,21 due to a competition between the order pa-
rameters that describe the onset of charge order and phase
coherence. A different point of view22 is that in the quantum-
disordered regime a cancellation happens between the expo-
nentially long quasiparticle scattering time and the exponen-
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tially small quasiparticle population, which ultimately leads
to a finite dc conductivity. Finally, intrinsic as well as extrin-
sic sources of dissipation have been suggested as potentially
relevant for the occurrence of a nonsuperfluid metallic phase
in proximity to the superconducting phase.19,23,24In this con-
text, the dissipation is a relevant perturbation25 that, depend-
ing on the strength of the coupling to the dissipative source,
can drive the system from asuperconductor-to-insulator
transition to a superconductor-to-metal transition.19,26 Sev-
eral other ideas supported a scenario where the system could
break into superconducting and insulating “islands” weakly
linked via percolating paths before going into a metallic
phase, dominated by vortex dissipation.26 This “puddle” sce-
nario matches with the view to describe the 2D
superconductor-metal transition via superconducting islands
embedded in thin metal films.27 Detailed analysis of the
puddlelike model considered strongly fluctuating supercon-
ducting grains embedded in a metallic matrix,28 predicting a
metal-to-superconductor transitionwith a metallic phase just
above the transition dominated by Andreev reflections be-
tween the superconducting grains. Finally, recent investiga-
tions directed the attention to new phases with Bose metallic
features, where the dissipation is dynamically self-generated,
as in the quantum-phase glass model, where disorder in the
distribution of the tunneling amplitudes and quantum fluc-
tuations destroy phase coherence.20

Along similar lines as those dealt with in the different
approaches discussed in the literature, our aim here is to
investigate a system where the breakdown of superconduc-
tivity situates itself in between the case of a “bosonic” and a
“fermionic” mechanism for superconductivity suppression.
We focus on determining the possible ground states for in-
teracting Cooper pairs in close relation to the classical no-
tions of superfluidity and localization of bosons and, on a
more general basis, how the phase coherence can be tuned to
a phase disordered state. More specifically, we consider
within the framework of a boson-fermion model(BFM), a
system where localized bound electron pairs(hard-core
bosons) form an array of “Andreev”-like scattering centers
coupled to a fermionic subsystem of itinerant uncorrelated
electrons(quantum pair exchange). This scenario goes be-
yond that of pure phase models widely discussed in the lit-
erature. Here one is dealing with bosonic degrees of freedom
(localized bound pairs) as well as fermionic ones(itinerant
electrons) for which, due to the emergence of pair correla-
tions, one has to account for both amplitude as well as phase
modes. The possibility to tune from short- to long-range
phase coherence arises from the following competing effects:

(i) on the one hand, the short-range interaction between
bosons and fermion pairs(holes) induces a local phase lock-
ing in a configuration with a quantum superposition between
bosons and electron pairs, leaving the common phase unde-
termined.

(ii ) on the other hand, the itinerancy of the electrons
tends to lock and rigidly extend in space these initially arbi-
trary local phases. As a result, phase coherence develops
over longer distances by suppressing the quantum fluctua-
tions of the local phase, which thus involves the dynamics of
amplitude fluctuations.

Out of this competition one recovers either a superfluid
state in the regime of a small scattering rate or a phase-

disordered state in the limit where the pair exchange domi-
nates and the local quantum phase fluctuations do not allow
for long-range phase coherence. As we shall show, the phys-
ics described by this scenario strongly depends on the con-
centration of fermions and bosons, on the coupling strength,
as well as on temperature. The purpose of this study is to
analyze how a transition from a superconductor to an insu-
lator may occur in such a scenario.

The outline of the paper is as follows. In Sec. II we will
introduce the BFM and describe its main qualitative features
and the phenomena that can be described by it. In Sec. III,
we shall develop a path-integral representation of this model
and derive an effective coarse-grained action that, after inte-
grating out the fermionic degrees of freedom, is able to de-
scribe the low-energy dynamics of the phase and amplitude
modes. In Sec. IV we will discuss the phase diagram based
on the simplest approximation of such a coarse-grained ef-
fective action in terms of a phase-only action and explore the
transition from a superconductor to a phase-disordered state
as a function of the coupling and the density of bosons. In
Sec. V, we will study the physical features that arise from the
intrinsic Berry phase term in our effective action and from
the hard-core nature of the bosons, represented by quantum
pseudospin 1/2 variables. In Sec. VI, we compare the salient
features of this BFM scenario with similar scenarios, such as
the negative-U Hubbard model, the Bose-Hubbard model,
and Josephson junction arrays. In the Discussion, Sec. VII,
we review the main results obtained in this paper and indi-
cate further developments planed for the near future.

II. THE BOSON-FERMION MODEL

The boson-fermion model(BFM) has in recent years at-
tracted considerable attention as a model capable of captur-
ing basic physical properties in many body systems with
strong interaction, giving rise to the formation of resonant
pair states of bosonic nature inside a reservoir of fermions.
Such a scenario was initially proposed by one of us(J.R.) as
an alternative to the scenario of the hypothetical and yet to
be experimentally verifiedbipolaronic superconductivity. It
was meant to describe the intermediary coupling regime be-
tween the adiabatic and antiadiabatic limits in polaronic sys-
tems, where an exchange between localized bipolarons and
pairs of uncorrelated electrons can be assumed to take place
(for a recent intuitive justification of such a scenario see, for
instance, Ref. 29.)

This boson-fermion scenario has, however, a much wider
range of applicability than that for which it was initially
proposed and seems to apply to very different physical situ-
ations, such as hole pairing in semiconductors,30 isospin sin-
glet pairing in nuclear matter,31 d-wave hole and antiferro-
magnetic triplet pairing in the positive-U Hubbard model32

(and possibly also in the t-J model), entangled atoms in
squeezed states in molecular Bose Einstein condensation
(BEC) in traps,33 and superfluidity in ultracold fermi gases
induced by a Feshbach resonance.34

The BFM is reminiscent of an anisotropic Kondo lattice
model in terms of a pseudospin 1/2 but characterizing local-
ized electron pairs instead of localized impurity spins in the
Kondo analog. The Hamiltonian is given by
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−g, the itinerant pairs of uncorrelated electrons.fcis
+ ,cisg

stand for the creation and annihilation operators of the itin-
erant electrons(fermions) and g is the strength of the
boson⇔ fermion pairexchange interaction. The hopping in-
tegral for the itinerant electrons, which is assumed to be
different from zero only for nearest-neighbor sites, is given
by t with a band half-width equal toD=zt, z denoting the
coordination number of the underlying lattice. The energy
level of the bound electron pairs is denoted byDB. The num-
ber of the ensemble of bosons and fermions being conserved,
ntot=nF↑+nF↓+2nB, implies a common chemical potentialm
for both subsystems.nB, nF↑,↓ indicate the occupation num-
ber per site of the hard-core bosons and of the electrons with
up- and down-spin states.

The exchange coupling between the bosons and the fer-
mion pairs can be considered as an effective Andreev-like
scattering leading to local states that are quantum superposi-
tions of the form

uclocli =E dfifcossui/2dcossfidri
+ + sinsfidgfcossfid

+ ti
+sinsui/2dsinsfidgu0l. s1d

Such states evolve gradually out of the system of localized
dephased bosons and essentially uncorrelated free fermions,
which characterize the high-temperature phase of this model,
when the temperature is decreased below a certainT* .g
where resonant pairing(not bound pairs!) starts to be in-
duced in the fermionic subsystem. These pair states already
have built-in features that are reminiscent of those that char-
acterize Cooper pairing of fermions as well as superfluidity
of bosons. The phases of the two coherent states, which cor-
respond to the two subsystems, are the same and hence are
locked together, but are averaged over all angles as a conse-
quence of the conserved particle number on any given site,
ntot=2. Roughly speaking, the ground state of the system is
then given by a product statepiuclocli with cosui =1 and that
exhibits no phase correlations on any finite length scale. Let
us next consider the effect of fermion hopping between ad-
jacent sites. This will give rise to density fluctuations on each
of those individual sites and thus help to stabilize an arbi-
trary but finite average value of the phaseshfij over finite
length and time scales. In this way the localized bosons and
fermion pairs acquire itinerancy35–37 that eventually leads to
a superfluid state in both subsystems,38 provided that the
effect of the local correlations between the bosons and the
fermion pairs can be sufficiently diminished, but remaining
still sufficiently strong to guarantee the formation of pairing
in the fermionic subsystem. Achieved or not this situation
will depend on the relative importance of the local exchange
coupling versus the fermion hopping rate(given by the ratio

g/ t), as well as on the concentration of the bosons as shown
by exact diagonalization study39 on finite-size clusters of this
BFM.

