PHYSICAL REVIEW B 70, 104418(2004)

Magnetization curve of spin ice in a [111] magnetic field
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Spin ice in a magnetic field in thg.11] direction displays two magnetization plateaus: one at saturation and
an intermediate one with finite entropy. We study the crossovers between the different regimes from a point of
view of (entropically interacting defects. We develop an analytical theory for the nearest-neighbor spin ice
model, which covers most of the magnetization curve. We find that the entropy is nonmonotonic, exhibiting a
giant spike between the two plateaus. This regime is described by a monomer-dimer model with tunable
fugacities. At low fields, we develop an RG treatment for the extended string defects, and we compare our
results to extensive Monte Carlo simulations. We address the implications of our results for cooling by
adiabatic(deymagnetization.
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I. INTRODUCTION [117] plateau. We find that the mean field treatment is accu-
rate at the lowest fields, where the string density would be
Recent experiments on the spin ice compodiids relatively high. The renormalization group treatment com-
Ho,Ti,O, and Dy, Ti,O; have uncovered an intriguing set of pares well with simulation in the dilute string limit. At even
phenomena when unicrystalline samples are placed in an eRigher fields, the plateau is approached and the suppression
ternal magnetic field in th¢111] direction3-6 For a review Of the entropic activation of strings becomes apparent as a
on spin ice, see Ref. 7. finite-size effect. o
The discovery of a plateau in the magnetization below _ At the h|gh—f|eld termination of the plateau, we observg a
saturation, first predicted theoreticllyand explored in 9iant peak in the entropy, which even exceeds the zero field
Monte Carlo simulation&? has been particularly remarkable Pauling value, despite the fact that a quarter of all spins are
as it was found to retain a fraction of the zero-field spin iceﬁ:ggz‘lj6r\1/\/t$1emh()c>dn(a(alyt(:h()lf11tF))Tgtrt]i?:gqsvr;t?\nvgyyiﬁgngggggaieegjImer
10.11 ; . . ;
entropy‘:‘v ' 'T‘ this regime, the system is well dgscr_lbed by the point where the all fugacities equal 1, this model turns
a two-dimensional Ising model on a kagome lattice in a lon

tudinal field. which is in t valent t h l'out to be one of “hard bow-ties” on the kagome lattjo&/e
gitudinal Tield, which 1S in turn-equivalent 1o a hexagonal 5na1y7e this model within a Bethe approximation and also by

lattice dimer modet>~12 _ using results from a high-order series expansfon.

Recent!y, two of the present authors have studied th.e ther- \we show that the entropy peak is due to the crossing of an
modynamics and correlations of ta11] plateau:* This  extensive number of energy levels which have macroscopic
work has led to the identification of mechanisms which ter'entropies_ Comparing this theory with Monte Carlo simula-
minate the plateau. At the high-field end, the terminationtions of the appropriate monomer-dimer model, we find that
occurs via the proliferation of monomer defects in the underthe simple Bethe approximation is accurate for moderate to
lying dimer model. At low fields, a more exotic extended large monomer densities.
string defect restores three dimensionality. The asymptotic We point out that this theory predicts to a crossing point
density of both kinds of defects was estimated in Ref. 11. in the plots of magnetization versus field at different tem-

In this paper, we consider in detail the full magnetizationperatures. In addition, there is a further crossing point at
curve from zero-field to saturation. A brief synopsis of thelower fields, where the corrections to the magnetization due
exotic thermodynamic properties of spin ice inld 1] field  to monomer and string defects almost cancel one another.
is sketched in Fig. 1. Our aim in this paper is to identify the ~We then address the connection of these results to experi
different regimes of the magnetization curves, to providement, in particular pointing out the presence(af least a
analytical theories for them, and to test them against Montwestigg of the entropy peak in existing experimental data.
Carlo simulations, and finally against experiment. We then discuss the implications of the entropy peak for

Near the zero field, we use the accurate self-consistenhagnetocaloric manipulations. In particular, we argue that it
Hartree approximatidd to provide an analytical approxima- arises in a more general set of models. It can, in principle, be
tion for the linear response regime. At the low field end ofused to effect cooling in a field, both by adiabatic demagne-
the plateau, we develop mean field and renormalizatiottization and by adiabatic magnetization. Finally, we close
group treatments for the extended string defects, which waith some concluding remarks.
use to analyze the in-plane and out-of-plane correlations. We
compare these with Monte Carlo simulations using an effi-
cient cluster algorithm, which allows us to obtain accurate A general model of spin ice includes the single-ion aniso-
data from the linear response regime to the beginning of th&opy, the exchange interaction, and the dipolar interaction.

IIl. MODEL AND NOTATION
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FIG. 1. Properties of spin-ice as tH&11] magnetic field is
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FIG. 2. The pyrochlore lattice of corner-sharing tetrahedra.

axes of the pyrochlore latticgsee Figs. 2 and)3The third
term is the interaction with a magnetic field of stren@h
gued being the magnetic moment of the spins. Both experi-
ment and theory indicate that this simplified model is a good
description of spin ice at moderate temperatures.

In our analysis, we take the single ion anisotropy to be
infinite so the spins are constrained to lie along their local
easy axes. In this limit, it is convenient to describe the sys-
tem by the Ising pseudospiws, whereS;=o;d,. The pseu-
dosping;=+1(-1) if the physical spin points intout of) its
associated up-pointing tetrahedron. We may write an effec-
tive Hamiltonian for the pseudospins:

H=Jer> 010~ gued> B - d 03,
() i

whereJog=J4/3>0.

(2.2)

varied. These curves are for illustration and do not show actual
numerical or experimental data. We have indicated the regions

where various analytic approaches discussed in the text apply.

