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We present a second-order Green-function theory of the one- and two-dimensionalS=1/2 ferromagnet in a
magnetic field based on a decoupling of three-spin operator products, where vertex parameters are introduced
and determined by exact relations. The transverse and longitudinal spin correlation functions and thermody-
namic properties(magnetization, isothermal magnetic susceptibility, specific heat) are calculated self-
consistently at arbitrary temperatures and fields. In addition, exact diagonalizations on finite lattices and, in the
one-dimensional case, exact calculations by the Bethe-ansatz method for the quantum transfer matrix are
performed. A good agreement of the Green-function theory with the exact data, with recent quantum Monte
Carlo results, and with the spin polarization of an=1 quantum Hall ferromagnet is obtained. The field
dependences of the position and height of the maximum in the temperature dependence of the susceptibility are
found to fit well to power laws, which are critically analyzed in relation to the recently discussed behavior in
Landau’s theory. As revealed by the spin correlation functions and the specific heat at low fields, our theory
provides an improved description of magnetic short-range order as compared with the random phase approxi-
mation. In one dimension and at very low fields, two maxima in the temperature dependence of the specific
heat are found. The Bethe-ansatz data for the field dependences of the position and height of the low-
temperature maximum are described by power laws. At higher fields in one and two dimensions, the tempera-
ture of the specific heat maximum linearly increases with the field.
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I. INTRODUCTION

In the theory of low-dimensional magnetism the essential
role of quantum and thermal fluctuations, especially in the
description of magnetic short-range order(SRO) at arbitrary
temperatures, is of basic interest. Whereas for Heisenberg
antiferromagnets the interplay of low dimensionality and
quantum fluctuations is important already atT=0, in ferro-
magnets quantum fluctuations occur at nonzero temperatures
only. The study of low-dimensional quantum ferromagnets in
a magnetic field was motivated by the progress in the syn-
thesis of materials, such as then=1 quantum Hall
ferromagnets,1 which may be described by an effective
two-dimensional (2D) S=1/2 Heisenberg model,2–4 the
quasi-2D ferromagnetic insulators A2CuF4 sA=K, Csd,5,6

La2BaCuO5,
5 and Rb2CrCl4,

7 the quasi-1D organic ferro-
magnetp-NPNN sC13H16N3O4d,8 and the quasi-1D copper
salt TMCuCfsCH3d4NCuCl3g.9

The 2DS=1/2 ferromagnet in a field was investigated by
Green-function decouplings of first order,10 i.e., by the ran-
dom phase approximation(RPA)11 and the Callen
decoupling,12 by Schwinger boson theories,2,3 and by quan-
tum Monte Carlo (QMC) simulations.3,4 Thereby, the
magnetization2–4,10and the spin lattice relaxation rate2,4 were
calculated. The 1D ferromagnet was studied by the Bethe-
ansatz method, where some exact data for the zero-field mag-
netic susceptibility and specific heat13 as well as for the mag-

netization and correlation length were given.14 Recently, in
the 1D model a power law for the shift of the temperature of
the susceptibility maximum with the field was reported and
argued from Landau’s theory to appear in the 2D model,
too.15 Therefore, a detailed analysis of the thermodynamic
quantities of the 1D and 2D Heisenberg ferromagnets as
functions of temperature and field is of interest, also for com-
parison with experiments.

We consider theS=1/2 Heisenberg model

H = −
J

2o
ki,jl

SiSj − ho
i

Si
z. s1d

[ki , jl denote nearest-neighbor(NN) sites; throughout we set
J=1] along a chain and on a square lattice. To provide an
improved description of SRO and of the thermodynamics
(magnetization, magnetic susceptibility, specific heat) as
compared with the standard approaches,10 we go one step
beyond the first-order Green-function decouplings. To this
end, we adapt the Green-function projection method dealing
with second time derivatives of spin operators outlined in
Refs. 16 and 17. Furthermore, we perform exact finite-lattice
diagonalizations(ED) on a N=16 chain and aN=434
square lattice using periodic boundary conditions.