What we shall attempt in the present study is to describe
this physics in terms of an effective action for the phase and
amplitude fields of the bosonic fields. In order to achieve this
we shall put the discussion on a level that is more familiar,
namely, that one of Josephson junction arrays and Bose-
Hubbard models. For that purpose let us briefly sketch the
analogy that exists(up to a certain point) between the BFM
and those systems that have been widely discussed in the
literature. A physically possible realization of this BFM sce-
nario can be imagined in the form of a network of supercon-
ducting grains embedded in a metallic environment and
where the only mechanism of interaction between the grains
and the fermionic background is that of Andreev reflections.
Via such a mechanism an electron(hole) is reflected on the
grain as a hole(electron) leaving behind a surplus of two
holes(electrons) in the fermionic subsystem and of two elec-
trons(holes) in the grain. If the grains are such that they have
a large charging energy, the fluctuations of the number of
pairs on them are energetically unfavorable and hence are
largely suppressed. We then have a situation where the state
of the grains switches essentially between zero to double
occupancy with respect to the average occupation, any time
an electron(hole) is reflected at the interface of the grain.
Thus, the quantum dynamics of the single grain can be di-
rectly represented by a pseudospin1

2, in order to account for
the doublets that represent the two possible states of the
grains.

For such a possible experimental setup, the effective sites
in the BFM have to be considered as defining a regular array
of grains and having the same periodicity as the underlying
lattice on which the fermions move with a hopping ampli-
tude t. Moreover the size of the grains has to be such that it
is much smaller than the distance between them. A pictorial
view of such an experimental setup is given in Fig. 1. The
analogy between the BFM and the array of superconducting
grains, which scatter pairs of fermions in a metallic matrix
via Andreev-like reflections, may ultimately serve as an ex-
perimental device on which to test and analyze the theoreti-
cal issues that will be discussed in this paper.

III. PATH-INTEGRAL REPRESENTATION: DERIVATION
OF THE EFFECTIVE ACTION

A. Generalities

Let us now construct an effective action, which describes
the BFM, with the aim to extract the dynamical properties of
the low-energy degrees of freedom of the phase and ampli-
tude modes for the bosons and fermion pairs. We start by
expressing the partition function in terms of a coherent-state
path-integral representation,40 where the fermionic part is
formulated by means of the usual Grassmann variables and
the bosonic part is described by a pseudospin-coherent state
representation:40,41

Z = p
i
E DuiDfiDC̄iDCie

−AfC̄i,Ci,ui,fig, s2d

where
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AfC̄i,Ci,ui,fig =E dto
i

fiss1 − cosuid]tfi + sDB

− 2mdcosuig + o
ki j l

C̄ jstdGij
−1Cistd. s3d

t denotes the imaginary Matsubara time variable and a
Nambu spinor representation for the Grassmann variables,
related to that of the original fermionic operators by

C̄i= Sci↑
c̄i↓

D Ci = sc̄i↑ ci↓d . s4d

The pseudospin is described by a bosonic field that, in
spherical coordinates, is given by si
=sssin ui cosfi ,sin uisin fi ,cosuid (see Fig. 2). ui de-
scribes the polar angle of the vectorsi with respect to the
north pole of thez axis, while fi is the azimuthal angle,
which defines the angular position of the basal plane projec-
tion of this vector. The first term of the actionA is the Wess-
Zumino term,41,42 ensuring the correct quantization of the
quantum-pseudospin variable. For any path, parametrized by
fstd and ustd, the contribution of this term is equal toi s
times the surface area of the sphere between this path and the
north pole. For closed paths this has exactly the form of the
Berry phase.43 The second term is linked to the density of the
bosonsnBstd through the cosustd dependence of the pseu-
dospin. Finally, the last contribution of the action contains
the coupling between the fermionic and bosonic subsystem
through the Green’s functionGij , determined by

SK1 L

L* K2
D Gijst − t8d = dst − t8d , s5d

where K1=s−]t+mddi j + tij , K2=s−]t−mddi j − tij , and L
=g sin uistdei fistddi j , L* being the conjugate field ofL. Inte-
grating out the fermionic part, one obtains the action in terms
of, exclusively, the bosonic fields

A = − Tr ln G−1 +E dto
i

fis„1 − cosuistd…]tfistd + sDB

− 2mdcosuistdg, s6d

where the trace has to be carried out over all internal as well
as space-time indices.

Up to this point no approximation has been made in the
derivation of the action that describes the coupling between
the bosonic and fermionic degrees of freedom. It is important
to note that the variation of the bosonic variableustd de-
scribes both the density fluctuations of the bosonic sub-
system(via the projection of the pseudospin vector on thez
axis, i.e., cosustd, being the longitudinal component) and
the amplitude fluctuations of the fermionic pair field[via the
transverse part as projection of the pseudospin vector onto
the basal plane, i.e. sinustd] (see Fig. 2). The variablefstd
determines the rotational degrees of freedom of the pseu-
dospin vector, expressing its phase dynamics.

For extracting the relevant terms that control the low-
energy dynamics of the coupled phase and amplitude modes
and performing an expansion, which is meaningful in terms
of the phase variable, it is judicious to take the following
steps:(i) gauge away the phase dependence from the termL
that permits one to separate the trace into a part that does not
depend on the phase of the bosonic field and another part that
contains only spatial and time variations offistd,44 and (ii )
rewrite the termL after the gauge transformation, as a sum of
two pieces, one not dependent on time(which is linked to the
average density of bosons) and another term containing the
fluctuations with respect to its mean value.

FIG. 1. (a) Schematic 1D representation of the BFM on a lattice
(top and side views). The bosonic and fermionic particles move on
two different arrays having the same periodicity; the fermions are
indicated by circles and the bosons by squares on the respective
arrays.(b) The single site configurations for the pseudospin and
fermionic variables.

FIG. 2. Spherical representation of the pseudospins including
the Berry phase factor for one possible trajectoryG. The Berry
phase term is expfisrs1−cosfugd]f /]tg=eisA, whereA is the area
of the surface enclosed in the trajectoryG. The black part indicates
the differential portion of the surface on the sphere taken with re-
spect to the north pole.
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The first operation is performed by applying to the opera-
tors under the trace the rotationUi =ei fistds3/2, wheresi de-
note the Pauli matrices. Hence,

Tr ln G−1 = Tr ln UG̃−1U−1 = Tr lnG̃−1, s7d

where

G̃ij
−1 = H− ]ts0 + F i

2
]tfistd − mGs3 + g sin uistds1Jdi j

+ tije
iffistd−f jstdgs3/2. s8d

Since the bosonic density is fixed in average, we now
separate the part that depends on the polar angle in a time-
independent contribution and its time-dependent correction.
That is, the term sinuistd is decomposed into its average
value ksin uil (which is determined by fixing the density of
bosons due to the spherical constraint) plus a time-dependent
contribution l(ustd) which contains the fluctuations around
its average value(Fig. 3) as follows:

sin uistd = ksin uil + l„ustd…. s9d

Thus this local field, due to the constraint, will describe
both the time-dependent variation of the density as well as of
the pairing amplitude.

Next, let us write the Green’s function in the usual form
as

G̃ij
−1 = G0i j

−1 + Si j s10d

with G0i j

−1=f−]ts0−ms3+ g̃s1gdi j andSi j =Tij +Di +Ki, where

Di =
i

2

] fstd
] t

s3, s11d

Ki = g̃l„ustd…s1, s12d

Tij = tije
−i„fistd−f jstd…s3/2, s13d

g̃ = gksinfugl. s14d

From this point onwardwe shall assume the average den-
sity of bosons to be homogeneously distributedand thus
given by nB= 1

2s1+kcosuld. This implies that the bare cou-
pling g is renormalized tog̃ as a consequence of the spheri-
cal constraint of the pseudospin variable. Moreover, since
ksin ul=Î1−kcosul2 and the density of bosons is fixed in
average via a suitable choice of the chemical potential and of
the on-site bosonic energy, one can treat the exchange cou-
pling as an external boson-density tunable parameter. The
variation in theu variable is then simply related to the varia-
tion of the bosonic density such that ifu varies in the range
f0,pg thennB varies in the interval[0,1].