In this work we use a simplified modein which the long-

Ill. THE LOW FIELD REGIME

At zero magnetic field and zero temperature, the ferro-
magnetic interaction gives rise to an “ice rule” constraint: the
pseudospins on each tetrahedron must sum to #Bfog,|

range dipolar interaction is truncated beyond the neareseO0. In terms of the physical spins, on each tetrahedron two
neighbor spins. While the exchange interaction in spin icewill point inwards (towards the centgrand two will point
compounds is antiferromagnetic, the effective interactioroutwards(away from the centgr The set of configurations

(exchange plus nearest-neighbor dippler ferromagnetic.
The Hamiltonian for unit-length spinS may be written as

H=-34 2 S-S +EX (dy)-S)?+gusl2 B - S,

<ij> i

(2.1

satisfying the ice rule comprises the zero-field spin ice
ground state manifold. At low magnetic fiel@snd low tem-
peraturey the system will continue to obey the ice rule,
though the magnetic field will favor certain states among
those in the zero-field ground state manifold.

We have performed extensive Monte Carlo simulations of
the low field regime, from the zero field up until the low field

where J.; is an effective exchange coupling. The secondpjateau termination, using a loop algorithm, which is dis-

term is the easy axis anisotropy of strengéx 0, |E|

cussed in Appendix A. Our algorithm probes only spin ice

=50 K, which is much larger than the exchange and dipolaground stategtwo spins in and two out on each tetrahedron
interaction strengths. The unit vectatg;, are the local easy and is thus applicable at low temperatuies J. and low
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FIG. 4. The magnetization from Monte Carlo simulations.

FIG. 3. (Color onling A single tetrahedron inscribed in a cube.

The easy axes of the pyrochlore latticer (111 axes, d,, are B. String defects and their interactions

indicated by the short-dashed lines. 1. General description

magnetic fields, where the density of monomer defects, Figure 2 presents the underlying pyrochlore lattice of spin
which are responsible for the high field plateau terminationjce and Fig. 3 shows thgl11] direction. It is convenient to
is low. The simulation is written in terms of a pyrochlore visualize the pyrochlore lattice as a stack of alternating
lattice with the conventional 16 site cubic unit célvhich  kagome and triangular planes, tfiEL1] direction being the
contains four tetrahedra of each kindhe simulations have direction in which the planes are stacked. Each spin lies on a
been done for systems with 16, 128, 432, 1024, 2000, 345@&orner shared by an up-pointing and down-pointing tetrahe-
5488, 8192, and 16000 sites. For a system with 16000 siteslyon.
we perform 2.5<10° loop flips for equilibration and 5 If the [111] magnetic field is large enough, the spins in the
X 107 for averaging. For other system sizes, we perform ltriangular planes align with the field; the kagome planes de-
% 107 loop flips for equilibration and & 10° for averaging.  couple from one another; and the system is well described by
The simulated magnetization as a function of the magnetia two-dimensional model. This describes spin ice on the pla-
field strength is shown in Fig. 4. The magnetization attaingeau. At fields slightly lower than the plateau, excitations
the plateau value at fields much larger than the temperaturealled string defectd restore three-dimensionality and are
responsible for the low field termination of the plateau.

To describe these defects, we consider the entropic benefit
of relaxing the condition that the triangular planes are polar-

We may calculate the ground state entropy of spin ice aized. Suppose we flip a spin in some triangular layer. Then,
zero field by numerically integrating the first law of thermo- by the ice rule constraint, we must also flip a spin in each of

A. The linear response regime

dynamics, the two neighboring kagome laye¢sn the two tetrahedra
that are sharing the first flipped spirfrlipping these kagome

U m spins requires flipping spins in each of the two neighboring

dS:7+?dh. (3.1 triangular layers, which requires flipping spins in the two

next-nearest kagome layers and so on. The resulting “string
defect” is an excitation that extends through the system. The
Noting that the magnetization is constant and equal taenergy cost, per kagome-triangle bilayer, of creating the
-gugd/3 per spin on the plateau and is zero at the zero fieldstring isE,=8gugJB/3. To estimate the entropy, we note that
and that the value of the entropy on the platealSi&s  creating a string actually involves creating a pair of defects
=0.080765.% we obtain for the entropy of spin ic&/ks  in each kagome plane. A “positive” defect connects the
=0.2051+0.0001. Our value is very close to Pauling’s estikagome plane to the kagome plane directly above it via a
mate S/kg=0.202733 and is consistent with the most accu-lipped spin in the intermediate triangular plane. Similarly, a
rate current theoretical estima®#kg=0.20501+0.0000%° “negative” defect connects the kagome plane to the kagome
At a zero field, we use the self-consistent Hartree approxiplane directly below it. These two defects may be separated
mation, which is known to give a quantitatively accuratepy flipping pairs of spins pointing in different directions on
approximation to the ground state correlations of spintfce. neighboring triangles of the kagome plane. The entropy in
This gives x=2(gugd)?/3ksT for spin ice. This compares the kagome plane depends on this separation, which is the
well with our Monte Carlo result,y=(0.66735+0.0008 basis for the interaction between defects discussed below.
X (gugd)?/kgT for a system with 16000 sites. Ignoring this correction, the positive defect may be placed

104418-3



ISAKOV et al. PHYSICAL REVIEW B 70, 104418(2004)

anywhere in the plan@vhich fixes the position of the nega- tween two defects separated by distancds given by
tive defect in the layer aboyeThis implies that the entropy p;p,V(|r1—F>|) wherep; is +1 (1) for a positive(negative
per bilayer isS~In A, whereA is the area of a layer. This defect andV(R)=-« In(R/ 7).

shows that for a given magnetic field, string defects are fa-

vored in a sufficiently large system. For a given system size,

strings are favored at sufficiently low magnetic fields. 3. Mean field calculation

If the number of defects is fairly large, we may expect the

2. Interactions interaction to be sufficiently screened to justify the use of
ariational mean field theofy. We will investigate the in-
lane and out-of-plane correlations for the defects.