The exact Bethe-ansatz results for the 1D case are ob-
tained from an eigenvalue analysis of the quantum transfer
matrix of the Heisenberg chain, a concept that is also the
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basis of the work reported in Ref. 14. Here, unlike the treat-
ment in Ref. 14, we perform this analysis by solving a cer-
tain set of nonlinear integral equations to be found for in-
stance in Ref. 18. These integral equations were analyzed in
the literature extensively for the antiferromagnetic Heisen-
berg chain. The ferromagnetic case satisfies the same set of
equations with just a sign change in the temperature depen-
dent term. Despite this rather minor change in the analytical
formulation the numerical treatment of these equations is
rather different from the antiferromagnetic case. The iterative
treatment is plagued by slow convergence, in particular for
low fields and low temperatures. A numerically much better
conditioned formulation can be derived by combining the
methods of Refs. 18 and 19. Details of these calculations will
be given elsewhere. Our results are in perfect agreement with
those of Refs. 13 and 14 if available.

II. GREEN-FUNCTION THEORY

To calculate the transverse and longitudinal spin correla-
tion functions we determine the two-time retarded commuta-
tor Green functionsGq

nmsvd=kkSq
n ;S−q

m llv snm= +−,zzd by
the projection method, where we neglect the self-energy.16,17

Taking into account the breaking of spin-rotational symmetry
by the magnetic field we choose, as for the XXZ model,17 the

two-operator basissSq
+, iṠq

+d andsSq
z , iṠq

zd. To approximate the

time evolution of the spin operators −S̈q
+ and −S̈q

z, we take the
site representation and decouple the products of three spin

operators in −S̈i
+ and −S̈i

z along NN sequenceski , j , ll intro-
ducing vertex parametersanm in the spirit of the scheme
proposed in Refs. 17 and 20,

Si
+Sj

+Sl
− = a+−kSj

+Sl
−lSi

+ + a+−kSi
+Sl

−lSj
+, s2d

Si
zSj

+Sl
− = azzkSj

+Sl
−lSi

z. s3d

Here, following the investigation of the ferromagnet at
h=0,20 the dependence on the relative site positions of the
vertex parameters(cf. Ref. 16) is neglected. We obtain

− S̈q
+ = fsvq

+−d2 − h2gSq
+ + 2hiṠq

+, s4d

− S̈q
z = svq

zzd2Sq
z, s5d

with

svq
+−d2 =

z

2
s1 − gqdhD+− + 2za+−C10s1 − gqdj, s6d

D+− = 1 + 2a+−hsz− 2dC11 + C20 − sz+ 1dC10j; s7d

svq
zzd2 =

z

2
s1 − gqdhDzz+ 2zazzC10

+−s1 − gqdj, s8d

Dzz= 1 + 2azzhsz− 2dC11
+− + C20

+− − sz+ 1dC10
+−j, s9d

where Cnm= 1
2Cnm

+− +Cnm
zz , Cnm

mn ;CR
mn=kS0

mSR
n l, R=nex+mey,

gq= 2
zoi=1

z/2 cosqi, andz is the coordination number. This ap-

proximation, Eqs.(4) and(5), is equivalent to the equation of
motion decoupling in second order.20 Finally, we obtain

Gq
+−svd = o

i=1,2

Aqi

v − vqi
; vq1,2= h ± vq

+−, s10d

Gq
zzsvd =

Mq
zz

v2 − svq
zzd2

, s11d

with

Aq1,2= kSzl ±
1

2vq
+−sMq

+− − 2hkSzld. s12d

The first spectral momentsMq
+−=kfiṠq

+,S−q
− gl and Mq

zz

=kfiṠq
z ,S−q

z gl are given by the exact expressions

Mq
+− = 2zC10s1 − gqd + 2hkSzl, s13d

Mq
zz= zC10

+−s1 − gqd. s14d

The spin correlators are calculated asCR
mn= 1

NoqCq
mneiqR with

Cq
mn=kSq

mS−q
n l. By Eqs.(10) and (11) we get

Cq
−+ = o

i=1,2
Aqinsvqid, Cq

zz= C̃q
zz+ Dq

zz, s15d

C̃q
zz=

Mq
zz

2vq
zzf1 + 2nsvq

zzdg, s16d

wherensvd=sev/T−1d−1. As shown in Ref. 21, for the com-
plete determination of correlation functions calculated from
commutator Green functions one has to take into account an
additional term, if the corresponding anticommutator Green
function has a pole atv=0. Here, we have21