Before expanding the trace, let us write down explicitly
the expression of the zero-order Green’s function, as it will
be frequently used in the following steps:

G0i

abstd =
1

b
o
vn

G0i

absvndexpf− i vn tg s15d

with

G0i

absvnd= 1
− ivn + m

vn
2 + v0

2

Îv0
2 − m2

vn
2 + v0

2

Îv0
2 − m2

vn
2 + v0

2

− ivn − m

vn
2 + v0

2
2 s16d

and where we introducedv0= g̃.

B. Second-order loop expansion

We now evaluate the contribution of the self-energySi j to
the effective action. This is done in the usual way by making
a loop expansion in the trace.44 We shall construct that ex-
pansion up to second order in the time and space derivatives
of the phase variable and in the terms that contain both the
fluctuations of the density and the amplitude. For that pur-
pose we use the standard identity

Tr lnG̃−1 = Tr lnfG0
−1 + Sg = Tr lnG0

−1 + Tr lnf1 + G0Sg
s17d

and then expand the second term of this expression up to
second order inS, such as to keep all the contributions up to
quadratic order in the gradient of the phase. This gives

Tr lnG̃−1 > Tr lnG0
−1 + TrfG0Sg − 1

2TrfG0Sg2. s18d

The first term of this expression is just a constant and does
not contribute to the dynamics. In the second term

TrfG0Sg = TrfG0Tg + TrfG0Dg + TrfG0Kg s19d

the only parts different from zero areTrfG0iKig and
TrfG0iDig. TrfG0iTijg gives no contribution once one makes
the trace over the site indices.TrfG0iDig introduces a contri-
bution that is proportional to the chemical potential multi-
plied by the time derivative of the phase,im]tf. We will
see below that this contribution describes an effectiveoffset
charge(in terms of the terminology of a similar Josephson

FIG. 3. Representation of a possible path for the local pseu-
dospin motion. The fieldlfustdg indicates the undulation of the
pseudospin vector along the polar direction as it arises from the
fluctuations of the average boson densityskcosuld and of the pair-
ing amplitudesksin uld, while it precesses around thez axis due to
the time evolution of the phase variable(fstd).

SUPERCONDUCTOR-INSULATOR TRANSITION DRIVEN… PHYSICAL REVIEW B 70, 104509(2004)

104509-5



junction array scenario), which arises from the total fermi-
onic and bosonic static-density distribution via their depen-
dence on the chemical potential.TrfG0iKig describes the low-
est order fluctuations of the bosonic(fermion pair) density
due to the presence of the spontaneous pair and/or hole cre-
ation out of the condensate. Its direct evaluation gives a con-
tribution

A1 =E dt1dt2Trps„G0ist1,t2dKist2,t1d… s20d

whereTrps represents the trace over the internal pseudospin
index. With Kist2,t1d=Kist1ddst1−t2d and integrating over
the Matsubara times gives

A1 =E dtTrps„G0is0dKistd… = 2gG0i

12s0d E dtl„ustd… =

−
g tanhfbv0g

v0
E dtl„ustd…, s21d

or in a compact form

A1 = E1E dtl„ustd…

E1 = −
g tanhfbv0g

v0
. s22d

Let us next come to the evaluation of the terms that con-
tribute to the quadratic order in this loop expansion of the
trace. The parts that are nonzero in these terms are the fol-
lowing:

A2 = TrfG0i Ki G0i Dig,

A3 = TrfG0i Ki G0i Kig,

A4 = TrfG0i Di G0i Dig,

A5 = TrfG0i Tij G0j Tjig. s23d

The termA2 contains processes where the fermionic back-
ground locally couples at different times to the fluctuations
of the bosonic density and to the phase fluctuations

A2 = TrfG0 i Ki G0 i Dig =E dt1dt2TrpsfG0 ist1

− t2dKist2dG0 ist2 − t1dDist1dg. s24d

Since G0ist1−t2d depends exclusively on the time differ-
ences, we introduce the new variablest=st1−t2d /2 andh
=st1+t2d /2, after which the integral over the Matsubara time
variables becomes

A2 = 1
2 E dtdhTrpsfG0istdKish − tdG0is− tdDist + hdg.

s25d

As we are interested in the gradient expansion in the bosonic
phase and density, related tofstd andustd, we keep only the

lowest order in their time derivatives. This is done by con-
sidering the expansion of the productKish−tdDist−hd
aroundt=0 in order to separate the parts that depend exclu-
sively on the local variable of the Green’s function and those
that are linked to the phase and density fluctuations. The
expansion then reads as follows:

Kish − tdDish + td . KishdDishd + tF−
] Kishd

] h
Dishd

+
] Dishd

] h
KishdG + Ost2d s26d

Due to the symmetry of the Green’s functions(even for t
→−t), the linear contribution of the series expansion of
Kish−tdDist−hd cancels in the effective action after inte-
grating over the time. Hence, to the lowest order one obtains,

A2 =
1

2
E dtdhTrps„G0istdKishdG0is− tdDishd…

=
g

2
E dtfG0i

12stdG0i

11s− td + G0i

11stdG0i

12s− td

− G0i

22stdG0i

12s− td − G0i

12stdG0i

22s− tdg

3E dh
i

2

] fshd
] h

l„ushd… s27d

or in a compact form,

A2 = E2E dh i
] fshd

] h
l„ushd…, s28d

where the coefficientE2, after integrating over the Matsubara
time, is given by

E2 =
g̃2

4

msb v0 − sinhfb v0gd
v0

3s1 + coshfb v0gd
. s29d

Let us next consider the termA3, which expresses the
coupling of the fermionic field to the fluctuations of bosonic
density at different times. In order to extract the lowest-order
gradient contributions, we follow the same procedure as that
just used above, giving us

A3 = 1
2 E dt dhTrpsfG0istdKish − tdG0is− tdKist + hdg.

s30d

Performing again the expansion in time up to quadratic order
in the time derivatives ofKistd, we have

Kish − tdKish + td . Kishd2 + t2F−
] Kishd

] h
2

+
]2Kishd

] h2 KishdG .

and hence can rewriteA3 in the following way:
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A3 = 1
2 E dt dhTrpsfG0istdKishdG0is− tdKishdg

+E dt dh t2TrpsFG0istd
] Kishd

] h
G0is− td

] Kishd
] h

G .

s31d

Carrying out the trace over the internal indices gives

Trps„G0istdKishdG0is− tdKishd… = fG0i

22stdG0i

11s− td

+ 2 G0i

12stdG0i

12s− td + G0i

11stdG0i

22s− tdgfg̃2l„ushd…2g

s32d

so that

A3 = E3aE dh l„ushd…2 − E3bE dh
] l„ushd…

] h
2. s33d

By evaluating the integrals over the Matsubara times we ob-
tain

E3a =
g̃2

2

bv0g̃
2 + m2sinhfbv0g

v0
3s1 + coshfb v0gd

E3b =
g̃2

2 Hsechfsbv0/2dg2s− 6bm2v0 + b3s− m2v0
3 + v0

5d
24v0

5

+
s6m2sinhfbv0gd

24v0
5 J . s34d

Applying the same procedure for the evaluation ofA4
(which has the same functional form asA3 but involving the
coupling between the fermionic degrees of freedom and the
phase velocity at different time) one gets an analogous ex-
pression, providing we discard terms of higher order in the
derivatives thanf(]fstd) /]tg2

A4 .
1

2
E dt dhTrps„G0istdDishdG0s− tdDishd…

=
1

8
C0E dhX ] fshd

] h
C2

. s35d

Here

C0 =E dth− fG0i

11stdG0i

11s− td − 2 G0i

12stdG0i

12s− td

+ G0i

22stdG0i

22s− tdgj, s36d

which after evaluating the integration over the Matsubara
times gives,

C0 =
sechfsbv0/2dg2sbm2v0 + v0

2sinhfbv0gd
2v0

3 . s37d

Finally, we come to the evaluation of the last termA5,
which involves the coupling between phase fluctuations on
different sites and the process of single particle hopping.
This contribution will yield terms that are quadratic in the
time derivative of the phase(charging like, in the terminol-

ogy of a similar Josepson junction array scenario) and, more-
over, will generate an effective hopping-induced intersite
phase coupling that turns out to be similar to the Josepshon
coupling in arrays of superconducting grains.