We consider a layered system of two-dimensional planes
indexed by the labek which ranges from K to K) where
ach plane contairl$ positive and\ negative defectévhich
we refer to as charggghat interact logarithmically. The
gtring constraint requires that each positive charge in layer

For magnetic fields in the plateau region, the triangularv
spins are fixed while each kagome plane contains two u
pseudospingo=1) and one down pseudospiar=-1). This
Ising model on the kagome lattice may be mapped onto th
dimer model on the hexagonal lattit®&!? where a down
pseudospin corresponds to a dimer on the hexagonal lattic

In this language, a string defect appears as a pair of oPPQg rigidly connected to a negative charge in the lager
sitely charged monomers. :

As discussed in Ref. 11, a monomer-dimer covering maWe impose a periodic boundary condition to connect the
be described by assigning a height varidblte each sité of 3b05|t|ve charges in th&th layer to the negative charges in

: X X . the Kth layer.
the triangular lattice dual to the hexagonal lattice on which eWe form)élly impose the constraint by writing the “Hamil-
the d|me'rs lie. The heights are aSS|gned as fO.HOWS' Moving, ian” in terms of positive charges alone. The planes are
from a site to a nearest neighbor site by moving clockwise

around an up{down> triangle will increase(decreaspthe stacked in thez-direction. Letx!‘ be the in-plane position of
height by +2(2) if a dimer is crossed. If a dimer is not the ith positive charge in th&th layer. In the absence of

crossed. then the height will decreaecrease by —1 (+1), external fields, the entropy of a particular configuratiomNof

. . . efects is given b
According to these rules, traversing a closed loop in the dua? g y

lattice will result in a height difference of +3-3) if a posi- K /N N

tive (negativg monomer is enclosed and O otherwise. We H= > (2 V(|x-k—x'-‘|) —EV(|X!(—XK+1|)>. (3.5)

note that the overall sign of the height assignments is a mat- ek b b

ter of convention and we may as well have chosenhhen

that traversing a closed loop containing a positivegativeé  HereV/(R)=-« In(R/7), wherer is a hard-core radius defin-

monomer gave a height difference of —3. ing the minimum separation between two charges and
In a coarse-grained description, theare replaced by @ —1/2 Thefirst term corresponds to the repulsion of positive

real, continuum fielch(r) and as discussed in Ref. 11, the oparges within the same layer. The absence of a factbirof
entropy associated with a height figidf) is given to lowest  ¢ront of this term is due to the string constraint: bringing two

i#] i

order ingredients by positive charges in the same plane close together also in-
K volves bringing together their negative partners in the plane
S=fd2rE|Vh|2, (3.2 above. In terms of our positive charge formulation, this

means the repulsion is twice as large. The second term is the
whereK=/9 for the honeycomb lattic¥. The height field ~ interlayer interaction. Physically, a positive charge in layer
has the property has a negative partner in the layler 1 which attracts the
positive charges in layde+ 1. In terms of our positive charge
o formulation, charges repel charges in the same plane but at-
ﬂgCVh ar= 3Ld2r a(f), 3.3 tract charges in nearest neighbor planes.
We assume a variational mean field density of the form
whered(r) is the monomer charge density aBé the region

enclosed by the loop C. We may proceed by analogy with the K N pk(xk)
2d XY model” and divideh into “dimer” (spin-wavé and O, o X = T T —, (3.6)
“monomer” (vortex) contributions. A standard calculatith eki=z N

gives the entropy of the monomer piece:
which asserts that all particles in a given layehave the

9K > F-r’ same probability density*(x)/N, but the density may var
ar

r from layer to layer. We also need the normalizing condition

1 o F_ 7
ziffdzrdzrlama(r/)(_'(In|r rr |)’ (3.4 fA d? pK(x) = N. (3.7

wherex=1/2 andr is a hard-core radius comparable to the
lattice spacing. This shows that the entropic interaction beThis trial function implies a variational entropy functional:
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K
1 . + : )
Sn= ZK (— > f f d?xcX’ (p*(x) = p*10) (p*(X') = P XN VI([x = X']) - f d’ pk(X)ln<pT>)- (3.8
This functional is maximized when the density is unifoptx)=N/A which givesS,y=(2K+ 1N In A. To investigate the
linear response of the system, we may apply a perturbing potential to the objectkmGh®ane. In particular, we consider
the effect on the density of placing a positive charge at the origin of the plane. The details are given in Ref. 18 but we may
quote the result

S (x k) 1 J G SH(s? + 2) 12 00%) 39
™) " arg ) 149+ 2R 21+ FF+ I |
[
where the in-plane length scale is given by, (y/2m)Ni
=(Al47kN)Y2. We note first that this expression diverges at z=2 |11 —(lN ) Z[{Ng 1], (3.12
smallx for k=0, which is not surprising because the assump- (N L ! KV

tion of a linear response would be not be valid so close to thgyhere N, , denotes the number dfdipoles in layerk; N, is
perturbing charge. The expression would be valid at lakger the number of-dipoles in the system; arid, is the number
an(_JI an_lnterestmg feature is that When§|‘,_the decay in the_ of dipoles (of any length that have their positive ends in
z direction does not depend on any physical parameters, i.§ayer k. The sum is over all particle number configurations

this point in the next section. plane:N,==, N,;,. The canonical partition function corre-
_ To connect with our p_hyS|caI problem, we note that at sponding to a given dipole distributidiN, |} is
given temperature, we will have an expected value of defects ’

which may be calculated from the partition function: a2 ¢2¢@ [ _ y(2
Z[{Nk,l}] — H ( 7’zk,l 7"Zk,l ki ki
" y 2K+ DN Q, ki T
—e BA= JEAR— N
F=e= X e (349 X exd~H{N D (3.13

