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Green-function theory of the Heisenberg ferromagnet in a magnetic field
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We present a second-order Green-function theory of the one- and two-dimeridivd ferromagnet in a
magnetic field based on a decoupling of three-spin operator products, where vertex parameters are introduced
and determined by exact relations. The transverse and longitudinal spin correlation functions and thermody-
namic properties(magnetization, isothermal magnetic susceptibility, specific )hea¢ calculated self-
consistently at arbitrary temperatures and fields. In addition, exact diagonalizations on finite lattices and, in the
one-dimensional case, exact calculations by the Bethe-ansatz method for the quantum transfer matrix are
performed. A good agreement of the Green-function theory with the exact data, with recent quantum Monte
Carlo results, and with the spin polarization ofva&l quantum Hall ferromagnet is obtained. The field
dependences of the position and height of the maximum in the temperature dependence of the susceptibility are
found to fit well to power laws, which are critically analyzed in relation to the recently discussed behavior in
Landau’s theory. As revealed by the spin correlation functions and the specific heat at low fields, our theory
provides an improved description of magnetic short-range order as compared with the random phase approxi-
mation. In one dimension and at very low fields, two maxima in the temperature dependence of the specific
heat are found. The Bethe-ansatz data for the field dependences of the position and height of the low-
temperature maximum are described by power laws. At higher fields in one and two dimensions, the tempera-
ture of the specific heat maximum linearly increases with the field.
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[. INTRODUCTION netization and correlation length were givérRecently, in
the 1D model a power law for the shift of the temperature of
In the theory of low-dimensional magnetism the essentiathe susceptibility maximum with the field was reported and
role of quantum and thermal fluctuations, especially in theargued from Landau’s theory to appear in the 2D model,
description of magnetic short-range ord8RO) at arbitrary  t00.® Therefore, a detailed analysis of the thermodynamic
temperatures, is of basic interest. Whereas for Heisenbemuantities of the 1D and 2D Heisenberg ferromagnets as
antiferromagnets the interplay of low dimensionality andfunctions of temperature and field is of interest, also for com-
quantum fluctuations is important alreadyTatO, in ferro-  parison with experiments.
magnets quantum fluctuations occur at nonzero temperatures We consider thes=1/2 Heisenberg model
only. The study of low-dimensional quantum ferromagnets in ]
a magnetic field was motivated by the progress in the syn- _ 9 _
thesis of materials, such as the=1 quantum Hall H= 2%8‘81 h; S (1)
ferromagnetd, which may be described by an effective ’
two-dimensional (2D) S=1/2 Heisenberg modéh* the  [(i,]) denote nearest-neighb@N) sites; throughout we set
quasi-2D ferromagnetic insulators ,8uF, (A=K, Cs),*®  j=1] along a chain and on a square lattice. To provide an
La,BaCuQ,®> and RBCrCl,," the quasi-1D organic ferro- improved description of SRO and of the thermodynamics
magnetp-NPNN (C13H;6N30,).2 and the quasi-1D copper (magnetization, magnetic susceptibility, specific heas
salt TMCuQ(CHg),NCuCk].° compared with the standard approacHese go one step
The 2DS=1/2ferromagnet in a field was investigated by beyond the first-order Green-function decouplings. To this
Green-function decouplings of first ordéri.e., by the ran- end, we adapt the Green-function projection method dealing
dom phase approximation(RPA)!! and the Callen with second time derivatives of spin operators outlined in
decouplingt? by Schwinger boson theoriés,and by quan- Refs. 16 and 17. Furthermore, we perform exact finite-lattice
tum Monte Carlo (QMC) simulations>** Thereby, the diagonalizations(ED) on a N=16 chain and aN=4Xx4
magnetizatiofr*1%and the spin lattice relaxation ratewere  square lattice using periodic boundary conditions.
calculated. The 1D ferromagnet was studied by the Bethe- The exact Bethe-ansatz results for the 1D case are ob-
ansatz method, where some exact data for the zero-field matrined from an eigenvalue analysis of the quantum transfer
netic susceptibility and specific héaas well as for the mag- matrix of the Heisenberg chain, a concept that is also the
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basis of the work reported in Ref. 14. Here, unlike the treatproximation, Eqs(4) and(5), is equivalent to the equation of
ment in Ref. 14, we perform this analysis by solving a cer-motion decoupling in second ordrFinally, we obtain
tain set of nonlinear integral equations to be found for in-