Dq
zz= lim

v→0

v

2
Gq

s+dzzsvd. s17d

The equation of motion for the anticommutator Green func-
tion Gq

s+dzzsvd yields Eq. (11) with Mq
zz replaced byMq

s+dzz

+2vCq
zz, whereMq

s+dzz=kfiṠq
z ,S−q

z g+l. By the spectral theorem
for Cq

zz it can be easily verified thatMq
s+dzz=0. Thus, Eq.(17)

with vq=0
zz =0 yields

Dq
zz= Cq

zzdq,0 = o
R

CR
zzdq,0. s18d

From Eqs.(15) and (18) we haveC̃q=0
zz =0. By the relation

1

N

]kSzl
]h

=
1

TS 1

N
o
R

CR
zz− kSzl2D , s19d

following from the first and second derivatives of the parti-
tion function with respect toh, in the thermodynamic limit
we finally obtain

CR
zz=

1

N
o

qsÞ0d
C̃q

zzeiqR + kSzl2. s20d

Note that the transverse correlator has no additional term,
i.e., Dq

−+=0, because ofvq=0;1,2=hÞ0.
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The magnetization per site,m=−2mBkSzl, is calculated as

kSzl =
1

2
− C0

−+. s21d

From kSzl the isothermal magnetic susceptibilityx=4mB
2xS

with xS=]kSzl /]h may be derived.
To complete our scheme, the two vertex parameters

anmsT,hd have to be determined. To this end, we use the sum
rule C0

zz=1/4 and theexact representation of the internal
energy per siteu=kHl /N in terms ofGq

+−svd,21 i.e.,

−
z

2
sC10

+− + C10
zzd − hkSzl

= −
z

8
−

h

2
−

1

2N
o
q
E

−`

` dv

2p
s«q + vdIm Gq

+−svdnsvd,

s22d

where«q=zs1−gqd+h/2. Thus, we have a closed system of
equations for nine quantitiesskSzl ,C10

mn ,C11
mn ,C20

mn ,azz,a+−d to
be determined self-consistently as functions of temperature
and field. As may be easily seen, atT=0 the exact results
kSzl=1/2, CR

zz=1/4, andCR
−+=0 are reproduced.

In the caseh=0 the spin-rotational symmetry, implying
kSzl=0 and CR

+−=2CR
zz, is preserved by our scheme with

a+−=azz;a, and the theory reduces to that of Refs. 20 and
22.

It is of interest to compare our results with the RPA11

which employs the decouplingiṠq
+=vqSq

+ and yields

Gq
+−svd =

2kSzl
v − vq

, vq = zkSzls1 − gqd + h, s23d

1

kSzl
=

2

N
o
q

coth
vq

2T
. s24d

Note that the longitudinal correlation functions cannot be
obtained by such a simple decoupling, except forC10

zz which
may be calculated in RPA by Eqs.(22) and (23).

At h=0, in Ref. 23 the RPA was extended to the disor-
dered phase, i.e., toT.0 for 1D and 2D ferromagnets
(Mermin-Wagner theorem). Introducing the ratio l
=limh→0 h/zkSzl, by Eq. (24) with cothvq/2T=2T/vq, l is
calculated from

1

N
o
q

1

1 − gq + l
=

z

4T
. s25d

The zero-field susceptibility is given byxSsh=0d=szld−1.

III. RESULTS AND DISCUSSION

A. Magnetization

Considering the magnetization of the chain, in Fig. 1(a)
the analytical and ED results as well as our Bethe-ansatz
solution are plotted and compared with the RPA results. Let
us emphasize the excellent agreement of our theory for the

chain with the ED and Bethe-ansatz data over the whole
temperature and field regions. For the 1D ferromagnet the
RPA turns out to be a remarkably good approximation for
kSzl. In the inset the magnetization at low fields is depicted,
since the low-field behavior of the specific heat turned out to
be of particular interest(see below). Note that the experi-
mental accessibility to the magnetic field strengthsB corre-
sponding to a givenh value may be checked from the rela-
tion h=0.116BfTg /JfmeVg. Considering, e.g., the quasi-1D
ferromagnet TMCuC withJ=2.6 meV,9 the valueh=0.05
corresponds to the magnetic fieldB.1 T. In Fig. 1(b) our
result for the 2D ferromagnet, together with the QMC data
for a 32332 system, are shown. Comparing the ED with the
QMC results, the finite-size effects are seen to be largest for
low fields and at intermediate temperatures(cf. Ref. 4); for
large fieldssh*0.4d they become small. Furthermore, as can
be seen in Fig. 1, the finite-size effects in the 2D model are
more pronounced than in the 1D model. This may be due to
the smaller linear extension of the 2D system as compared
with the chain of an equal number of spins. In two dimen-
sions, at low fieldssh&0.3d the result of our theory is some-
what worse than that of the RPA, although we have included