H({Ng,}) is the Hamiltonian(actually an entropy corre-
sponding to the dipole distributiofNy}. The coordinatexf(li)
is the planar coordinate of théh positive charge of layek
andx(kﬁ) is the planar coordinate of its negative partner which
lives in layerk+I(i), I(i) being the length of the dipole being
described. The string constraint is imposed by the delta func-
) tion, where we use the normalizatigpz (d?x/ %) 8(x/ 7)=1.
& mr ~ exp(8guglB/3keT). (31D The product is over all positive charges in all layers. The
integration is over the spade,. This is defined to be the set
of all possible spatial configurations of the dipole distribu-
tion {Ny,} that respect the hard-core constraint: no two
When the gas of defects is fairly dilute, we may expectcharges in a given plane may be closer than distance
that the screening is not effective enough to justify a mean Our procedure is an extension of the treatment in Refs. 17
field treatment. In this section, we account for fluctuations byand 20. The first part of a RG procedure normally involves
making a real space renormalization group calculation usingntegrating over the high momentum modes of the system. In
methods similar to the Kosterlitz treatment of the 2d Cou-our problem, these correspond to those configurations where
lomb gast”20 in some plane we have a pair of charges separated by a
The dynamical objects described by Hamiltonigh5)  distance between and r+dr. We assume a dilute system so
are dipoles of length 1. We need to generalize this modebnly oppositely charged pairs are considered and also the
in order to do a RG calculation. The generalization thatdistance between the members of a pair is taken to be much
we consider is allowing for dipoles of arbitrary smaller than the distance from the pair to another charge. The
“I-dipole” is an object where the negative charge lies directlybasic coarse-graining step in our RG transformation is illus-
| planes above its positive partner. While the original prob-trated in Fig. 5.
lem involved just the coupling of nearest neighbor planes, Suppose a particular state involves pairing the negative
our generalized model involves all possible couplings. Assoend of anl;-dipole in layerk with the positive end of an
ciated with each-dipole is a fugacityy,/2= (the 27 is for  |,-dipole in layerk+l;. Viewed at long length scales, we
conveniencg The grand partition function for the system effectively have an(l,+l,)-dipole in layerk. We will find
may be written as that integrating over all possible pairings gives a zeroth order

whereS, is the entropy of having\ defects ang/=e &/*&T is

the fugacity of a positive defeqy?*! is the fugacity of a
“string”). In a mean field, we may replac, by S,n=(2K

+1)N In A. From this, we may shol® that (N)~yA, and
using our earlier expression, we find that

4. RG calculation

104418-5
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@ 2%( 2 _1)=1. (3.18
K

Substituting earlier expressions and noting that for our sys-
1, tem, k=1/2, we findthat

320u5)B
T 11 +1 2 In ‘fﬁ,RGz B <1 +

O

In(e &%+ 2 - K))
EJ/ksT '

& e~ exp(320upIBI9KgT), (3.19

1 for the fields and temperatures of interest. This value is the
l same as that predicted in Ref. 11 using a free energy argu-
@ ment. Forr<§ e Y, decreases with which means that
states with long dipoles are less probable than states with
FIG. 5. The basic coarse-graining step in our R short dipoles_. Ifr> ¢ re Y1 diverges withl Whi_ch suggests
transformation. that longer dlpqles are favoreq, put, as me_nt|oned above, the
RG procedure is no longer valid in this regime. We note that
when 7=¢§ g ¥ is independent of so that, as in the mean
field calculation discussed above, there is no discernible

term (which just involves replacing), with Q_.4,) and a
nulmber of c(;;rr?ctlondterrgs oflordgn-bwhelre two g_horlt dlé_ length scale in the direction.
poies were destroyed and replaced by a longer dipole. SINce ¢ - ére then we may consider an out-of-plane length

the procedure respects the charge neutrality constraint, theggale which we define nominally as the valuelst.. for
correction terms will combine with other terms in the grand,, i - yily,=1le: T

partition sum. The second step involves rescaling lengths so

that the high momentum cutoff, in the new variable, is the a 1
same as before. The aim is to see how the fugacities and =1+ 2 _ 1\ (3.20
couplings change as we run this procedure. I (;%)
Details of the calculation are given in Appendix B. Here -1
we give the resulting flow equations: We may interpret. as the typical length of a string segment
dy that is captured by a tube of diameteftwhere a tube need
d_tl =(2-K)y,, (3.14  not be straight
1 5. Comparison with simulation
dyi =(2-kKy, + > Yeri=m» (3.15 In Fig. 6, we show the magnetization as a function of the
dt m=1 magnetic field strength on a log-log scale. Our algorithm
allows us to simulate spin ice in[d11] magnetic field with
drke very high accuracy.
Pl 0, (3.16 The magnetization should scale with the average density

of defects, which in turn should scale like the inverse square
wheret=In . One notable feature is that the coupling doesof the in-plane correlation length. As shown in this figure,
not change with the flow, in contrast with the 2d Coulombthe data at low fields are well fit by the exponent 8/3 ob-
gas where the coupling does va@lbeit at second order in tained in the mean field calculation discussed earlier. At
the fugacity. This indicates that strings are stiffer objects Somewhat higher fields, the data are well fit by the exponent
than charges. Another observation is that for the initial con32/9, obtained by the RG calculation discussed earlier and
ditions of our physical problem, namely that(0)=y, also in Ref. 11 by looking at the entropic contribution to the
=2me BT andy,(0)=0 for | > 1, the flow equations have an free energy. At high fields, the exponent df/@ [=16 for
exact solution: L=6 (sitey, as was the case in the simulatipeharacterizes

a regime where finite-size effects are important, as discussed

A vo . -1 below.

