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Using Gutzwiller-projected wave functions, I estimate the ground-state energy of thet-J model for several
variational states relevant for high-temperature cuprate superconductors. The results indicate that both the
superconducting state and the staggered-flux normal state(proposed for vortex cores) are unstable at low
doping towards antiferromagnetism and towards phase separation. While phase separation in the underdoped
superconducting state may be relevant for the stripe formation mechanism, the results for the normal state
suggest that similar charge inhomogeneities may also appear in vortex cores up to relatively high doping
values.
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After many years of research, the issues of antiferromag-
netism and of phase separation in weakly-doped high-Tc cu-
prates are far from being settled. While it is generally ac-
cepted that short-range antiferromagnetic(AF) correlations
are crucial for the superconductivity in cuprates, it is not
clear whether the long-range antiferromagnetism at very low
doping should be considered as a competing order on equal
footing with the superconductivity or simply as a minor side
effect. The latter point of view is implicitly assumed in the
resonating-valence-bond(RVB) scenario of high-temperature
superconductivity.1 In terms of ground-state properties, the
RVB approach may be recast into the language of variational
Gutzwiller-projected(GP) wave functions.2–4 Recently con-
siderable progress has been reported in describing properties
of high-temperature superconductors with the help of GP
wave functions for the Hubbard model in the strong-coupling
limit.5 Most studies of the GP wave functions neglect the
long-range AF ordering at low doping, and the resulting
phase diagram contains the superconducting phase starting
from zero doping. However, it is very easy to take AF order
into account by explicitly including it in the variational wave
function. Within this approach, the GP wave function for the
t-J model is known to be energetically unstable with respect
to the AF order below the level of doping about 10%(at
J/ t=0.3) (Ref. 6) (see also Ref. 7 for an earlier study).

The phase-separation issue is a much more delicate sub-
ject than antiferromagnetism: it is not decided even at the
level of thet-J model. While the phase separation at largeJ/ t
is well established, different studies do not agree about
whether the phase separation occurs in the physically rel-
evant parameter range(at J/ t,0.3).8–12

In this work I refine the numerical results of Ref. 6 on the
ground-state energy of the superconducting state in presence
of AF order and perform a similar analysis for the staggered-
flux state recently proposed to describe the normal state in
the vortex cores.13,14 For both normal and superconducting
states we find antiferromagnetism and phase separation at
low doping. The phase separation follows from the upward
convexity of the ground-state energy as a function of doping.
Within our approximation, the phase separation persists to
higher dopings than antiferromagnetism. Consequently, the
coexistence of AF order and superconductivity is not realized
as a homogeneous state(at least, for the considered dimen-

sionless parametert /J=3). Instead, at dopings lower than the
phase-separation pointxsep, it is energetically favorable to
split into two phases: the undoped antiferromagnet(with the
long-range AF order but without superconductivity) and the
superconductor with the dopingxsep (without the AF order).
The relative areas of the two domains are fixed by the aver-
age doping, and the actual shape of the domains is deter-
mined by the Coulomb interaction at large distances(ne-
glected at the level of thet-J model). This is the phase-
separation scenario of the stripe formation.15–17 Some
numerical studies suggest an alternative point of view that
stripes appear already in thet-J model without any long-
range interactions.18 The results reported in this paper do not
have any implications on the latter scenario, since I do not
consider here any incommensurate spin-charge-density-wave
states.A priori it is possible that stripe states with energies
lower than the states studied here exist and may also be
constructed variationally by Gutzwiller projection.

Regarding the effect of the long-range Coulomb interac-
tion, I only remark that already nearest-neighbor repulsion
may act to reduce the phase separation. With increasing
nearest-neighbor repulsion, the phase-separation region
shrinks to smaller doping values and practically disappears at
the repulsion strength about 3-4J— approximately equal to
the repulsion strength required to suppress superconductivity.
(Note that nearest-neighbor repulsion may also favor stripe-
like states not considered here.)