Considering again the lowest-order gradient expansion
contributions we have

A5 = TrfG0i Tij G0j Tjig .
1

2
E dt dhTrps

3HG0istdTijshdG0js− tdTjishd−t2

3FG0istd
] Tijshd

] h
G0js− td

] Tijshd
] h

GJ
= P1 + P2 s38d

The termsP1,2 are given by

P1 = − tij
2 E dt „G0i

12stdG0i

12s− td…E dh cosffishd − f jshdg

P2 = −
tij
2

8
E dt t2fG0 i

11stdG0 j
11 s− td

+ G0 i
22stdG0 j

22 s− tdg E dhF ] fishd
] h

−
] f jshd

] h
G2

.

s39d

By carrying out the integration over the Matsubara times one
obtains for the hopping-induced intersite amplitude and
phase coupling

P1 = EJE dh cosffishd − f jshdg

EJ =
tij
2 g̃2s− bv0sechfbv0/2g2 + 2 tanhfbv0/2gd

8v0
3 . s40d

Similarly, by calculating the coefficient of the termP2,
one obtains the strength of amutual capacitanceterm (in the
terminology of a similar Josephson junction array scenario)
for neighboring effective sites

P2 =
1

8
C1E dhF ] fishd

] h
−

] f jshd
] h

G2

C1 = − tij
2E

−b/2

b/2

dt t2fGi
11stdGi

11s− td + Gi
22stdGi

22s− tdg

= − tij
2Fexpfbv0gs− 6bg̃2v0 + b3v0

3sm2 + v0
2d

12s1 + expfbv0gd2v0
5

+
s6g̃2sinhfbv0gd

12s1 + expfbv0gd2v0
5G . s41d

The final effective action is then given by the sum of all
the terms evaluated above that are grouped together in form
of three different contributions:
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S=E dtfSf + Sf−u + Sug. s42d

Sf, Su, Sf−u are the contributions arising from, exclusively,
(i) the phase dynamics,(ii ) the fluctuations of the bosonic
density and of the amplitudelfug, and(iii ) the coupling be-
tween them. They are given by

Sf = o
i

1

8
sC0 + zC1dS ] fistd

] t
D2

− o
ki,jl
F1

8
C1

] fistd
] t

] f jstd
] t

+ EJ cosffistd − f jstdgG + io
i

m
] fstd

] t
,

Su = o
i
HE1l„uistd… + E3al„uistd…2 − E3bF ] l„uistd…

] t
G2J ,

Sf−u = o
i
Hi s

] fistd
] t

f1 − cos„uistd…g + i E2
] fistd

] t
l„uistd…J .

s43d

We expand the Berry phase contribution(the first term in
Sf−u) up to second order inl(ustd) and subsequently redefine

this field as l(ustd)=a+ l̄(ustd), with the time-independent
constanta chosen in such a way as to eliminate the terms

linear in l̄ in the the actionSu, i.e., a=−sE1/2E3ad. We then
find two contributions to the action that are linear in
]fstd /]t: one that is time independent and can be absorbed
into the chemical potential and another one that is quadratic

in l̄(ustd). With this, Sf−u can be rewritten as follows:

Sf−u = o
i

i
] fistd

] t
fqi + q̄istdg, s44d

qi = m/g + 1 −nB, s45d

where we have rescaled the chemical potential and intro-
duced the local offset-charge variableqi that sets the average
number of particles on the island made up by the bosonic and
fermionic sites, whileq̄istd describes the time-dependent
fluctuations of the local offset-charge and to the lowest the

order is a function ofl̄(ustd) and l̄(ustd)2.
The effective action thus constructed for the BFM[Eqs.

(42) and(43)] is a generalization of that for Josephson junc-
tion arrays with self and nearest-neighborcapacitance, Jo-
sephsoncoupling, andoffset chargeterms. The action for the
BFM goes beyond that for such Josephson junction arrays in
the following respects. We have extra terms that control the
dynamics of the amplitude modes given bySu and an intrin-
sic Berry phase term that gives rise to a direct phase-
amplitude coupling[Eq. (45)], where the dynamical ampli-
tude fluctuations would correspond to a time-dependent
offset chargeterm in an analogous Josephson junction array
picture. Finally, the Berry phase term, being an intrinsic to-
pological term, results in a Magnus force on vortices, as will
be discussed in Sec. V.

If one considers just the linear part of the coupling

between the time derivative of the phase and the time-
dependent boson density or amplitude-fluctuating field to-

gether with the Gaussian part of the fieldl̄(uistd), the relative
action would have the following structure:

S8 =E dtF ] l̄„uistd…
] t

G2

+ va
2 l̄„uistd…2 + la

] fistd
] t

l̄„uistd…,

s46d

whereva is the frequency of the normal mode oscillation for

the bosonic fieldl̄(uistd) andl is the constant controlling the
coupling between the phase velocity and the amplitude of the

bosonic field. By integrating out thel̄(uistd) mode, the effec-
tive action acquires a form with local correlations of the
phase velocity at different times,45 that is

Sef f8 =E dtdt8Kst − t8dS ] fistd
] t

−
] fist8d

] t8
D2

, s47d

and where the form of the kernelKst−t8d depends on the
frequencyva in the following way:

Kstd =
1

b
o
ivn

Ksivnde−ivnt,

Ksivnd =
la

2

2

vn
2

vn
2 + va

2 . s48d

This term correlates the phase velocity at different times
and, indirectly, the phase variable. It is similar, except for the
t dependence of the kernel, to the case studied in Ref. 23,
where it has been shown to load to a different universality
class for the superconductor-insulator transition. In the
present case, it is the feedback of the boson density fluctua-
tions that induce nonlocal time correlations in the local phase
velocity that can eventually give rise to such features upon
approaching the SIT boundary. An analysis on this issue is in
progress and will be discussed elsewhere.

IV. THE SUPERCONDUCTOR-INSULATOR PHASE
BOUNDARY

In a very preliminary attempt to analyze the stability re-
gion of long-range phase superconducting coherence, let us
now examine the effective action[Eqs.(42) and (43)] upon
restricting ourselves to the phase-only part of it. This implies
a SIT driven by a competition between the phase coherence
induced by pair hopping andthe charging effectdue to the
local boson density(or, equivalently, pair-field amplitude)
fluctuations and the single-particle intersite processes. Within
this framework our study is equivalent to that of Josephson
junction arrays, except that the effective coupling constants
entering in such an action depend in a highly nontrivial way
on the parameters that characterize the original BFM Hamil-
tonian. This, as we shall see, will lead to features concerning
the phase diagram with a SIT for the BFM when we examine
it in terms of the boson-fermion exchange couplingg/ t, the
total density, and the boson concentrationnB.
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We determine the phase diagram by means of the so-
called coarse-graining approximation, which has been suc-
cessfully applied for this kind of problem and which permits
one to capture the relevant qualitative and quantitative fea-
tures of such a Josephson junction arraylike action.46,47 It is
known for such systems that, as a consequence of the uncer-
tainty relation between the phasefi and the total pair num-
ber operatorQi = i ] /]fi, the system can switch from a phase-
ordered to a disordered state. The essential part of this study
will concern how the relevant parameters of the BFM-
Hamiltonian influence the equivalent amplitudes of the Jo-
sephson coupling, thecapacitance, and theoffset charge
terms.