¥i=Yor [(2 _K>(72 - 1)} : (3.17) The low field crossover makes qualitative sense in that at
low fields, there will be many defects which screen one an-

Our RG is valid as long as the corrections to the fugacitiether which suggests that a mean field treatment may be

are small, meaning that the derivativey,/dt should be reasonably accurate. At higher fields, the gas of defects is

bounded. If we look at the above result, £§.17), we see more dilute so a RG treatment would be required.

that when the term in brackets is greater thary, diverges The high field crossover is a finite-size effect since the

with |. Therefore, a critical length, which we interpret as anposition of a crossover between exponents is system size

in-plane correlation length, is defined by when the term independent and the corresponding exponent is also system

brackets equals 1: size dependent, getting steeper with increasing system size.

104418-6
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energy. At sufficiently high magnetic fields, a given system

will be too small to provide the entropy to balance the energy
cost of a string. This will occur when the magnetization per

spin reaches the magnetization of a system with one string
defect:

m=[1/3 - 2A4L/3)/(16L3)]gugd = [1/3 — 1A6L?) Jgugd.
(3.21)

In this case, the statistical weight of a single string defect
will be a Boltzmann factor eXp8LgugJB/3kgT) and

the magnetization will equal[1/3-C exp(-8LguglB/
3kgT)]gugd, whereC is some constant. The crossover be-
tween different regimes occurs when the magnetization
reacheq3.21). We have good agreement with the/8 be-
havior for a variety of system sizes, includihg6 which is
shown in Fig. 6.

IV. THE HIGH FIELD REGIME

On the plateau, the magnetization of the triangular sublat-
tice is saturated and we may consider each kagome plane
separately. Thus, the 3-dimensional model may be mapped
onto a 2-dimensional one. Whereas the spins in the triangular
sublattice are fixed, the physics in the kagome planes re-
mains nontrivial. Each triangle on the kagome plane contains
two up pseudospingoc=1) and one down pseudospifr
=-1). This Ising model on the kagome lattice may be
mapped onto the dimer model on the hexagonal latficg,
in which a down pseudospin corresponds to a dimer on the
hexagonal lattice. The model retains an extensive ground
state entropys/kg=0.080765.

If we flip a down(pseudgspin it violates the ice rule. This
corresponds to breaking a dimer into two monomers. As with
string defects, these monomers may be separated and move
freely on the lattice. The energy cost for creating two mono-
mers is Z=4J4—20u1gJB/3. This energy vanishes at a criti-
cal field B;=6J./(gugd). At higher fields the monomers
proliferate leading to complete saturation and an ordered
state with zero entropy. The physics near the transition may
be described by the following Hamiltonian which acts on the
kagome lattice:

H
?:Z Kiss;—hX s, 4.1
(i) i

where the sum is over all nearest neighbarsare classical
Ising spins taking values +1 and —f;is the strength of a
fictitious magnetic field; and K,,=0, K, =K_,=K
=[gugIB/6-Je]/T, and K__=«. The coupling constants
imply that each triangle of the kagome lattice contains at
most one down pseudospin and that down spins cost energy
(positive or negative dependent on the magnetic field

The finite-size behavior may be explained as follows. Atstrength.
high magnetic fields, there are a small number of string de- We may calculate the magnetization and entropy using the
fects in the system. The magnetization and the energy of onsimple Bethe approximation. Details are given in Refs. 14

string defect in a system of size are -4.gugJ/3 and
4LgugldB/3, respectively. The energy cost grows linearly
with system size and, as mentioned above, the defects are
favored solely due to their entropic contribution to the free

and 21 but we may quote the results:

11

M= T’ (4.2
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0.52 — - - - T - - density is smajl We note that the correlation length is infi-
nite at zero monomer density since the dimer model on the
048 | hexagonal lattice is critical.
In a higher-order series expansion, one may account for
some corrections to the Bethe approximafibs seen in
0.44 the figure, the corrections are almost indiscernible for the
g magnetization. For the entropy, the corrections give better
04 L agreement at the low monomer density and are negligible at

high monomer densities.
KTl ety = 0'1 - There is a giant peak in the entropy at the transition point,
Milg=03 o . S/kg=1/4 In(16/5~0.291, which exceeds even the zero

BBt field entropy. The peak is due to the crossing of an extensive
Bethe approximation

0.36

. number of energy levels which have macroscopic entropies.

032 -4 2 0 2 4 6 8 10 For B=B,, the energies of states corresponding to different
gUpJ(B-B,)/3kgT numbers of monomer defects are equal since the monomer
and dimer weights are, by definition, equal at the critical
03 f ' ' ,;T,Jeﬂ =045 ® field. There are an extensive number of states corresponding
KT =03 @ to a given number of monomerdelow saturation The
0.25 KT/ =05 a ] highly degenerate ground state manifold explains the large
Bethe appr. ——— spike in the entropy.
0.2 goe . |
Series exp.
@ EXact result - V. CROSSING POINTS
= 015 Pauling result ] G - i imnli
The theory described in the previous section implies that
0.1 5 the curves of magnetization versus field, plotted for different
e temperatures, will display a crossing point. This arises sim-
0.05 ply because the partition function depends on the magnetic
field and temperature effectively only through the combina-
0t . ; . ; tion (B-B.)/T. Thus, when plotted as a function Bf-B,,
-10 -5 0 5 10 15 the curves coincide only at the poiBtB.. At this point, the
gupJ(B-B,.)[3kgT Bethe approximation gives a value for the magnetization of
m=0.4gugJ; see Eq(4.2).
FIG. 7. (Color online The magnetizatioiitop) and the entropy In addition, we expect a crossing point at low fields, due

(bottom) around the transition between the plateaux. The simplgpe interplay of string and monomer defects. Indeed, where
Bethe approximation is compared to the Monte Carlo results. Thec'he plateau is well-formed, the string density i

exact result for the entropy at zero monomer density and Pauling’s_ exp(-32gugJB/9k,T) and the monomer density ia
estimate for the entropy at zero magnetic field are shown for refer-_ exp(-8€, /7Bk ) \l/)vhereE—g,u J(B.—B)/3 is the enerng]y
m/ (Kg 1), =gupdBe

ence. The series expansion contains the results from Ref. 14 on the% i Th . int h
monomer-dimer model. of creating one monomer. The crossing point occurs when

ngs=ny,. With logarithmic accuracy, we can write

_3xzInz L1 . 27 @3 329148JB _ 8gus)(B-Bo)
2+6xz 4 X¥(3z-x)’ ' 9k, T 21ksT

(5.7

R Thus the crossing point lies & =3B./31.
wherex=2z/(1+1+8z°) andz=exp—-2K).