FIG. 1. Magnetization of the 1D(a) and 2D (b) Heisenberg
ferromagnet in magnetic fields of strengthsh=1.0, 0.8, 0.6, 0.4, and
0.1, from top to bottom, as obtained by the Green-function theory
(solid), the ED (s), and the Bethe-ansatz method(j), compared
with RPA results(dotted) and QMC data(P, Ref. 4). The inset
shows the low-field magnetization of the 1D model ath=0.05 and
0.005 from top to bottom.
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additional spin correlations. This behavior is analogous to
the results for the magnetization in Ref. 10, where the RPA is
found to be closer to the QMC data than the Callen decou-
pling. For higher fieldssh*0.3d this tendency is reversed,
i.e., our magnetization curves lie slightly below the RPA
curves and closer to the QMC data.

Figure 2 shows the spin polarization of an=1 quantum
Hall ferromagnet measured by magnetoabsorption
spectrosocopy1 in comparison with our theory and QMC
data, whereh=0.32 is taken.3,4 The very good agreement
gives a justification for the use of an effective 2D Heisenberg
model to describe this itinerant ferromagnet. This should be
further confirmed by the comparison of other thermodynamic
quantities(magnetic susceptibility, specific heat) with experi-
mental data which, however, is not yet available.

B. Magnetic susceptibility

Let us consider the isothermal susceptibilityxs
=]kSzl /]h shown in Figs. 3 and 4. Forh=0, xs diverges at
T=0 indicating the ferromagnetic phase transition. In one
dimension[see inset of Fig. 3(a)], the Bethe-ansatz result
limT→0 xsT

2=1/24 (Ref. 13) is reproduced by the spin-
rotation-invariant Green-function theory.22 At low tempera-
tures, the deviation of the ED data, calculated fromxs
=T−1oRCR

zz, is ascribed to finite-size effects. Contrary, the
RPA curve, obtained by Eq.(25) which yields l=Î1+4T2

−1 (Ref. 23), strongly deviates from the exact result. In the
2D system, the zero-field susceptibility(see inset of Fig. 4)
of the rotation-invariant theory corrects the numerical values
given in Ref. 20 and agrees well with the ED result. At
nonzero fields we havexssT=0d=0. Therefore, the suscepti-
bility has a maximum atTm

x , whereTm
x increases andxssTm

x d
decreases with increasing field. In one dimension(Fig. 3),
the good agreement between Green-function theory, Bethe-
ansatz method, and ED corresponds to the results depicted in
Fig. 1(a). The deviation of our theory for the 2D model at
h=0.4 andT&1 from the ED data(Fig. 4) is due to finite-
size effects inkSzl, as can be seen in Fig. 1(b).

Recently, the field dependence of the position of the sus-
ceptibility maximum has been discussed in connection with

experiments on La0.91Mn0.95O3 showing a shift of the maxi-
mum in the temperature derivative of the electrical resistivity
at an applied field according toh2/3 (Ref. 24). Assuming that
this maximum coincides with the maximum in the suscepti-
bility due to spin scattering, the dependenceTm

x shd was in-
vestigated in terms of Landau’s theory, developed for aniso-
tropic systems withTcsh=0dÞ0, which yields Tm

x ~h2/3

(Refs. 15 and 24). Within Landau’s theory Sznajd15 claims
that this power law also holds for isotropic ferromagnets in a
field. Considering, as a further characteristic, the height of
the susceptibility maximumxssTm

x d, Landau’s theory15 yields
xssTm

x d~m−2sTm
x d~h−2/3. In Ref. 15 the isotropic spin chain

was investigated by a real-space renormalization group
method andTm

x ~hg with g=0.696 for 0.1,h,5 was found;
however,xssTm

x d was not calculated.
To analyze the power-law behavior in more detail, the

dependenceTm
x shd is plotted logarithmically in Fig. 5(a) for

hù0.1. Both the results of our theory and the ED data forTm
x

may be well fit to power laws in the 1D(2D) model for
h.0.2 (0.6). The Green-function theory yields

Tm
x = ahg s26d

with

FIG. 2. Magnetization for then=1 quantum Hall ferromagnet
calculated ath=0.32 (solid) in comparison with QMC(P, Ref. 4)
and experimental data(h, Ref. 1).