Let us stress the subtle role played by the particle number
in controlling the onset of the superfluid phase coherence.
Once the total density per sitentot=nf +2nb is fixed, i.e., as-
signing a definite value to the offset chargeqi, the relative
concentration of bosons and fermion pairs has to adjust to
this constraint. In other words, it is possible to fix the total
density and tune the average density of bosons with respect
to that of the fermion pairs. This control of the relative con-
centration of bosons and fermion pairs can be achieved by
suitably changing the parameterDB, which acts like an ex-
ternal field for the boson density. Alternatively it is possible
to change the total charge, made up by the sum of boson and
fermion pairs on the local island, by varying the value of the
offset chargeqi.

Our final goal is to show how a transition between a su-
perconductor and a Mott insulator emerges out of the com-
petition between the Josephson and charging energy, as a
function of the above-mentioned parameters. Since we shall
neglect the long-range part of the charging term, the Mott
insulating state has an excitation gap for adding or removing
bosons(fermion pairs) but does not have any breaking of the
translational symmetry. There are three parameters that can
be independently controlled and are relevant for the compe-
tition between charging and Josephson energy; that isntot,
nB, andg/ t. We shall show how the superconductor to Mott
insulator transition can be tuned by considering all the physi-
cally realizable conditions in order to investigate the role
played by each of the above-mentioned parameters.

Exploring the possible microscopic realizations at zero
temperature, by fixing the total average concentration and the
bosonic one, one finds that the variation of the ratio between
the Josephson coupling energyEJ and thecharging energy
EC=Cii

−1/2, which controls the phase-density interplay, in-
creases from zero, goes through a maximum, and then de-
creases to zero with growingg/ t. Alternatively, if one fixes
the couplingg/ t and the total concentration by varying the
density of the bosons, one is able to control the effective
coupling g̃=2gÎnBsnB−1d that appears inEJ and Cij . It is
thus immediately evident that in the BFM scenario there is a
nontrivial interplay between the renormalization of the Jo-
sephson coupling and the charging effect. If one goes to the
limit of empty snB=0d and full bosonic occupationsnB=1d,
the effective couplingg̃→0, and the critical temperature,
consequently, reduces to zero. Furthermore, by changing the
total charge on the island, it is possible to go toward configu-
rations with charge frustration so that the superfluid state is
always favored for any finite value of the couplingg/ t.

The general form of the action we then have to examine is
given by

Sphase=E
0

b

o
i

i
] fistd

] t
qi − EJo

i j

ai j cos„fistd − f jstd…

+ o
i,j

1

8

] fistd
] t

Cij
] f jstd

] t
. s49d

The first term describes the effect of a staticoffset charge qi
and, as said before, takes into account the amplitude of the
total charge on the island given by both the bosons and the
fermion pairs. The second term contains the physics of the
pair-hopping processes and an analog of the Josephson tun-
neling processes, and has a coupling strengthEJ with ai j
=1 if si , jd are nearest-neighbors and zero otherwise. Finally,
the third term describes thecharging term arising from the
local exchange of boson and fermion pairs and from quasi-
particle hopping between nearest-neighbor sites. The
strength of thischarging-type interaction is given byCij
=sC0+zC1ddi,j −C1op di,i+p, which represents an effective
generalcapacitancematrix, with the vectorp running over
the nearest-neighbors.C0 denotes the self-capacitance
and C1 the mutual capacitance(z being the coordination
number).

In order to extract the phase diagram we now make use of
the coarse-graining approximation.46 The main idea of this
approach is to introduce a Hubbard-Stratonovich auxiliary
field that is conjugate to the average ofkeifil and plays the
role of an order parameter for the transition from a supercon-
ducting to an insulating state. Since the phase transition has a
continuous character, one can expand the action in powers of
the auxiliary field and determine the occurrence of phase
coherence by looking at the coefficients of the quadratic term
in the limit of long wavelengths and zero frequency.

We briefly sketch the main steps of such an approximation
and adapt it to the present scenario of the BFM. The partition
function for Sphase is given by the sum of all the possible
paths of the phase variables in the imaginary time and in the
real space

Z =Ep
i

Dfi expFE
0

b

o
i

− i
] fistd

] t
qi + EJo

i j

ai j cos„fistd

− f jstd… −
1

8o
i j

] fistd
] t

Cij
] f jstd

] t G .

To perform the Hubbard-Stratonovich transformation, one
rewrites the Josephson coupling term as
sEJ/2doi j expfifigai j expfif jg and then, by using the usual
Gaussian identity, introduces an auxiliary fieldcistd. The
partition functionZ then becomes

Z =Ep
i

Dci
*DciDfi expHE

0

b

dtFS− 2

EJ
Do

i j

ci
*ai j

−1c jGJ
3expHE

0

b

dtFo
i

i
] fistd

] t
qi − o

i

scie
ifi − ci

*e−ifid

− o
i,j

1

8o
i j

] fistd
] t

Cij
] f jstd

] t GJ . s50d
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Starting from this effective action for the auxiliary field,
we perform an expansion up to second order inc and thus
derive a Ginzburg-Landau-type free-energy functional that
permits us to determine the boundary line between the super-
conducting and the insulating states. The corresponding ef-
fective action for these auxiliary fieldsc ,c*

Sc = lnFEp
i

Dfi expSE
0

b

dtHo
i

i
] fistd

] t
qi

− o
i

fcistdeifistd − ci
*stde−ifistdg

− o
i,j

1

8

] fistd
] t

Cij
] f jstd

] t JDG s51d

when expanded to second order is given by

Sc =E
0

b

dtdt8xi jst,t8dci
*stdc jstd + Osc4d. s52d

xi jst,t8d = keiffistd−f jstd8gl0 s53d

denotes the two-time phase correlator, which is equal to the
second derivative ofSc with respect to the auxiliary fieldc
and its conjugate at different time and space positions, evalu-
ated around their zero values. By performing the functional
derivation, one gets the following expression for it:

xi jst,t8d =
E pi

Dfie
iffistd−f jstd8gexpf− S0g

E pi
Dfi expf− S0g

s54d

with S0 being the part of the action which contains exclu-
sively thechargingcontributions, i.e.,

S0 = expFE
0

b

dto
i

i
] fistd

] t
qi − o

i,j

1

8

] fistd
] t

Cij
] f jstd

] t G .

s55d

According to the scheme outlined above, we now develop
the partition functionZ up to second order in the auxiliary
fields, thus putting it into a familiar form

Z =Ep
i

Dci
*Dcie

−Fc s56d

with

Fc =E
0

b

dtdt8o
i j

ci
*stdfai jdst − t8d − xi jst,t8dgcist8d.

s57d

The determination of the conditions for the boundary line
between the superconducting and the insulating phase then
reduces to the explicit evaluation ofxi jst ,t8d. The result for
that has been first obtained in Ref. 47, and we sketch below
the main steps of this derivation.

In determiningxi jst ,t8d it is essential to treat the phase
variablefi in a compact form. In order to separate the imagi-

nary time evolution of the phase into a periodic partf̄istd
and an nonperiodic part, one introduces the following param-
etrization:

fistd = f̄istd +
2pnit

b
s58d

with f̄is0d=f̄isbd and ni being an integer that counts how
many times the phase winds over an angle that is a multiple
of 2p.

The use of such a relation allows one to express the sum
over all fi as an integration overf̄i plus a sum over all the
possible integer values of the winding numberni. After per-
forming a number of suitable algebraic operations,47 one
ends up with the following expression for the two-time phase
correlator:

xi jstd = di j

expf− 2Cii
−1utug

ohnij
expf− oi j

2bCij
−1NiNjg

3o
hnij

expf− o
i j

2bCij
−1NiNj − o

k

4Cik
−1Nktg,

s59d

whereNi =qi +ni. This two-time phase correlator is local in
space and its time dependence follows an exponential behav-
ior, if one assumes that the staticoffset charge qi has a dis-
tribution that is homogeneous in space.

Having obtained the expression for the local two-time
phase correlator in the time and space representation, we can
now express the effective Ginzburg-Landau free-energy
functional in the Fourier space in the following way:

Fc =
1

bLo
n,k

ck
*svndfak

−1 − xksvndgcksvnd. s60d

Expanding the inverse matrixai j
−1 in the form ak

−1=s1/zd
+k2sa2/z2d+..., this free-energy functional finally is written
as

Fc =
1

bLo
k,n
F 2

zEJ
− x0 + ak2 + bvn

2 + ilvn + ...Gucksvndu2,

s61d

whereb andl are the coefficients of the expansion ofxksvnd
around the limitvn=0.

