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Spin ice in a magnetic field in the[111] direction displays two magnetization plateaus: one at saturation and
an intermediate one with finite entropy. We study the crossovers between the different regimes from a point of
view of (entropically) interacting defects. We develop an analytical theory for the nearest-neighbor spin ice
model, which covers most of the magnetization curve. We find that the entropy is nonmonotonic, exhibiting a
giant spike between the two plateaus. This regime is described by a monomer-dimer model with tunable
fugacities. At low fields, we develop an RG treatment for the extended string defects, and we compare our
results to extensive Monte Carlo simulations. We address the implications of our results for cooling by
adiabatic(de)magnetization.

DOI: 10.1103/PhysRevB.70.104418 PACS number(s): 75.50.Ee, 75.40.Cx, 75.40.Gb

I. INTRODUCTION

Recent experiments on the spin ice compounds1,2

Ho2Ti2O7 and Dy2Ti2O7 have uncovered an intriguing set of
phenomena when unicrystalline samples are placed in an ex-
ternal magnetic field in the[111] direction.3–6 For a review
on spin ice, see Ref. 7.

The discovery of a plateau in the magnetization below
saturation, first predicted theoretically8 and explored in
Monte Carlo simulations,8,9 has been particularly remarkable
as it was found to retain a fraction of the zero-field spin ice
entropy.4,10,11In this regime, the system is well described by
a two-dimensional Ising model on a kagome lattice in a lon-
gitudinal field, which is in turn equivalent to a hexagonal
lattice dimer model.10–12

Recently, two of the present authors have studied the ther-
modynamics and correlations of the[111] plateau.11 This
work has led to the identification of mechanisms which ter-
minate the plateau. At the high-field end, the termination
occurs via the proliferation of monomer defects in the under-
lying dimer model. At low fields, a more exotic extended
string defect restores three dimensionality. The asymptotic
density of both kinds of defects was estimated in Ref. 11.

In this paper, we consider in detail the full magnetization
curve from zero-field to saturation. A brief synopsis of the
exotic thermodynamic properties of spin ice in af111g field
is sketched in Fig. 1. Our aim in this paper is to identify the
different regimes of the magnetization curves, to provide
analytical theories for them, and to test them against Monte
Carlo simulations, and finally against experiment.

Near the zero field, we use the accurate self-consistent
Hartree approximation13 to provide an analytical approxima-
tion for the linear response regime. At the low field end of
the plateau, we develop mean field and renormalization
group treatments for the extended string defects, which we
use to analyze the in-plane and out-of-plane correlations. We
compare these with Monte Carlo simulations using an effi-
cient cluster algorithm, which allows us to obtain accurate
data from the linear response regime to the beginning of the

[111] plateau. We find that the mean field treatment is accu-
rate at the lowest fields, where the string density would be
relatively high. The renormalization group treatment com-
pares well with simulation in the dilute string limit. At even
higher fields, the plateau is approached and the suppression
of the entropic activation of strings becomes apparent as a
finite-size effect.

At the high-field termination of the plateau, we observe a
giant peak in the entropy, which even exceeds the zero field
Pauling value, despite the fact that a quarter of all spins are
pinned. We model this phenomenon by a monomer-dimer
model on the honeycomb lattice with varying fugacities.(At
the point where the all fugacities equal 1, this model turns
out to be one of “hard bow-ties” on the kagome lattice.) We
analyze this model within a Bethe approximation and also by
using results from a high-order series expansion.14

We show that the entropy peak is due to the crossing of an
extensive number of energy levels which have macroscopic
entropies. Comparing this theory with Monte Carlo simula-
tions of the appropriate monomer-dimer model, we find that
the simple Bethe approximation is accurate for moderate to
large monomer densities.

We point out that this theory predicts to a crossing point
in the plots of magnetization versus field at different tem-
peratures. In addition, there is a further crossing point at
lower fields, where the corrections to the magnetization due
to monomer and string defects almost cancel one another.

We then address the connection of these results to experi-
ment, in particular pointing out the presence of(at least a
vestige) of the entropy peak in existing experimental data.

We then discuss the implications of the entropy peak for
magnetocaloric manipulations. In particular, we argue that it
arises in a more general set of models. It can, in principle, be
used to effect cooling in a field, both by adiabatic demagne-
tization and by adiabatic magnetization. Finally, we close
with some concluding remarks.