In Fig. 7, we compare these expressions with a Monte
Carlo simulation. The simulation is of a kagome lattice with
16X 16 up-triangles(768 total sping The standard single
spin-flip Metropolis algorithm was used, which may explain ~ Our model gives a description of the high field transition
the inaccuracy in the simulated entropy at low fields, where a@hat is qualitatively consistent with experiment for a range of
more clever scheme may be needed to sample the degenerédenperature$.In particular, a peak in the entropy has been
manifold. The entropy was computed, for a given field, byobserved close to the high-field termination of the plateau
integrating from high temperaturgs/here S/'kg=(3/4)In 2 (Fig. 9 in Ref. 4. As this feature was taken to be an experi-
per aton} to low temperatures. mental artefact, it was not analyzed in detail in that work.

We find that the simple Bethe approximation is accurateHowever, it appears that its height is rather smaller than the
for moderate and high monomer densitibgher field$ but  one we find here, although the number of data points is not
does not work so well at a low monomer densftpwer  enough to determine the center of the peak or its height.
fields). As the Bethe approximation does not account for However, recent experimefitson the spin ice compound
long cycles on the lattice, the approximation should indeedy,Ti,O; have indicated that at low temperatures, the high
break down when the correlation length is lafgeonomer field transition becomes first order. In Ref. 22, the onset of

VI. RELATION TO EXPERIMENT AND OTHER
THEORIES
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first order behavior was found to occur for temperaturedropy spikes—also appears in the case of an effectively 1d
lower than a critical temperature ofT,~0.36 K helimagneg®

(~0.32Wt py/ k). Figure 7 shows that our predicted curves  In classical Ising models, such a degeneracy seems not so
remain continuous even at temperatures below this observeslirprising as the allowed energies are naturally discrete.
Te. However, a similar situation can arise even in bona-fide

A likely reason for the discrepancy is the long range na-Heisenberg models. This follows from the result by Richter
ture of the dipolar interaction, which we approximated as zet al,?” who demonstrated that near saturation, on a range of
nearest neighbor Ising model. The simplest way to accourfrustrated latticegincluding the kagomy localized spin-1/2
for these interactions is to model the ignored interactiorexcitations exist. As one sweeps the magnetic field from
terms as giving rise to a magnetic field proportional to thesaturation downwards, one would therefore also expect an
magnetization. By assuming the magnetizafibpas a func-  entropy spike in those models. A numerical study testing this
tion of the effective fieldB+aM, has the same functional assertion is in progress.
form as given in Fig. 7, we may self-consistently determine
M for a givenB. Using «a as a free parameter, we find that
this simple model predicts the onset of first order behavior, at
the experimentally observed critical fieB}, only for tem- At low temperatures, near the degeneracy point, the par-
peratures in the milli-Kelvin range. To obtain a higher nu-tition function depends on the magnetic field and tempera-
merical T, requires a largew, which causes a lower numeri- ture effectively only through the combinatiofB-B.)/T.
cal B.. To get the numerical,, to match experiment requires One may thus argue that the spike may be used to effect
an a so large that our numericad, is “negative” (in the  cooling by adiabatic demagnetizatfdrin exactly the same
sense of artificially extending the=1/3 line of Fig. 7 for ~way one may use paramagnets—analogous constraints limit
the purpose of a spline fitIlt seems that a more careful the application in either case.
treatment of the dipolar interaction is required in order to There are two features which may be worth pointing out
explain the recent experimental results. Also, we have no#t this point. Both follow from the fact that—unlike in the
considered the impact of the slowdown of the dynamicscase of a paramagneBg+ 0. First, maximal cooling occurs
which is observed at a low temperatdfe. at a finite field, namely aroun8.. This phenomenon may

As for the crossing points mentioned above, the high-fieldherefore be useful to effect cooling for a magnet in a field,
one does indeed appear to be present in the experimentaith the restriction thaB,, for a given spin ice compound, is
dat&22in the appropriate temperature range. The experimenaot tunable. Second, B approache8, from below, one can
tal value of the magnetization at the crossing point is aboutn fact obtain “cooling by adiabatic magnetization,” as en-
m=0.38ugJ, reasonably close to the theoretical valme tropy and magnetization grow together in this regime.
=0.4gugJ. By contrast, a crossing point at small fields is
harder to make out, and an approximate estimate of its loca-
tion givesB'=0.33,, in disagreement with the theoretical
B"=3B,/31. In this paper, we have analyzed in detail the magnetiza-
tion curve of nearest-neighbor spin ice ifH1] magnetic
field. The basic ingredient which makes this system particu-
larly interesting is that a uniform field can be used to couple

Figure 7 shows a stark contrast between the behavior dp the Ising pseudospins as a staggered figfd. This
magnetization and entropy as the field strength is increase@mounts to the possibility of applying fields which would
Whereas the magnetization increases monotonically goinave appeared to be rather unnatural in the formulation of a
from one plateau to the other, the entropy displays a strongimple Ising mode(without the detour via spin igeon the
(but smooth nonmonotonicity. pyrochlore lattice.