stance in Ref. 18. These integral equations were analyzed in Ga—(w) = E i; wg2=h* wé‘, (10)
the literature extensively for the antiferromagnetic Heisen- i=1,2 @0~ Wgj

berg chain. The ferromagnetic case satisfies the same set of

equations with just a sign change in the temperature depen- Mg

dent term. Despite this rather minor change in the analytical Gilw)=——_—, (11)
formulation the numerical treatment of these equations is ” = (f)

rather different from the antiferromagnetic case. The iterativeyith

treatment is plagued by slow convergence, in particular for

low fields and low temperatures. A numerically much better Ag o= (St %(M*‘ - 2(SD). (12)
conditioned formulation can be derived by combining the ' 2wy a

methods of Refs. 18 and 19. Details of these calculations will . e .
be given elsewhere. Our results are in perfect agreement withhe  first spectral  momentM"=([iS;,S,]) and Mg
those of Refs. 13 and 14 if available. =([is;, S ,)) are given by the exact expressions

M= 22Cy(1 - yg) + 20(S), (13
Il. GREEN-FUNCTION THEORY

To calculate the transverse and longitudinal spin correla- MéZ: 2Cjp(1 - Yo)- (14)
tion functions we determine the two-time retarded commutaThe spin correlators are calculated%”:ﬁiqcﬂ”eiqR with
tor Green functionng“(w):«Ss;qu»w (vu=+-,z2 by C’“V:<%LSK ). By Egs.(10) and(11) we get q
the projection method, where we neglect the self-en&igy. a a _

Taking into account the breaking of spin-rotational symmetry Cy'= > Agn(wg), Cy'=Cg*+ Dy, (15)
by the magnetic field we choose, as for the XXZ modehe i=1,2
two-operator basi¢S; ,iS;) and(S;,iS;). To approximate the

. . . ~ MZ*
time evolution of the spin operator§-and -5, we take the _ Ci'= —L[1+2n(w7)], (16)
site representation and decouple the products of three spin 20

operators in § and -5 along NN sequence$, j,I) intro-  wheren(w)=(e*T-1)"%. As shown in Ref. 21, for the com-
ducing vertex parametera” in the spirit of the scheme plete determination of correlation functions calculated from

proposed in Refs. 17 and 20, commutator Green functions one has to take into account an
. b b additional term, if the corresponding anticommutator Green
SSS =a"(§)F +a (ST, (2 function has a pole ab=0. Here, we havd
SEEREECEIEE (3) DF’= lim ~G{"(w). (17)
w—0

Here, following the investigation of the ferromagnet at
h=0,20 the dependence on the relative site positions of thd’he equation of motion for the anticommutator Green func-

vertex parameter&f. Ref. 16 is neglected. We obtain tion Gf;)zz(w) yields Eq.(11) with MZ* replaced bny;)zz
. - +2wC% whereM%=([iSZ, . ].). By the spectral theorem
_E (2 _ 2t Lot q q »>-gl+)- BY
& =[(w;)? - h2IS] + 2NiS, @ for CZit can be easily verified that'""**=0. Thus, Eq(17)

with wéi(,: 0 yields

-§=(097S, (5
= (00, DZ=Ci%,0= > CRdq0. (18)
R

with

From Eqgs.(15) and(18) we have~é§0:0. By the relation

(@)= (1A + 220" Cfl -}, () e
248 ‘(NE CR'- <SZ>2> , (19
R

Noh T
A" =1+2a"{(z-2)Cyy + Cpo— (z+ DCygh; (7

following from the first and second derivatives of the parti-

van_ Z - - tion function with respect tdn, in the thermodynamic limit
(03)" = 5(1 = y{A%*+ 220" Cio(1 - v}, (8 we finally obtain
1 -
+- +— +— C&¥=— sze'qR+ 53 2. 20
A"=1+20(z- CT +Ch - (z+ 1Cigh,  (9) TN, G (20

1 - V__ vV v - .
where C,,=5C+Cit, Chi=CR'=($S:), R=ne,+me,  Note that the transverse correlator has no additional term,
yq=23%4 cosq;, andz is the coordination number. This ap- i.e., D,"=0, because 0.1 ,=h+0.
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The magnetization per site)=—2ug(S), is calculated as

1
<SZ>:E—C5+. (21)

From (S) the isothermal magnetic susceptibilig=4u3xs
with xs=S)/sh may be derived.