II. MODEL AND NOTATION

A general model of spin ice includes the single-ion aniso-
tropy, the exchange interaction, and the dipolar interaction.
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In this work we use a simplified model1 in which the long-
range dipolar interaction is truncated beyond the nearest-
neighbor spins. While the exchange interaction in spin ice
compounds is antiferromagnetic, the effective interaction
(exchange plus nearest-neighbor dipolar) is ferromagnetic.
The Hamiltonian for unit-length spinsSi may be written as

H = − Jeff8 o
,i j .

Si ·Sj + Eo
i

sd̂ksid ·Sid2 + gmBJo
i

B ·Si ,

s2.1d

where Jeff8 is an effective exchange coupling. The second
term is the easy axis anisotropy of strengthE,0, uEu
*50 K, which is much larger than the exchange and dipolar

interaction strengths. The unit vectorsd̂ksid are the local easy

axes of the pyrochlore lattice(see Figs. 2 and 3). The third
term is the interaction with a magnetic field of strengthB,
gmBJ being the magnetic moment of the spins. Both experi-
ment and theory indicate that this simplified model is a good
description of spin ice at moderate temperatures.

In our analysis, we take the single ion anisotropy to be
infinite so the spins are constrained to lie along their local
easy axes. In this limit, it is convenient to describe the sys-

tem by the Ising pseudospinssi, whereSi =sid̂ksid. The pseu-
dospinsi = +1s−1d if the physical spin points into(out of) its
associated up-pointing tetrahedron. We may write an effec-
tive Hamiltonian for the pseudospins:

H = Jeffo
ki j l

sis j − gmBJo
i

B · d̂ksidsi , s2.2d

whereJeff=Jeff8 /3.0.

III. THE LOW FIELD REGIME

At zero magnetic field and zero temperature, the ferro-
magnetic interaction gives rise to an “ice rule” constraint: the
pseudospins on each tetrahedron must sum to zero,uok sku
=0. In terms of the physical spins, on each tetrahedron two
will point inwards (towards the center) and two will point
outwards(away from the center). The set of configurations
satisfying the ice rule comprises the zero-field spin ice
ground state manifold. At low magnetic fields(and low tem-
peratures), the system will continue to obey the ice rule,
though the magnetic field will favor certain states among
those in the zero-field ground state manifold.

We have performed extensive Monte Carlo simulations of
the low field regime, from the zero field up until the low field
plateau termination, using a loop algorithm, which is dis-
cussed in Appendix A. Our algorithm probes only spin ice
ground states(two spins in and two out on each tetrahedron)
and is thus applicable at low temperaturesT!Jeff and low

FIG. 1. Properties of spin-ice as the[111] magnetic field is
varied. These curves are for illustration and do not show actual
numerical or experimental data. We have indicated the regions
where various analytic approaches discussed in the text apply.

FIG. 2. The pyrochlore lattice of corner-sharing tetrahedra.
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magnetic fields, where the density of monomer defects,
which are responsible for the high field plateau termination,
is low. The simulation is written in terms of a pyrochlore
lattice with the conventional 16 site cubic unit cell(which
contains four tetrahedra of each kind). The simulations have
been done for systems with 16, 128, 432, 1024, 2000, 3456,
5488, 8192, and 16000 sites. For a system with 16000 sites,
we perform 2.53106 loop flips for equilibration and 5
3107 for averaging. For other system sizes, we perform 1
3107 loop flips for equilibration and 23108 for averaging.
The simulated magnetization as a function of the magnetic
field strength is shown in Fig. 4. The magnetization attains
the plateau value at fields much larger than the temperature.

A. The linear response regime

We may calculate the ground state entropy of spin ice at
zero field by numerically integrating the first law of thermo-
dynamics,

dS=
dU

T
+

m

T
dh. s3.1d

Noting that the magnetization is constant and equal to
−gmBJ/3 per spin on the plateau and is zero at the zero field,
and that the value of the entropy on the plateau isS/kB
=0.080765,10,11 we obtain for the entropy of spin ice,S/kB
=0.2051±0.0001. Our value is very close to Pauling’s esti-
mateS/kB=0.202733 and is consistent with the most accu-
rate current theoretical estimateS/kB=0.20501±0.00005.15

At a zero field, we use the self-consistent Hartree approxi-
mation, which is known to give a quantitatively accurate
approximation to the ground state correlations of spin ice.13

This gives x=2sgmBJd2/3kBT for spin ice. This compares
well with our Monte Carlo result,x=s0.66735±0.0003d
3sgmBJd2/kBT for a system with 16000 sites.