One question which naturally arises is whether such an As a result, one observes an attractively rich behavior.
entropy peak exists more generally between two magnetizéRerhaps the most salient is the dimensional reduction from
tion plateaus—what is the crucial ingredient for the existencgpyrochlore to kagome under the application of an external
of the spike? The sectors with different magnetizations ardield. The restoration of three-dimensionality upon weaken-
degenerate because not only do the monomer defects not cdgg the field goes along with the one-dimensional string de-
any energy at the degeneracy point, but they also do ndects. We hope that the extension developed here of Koster-
interact. Such a situation has in fact been observed already liiz’s RG treatment to such extended defects might be of
a much more familiar frustrated model, namely the triangulamore general use.

Ising antiferromagnet in a longitudinal field. Here, there is a A particularly attractive feature of the monomer-dimer
(nondegenerajdow field plateau with magnetization of 1/3, model we have obtained here lies in the fact that the relative
in addition to the usual saturated high field plateau. Thesgonomer and dimer fugacities in the low-temperat(fe
two are separated by a degeneracy point where “up-up-upXJes) regime are given by simple Boltzmann weights of
and “up-up-down” triangles are degener#t@he statistical Zeeman energies. They are thus straightforwardly tunable by
mechanics of that point is described by the hard-hexagopohanging the strength of the applied field. In particular, an-
model?®> the entropy of which is extensive. A similar isotropic fugacities can be obtained by tilting the field, and
phenomenon—a magnetization plateau bounded by two erthey therefore do not require an actual manipulatsurch as

Cooling by adiabatic (de)magnetization

VIIl. CONCLUSIONS

VII. ENTROPY SPIKE AND MAGNETOCALORICS
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an application of anisotropic strgssf the two-dimensional

layer.
As discussed previously in Ref. 11 the price for our ability —_ =
to analyze the model in such detail has been the omission of
the long-range nature of the dipolar interaction. A truncation A B

of the interaction at only the nearest-neighbor distance would

seem a rather drastic step; an expectation of quantitative FIG. 8. Configurationg\ andB. Tetrahedra are shown on top of
agreement between experiment and the nearest-neighbeach other. Small arrows indicate a short sequence of a loop. Up
model will in general likely be misplaced. However, as weand down spins are denoted by black and grey dots.

argue in a different context, it turns out that, in an interme-

diate temperature regime, this is not entirely unreasoriléble.points into the tetrahedron, we pick the spin on the kagome
This observation might lie at the basis of the fact that thegy triangu|ar sublattices with probab|||t|¢§ and p;, respec-
measured dipolar ice entropy agrees so well with Pauling'sively. Then we flip the chosen spin thus introducing two
estimate. Our “prediction” of the entropy peak between thegefects in the tetrahedra that share the spin.

intermediate and saturated plateaus bears witness to the After choosing the first spin, we move to the neighboring
promise of our approach to unearth at least some qualitativestrahedron with a defect. The next tetrahedron has two spins

features of interest. with the opposite orientation. We flip one of these two spins
adding it to the loop using the same prescription as we used
ACKNOWLEDGMENTS to pick the first spin. Thus we move the defect to another

tetrahedron. Then we repeat this procedure iteratively mov-

We would like to thank Michel Gingras, Hans Hansson,ing one of the two defects through the lattice until we en-
Ryuji Higashinaka, Peter Holdsworth, Johannes Richtercounter the other defect in the first tetrahedron—the two de-
Anders Karlhede, and Satoru Nakatsuji for useful discusfects will annihilate and the loop will be closed. Since we
sions. This work was in part supported by the Ministére de laadd spins to the loop with alternating signs—two spins with
Recherche et des Nouvelles Technologies with an ACI granbpposite orientation from each tetrahedron we traverse, the
SLS would like to acknowledge support by the NEMMR- ice rule is not violated.
0213706 and the David and Lucile Packard Foundation. The algorithm is ergodic since any pair of different con-
figurations differ by spins on closed loops only. They can
always be connected by flipping these loops.

Let us sketch the proof of the detailed balance condition.

We use a loop algorithm to simulate spin ice at low fields.Suppose that we have flipped some loop. In order to prove
The algorithm probes only the spin ice ground state manifoldletailed balance, the first site in a loop that returns us to the
and therefore can work only at low temperatures and loweriginal configuration must be the first site in the original
magnetic fields. All attempted loop flips are accepted in outoop and the reversed loop must be constructed in the reverse
algorithm. direction. We can prove the detailed balance condition lo-

The algorithm works as follows. To construct a loop, wecally, i.e., for all short sequences of the loop; see Figs. 8 and
first pick at random a tetrahedron of fixed orientatiamd 9. It is easy to check that most of these sequences are trivial,
mark it as a first tetrahedron in a lopghen we pick with i.e., they have equal energies before and after spin flip and
probability 1/2 a spin directiokin or out of a tetrahedrgn  equal probabilities to go from one to another configuration.
and pick a first spin in a loop using the following rules. If An example of such a simple sequence is shown in Fig. 8.
both spins with the chosen direction are on the kagome subFhe probability of going from configuratioA to configura-
lattice then we pick the spin with a probability 1/2, which is tion B is equal to the probability of going frofd to A (equal
independent of the spin orientation. If one spin is on theto 1/2). In order to prove the detailed balance condition, we
triangular sublattice and another is on the kagome sublatticenly need to consider the energies of single spins that are the
then we pick the spin with probability that depends on thesecond spins in the sequencése energies of the first spins
spin orientation. Namely, if the spin on the triangular sublat-in the sequences are taken into account in the previous step
tice is out of the tetrahedrogalong the magnetic fiejdwe  These spins have the same energies. Thus the detailed bal-
pick the spin on the kagome or triangular sublattices withance condition is satisfied trivially. An example of a non-

APPENDIX A: THE CLUSTER ALGORITHM

respective probabilities trivial sequence is shown in Fig. 9. The energies of configu-
1
=—, Al
P1 1+g (A1)
—
and -
__9 A B’
= , A2
P2 1+g (A2)