To complete our scheme, the two vertex parameters
a”™(T,h) have to be determined. To this end, we use the sum
rule C§’=1/4 and theexact representation of the internal
energy per sitei=(H)/N in terms ofG; (w),*! i.e.,

z .
‘E(Clo"' 10— hS)

zhi

8 2 2N

* d
% L o (g + @M G} (w)n(0),

(22)

wheree,=2z(1-vy,)+h/2. Thus, we have a closed system of
equations for nine quantiti€$S’), Cy,Chy,Chy, a%, a™) to

be determined self-consistently as functions of temperature
and field. As may be easily seen, Bt0 the exact results
($H=1/2,CE=1/4, andC; =0 are reproduced.

In the caseh=0 the spin-rotational symmetry, implying
($H=0 and C§ =2Cg, is preserved by our scheme with
a""=a**= a, and the theory reduces to that of Refs. 20 and
22.

It is of interest to compare our results with the RPA

which employs the decouplin@a:wq% and yields

FIG. 1. Magnetization of the 1@a) and 2D (b) Heisenberg

2 ferromagnet in magnetic fields of strengtis1.0, 0.8, 0.6, 0.4, and
Ga_(w) = v 0g=ZLSHL-yy +h, (23 0.1, from top to bottom, as obtained by the Green-function theory
@~ Wy (solid), the ED(O), and the Bethe-ansatz methd), compared

with RPA results(dotted and QMC data(®, Ref. 4. The inset
shows the low-field magnetization of the 1D modehat0.05 and
0.005 from top to bottom.

1 2 Q)
— == coth—.
(8 N q 2T
Note that the longitudinal correlation functions cannot beCn&in with the ED and Bethe-ansatz data over the whole

: : ; ; temperature and field regions. For the 1D ferromagnet the
obtained by such a simple decoupling, except@ which 9
may be calculated in RPA by Eqe22) and (23). RPA turns out to be a remarkably good approximation for

At h=0. in Ref. 23 the RPA was extended to the disor-<SZ>' In the inset the magnetization at low fields is depicted,
dered phase, i.e., td>0 for 1D and 2D ferromagnets Since the low-field behavior of the specific heat turned out to
(Mermin-Wagner theorejn Introducing the ratio A be of particular interesfsee below. Note that the experi-

=limy,_o h/Z(SD), by Eq.(24) with cothw,/2T=2T/wg, \ is mental accessibility to the magnetic field strengdhsorre-
calcugted from' a @ sponding to a givetn value may be checked from the rela-

tion h=0.11@8[T]/J meV]. Considering, e.g., the quasi-1D
12 1 _z (25 ferromagnet TMCuC with]J=2.6 meV? the valueh=0.05
N% 1-y+\ T corresponds to the magnetic fieB=1 T. In Fig. I(b) our
result for the 2D ferromagnet, together with the QMC data
The zero-field susceptibility is given bys(h=0)=(2\)™. for a 32X 32 system, are shown. Comparing the ED with the
QMC results, the finite-size effects are seen to be largest for
low fields and at intermediate temperatutet Ref. 4); for
IIl. RESULTS AND DISCUSSION large fields(h= 0.4) they become small. Furthermore, as can
be seen in Fig. 1, the finite-size effects in the 2D model are
more pronounced than in the 1D model. This may be due to
Considering the magnetization of the chain, in Fige)l the smaller linear extension of the 2D system as compared
the analytical and ED results as well as our Bethe-ansatwith the chain of an equal number of spins. In two dimen-
solution are plotted and compared with the RPA results. Lesions, at low fieldg¢h=0.3) the result of our theory is some-
us emphasize the excellent agreement of our theory for thehat worse than that of the RPA, although we have included