Finally, I comment on a similar phase-separation feature
in the staggered-flux normal state proposed recently to de-
scribe the normal state in the vortex core.13,14 The phase
separation in the normal state appears more prominent and
extends to higher doping values than in the superconducting
state. This suggests that charge inhomogeneities(an analog
of stripes) may also appear in the vortex core. However, as
estimated in Ref. 14, the core size should be of order of
several lattice spacings, and large gradients of the order pa-
rameter play an important role in determining the structure of
the core, together with the long-range Coulomb interaction.
Thus the problem of the vortex core structure, even at the
level of optimizing the Gutzwiller-projected wave function,
becomes a very complicated one, and our present analysis of
uniform states is not sufficient for solving it. We note here
that insulating and antiferromagnetic regions in the vortex
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cores have also been predicted in other approaches: in the
SO(5) theory19 and in the unrestricted mean-field analysis.20

In the rest of the paper, I present the details of our nu-
meric analysis of the Gutzwiller-projected wave functions.

The variational wave functions studied in this work are
chosen to minimize the energy of thet-J Hamiltonian

H = PGFo
i j

s− tcia
† cja + h.c. +JsSiSj − 1

4ninjddGPG, s1d

where the sum is taken over the pairs of nearest-neighboring
sitesi and j on the two-dimensional square lattice,ni denotes
the hole density at a given site. Following the usual
Gutzwiller-projection approach, we consider the variational
wave functions of the formCGP=PGC0. Both here and in the
Hamiltonian (1) PG denotes the “double” projection: it
projects out components with doubly occupied sites(the
usual Gutzwiller projection) and further it also fixes the total
number of particles to the required value.C0 is the ground
state of the auxiliary(“mean-field”) BCS Hamiltonian

HBCS= o
i j

s− xi j cia
† cja + Di jsci↑

† cj↓
† − ci↓

† cj↑
† d + h.c.d

+ o
i

s− 1dihsi
z, s2d

where si
z=ci↑

† ci↑−ci↓
† ci↓ is the z-magnetization at sitei. We

start our variational study with the usual nearest-neighbor
d-wave ansatz:xi j =x on nearest-neighbor links,xii =m is the
on-site chemical potential,Di j = ±D, with ± for vertical and
horizontal nearest-neighbor links, respectively. Within this
variational ansatz, the wave function depends on the three
dimensionless parameters:D /x, m /x, andh/x. The param-
eterh represents an artificial staggered magnetic field acting
on spins to produce the long-range AF order. At zero value of
h, the minimization has been performed by many
authors.3–5,14 We further adopt the numbers reported in our
earlier publication Ref. 14. As in that work, we compute the
ground-state energy by the variational Monte Carlo method
(see e.g., Ref. 3 for details of the method), on the square
lattice 22322 with the boundary conditions periodic along
one direction and antiperiodic along the other direction.21

For this system size, the finite-size corrections to the ground-
state energy are estimated to be of the order of the Monte
Carlo statistical errors(about 10−3J per site) [in the
staggered-flux state the finite-size corrections are somewhat
bigger because of the discretization of the Fermi pockets].
The parameter of thet-J model is taken to bet /J=3 through-
out the paper.

To check for an instability with respect to the AF order-
ing, we further minimize the variational energy as a function
of h while keepingD /x andm /x constant(in principle, the
minimization should be performed by varying all the three
parameters simultaneously; we can however check that, in
the vicinity of the energy minimum, the errors from our sim-
plified minimization procedure are negligible). Instead of
characterizing the AF state by the fictitious fieldh, we use a
physically significant quantity, the staggered magnetization.
In Fig. 1 we plot the staggered magnetization in the optimal
wave function as a function of dopingx. We find the insta-

bility towards the AF ordering belowxAF=0.11. So far the
computations repeat those in Ref. 6. Thus obtained values of
staggered magnetization should only be considered as an in-
dication of the antiferromagnetic ordering, and not as good
numerical estimates of the actual staggered magnetization in
the ground state: for example, in the undoped case, the varia-
tional estimate is much higher than the known exact value.22

If we analyze the resulting ground-state energy as a func-
tion of doping, we observe that it is upward convex at low
doping. This implies that at those dopings phase separation
occurs. In Fig. 2 we plot the ground-state energy with the
subtracted linear partE−msepx as a function of doping. The
slope msep of the limiting tangent line gives the chemical
potential at the phase separation point. The point of contact
determines the critical dopingxsep below which the phase
separation occurs. Att /J=3, we estimatexsep=0.13 and
msep=−5.65J (this value ofxsep agrees with the estimates of
Ref. 10).