B. String defects and their interactions

1. General description

Figure 2 presents the underlying pyrochlore lattice of spin
ice and Fig. 3 shows the[111] direction. It is convenient to
visualize the pyrochlore lattice as a stack of alternating
kagome and triangular planes, the[111] direction being the
direction in which the planes are stacked. Each spin lies on a
corner shared by an up-pointing and down-pointing tetrahe-
dron.

If the [111] magnetic field is large enough, the spins in the
triangular planes align with the field; the kagome planes de-
couple from one another; and the system is well described by
a two-dimensional model. This describes spin ice on the pla-
teau. At fields slightly lower than the plateau, excitations
called string defects11 restore three-dimensionality and are
responsible for the low field termination of the plateau.

To describe these defects, we consider the entropic benefit
of relaxing the condition that the triangular planes are polar-
ized. Suppose we flip a spin in some triangular layer. Then,
by the ice rule constraint, we must also flip a spin in each of
the two neighboring kagome layers(on the two tetrahedra
that are sharing the first flipped spin). Flipping these kagome
spins requires flipping spins in each of the two neighboring
triangular layers, which requires flipping spins in the two
next-nearest kagome layers and so on. The resulting “string
defect” is an excitation that extends through the system. The
energy cost, per kagome-triangle bilayer, of creating the
string isEs=8gmBJB/3. To estimate the entropy, we note that
creating a string actually involves creating a pair of defects
in each kagome plane. A “positive” defect connects the
kagome plane to the kagome plane directly above it via a
flipped spin in the intermediate triangular plane. Similarly, a
“negative” defect connects the kagome plane to the kagome
plane directly below it. These two defects may be separated
by flipping pairs of spins pointing in different directions on
neighboring triangles of the kagome plane. The entropy in
the kagome plane depends on this separation, which is the
basis for the interaction between defects discussed below.
Ignoring this correction, the positive defect may be placed

FIG. 3. (Color online) A single tetrahedron inscribed in a cube.

The easy axes of the pyrochlore lattice(or k111l axes), d̂k, are
indicated by the short-dashed lines.

FIG. 4. The magnetization from Monte Carlo simulations.
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anywhere in the plane(which fixes the position of the nega-
tive defect in the layer above). This implies that the entropy
per bilayer isS, ln A, whereA is the area of a layer. This
shows that for a given magnetic field, string defects are fa-
vored in a sufficiently large system. For a given system size,
strings are favored at sufficiently low magnetic fields.

2. Interactions

For magnetic fields in the plateau region, the triangular
spins are fixed while each kagome plane contains two up
pseudospinsss=1d and one down pseudospinss=−1d. This
Ising model on the kagome lattice may be mapped onto the
dimer model on the hexagonal lattice,10–12 where a down
pseudospin corresponds to a dimer on the hexagonal lattice.
In this language, a string defect appears as a pair of oppo-
sitely charged monomers.

As discussed in Ref. 11, a monomer-dimer covering may
be described by assigning a height variablehi to each sitei of
the triangular lattice dual to the hexagonal lattice on which
the dimers lie. The heights are assigned as follows. Moving
from a site to a nearest neighbor site by moving clockwise
around an up-(down-) triangle will increase(decrease) the
height by +2s−2d if a dimer is crossed. If a dimer is not
crossed, then the height will decrease(increase) by −1 s+1d.
According to these rules, traversing a closed loop in the dual
lattice will result in a height difference of +3s−3d if a posi-
tive (negative) monomer is enclosed and 0 otherwise. We
note that the overall sign of the height assignments is a mat-
ter of convention and we may as well have chosen thehi so
that traversing a closed loop containing a positive(negative)
monomer gave a height difference of −3.