' . . - FIG. 9. Configurationé&\ andB’. Tetrahedra are shown on top of
whereg will be fixed by the detailed balance condition, seeeach other. Small arrows indicate a short sequence of a loop. Up
below, andp;+p,=1. If the spin on the triangular sublattice and down spins are denoted by black and grey dots.
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rations A and B’ are different there. We have to prove the
detailed balance condition,

P(A — B)/P(A«— B’)=P(B')/P(A). (A3)
The right hand side inA3) is just a ratio of Boltzmann
weights and is equal to e@h/3), where h=gugJB/kgT,
since the energy of configuratigk(the energy of the second
and third spins in the sequends 4hiksT/3, and the energy
of configurationB’ (the energy of the second and third spin
in the sequengeis —4hkgT/3. According to our algorithm,
the probability of going from configuratioA to configura-
tion B’ is P(A—B’)=p;/2 and the reverse probability of
going fromB’ to A is P(A«+B’)=p,/2. We have fron{A3),

P2

g=—"=exp-8h/3). (A4)

P1

Therefore if we choose; andp, as
1

Pi= 1 a3 (A5)

and
o83
P2= 77 ens (AB)

then the detailed balance condition is fulfilled.

APPENDIX B: RG CALCULATION

We introduce the abbreviation

k,ie.k( 5( )) (BD)

d,= 1
in terms of which the canonical partition function for a given
dipolar distribution {Ny;} may be written asZ({Ny,},7)
=[q_dQ; exp(-H). Our RG calculation has two steps. The

2.(1) 42.(2 1 2
d X(k,i) d X(k,i) X<k,i) - X(k,i)

2 2

first step is integrating over short length scales, i.e., thos&
states where at least one pair of charges is separated byI

distance betweem and 7+d7. The second step is to rescale

variables to restore the short distance cutoff. When we carry
out the first step, the result is a zeroth order term and a

correction of ordedr:

dQ, exp-H) + X lymj, (B2)

klmij

Z({Nk,l}! T) = J
Q

r+d7

wherelym;j is the contribution of the configuration that has
the negative end of thieh m-dipole of layerk paired with the
positive end of thgth (I-m)-dipole of layerk+m. The sum
over k is over all planes; the sum ovéris over all dipole
lengths up to the number of planes; and the sum ovés
from 1 tol-1. The form of this term is given by

Schargexi(z). This region is denoted bg(x

PHYSICAL REVIEW B 70, 104418(2004)

(1) (2)
X =X
s . )e‘“<x?2)~xj‘”>. (B3)

T

2,(2)
— 1 oH’ X
lamij= |~ dQe

T+dr A 72

[t
dx?,7)

The region of integration of the positive chargﬁ) is an
annulus of radius and thicknesslT centered on the negative
@ 7). The position
of this negative charg@nd hence the pairs integrated over
the entire ared\. Strictly speakingxi(z) would have to avoid
the hard cores of all of the other charges but this introduces
an error of ordetdr)?. (., ,_is the space of configurations of
the rest of the charges in which the charges are separated
from each other by a distance of at leastdr. H(xi(z),xlgl))
refers to the piece of the Hamiltonian which involves charges
x? andx” and the rest of the Hamiltonian is denotedHby
The x.el) integration amounts to making the substitution
%jl):ifzu?; d>xY'=7 dr dg; and integrating over angles. If
we denote the latter two of integrals of E@®3) by I, then
d>x?

2
=T [T apenetit
rJa # Jo

X - 247
X 6
-

) 2
0l
r

We assume that our gas of defects is sufficiently dilute
that the following distances are much greater than the pair
separationr: (1) the distance of a particle in plake m from
our pair, (2) the distance of a particle in plarefrom the
positive charge<i(1), and(3) the distance of a particle in plane
k+| from the negative charg)e]@. In this dilute limit, we
may make the approximation

{55)

XV -%2\ (22 -0+ 7
1] 1)
(BS)

-
We also have that(x?,x") is small in this limit, which
llows us to expand the exponential and to leading order, the
nfegral may be done exactly.The result is
(1) _ (2
X~ =X r
4) (277 _ |nib)
r

7TK7'22
5( (me7) > ed
T
—x}2>)
) (B6)

azb
dr (Xi(l)
~2m— 0| ——
T T
In the penultimate line, the sum refers to a sum over all
charges, positive and negative, residing in the plahen.
This sum term may be neglected in the lafgémit, which
is why, in contrast to the Kosterlitz calculatiéhthe cou-
pling strength does not vary during our RG fldaee Eq.
(3.14)]. The delta function implies that the-dipole and(l
—-m)-dipole have been combined into a lardetdipole. Re-
turning to our correction term:

( Xi(l) _ Xi(Z)
T
d2xl(1)

2

(B4)

v

A

)zi(l) — )2}2)

T T

dr

T
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dr im taken outside the product. If the fugacities are small, then we
iy ~ 27— fﬂkl _dQz"exp-H) [, (B7)  may write this in a more convenient way:

T+dr -1 N
where the spacé)'jigﬂ is analogous td) .4, except that y +i’2 YA ) :
there is one lessi-dipole in layerk; one lesgI—m)-dipole in ' =1 myl=m
layer k+m; and one mord-dipole in layerk. What we are z=X |11 (2m)NI(N, ))!
actually interested in is the grand partition functifiqg. A Sk
(3.12)]. Because our RG procedure is consistent with the
charge neutrality constraint, the variolig;} may be com- X L dQ, exp(—H). (B9)

+dr

bined with different terms in the grand partition function.
When we substitute into Eq3.12 and arrange terms, we Finally, we rescale lengthg— x(1+d+/7)™%, and find(drop-

find that ping primes
Z= _ lf dQ, exp(— H)] <V_(>N"
e [, Nt L0 7= |T[ 27~ J dQ, exp-H), (B10)
N, Nt ki (N [Ja,
% [g(%) | where
o A e
(B8) (B11)

The prime on the second product means ;lﬁbt‘l has been The flow equationg3.14) follow from this.
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