Note that for the t-J model with t /J=3 we obtain
xsep.xAF, i.e., a uniform admixture of antiferromagnetism in
the superconducting state is always unstable towards phase
separation; the phase separation occurs between the undoped
antiferromagnet and the superconductor at dopingxsep with-
out antiferromagnetism. However, this inequality appears to
be nonuniversal, and could, in principle, be reversed by add-
ing other terms like next-nearest-neighbor hopping or
nearest-neighbor repulsion(see the discussion of nearest-
neighbor repulsion below).

We may further perform the same steps as above for the
“normal” staggered-flux(SF) state proposed to describe vor-
tex cores in the mixed state.13,14The SF state is characterized
by Di j =0, xi j =eiaij for nearest neighborsi and j , xii =m is the
on-site chemical potential. The vector potentialaij produces
a checkerboard pattern of the flux. The value of the flux is a
variational parameter, and the chemical-potential parameter

FIG. 1. Staggered magnetizationM =ks−1disi
zl as a function of

doping at t /J=3 for the superconducting(circles) and staggered-
flux (squares) states. Vertical error bars are of the order of the sym-
bol size. Error bars of the phase transition points are about 0.01
(shown). Our results for the superconducting state agree with those
in Fig. 2 of Ref. 6. The arrow shows the exact valuesM =0.60d of
the staggered magnetization in the undoped Heisenberg
antiferromagnet.
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m is fixed to produce the required doping level.
We first test the SF state for the AF instability and find

that, similarly to the superconducting state, the SF state fa-
vors AF order at very low doping. We find that the corre-
sponding staggered magnetization(also plotted in Fig. 1) is
smaller than in the superconducting state at the same doping.
The critical value of dopingxAF

sSFd is also smaller than in the
superconducting state[we estimatexAF

sSFd=0.08]. Thus antifer-
romagnetism in vortex cores appears at the first glance more
fragile than in the bulk of the superconductor.

However the phase-separation effect in the SF state is
more pronounced than in the superconducting state: we esti-
matexAF

sSFd=0.21— far in the “overdoped” region of the phase
diagram. We summarize our results on the ground-state en-
ergies of different states in Fig. 2(the difference between the
energies of the superconducting and SF states was reported
previously in Ref. 14 as the condensation energy for the
superconducting state). Our results on the phase separation in
the SF state indicate that charge inhomogeneities(similar to
stripes in underdoped cuprates) are likely to form in the vor-
tex cores up to rather high doping values. As in the case with

stripes, the actual structure of inhomogeneities should be de-
termined by the long-range Coulomb interactions. Such in-
homogeneities may play a role in producing the “subgap
state” features observed in the density of states in the STM
experiments.23

As a simplified version of long-range Coulomb interac-
tion, we consider the effect of nearest-neighbor(NN) repul-
sion on the phase separation. The NN repulsion is included
as the additional term in the Hamiltonian(1), HV=Voi jninj,
where the sum is taken over all NN pairs of sites[ni denotes
the hole density, as before;V is the repulsion strength in
addition to the attraction −J/4 already present in the Hamil-
tonian (1)]. If we neglect the interaction between holes,HV
might be thought to scale asx2 with dopingx. Then a small
repulsion energyV might be already sufficient to change the
convexity of the total energy as a function of doping and
hence to suppress phase separation. In reality, in the super-
conducting antiferromagnetic state at small doping, the at-
traction between holes is quite strong, and scaling ofHV with
doping is closer tox than tox2. In Figs. 3(a) and 3(b) we plot
the nearest-neighbor correlation functionkninjl normalized
by x and byx2, respectively(at V=0).