(24)

q

A. Magnetization
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FIG. 2. Magnetization for the/=1 quantum Hall ferromagnet 0.6

calculated ah=0.32(solid) in comparison with QMO ®, Ref. 4
and experimental dat@l, Ref. 1). 05
additional spin correlations. This behavior is analogous to 0.4
the results for the magnetization in Ref. 10, where the RPAis
found to be closer to the QMC data than the Callen decou- » 03
pling. For higher fieldgh=0.3) this tendency is reversed,
i.e., our magnetization curves lie slightly below the RPA 0.2
curves and closer to the QMC data.

Figure 2 shows the spin polarization ofv&1 quantum 0.1
Hall ferromagnet measured by magnetoabsorption
spectrosocopyin comparison with our theory and QMC 0

data, whereh=0.32 is taker:* The very good agreement

gives a justification for the use of an effective 2D Heisenberg
model to describe this itinerant ferromagnet. This should be FIG. 3. Isothermal susceptibility of the 1D ferromagnet at low
further confirmed by the comparison of other thermodynamidields (&), h=0.005 and 0.05, from top to bottom, and at higher
guantitiesmagnetic susceptibility, specific heatith experi-  fields(b), h=0.4, 1.0, and 2.0, from top to bottom, where the Green-

mental data which, however, is not yet available. function (solid), ED (O), Bethe-ansatzBl), and the RPA results
(dotted are shown. In the inset the 1D zero-field susceptibility is
B. Magnetic susceptibility depicted.

Let wus cons_lder_ the isothermal susc_eptlblhty(S experiments on LgyMng 405 showing a shift of the maxi-
=XS)/oh shown in Figs. 3 and 4. Fdi=0, x; diverges at  mum in the temperature derivative of the electrical resistivity
T=0 indicating the ferromagnetic phase transition. In oneat an applied field according &3 (Ref. 24. Assuming that
dimension[see inset of Fig. @], the Bethe-ansatz result this maximum coincides with the maximum in the suscepti-
limr_o xsT?=1/24 (Ref. 13 is reproduced by the spin- bility due to spin scattering, the dependeri¢gh) was in-
rotation-invariant Green-function theofyAt low tempera-  vestigated in terms of Landau’s theory, developed for aniso-
tures, the deviation of the ED data, calculated frgm tropic systems withT,(h=0)+0, which yields T xh??
=T 13xC%, is ascribed to finite-size effects. Contrary, the (Refs. 15 and 24 Within Landau’s theory Sznajél claims
RPA curve, obtained by Eq25) which yields\=y1+4T? that this power law also holds for isotropic ferromagnets in a
-1 (Ref. 23, strongly deviates from the exact result. In the field. Considering, as a further characteristic, the height of
2D system, the zero-field susceptibilityee inset of Fig. ¥  the susceptibility maximuny(T¥), Landau’s theor¥ yields
of the rotation-invariant theory corrects the numerical valuesys(TX) =m 4(TX) =h 2", In Ref. 15 the isotropic spin chain
given in Ref. 20 and agrees well with the ED result. Atwas investigated by a real-space renormalization group
nonzero fields we havgT=0)=0. Therefore, the suscepti- method andr¥,«h” with y=0.696 for 0.:<h<5 was found;
bility has a maximum al, whereTYX increases ang(TX)  however,x,(T¥) was not calculated.
decreases with increasing field. In one dimengiBiy. 3), To analyze the power-law behavior in more detail, the
the good agreement between Green-function theory, Beth@ependencd}(h) is plotted logarithmically in Fig. &) for
ansatz method, and ED corresponds to the results depicted lir’=0.1. Both the results of our theory and the ED datalfjr
Fig. 1(a). The deviation of our theory for the 2D model at may be well fit to power laws in the 1[2D) model for
h=0.4 andT=1 from the ED datgFig. 4) is due to finite- h>0.2(0.6). The Green-function theory yields
size effects iIKSY), as can be seen in Fig(k. TX = an (26)

Recently, the field dependence of the position of the sus- m
ceptibility maximum has been discussed in connection withwith
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FIG. 4. Isothermal susceptibility of the 2D ferromagnethat
=0.4, 1.0, and 2.0, from top to bottom. The Green-function theory 05 -8
(solid) is compared with ED datgD) and RPA resultgdotted. The :
inset shows the 2D inverse zero-field susceptibility.