In a coarse-grained description, thehi are replaced by a
real, continuum fieldhsrWd and as discussed in Ref. 11, the
entropy associated with a height fieldhsrWd is given to lowest
order ingredients by

S=E d2r
K

2
u=hu2, s3.2d

whereK=p /9 for the honeycomb lattice.16 The height field
has the property

R
C

=h ·drW = 3E
S

d2r ssrWd, s3.3d

wheressrWd is the monomer charge density andS is the region
enclosed by the loop C. We may proceed by analogy with the
2d XY model17 and divideh into “dimer” (spin-wave) and
“monomer” (vortex) contributions. A standard calculation18

gives the entropy of the monomer piece:

Sm =
9K

4p
E E d2rd2r8ssrWdssr8W dS− ln

urW − r8W u
t

D
=

1

2
E E d2rd2r8ssrWdssr8W dS− k ln

urW − r8W u
t

D , s3.4d

wherek=1/2 andt is a hard-core radius comparable to the
lattice spacing. This shows that the entropic interaction be-

tween two defects separated by distancer is given by
p1p2VsurW1−rW2ud wherepi is +1 s−1d for a positive(negative)
defect andVsRd=−k lnsR/td.

3. Mean field calculation

If the number of defects is fairly large, we may expect the
interaction to be sufficiently screened to justify the use of
variational mean field theory.19 We will investigate the in-
plane and out-of-plane correlations for the defects.

We consider a layered system of two-dimensional planes
(indexed by the labelk which ranges from −K to K) where
each plane containsN positive andN negative defects(which
we refer to as charges) that interact logarithmically. The
string constraint requires that each positive charge in layerk
is rigidly connected to a negative charge in the layerk+1.
We impose a periodic boundary condition to connect the
positive charges in theKth layer to the negative charges in
the −Kth layer.

We formally impose the constraint by writing the “Hamil-
tonian” in terms of positive charges alone. The planes are
stacked in thez-direction. Letxi

k be the in-plane position of
the ith positive charge in thekth layer. In the absence of
external fields, the entropy of a particular configuration ofN
defects is given by

H = o
k=−K

K So
iÞ j

N

Vsuxi
k − xj

kud − o
i,j

N

Vsuxi
k − xj

k+1udD . s3.5d

HereVsRd=−k lnsR/td, wheret is a hard-core radius defin-
ing the minimum separation between two charges andk
=1/2. Thefirst term corresponds to the repulsion of positive
charges within the same layer. The absence of a factor of1

2 in
front of this term is due to the string constraint: bringing two
positive charges in the same plane close together also in-
volves bringing together their negative partners in the plane
above. In terms of our positive charge formulation, this
means the repulsion is twice as large. The second term is the
interlayer interaction. Physically, a positive charge in layerk
has a negative partner in the layerk+1 which attracts the
positive charges in layerk+1. In terms of our positive charge
formulation, charges repel charges in the same plane but at-
tract charges in nearest neighbor planes.

We assume a variational mean field density of the form

rsx1
−K, . . . ,xi

k, . . . ,xN
Kd = p

k=−K

K

p
i=1

N
rksxi

kd
N

, s3.6d

which asserts that all particles in a given layerk have the
same probability densityrksxd /N, but the density may vary
from layer to layer. We also need the normalizing condition

E
A

d2x rksxd = N. s3.7d

This trial function implies a variational entropy functional:
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Sr,N = o
k=−K

K S−
1

2
E E d2xd2x8„rksxd − rk+1sxd…„rksx8d − rk+1sx8d…Vsux − x8ud −E d2x rksxdlnSrksxd

N
DD . s3.8d

This functional is maximized when the density is uniformrksxd=N/A which givesSr,N=s2K+1dN ln A. To investigate the
linear response of the system, we may apply a perturbing potential to the objects in thek=0 plane. In particular, we consider
the effect on the density of placing a positive charge at the origin of the plane. The details are given in Ref. 18 but we may
quote the result

drS x

ji

,kD =
1

4p2ji
2 E d2sfs2ss2 + 2dg−1/2eis·sx/jid

f1 + s2 + 2Îs2ss2 + 2dgf1 + s2 + Îs2ss2 + 2dgk−1
, s3.9d

where the in-plane length scale is given byji

=sA/4pkNd1/2. We note first that this expression diverges at
smallx for k=0, which is not surprising because the assump-
tion of a linear response would be not be valid so close to the
perturbing charge. The expression would be valid at largerk
and an interesting feature is that whenx=ji, the decay in the
z direction does not depend on any physical parameters, i.e.,
there is no length scale in thez direction. We will return to
this point in the next section.