FIG. 3. Isothermal susceptibility of the 1D ferromagnet at low
fields (a), h=0.005 and 0.05, from top to bottom, and at higher
fields(b), h=0.4, 1.0, and 2.0, from top to bottom, where the Green-
function (solid), ED (s), Bethe-ansatz(j), and the RPA results
(dotted) are shown. In the inset the 1D zero-field susceptibility is
depicted.
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a = H1.088

1.486
J and g = H0.739; 1D

0.620; 2D.
J s27d

The ED results forTm
x (for clarity, the fit of the ED data is not

drawn) deviate only slightly from Eq.(26); in the 1D (2D)
model we obtaina=1.051 (1.460) and g=0.765 (0.643).
Considering the power-law behavior in the low-field region,
the numerically most reliable data are provided by the Bethe-
ansatz solution. For the 1D system athø0.1, the Bethe-
ansatz results are described by Eq.(26) with

a = 0.765 and g = 0.576. s28d

Comparing our results for the 1D model with Ref. 15sg
.0.7d, the g values are in rough agreement, whereas the
absolute values ofTm

x found in Ref. 15 exceed our results by
a factor of about 2.5. The dependence of the maximum po-
sition on the dimensionality could be used for the interpreta-
tion of experimental data.

Our results for the maximum valuexssTm
x d as a function of

h in the same field region as before are plotted in Fig. 5(b).
Again, they may be described by power laws forh.0.2
(0.6) in the 1D(2D) model. From the Green-function theory
we obtain

xSsTm
x d = bhb s29d

with

b = H0.202

0.185
J and b = H− 0.951; 1D

− 0.914; 2D.
J s30d

The ED results for the 1D(2D) model are given byb
=0.206 (0.191) and b=−0.964 s−0.935d. At low fields we
consider, as above, only the Bethe-ansatz solution for the 1D
model which, athø0.1, yields Eq.(29) with

b = 0.208 and b = − 0.952. s31d

Note the remarkable agreement of the Bethe-ansatz results
for the field dependence of the maximum height with the
findings of the theory and the ED data.

The results obtained for the exponentb strongly deviate
from theb value of Landau’s theory,b=−2/3. Moreover, we
get msTm

x d.const. skSzlsTm
x d.0.3d which also contradicts

the law msTm
x d~h1/3. This reflects the fact that Landau’s

theory does not hold for 1D and 2D isotropic ferromagnets,
but is valid only on the assumption of a finite critical tem-
perature ath=0 which, however, is not realized in the 1D
and 2D systems. Therefore, the approximate agreement
of the obtainedg exponents withg=2/3 seems to be
accidental.

C. Specific heat

First let us consider the NN spin correlation functions
entering the internal energy[cf. Eq.(22)], which are depicted
for the 1D and 2D cases in Figs. 6 and 7, respectively. In the
1D model we obtain a very good agreement with the ED
data. On the contrary, the RPA results are unsatisfactory; in
particular, the longitudinal correlators at low fields and tem-
peratures, obtained from the exact representation of the in-
ternal energy, Eq.(22), are negative being incompatible with
the ferromagnetic SRO. In the 2D model at low fields, we
ascribe the deviations of our analytical curves from the ED
data to finite-size effects; in this respect,C10

zz may be consid-
ered in analogy tokSzl [Fig. 1(b)].

FIG. 4. Isothermal susceptibility of the 2D ferromagnet ath
=0.4, 1.0, and 2.0, from top to bottom. The Green-function theory
(solid) is compared with ED data(s) and RPA results(dotted). The
inset shows the 2D inverse zero-field susceptibility.