The transition line is then given by the condition that the
coefficient of the quadratic term vanishes in the limit of van-
ishing k andv, that is,

1 −
zEJ

2
x0s0d = 0. s62d

For a quantitative analysis, one has to determine the ex-
plicit zero-frequency limit of the two-time phase correlator.
As mentioned above, the inclusion of the time-dependent
offset chargecoming from the fluctuations of the bosonic
density can modify the low-frequency behavior of the local
phase correlations. Such a feature will be addressed in a
future study.
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In order to gain insight into the underlying physics at play
here we evaluate the two-time phase correlator in the limit of
a purely localcapacitance(the so-calledself-charginglimit ),
by keeping only the on-site part in the original structure of
thecapacitancematrix. Under those conditions the two time
phase correlator at finite frequency is given by

xiisvnd =
1

Z0
o
hnij

FfNigF 1

Cii
−1 − sivn − 4Cii

−1Nid2G−1

s63d

with FfNig=expf−oi 2bCii
−1Ni

2g andZ0=ohnij
FfNig.

With these expressions, one can finally cast Eq.(62) in the
form

1 −
zEJ

4EC

on

expf− 4bECsn + qd2g
1 − 4sn + qd2

om
expf− 4ECbsm+ qd2g

= 0, s64d

expressed in terms of theJosephson coupling EJ and the
charging energy EC=Cii

−1/2, as given by the Eqs.(37), (40),
and (41).

Given this defining equation for the boundary between the
superconducting and the insulating phases, let us see now
how the intrinsic dependence of the Josephson and charging
energy on the exchange coupling and the density of bosons
manifests itself in the competition between phase and density
degrees of freedom. In the loop expansion given in the Sec.
III, for the BFM we have obtained the amplitude of the in-
tersite phase coupling and thechargingeffect as a function
of temperature, the ratiog/ t, and the bosonic density. It is the
nontrivial dependenceof those coupling constants on the pa-
rameters of the original microscopic Hamiltonian of the
BFM that leads to the interesting features in the competition
between the phase, the boson, and total density. Thus, upon
increasing the pair exchange coupling it is expected that the
Josephsoncoupling is reduced while thechargingenergy is
increased because of the local transfer between fermion pairs
and bosons as well as because of the single particle processes
of fermions between nearest-neighbor sites.

We determine the critical line for the cases(i)–(iii ) men-
tioned above in order to highlight the role played, on the one
hand, by the coupling and, on the other hand, by the boson
density and the total average concentration. In Fig. 4, we
illustrate the transition lineTf, separating a phase coherent
state from a phase-disordered one, as a function of the cou-
pling strength and the effective boson densitynB. The evo-
lution of the transition line is nonmonotonic as a function of
g/ t and goes through a maximum atgmax, t. The quantum
critical point, where the SIT occurs, is given bygcrit ,2t.
The critical behavior close to the transition is that of aXY
model ind+1 dimensions.

More interesting still is the behavior ofTf as a function of
the nB. The variation ofTf is qualitatively different for the
different parameter regimes:(a) the weak coupling case for
g,gmax, (b) the intermediate one withgmax,g,gcrit, and
(c) the strong coupling limit forg.gcrit (see Fig. 5). Going
from the limit a to c we find that with increasingnB the

critical line decreases to zero, goes through a maximum start-
ing at a finiteTfsnB=1d, and finally shows a SIT at a critical
density.

Let us finally consider the case where the local charge on
the island formed by the bosonic and fermionic site is varied
by tuning the value of the offset chargeqi while keeping the
boson density fixed. Since we are considering only the self-
charging case, the boundary line will again separate a super-
conducting from a homogeneous Mott-like state. As shown
in previous studies on Josephson junction arrays,47–49 the ef-
fect of the offset charge is to induce a charge frustration due
to a degeneracy in the space of configurations, such as to
reduce the effective charging energy and favoring the super-
conductivity for an arbitrarily small ratio ofEJ/EC. This is a
consequence of the behavior of the zero-frequency correla-
tion function in Eq.(64), which is dominated at low tempera-
ture by the integer-valued chargen=0 in the sum, that pro-
duces the smallest exponential and becomes infinitely large
approaching the limitq=1/2 due to thedivergence in the

FIG. 4. Phase diagram as a function ofg/ t describing the
boundary between a Mott-insulating(MI ) state with homogeneous
charge distribution and a superconducting(SC) phase with long-
range phase coherence for the case of fully symmetric limit, i.e.,
total density is given by one pair in average for site(DB=0,nF↑
=nF↓=2nB=1).

FIG. 5. Phase boundary lines between the superconducting(SC)
and Mott-insulating(MI ) state at different values of the coupling
and upon varying the average density of bosons, keeping fixed the
total average density to one pair for site. Solid, dotted, and dashed
lines stand for values of the coupling constants for whichg,gmax,
g.g.gmax, andgcrit .gcrit, respectively.
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denominator of expf−4bECsn+qd2g / f1−4sn+qd2g. This cor-
responds to an effective renormalization of the ratio between
EJ/EC, which tends to favor the superconducting phase by
shrinking the Mott insulator region as one tunes the total
density toward the limitq=1/2.

V. ROLE OF BERRY PHASE TERM: AN INTRINSIC
MAGNUS FORCE ON VORTICES

In Sec. IV we have analyzed the basic physics resulting
from the effective action by neglecting(i) the influence of
any feedback between the density and amplitude fluctuations
(included in the fieldlfuig) on the phase dynamics, and(ii )
the contribution from the Berry phase term, responsible for
the correct quantization of the pseudospin variable, which is
given by the integral over all the possible paths ofiss1
−cosfuigd]tfi. In this section, we discuss the consequences
of the presence of such a Berry phase term in the case where
the phase action has a vortex solution. The existence of a
vortex solution is assured for 2D systems where the phase
correlations are described by aXY-type dynamics. We shall
show here that the Berry phase term will produce an intrinsic
Magnus Force on the vortex, which is analogous to the Lor-
entz force for a charged particle, whose effective magnetic
field depends on the spatial distribution of theu field. Using
the correspondence with the bosonic pseudospin variable,
this implies a relation with the spatial-density distribution of
the bosons. The Magnus force has been widely discussed in
the context of normal BCS-type superconductors, where it
has been shown that it arises from the Berry phase caused by
the adiabatic motion of a vortex along a closed loop coming
back to its starting position.50 The adiabatic vortex motion on
a loop in the superconducting state turns out to be affected
by an effective magnetic field generated by the supercurrent
arising from the gradient of the phase that encircles such a
vortex. In the BFM scenario discussed here, we find that on
top of the usual contribution due to the superfluid electrons,
there is an intrinsic Berry phase term that will generate such
a Magnus force and which has an intensity proportional to
2nB−1, wherenB is the bosonic density. This Magnus force,
arising solely from the quantum nature of the pseudospin
variable, is clearly independent on any superconducting state
and does not require a coherent superfluid current induced by
the presence of the vortex itself. Moreover, sincenB can be
controlled externally, one has the possibility to tune the
strength of the effective magnetic field acting on the vortex,
and hence to alter its dynamical properties. This will result in
a possible measurable effect on transport coefficients, such
as the Hall coefficient, resistance, etc.

To be more explicit and following the procedures used in
different approaches treating with the Magnus force problem,
let us assume that one has a vortex centered at the positionR.
Let us furthermore consider that we are in the continuum and
at zero temperature so that the Berry phase term in the La-
grangian now readsLB=ed2r cosfusr ,tdg]tfsr ,td. The contri-
butions linear in]tfsr ,td and having time-independent coef-
ficients do not contribute to the dynamics. Moreover, since
we consider that the phasef and the variableu are linked to
a vortex solution centering atR, it is judicious to introduce a

new relative variabler −R, which defines the intrinsic posi-
tion dependence of the variables with respect to the vortex
center.