-05
{1.088 {0.739; 1D <
- y= (27) <L 15|
1.486 0.620; 2D. £
The ED results foif}, (for clarity, the fit of the ED data is not o5k
drawn) deviate only slightly from Eq(26); in the 1D (2D)
model we obtaina=1.051 (1.460 and y=0.765 (0.643.
Considering the power-law behavior in the low-field region, B s o5 o5 15
the numerically most reliable data are provided by the Bethe- | ' nh ' '
ansatz solution. For the 1D system la& 0.1, the Bethe-
ansatz results are described by E2p) with FIG. 5. Logarithmic plot of the field dependence of the position
(a) and height(b) of the susceptibility maximum obtained by the
a=0.765and y=0.576. (28)  Green-function theoryA) and fit to a linear dependencsolid) in

Comparing our results for the 1D model with Ref. 1§  Comparison with EQO) and RPA resultgL).

=0.7), the y values are in rough agreement, whereas the _ )
absolute values ofX found in Ref. 15 exceed our results by ~ The results obtained for the exponegistrongly deviate
a factor of about 2.5. The dependence of the maximum pofom theB value of Landau’s theory3=-2/3. Moreover, we
sition on the dimensionality could be used for the interpretaget M(Ty) =const. ((S)(TF)=0.3) which also contradicts
tion of experimental data. the law m(TX)«<h'3 This reflects the fact that Landau’s
Our results for the maximum valyg(T¥) as a function of ~ theory does not hold for 1D and 2D isotropic ferromagnets,
h in the same field region as before are plotted in Fig).5 but is valid only on the assumption of a finite critical tem-
Again, they may be described by power laws for-0.2  perature ah=0 which, however, is not realized in the 1D
(0.6) in the 1D(2D) model. From the Green-function theory and 2D systems. Therefore, the approximate agreement

we obtain of the obtainedy exponents withy=2/3 seems to be
accidental.
xs(Ti) =bh° (29
with C. Specific heat
_10.202 4 g= -0.951; 1D 30 First let us consider the NN spin correlation functions
“lo.185 an ~|-0.914; 2D. (30) entering the internal enerdygf. Eq.(22)], which are depicted

) for the 1D and 2D cases in Figs. 6 and 7, respectively. In the
The ED results for the 102D) model are given byo  1p model we obtain a very good agreement with the ED
=0.206(0.19]) and 5=-0.964(-0.933. At low fields we  gata. On the contrary, the RPA results are unsatisfactory; in
consider, as above, only the Bethe-ansatz solution for the 1Barticular, the longitudinal correlators at low fields and tem-
model which, ah=<0.1, yields Eq(29) with peratures, obtained from the exact representation of the in-
— - ternal energy, Eq22), are negative being incompatible with

b=0.208 and #=-0952. (3Y) the ferromagnetic SRO. In the 2D model at low fields, we
Note the remarkable agreement of the Bethe-ansatz resul&scribe the deviations of our analytical curves from the ED
for the field dependence of the maximum height with thedata to finite-size effects; in this respeCtg may be consid-
findings of the theory and the ED data. ered in analogy t¢S) [Fig. 1(b)].
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FIG. 6. Nearest-neighbor transve(sgand longitudinalb) spin FIG. 7. Nearest-neighbor transve(ggand longitudinalb) spin

correlation functions of the 1D ferromagnet at the fidld0.1, 0.4,  correlation functions of the 2D ferromagnet at the figid<.1, 0.4,
1.0, and 2.0, from left to right. The Green-function thesglid) is 1.0, and 2.0, from left to right. The Green-function the¢sylid) is
compared with EXO) and RPA resultgdotted. compared with ED(O) and RPA resultgdotted.