FIG. 2. Energies of different GP wave functions with linear part subtractedsE−msepxd as a function of dopingx. The five different
variational wave functions are compared(optimized in energy within each class): superconducting without antiferromagnetism(solid circles,
solid line), superconducting with antiferromagnetism(empty circles, dashed line), staggered-flux without antiferromagnetism(solid squares,
solid line), staggered-flux with antiferromagnetism(empty squares, dashed line), and zero-flux(projected Fermi sea, empty diamonds, dotted
line). Left panel(a) shows energies in the absence of NN repulsionsV=0d, with msep=−5.65. Right panel(b) corresponds toV=4J, with
msep=−4.85 [NN repulsion is included at the perturbation level via(3)]. The energies are in the units ofJ per lattice site. Error bars are
smaller than the symbol size. For comparison, the arrow in panel(a) shows the exact ground-state energy in the undoped casesE=
−0.669Jd (Ref. 22).

FIG. 3. Nearest-neighbor correlation of the
hole densitykninjl as a function of doping for the
same wave functions as in Fig. 2(a) (at V=0).
Panel(a) shows nearest-neighbor correlation di-
vided by the average hole densityx, and in panel
(b) the same correlation is divided byx2.
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To roughly estimate the effect of NN repulsion, we ap-
proximate the ground-state energy with repulsion as

Esxd = E0sxd + 2Vkninjl, s3d

where E0sxd is the variational ground-state energy without
repulsion, and the average is taken over the variational
ground state without repulsion. In this approximation, we
can estimate the repulsion strength necessary to reverse the
convexity of the ground-state energyEsxd. With increasing
the NN repulsion strengthV, the upward convexity of the
ground-state energy diminishes, and the phase-separation
point xsep shifts towards smaller doping(both in the super-
conducting and the SF states). At the same time, the super-
conductivity gets also strongly reduced(at least in its present
nearest-neighbord-wave ansatz), with the superconducting
transition point shifting to smaller doping. The antiferromag-
netism at finite doping is also reduced, but not so strongly as
the superconductivity.

With increasing the NN repulsion strengthV, the phase
separation eventually becomes undetectable within our nu-
merical errors atV,3–4J. At the same time, at the repulsion
strength of about 4J, our superconducting wave function
loses the energy competition to the staggered-flux one: the
price of nearest-neighbor holes overweighs the energy gain
from the superconductivity. It is possible however that at
such strong NN repulsion another superconducting ansatz
(e.g., involving next-nearest-neighbor pairing) would be
more energetically favorable(search for such states goes be-
yond the scope of the present paper). We illustrate the effect
of NN repulsion in Fig. 2(b), where the marginal situation is
shown: the superconducting state is nearly equal in energy to
the SF state atV=4J [with NN repulsion taken into account
only to the lowest order in the perturbation theory(3)]. Note

that our numerical results show a rather flat doping depen-
dence of the ground-state energy at very low doping, and this
leaves unresolved the issue of whether phase separation at
infinitesimally small doping may survive arbitrarily strong
NN repulsion. Of course, the above treatment of the hole
interaction is only a rough estimate. As suggested in Ref. 24,
the variational wave function may be further improved by
including additional Jastrow-type factors. Such a modifica-
tion of the wave function apparently affects the hole-hole
correlations,24 and may therefore be important for a proper
assessment of the effects of the hole-hole interaction.

The variational study reported in this paper should be
taken with care when applied to actual cuprate superconduct-
ors: the phase-separation effect in the superconducting state
is weak, and many additional factors may change the picture
outlined here.25 However, I believe that some qualitative
conclusions may withstand small perturbations of the model:
(1) staggered-flux state is more disposed to phase separation
than the superconducting state. This may produce charge in-
homogeneities inside the vortex cores;(2) antiferromagnetic
ordering at low doping enhances phase separation(this may
be a general property of phase separation in doped Mott in-
sulators, see, e.g., Ref. 26, and references therein); (3) both
in the staggered-flux state and in the superconducting state,
the long-range antiferromagnetic ordering occurs only at low
doping(below,0.1). Thus static AF order in vortex cores,27

if confirmed, possibly indicates regions with reduced hole
concentration.
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