Starting from the above-mentioned expression for the La-
grangianLB and making a simple change in the time deriva-
tive we can rewrite it in the following form:

LB E d2r cosfusr − R,tdg]tfsr − R,td s65d

=
dR

dt
E d2r cosfusr − R,tdg¹rfsr − R,td. s66d

At this point, one recognizes that the termed2r cosfusr
−R,tdg¹rfsr −R,td plays the role of an effective vector po-
tential AB and dR /dt represents the velocity of the vortex.
This Lagrangian is thus equivalent to that of a charged par-
ticle in presence of an effective magnetic field in thez direc-
tion given by B= = 3A. B hence creates a Magnus force
FM =−sdR /dt3 ẑd2p cosfu0g which is transverse and pro-
portional to the vortex velocity and whose strength is linked
to the magnitude of this effective magnetic fieldBz
=−2p cosfu0g. Its magnitude is given by the asymptotic
value of the background bosonic density at large distance
cosfu0g for r →`.

In case of a 2D superconductor described by the BFM
scenario, the usual effective magnetic field −2prs arising
from the supercurrent of the electrons circling the vortex has
thus to be supplemented by the above-mentioned contribu-
tion B (intrinsic to such a scenario) and permits one, in prin-
ciple, to modulate the total Magnus force upon changing the
density of the bosons. Clearly, a full description of such an
eventuality, which is beyond the scope of the present analy-
sis, has to be studied in more detail and has to include the
derivation of the effective action in the presence of the mag-
netic field such as to determine the superfluid density of the
electronsrs.

At this stage we simply want to point out that the sign of
the magnetic field arising from the Berry phase term in the
action of the BFM changes if one tunes the bosonic density
to between zero and unity. In terms of the variable cosfug this
implies a variation in the rangef−1,1g. In other words, the
sign of the intrinsic Berry phase-induced Magnus force will
change atnB=1/2 when going from the limit of small den-
sity of bosons to high density. This extra contribution to the
Magnus force has to be added of course to the conventional
one known for standard superconductors.

VI. COMPARISON WITH NEGATIVE-U AND BOSE-
HUBBARD MODELS

A frequently asked question concerns the qualitative dif-
ferences that exist between the BFM and similar scenarios,
such as the negative-U Hubbard model, and pure bosonic
systems, such as the Bose-Hubbard model and Josephson
junction arrays.

Let us start with a comparison of the BFM and the
negative-U Hubbard model, which has been studied in a
great variety of different approaches and discussed especially
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in connection with the BCS-BEC crossover. The main issue
of such a comparison is the occurrence or not of a quantum
critical point in the negative-U Hubbard scenario at a finite
value of the couplingU, which introduces the pairing among
the electrons. As we have shown in this paper, in the BFM
there exists a critical value for the exchange couplingg/ t
responsible for the pairing in the fermionic subsystem above
which the system undergoes a SIT. We have seen that within
a path-integral formalism, one can extract an effective action
describing such a transition as being primarily due to the
interplay between thelocal quantum pair exchange(between
a boson and a fermion pair) and thenonlocal intersite pair
hopping leading to a phase dynamics originating from the
itinerancy of the fermions. Due to the nontrivial dependence
of the strength of these two competing mechanisms on the
microscopic parameters of the BFM, there occurs a SIT for a
finite density as well as finite exchange couplingg/ t. For the
negative-U Hubbard scenario this is not the case and the SIT
does not occur at any finite value of the ratioU / t.51 This
model merely describes a continuous crossover between a
BCS superconductor and a BEC of tightly bound electron
pairs as U is increased from 0 tò.

In order to better understand this difference between the
BFM and the negative-U Hubbard model, let us consider two
scenarios in equivalent situations, i.e., the half-filled band
case for the negative-U Hubbard model and the fully sym-
metric case for the BFM(with the bosonic level lying in the
middle of the fermionic band such that both the fermionic
band as well as the bosonic level are half occupied). We then
address the question how, in the strong coupling limit, the
pair hopping is generated out of the basic configurations of
states and processes that contribute in this regime.

For the case of the negative-U Hubbard model with fer-
mions interacting via a local attractive potential, the ground-
state wave function in the limit ofU→` and at half filling is
highly degenerate and is composed of all the possible con-
figurations comprising equal distribution of zero and doubly
occupied site. In this limit, one can perform a mapping of
this model on the hard-core boson model described by the
Hamiltonian

HU = − o
ki j l

2tij
2

U
bi

+bj + o
ki j l

2tij
2

U
ninj − m̃o

i

ni . s67d

bi
+sbid andni =bi

+bi stand for the creation(destruction) opera-
tors of hard-core bosonic particles(tightly bound electron
pairs) and for their density operator, respectively. Due to the
presence of a coupling, which is isotropic both in the boson
hopping and in the charge interacting channel, one has a
superconducting state for any finite value of the ratioU / t,
and possibly a supersolid phase due to the symmetry of the
charging interactions characterized by a coexistence of diag-
onal and off-diagonal long-range order. This implies that the
quantum critical point is strictly pushed toU→`.

In the BFM the phase space in the largeg/ t limit is com-
pletely different. In the fully symmetric case of this model
[corresponding to a total density equal twice the number of
sites sntot=2d], the ground-state configuration is given by a

wave function where all the bosons are strongly coupled with
pairs of fermions, thus resulting in a product state of local
bonding states

uc0l = p
i

1
Î2

sri
+ + ti

+du0l. s68d

This wave function can be viewed as a ferromagnetic Ising-
type state in the sense that it is made up of a ferro-type
bonding order and is not degenerate with respect to all the
other possible local configurations. Moreover, by construc-
tion it contains bonding-bonding correlations on a long range
(bonding solid), but has a zero-phase correlation length. The
latter can be shown by evaluating the static correlation func-
tion for the bosons or, equivalently, the fermion pairs, which
gives kc0uri

+r juc0l=0 and kc0uti
+t juc0l=0 for any distance

ui − j u.
Next, let us consider the low-energy configurations that

are mixed into such ag/ t=` ground state when the kinetic
energy operatorHt=oiÞ j ,s tijscis

+ cjs+H.c.d is switched on.
Applying Ht to uc0l, there will occur states that are separated
by an energy gap with respect touc0l. The low-energy states
to be considered as the relevant quantum mixed configura-
tions are of a nonbonding nature, such asCis

+ u0l=cis
+ u0l and

Sis
+ u0l=ri

+cis
+ u0l. In order to construct those states, let us be-

gin by considering a local excitation on two adjacent sitesi , j
given by Sis

+ Cj−s
+ u0l in the background of bonding states.

This configuration can be seen as a ferro-type order inter-
rupted by two domain walls of a nonbonding nature. Now let
us consider the dynamics of such objects and under which
conditions they can be rendered itinerant in a way that leaves
the number of bonding configurations unchanged. The prob-
lem is thus analogous to that of domain wall dynamics in an
Ising-type system. It so happens(a detailed discussion of this
is beyond the scope of the present study and will be given at
a later stage elsewhere) that the local degeneracy of the non-
bonding states will be removed by the action of the kinetic
term. In this way it induces a global lowering of their exci-
tation energy due to the dispersion of each domain wall,
which is of the form

EDWskd = 1
2fek + 6g ± Îsek − 2gd2 + 4t2g, s69d

and where«skd=−2zt cosk. Only after the condensation of
the domain wall-like excitations in the presence of the
bonding-state background one can meet the conditions for
setting up long-range boson and fermion-pair phase correla-
tions.

This simple sketch of the nature of the excitations in the
BFM implies that the onset of phase coherence cannot be
activated for an arbitrarily small hopping amplitude because
one has to overcome the energy gap between the ground state
and the manifold of nonbonding states, which is of the order
of ,2g. As we can see from the expression for the dispersion
of the domain walls, this is achieved whenEDWskd becomes
zero for k=0, i.e., wheng/ t= 1

4s2+Î2+4z2d. For z=2 this
givesg/ t,2.0, which determines when those defectlike ex-
citations become gapless and thus induce a proliferation
within the background of the bonding states. It is worth
pointing out that this value for the critical exchange coupling
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matches rather well the value obtained from our functional
integral approach discussed in this paper(see Fig. 3).

The picture that hence emerges for the BFM is very simi-
lar to that of aXY model in a transverse field. There, the
hopping term is responsible of theXY dynamics, while the
local boson-fermion pair exchange provides the role of the
effective transverse field. This itself is already a strong indi-
cation that this model is of a different nature from that of the
negative-U Hubbard scenario, for which we know that it is,
on the contrary, akin to an isotropic Heisenberg model.