To connect with our physical problem, we note that at a
given temperature, we will have an expected value of defects
which may be calculated from the partition function:

Z = e−bA = o
N

ys2K+1dN

sN ! d2K+1eSN, s3.10d

whereSN is the entropy of havingN defects andy=e−Es/kBT is
the fugacity of a positive defect(y2K+1 is the fugacity of a
“string”). In a mean field, we may replaceSN by Sr,N=s2K
+1dN ln A. From this, we may show18 that kNl,yA, and
using our earlier expression, we find that

ji,MF
2 , exps8gmBJB/3kBTd. s3.11d

4. RG calculation

When the gas of defects is fairly dilute, we may expect
that the screening is not effective enough to justify a mean
field treatment. In this section, we account for fluctuations by
making a real space renormalization group calculation using
methods similar to the Kosterlitz treatment of the 2d Cou-
lomb gas.17,20

The dynamical objects described by Hamiltonian(3.5)
are dipoles of length 1. We need to generalize this model
in order to do a RG calculation. The generalization that
we consider is allowing for dipoles of arbitrary
“ l-dipole” is an object where the negative charge lies directly
l planes above its positive partner. While the original prob-
lem involved just the coupling of nearest neighbor planes,
our generalized model involves all possible couplings. Asso-
ciated with eachl-dipole is a fugacityyl /2p (the 2p is for
convenience). The grand partition function for the system
may be written as

Z = o
hNk,lj

Fp
k,l

syl/2pdN,l

sNk,ld!
GZfhNk,ljg, s3.12d

whereNk,l denotes the number ofl-dipoles in layerk; N,l is
the number ofl-dipoles in the system; andNk is the number
of dipoles (of any length) that have their positive ends in
layer k. The sum is over all particle number configurations
hNk,lj that satisfy the charge neutrality constraint in each
plane:Nk=ol Nk−l,l. The canonical partition function corre-
sponding to a given dipole distributionhNk,lj is

ZfhNk,ljg =E
Vt

p
k,i
Sd2xk,i

s1d

t2

d2xk,i
s2d

t2 dSxk,i
s1d − xk,i

s2d

t
DD

3 expf− HshNk,ljdg; s3.13d

HshNk,ljd is the Hamiltonian(actually an entropy) corre-
sponding to the dipole distributionhNk,lj. The coordinatexk,i

s1d

is the planar coordinate of theith positive charge of layerk
andxk,i

s2d is the planar coordinate of its negative partner which
lives in layerk+ lsid, lsid being the length of the dipole being
described. The string constraint is imposed by the delta func-
tion, where we use the normalizationeR2 sd2x/t2ddsx/td=1.
The product is over all positive charges in all layers. The
integration is over the spaceVt. This is defined to be the set
of all possible spatial configurations of the dipole distribu-
tion hNk,lj that respect the hard-core constraint: no two
charges in a given plane may be closer than distancet.

Our procedure is an extension of the treatment in Refs. 17
and 20. The first part of a RG procedure normally involves
integrating over the high momentum modes of the system. In
our problem, these correspond to those configurations where
in some plane we have a pair of charges separated by a
distance betweent andt+dt. We assume a dilute system so
only oppositely charged pairs are considered and also the
distance between the members of a pair is taken to be much
smaller than the distance from the pair to another charge. The
basic coarse-graining step in our RG transformation is illus-
trated in Fig. 5.

Suppose a particular state involves pairing the negative
end of anl1-dipole in layerk with the positive end of an
l2-dipole in layer k+ l1. Viewed at long length scales, we
effectively have ansl1+ l2d-dipole in layerk. We will find
that integrating over all possible pairings gives a zeroth order
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term (which just involves replacingVt with Vt+dt) and a
number of correction terms of orderdt where two short di-
poles were destroyed and replaced by a longer dipole. Since
the procedure respects the charge neutrality constraint, these
correction terms will combine with other terms in the grand
partition sum. The second step involves rescaling lengths so
that the high momentum cutoff, in the new variable, is the
same as before. The aim is to see how the fugacities and
couplings change as we run this procedure.