Figure 8 displays the specific hea&du/dT for the 10 it becomes evident again that our theory provides an im-

ferromagnet. Ah=0, the temperature dependence of the spe- - ; .
cific heat exhibits a broad maximum, where the value of thé?roved description of SRO, as compared with REA Fig.

maximum position resulting from the Green-function theory,8(?)] which does not yield a double maximum.
T¢(h=0) =0.45, agrees reasonably well with the exact result The specific heat for the 2D model is plotted in Fig. 9. We

Tg(h:0)20.35 obtained by the Bethe-ansatz and ED meth9et a g(_)_od agreement with the ED results, in particular, as
ods. Comparing our ED data At0 with those of Ref. 25 the position and height of the maximum is concerned. Note
agreeing with the Bethe-ansatz results, the additional weai_bat the small low-temperature bump in the ED datalior
maximum atT=0.1 has to be ascribed to finite-size effects.~0-1 1S & finite-size effect. The RPA curves at low fields
The broad maximum and the strong decrease of the zer&XNibit @ too large maximum height which we ascribe to a
field specific heat at low temperatures is qualitatively repro00r description of SRO in RPsee also Fig. ¥

duced by the Green-function theory, as already shown in Ref. " the 1D and 2D systems at the fiekis- 0.4 anch>0.1,
22. At very low magnetic fieids, besides the high- respectively, the position of the specific-heat maximum ob-

temperature maximum, a second maximum at low temloerat_ained by the Green-function theory may be described by the

tures develops which has not been reported before. The odl€ar law

currence of two maxima in the specific heat is indicated by TC=ah+b (33)
our theory, however, at too high fiel@8.03<h=<0.07. In a m

detailed Bethe-ansatz analysis, two maxima in the specifi@ith

heat are found in the field region<Oh=0.008[see inset of {0.433 b {0_310; 1D
an =

Fig. 8a)]. At h=0.008, only one maximum appears. Con- = (34)
sidering the low-temperature maximum ta&0.01, the po- 0.463 0.685; 2D.
sition Tg,; and heightC(T,,) are given by the power laws
TG, =0.5961°%%2  C(TG,) =0.513°%%8 (32 IV. SUMMARY
Note that the exponent dﬁll nearly agrees with that of¥, In this paper we developed a Green-function theory of the

given by Eqs(26) and(28). From the low-field specific heat 1D and 2DS=1/2 Heisenberg ferromagnet in a magnetic
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0.25 T T v T T 0.8 v T T T T T

FIG. 9. Specific heat of the 2D ferromagnethat0.1, 1.0, and
2.0, from left to right, showing the Green-functi¢solid), ED (O),
and the RPA resultgdotted. At h=0 the Green-function theory
(dasheglis compared with ED datéd).

obtained exact Bethe-ansatz results for the Heisenberg chain
from an eigenvalue analysis of the quantum transfer matrix.
Stimulated by recent disscussions we analyzed the field de-
pendence of the maximum in the temperature dependence of
the isothermal magnetic susceptibility. We found power laws
for the position and height of the susceptibility maximum
which are shown not to be related to the predictions of Lan-
dau’s theory. Paying particular attention to the specific heat
of the Heisenberg chain, in a detailed Bethe-ansatz analysis
FIG. 8. Specific heat of the 1D ferromagnet obtained by thethe existence of two maxima in the temperature dependence
Green-function(solid) and Bethe-ansatz methell) at low fields  of the specific heat at very low magnetic fields was proven.
(&, h=0, 0.005, and 0.03, from bottom to top, with the ED data e field dependences of the position and height of the low-
denoted by®, O, and®, respectively, and at higher fieldb), h - tomperature maximum obey power laws. Altogether, we ana-
=0.1, 1.0, and 2.0, from left to right, in comparison with D) ;04 the effects of dimensionalitglD versus 2D on all
and RPA resultgdotted. For clarity, the Bethe-ansatz data for thermodynamic quantities which may be relevant for the
=0.005 and 0.03 at low temperatures are joined by dotted lines. Focgomparison with experiments
low fields the RPA data are not drawn because of the too high ’
maximum|[cf. (b)]. The inset exhibits the Bethe-ansatz results for
very low fields,h=0 to 0.01 in steps of 0.001, from bottom to top. ACKNOWLEDGMENTS
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