A further essential difference between the BFM and the
negative-U Hubbard model can be seen from their respective
path-integral formulations. When the path-integral represen-
tation is considered for this model,52 the first step is to make
use of a Hubbard-Stratonovich transformation to rewrite the
quartic interaction term in a bilinear form, where the fermi-
onic operators are now coupled to random auxiliary fields.
Limiting oneself to purely superconducting order, the usual
procedure for manipulating such a bilinear action is to sepa-
rate the complex auxiliary field into its modulus and a pure
phase part before performing an expansion around the
saddle-point solution for the amplitude of this auxiliary field.
This way of proceeding allows one then to extract an effec-
tive action for the slow phase dynamics. This is distinctly
different from the functional integral representation for the
BFM, which we have presented above and where from the
very beginning and throughout such a procedure the fermi-
onic pair fields are coupled to physically real bosonic modes
that have their own proper dynamics. As we have seen in
Sec. III, the bosonic part of the action is treated within a
coherent pseudospin representation where the dynamics of
the pseudospin are parametrized by the time dependence of
the spherical variables. The role of the dynamics within the
spherical representation of the bosonic field and of the Berry
phase term(which is a consequence of the quantum interfer-
ence in the local pseudospin space) is a distinct feature of
this BFM and presents specific differences with respect to
the negative-U model. Such differences imply, in particular,
that in the BFM case one has feedback effects between the
amplitude and the phase fluctuations, which are totally ab-
sent in an equivalent description of the negative-U Hubbard
model. Such features are important because of intrinsic dis-
sipation effects that eventually can change the nature of the
transition and possibly are relevant for the emergence of a
‘bosonic metal’ in proximity of the SIT, a feature which
seems to be outside the framework of the negative-U Hub-
bard model.

Let us conclude this comparison of the BFM with similar
models with a brief discussion on the Bose-Hubbard model
and Josephson junction arrays. The main aspect that emerges
as a common denominator in all those models, at least as far
as the phenomenon of the SIT is concerned, is that the
mechanism responsible for the degrading of the phase coher-
ence is analogous and originates from the competition be-
tween the phase and charge degrees of freedom. In the Bose-
Hubbard model this manifests itself as a competition
between the boson hopping and their charge repulsion, while
in the Josephson junction array scenario it appears as an
interplay between the Josephson tunneling amplitude and the
charging energy.

In spite of this, initial similarity between the BFM and
those scenarios, we would like to stress that in a system
where the dynamics is described by the BFM scenario, the
interplay between the phase and amplitude fluctuations is
intrinsically related to the coupling between the fermionic
and bosonic degrees of freedom. This introduces amplitudes
of the different processes at work in the form of a nontrivial
dependence on the microscopic parameters of the starting
Hamiltonian. Furthermore, as we have seen in the above dis-
cussion of the effective action of the BFM, this model con-
tains features that go beyond those that characterize the pure
Josephson-type dynamics to those that arise from the pecu-
liar feedback between the fluctuations of the bosonic density
(or amplitude pair field) and fluctuations of the phase. Last
not least, the appearance of an intrinsic Berry phase term in
the BFM scenario together with the effect of dissipation due
to the fermionic dynamics can give rise to an unconventional
phenomenology when topological phases play a role, and
especially in the presence of vortices.

VII. CONCLUSION

In this paper we examined the possibility of a
superconductor-insulator transition in a system of localized
bosons and itinerant fermions coupled together via a pair
exchange term. An effective action was derived from such a
microscopic model, which, after integrating out the fermi-
onic fields, could be phrased in terms of amplitude and phase
fluctuations of the bosons. In order to make the presentation
more familiar we discussed the action in a terminology fre-
quently employed in connection with the study of Josephson
junction arrays. We stress that our system does not necessar-
ily imply any charged fermions and bosons.

Considering the phase-only part of the effective action it
is fully equivalent to the quantum-phase model for the Jo-
sephson junction arrays, discussed in terms of:(i) a Joseph-
son couplingterm, (ii ) a charging or capacitanceterm, and
(iii ) an offset chargeterm. Equivalent to that in our scenario
is (i) a boson hopping term,(ii ) a term that takes into account
the reduction in hopping amplitude due to a fluctuating local
boson density arising from the intrinsic on-site exchange
coupling between the bosons and the fermions, and(iii ) a
chemical potential term controlling the total concentration.
In the present study, within already the lowest(phase-only)
approach to the boson-fermion system, is the intricacy of the
dependence of the effective Josephson coupling, the capaci-
tance term, and the offset charge term on the parameters of
the initial Hamiltonian, i.e., the exchange coupling and the
density of bosons. It turns out that already within the phase-
only part of the effective action, a superconductor-to-Mott
insulator transition can be triggered not only by a change in
the exchange coupling, but also by a variation of the boson
density. The latter evidently presents an interest from the
experimental point of view and can possibly be tested in
such transition in optical lattices for ultracold fermi gases
with Feshbach resonance pairing.

Apart from the phase-only part of the effective action we
established the existence of an intrinsic Berry phase term that
arises from the hard-core nature of the bosons and gives rise
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to an additional Magnus force when the system is such that
topological ground-state configurations, such as vortices, are
stabilized. This again should be of potential interest for ex-
periments since, in principle, one can change the sign of the
Magnus force upon changing the density of bosons and thus
change the motion of a vortex from one direction into the
opposite one. These very preliminary results will be dealt
with in greater detail in some future studies.

A further property of the Berry phase term is that it gives
rise to a coupling between phase and amplitude fluctuations
and is hence much more direct and relevant than similar
terms in, for instance, scenarios based on the negative-U
Hubbard model where they occur only at a much higher or-
der in a corresponding loop expansion of the trace in the
effective action. This again merits being investigated in some
detail with the aim to study the retarded in time correlations
introduced by such amplitude-phase coupling and its effect
on the nature of the transition, in view of exploring the pos-
sibility of an intermediary bosonic metallic ground state.

A frequently asked question concerns the differences be-
tween the negative-U Hubbard scenario, mainly studied in
connection with the BCS-BEC cross-over, and the presently
studied boson-fermion model. Far from being able to give a
complete account for the major differences, we found mainly
two aspects that distinguish the physics of these models on a
qualitative and robust level. One is that in the negative-U
Hubbard model a superconductor-insulator transition cannot
take place at any finite coupling U, nor can such a transition
be triggered by the change in particle concentration. The
second point is that the ground states in the strong coupling
limit of the two models are quite different: a highly degen-
erate ground state for the negative-U Hubbard model with
excitations being controlled by an isotropic Heisenberg
model when the hopping term is switched on. Contrary to

that, for the boson fermion model the ground state is nonde-
generate(corresponding to a ferro pseudomagnetic Ising-
type system of singlets formed by bosons and fermion pairs),
which, after switching on the fermion hopping term, gives
rise to propagating domainlike structures. The topological
structures appearing in the ground state might have measur-
able consequences in the transport properties near the
superconductor-insulator transition.

Apart from the more basic features of the model discussed
in this paper, there are a number of very subtle questions that
pose themselves in connection with the nature of the insulat-
ing state. The boundary line of the phase diagram presented
in the paper was determined by considering only the homo-
geneous Mott-insulator phase once the superconducting state
is suppressed. In doing that, we have neglected long-range
charge interactions(which arise when inverting the capaci-
tance matrix) and kept only the local charging energy. We
can expect, as also shown in systems of interacting bosons
with short-range repulsion, that for a total concentration of
about 1/2 pair per site, the long-range charge interaction will
induce breaking of translational symmetry and the formation
of a charge-density wave, possibly allowing for the occur-
rence of supersolid phases. Such eventualities have been
studied both for bosonic models with short-range(first or
next nearest-neighbor sites) repulsion48 as well as for long-
range interaction. The possibility of commensurate charge
distribution, away from the situation of one pair per island,
has been considered.47 Moreover, the competing local and
nonlocal phase correlations, which characterize the BFM,
may give rise to exotic topological phases in the insulating
state. These very subtle questions certainly merit a detailed
analysis. They are beyond the scope of the present paper and
will be addressed in some future work.
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