Details of the calculation are given in Appendix B. Here
we give the resulting flow equations:

dy1

dt
= s2 − kdy1, s3.14d

dyl

dt
= s2 − kdyl + o

m=1

l−1

ymyl−m, s3.15d

dk

dt
= 0, s3.16d

wheret=ln t. One notable feature is that the coupling does
not change with the flow, in contrast with the 2d Coulomb
gas where the coupling does vary(albeit at second order in
the fugacity). This indicates that strings are stiffer objects
than charges. Another observation is that for the initial con-
ditions of our physical problem, namely thaty1s0d=y0

=2pe−Es/kbT andyls0d=0 for l .1, the flow equations have an
exact solution:

yl = y0t2−kFS y0

2 − k
Dst2−k − 1dG l−1

. s3.17d

Our RG is valid as long as the corrections to the fugacities
are small, meaning that the derivativesdyl /dt should be
bounded. If we look at the above result, Eq.(3.17), we see
that when the term in brackets is greater than 1,yl diverges
with l. Therefore, a critical length, which we interpret as an
in-plane correlation length, is defined by when the term in
brackets equals 1:

y0

2 − k
sji,RG

2−k − 1d = 1. s3.18d

Substituting earlier expressions and noting that for our sys-
tem, k=1/2, we findthat

ln ji,RG
2 =

32gmBJB

9kBT
S1 +

lnse−Es/kBT + 2 −kd
Es/kBT

D ,

ji,RG
2 , exps32gmBJB/9kBTd, s3.19d

for the fields and temperatures of interest. This value is the
same as that predicted in Ref. 11 using a free energy argu-
ment. Fort,ji,RG, yl decreases withl which means that
states with long dipoles are less probable than states with
short dipoles. Ift.ji,RG, yl diverges withl which suggests
that longer dipoles are favored, but, as mentioned above, the
RG procedure is no longer valid in this regime. We note that
whent=ji,RG, yl is independent ofl so that, as in the mean
field calculation discussed above, there is no discernible
length scale in thez direction.

If t,ji,RG, then we may consider an out-of-plane length
scale, which we define nominally as the value ofl = lt for
which yl /y1=1/e:

lt = 1 +
1

lnS ji,RG
3/2 − 1

t3/2 − 1
D . s3.20d

We may interpretlt as the typical length of a string segment
that is captured by a tube of diametert (where a tube need
not be straight).

5. Comparison with simulation

In Fig. 6, we show the magnetization as a function of the
magnetic field strength on a log-log scale. Our algorithm
allows us to simulate spin ice in af111g magnetic field with
very high accuracy.

The magnetization should scale with the average density
of defects, which in turn should scale like the inverse square
of the in-plane correlation length. As shown in this figure,
the data at low fields are well fit by the exponent 8/3 ob-
tained in the mean field calculation discussed earlier. At
somewhat higher fields, the data are well fit by the exponent
32/9, obtained by the RG calculation discussed earlier and
also in Ref. 11 by looking at the entropic contribution to the
free energy. At high fields, the exponent of 8L /3 [=16 for
L=6 (sites), as was the case in the simulations] characterizes
a regime where finite-size effects are important, as discussed
below.

The low field crossover makes qualitative sense in that at
low fields, there will be many defects which screen one an-
other which suggests that a mean field treatment may be
reasonably accurate. At higher fields, the gas of defects is
more dilute so a RG treatment would be required.

The high field crossover is a finite-size effect since the
position of a crossover between exponents is system size
dependent and the corresponding exponent is also system
size dependent, getting steeper with increasing system size.

FIG. 5. The basic coarse-graining step in our RG
transformation.
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The finite-size behavior may be explained as follows. At
high magnetic fields, there are a small number of string de-
fects in the system. The magnetization and the energy of one
string defect in a system of sizeL are −4LgmBJ/3 and
4LgmBJB/3, respectively. The energy cost grows linearly
with system size and, as mentioned above, the defects are
favored solely due to their entropic contribution to the free

energy. At sufficiently high magnetic fields, a given system
will be too small to provide the entropy to balance the energy
cost of a string. This will occur when the magnetization per
spin reaches the magnetization of a system with one string
defect:

m= f1/3 − 2s4L/3d/s16L3dggmBJ = f1/3 − 1/s6L2dggmBJ.

s3.21d

In this case, the statistical weight of a single string defect
will be a Boltzmann factor exps−8LgmBJB/3kBTd and
the magnetization will equalf1/3−C exps−8LgmBJB/
3kBTdggmBJ, whereC is some constant. The crossover be-
tween different regimes occurs when the magnetization
reaches(3.21). We have good agreement with the 8L /3 be-
havior for a variety of system sizes, includingL=6 which is
shown in Fig. 6.