FIG. 5. Logarithmic plot of the field dependence of the position
(a) and height(b) of the susceptibility maximum obtained by the
Green-function theory(m) and fit to a linear dependence(solid) in
comparison with ED(s) and RPA results(h).
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Figure 8 displays the specific heatC=]u/]T for the 1D
ferromagnet. Ath=0, the temperature dependence of the spe-
cific heat exhibits a broad maximum, where the value of the
maximum position resulting from the Green-function theory,
Tm

Csh=0d.0.45, agrees reasonably well with the exact result
Tm

Csh=0d.0.35 obtained by the Bethe-ansatz and ED meth-
ods. Comparing our ED data ath=0 with those of Ref. 25
agreeing with the Bethe-ansatz results, the additional weak
maximum atT.0.1 has to be ascribed to finite-size effects.
The broad maximum and the strong decrease of the zero-
field specific heat at low temperatures is qualitatively repro-
duced by the Green-function theory, as already shown in Ref.
22. At very low magnetic fields, besides the high-
temperature maximum, a second maximum at low tempera-
tures develops which has not been reported before. The oc-
currence of two maxima in the specific heat is indicated by
our theory, however, at too high fieldss0.03&h&0.07d. In a
detailed Bethe-ansatz analysis, two maxima in the specific
heat are found in the field region 0,h&0.008[see inset of
Fig. 8(a)]. At hù0.008, only one maximum appears. Con-
sidering the low-temperature maximum athø0.01, the po-
sition Tm,1

C and heightCsTm,1
C d are given by the power laws

Tm,1
C = 0.596h0.542, CsTm,1

C d = 0.513h0.228. s32d

Note that the exponent ofTm,1
C nearly agrees with that ofTm

x

given by Eqs.(26) and(28). From the low-field specific heat

it becomes evident again that our theory provides an im-
proved description of SRO, as compared with RPA[cf. Fig.
8(b)] which does not yield a double maximum.

The specific heat for the 2D model is plotted in Fig. 9. We
get a good agreement with the ED results, in particular, as
the position and height of the maximum is concerned. Note
that the small low-temperature bump in the ED data forh
=0.1 is a finite-size effect. The RPA curves at low fields
exhibit a too large maximum height which we ascribe to a
poor description of SRO in RPA(see also Fig. 7).

In the 1D and 2D systems at the fieldsh.0.4 andh.0.1,
respectively, the position of the specific-heat maximum ob-
tained by the Green-function theory may be described by the
linear law

Tm
C = ah+ b s33d

with

a = H0.433

0.463
J and b = H0.310; 1D

0.685; 2D.
J s34d

IV. SUMMARY

In this paper we developed a Green-function theory of the
1D and 2DS=1/2 Heisenberg ferromagnet in a magnetic

FIG. 6. Nearest-neighbor transverse(a) and longitudinal(b) spin
correlation functions of the 1D ferromagnet at the fieldsh=0.1, 0.4,
1.0, and 2.0, from left to right. The Green-function theory(solid) is
compared with ED(s) and RPA results(dotted).

FIG. 7. Nearest-neighbor transverse(a) and longitudinal(b) spin
correlation functions of the 2D ferromagnet at the fieldsh=0.1, 0.4,
1.0, and 2.0, from left to right. The Green-function theory(solid) is
compared with ED(s) and RPA results(dotted).
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field which goes one step further than the RPA. The theory
allows for the calculation of both transverse and longitudinal
spin correlation functions and provides an improved descrip-
tion of magnetic short-range order and of the thermodynam-
ics. Additionally, we performed exact finite-lattice diagonal-
izations on anN=16 chain and a 434 square lattice and

obtained exact Bethe-ansatz results for the Heisenberg chain
from an eigenvalue analysis of the quantum transfer matrix.
Stimulated by recent disscussions we analyzed the field de-
pendence of the maximum in the temperature dependence of
the isothermal magnetic susceptibility. We found power laws
for the position and height of the susceptibility maximum
which are shown not to be related to the predictions of Lan-
dau’s theory. Paying particular attention to the specific heat
of the Heisenberg chain, in a detailed Bethe-ansatz analysis
the existence of two maxima in the temperature dependence
of the specific heat at very low magnetic fields was proven.
The field dependences of the position and height of the low-
temperature maximum obey power laws. Altogether, we ana-
lyzed the effects of dimensionality(1D versus 2D) on all
thermodynamic quantities which may be relevant for the
comparison with experiments.
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