IV. THE HIGH FIELD REGIME

On the plateau, the magnetization of the triangular sublat-
tice is saturated and we may consider each kagome plane
separately. Thus, the 3-dimensional model may be mapped
onto a 2-dimensional one. Whereas the spins in the triangular
sublattice are fixed, the physics in the kagome planes re-
mains nontrivial. Each triangle on the kagome plane contains
two up pseudospinsss=1d and one down pseudospinss
=−1d. This Ising model on the kagome lattice may be
mapped onto the dimer model on the hexagonal lattice,10–12

in which a down pseudospin corresponds to a dimer on the
hexagonal lattice. The model retains an extensive ground
state entropy,S/kB=0.080765.

If we flip a down(pseudo)spin it violates the ice rule. This
corresponds to breaking a dimer into two monomers. As with
string defects, these monomers may be separated and move
freely on the lattice. The energy cost for creating two mono-
mers is 2E=4Jeff−2gmBJB/3. This energy vanishes at a criti-
cal field Bc=6Jeff / sgmBJd. At higher fields the monomers
proliferate leading to complete saturation and an ordered
state with zero entropy. The physics near the transition may
be described by the following Hamiltonian which acts on the
kagome lattice:

H

T
= o

ki j l
Kijsisj − ho

i

si , s4.1d

where the sum is over all nearest neighbors;si are classical
Ising spins taking values +1 and −1;h is the strength of a
fictitious magnetic field; and K++=0, K+−=K−+=K
=fgmBJB/6−Jeffg /T, and K−−=`. The coupling constants
imply that each triangle of the kagome lattice contains at
most one down pseudospin and that down spins cost energy
(positive or negative dependent on the magnetic field
strength).

We may calculate the magnetization and entropy using the
simple Bethe approximation. Details are given in Refs. 14
and 21 but we may quote the results:

m=
1

2

1

1 + x2 , s4.2d

FIG. 6. (Color online) The crossover between exponents.
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S= −
3xz ln z

2 + 6xz
+

1

4
ln

2z3

x2s3z− xd
, s4.3d

wherex=2z/ s1+Î1+8z2d andz=exps−2Kd.
In Fig. 7, we compare these expressions with a Monte

Carlo simulation. The simulation is of a kagome lattice with
16316 up-triangles(768 total spins). The standard single
spin-flip Metropolis algorithm was used, which may explain
the inaccuracy in the simulated entropy at low fields, where a
more clever scheme may be needed to sample the degenerate
manifold. The entropy was computed, for a given field, by
integrating from high temperatures[where S/kB=s3/4dln 2
per atom] to low temperatures.

We find that the simple Bethe approximation is accurate
for moderate and high monomer densities(higher fields) but
does not work so well at a low monomer density(lower
fields). As the Bethe approximation does not account for
long cycles on the lattice, the approximation should indeed
break down when the correlation length is large(monomer

density is small). We note that the correlation length is infi-
nite at zero monomer density since the dimer model on the
hexagonal lattice is critical.

In a higher-order series expansion, one may account for
some corrections to the Bethe approximation.14 As seen in
the figure, the corrections are almost indiscernible for the
magnetization. For the entropy, the corrections give better
agreement at the low monomer density and are negligible at
high monomer densities.

There is a giant peak in the entropy at the transition point,
S/kB=1/4 lns16/5d<0.291, which exceeds even the zero
field entropy. The peak is due to the crossing of an extensive
number of energy levels which have macroscopic entropies.
For B=Bc, the energies of states corresponding to different
numbers of monomer defects are equal since the monomer
and dimer weights are, by definition, equal at the critical
field. There are an extensive number of states corresponding
to a given number of monomers(below saturation). The
highly degenerate ground state manifold explains the large
spike in the entropy.

V. CROSSING POINTS

The theory described in the previous section implies that
the curves of magnetization versus field, plotted for different
temperatures, will display a crossing point. This arises sim-
ply because the partition function depends on the magnetic
field and temperature effectively only through the combina-
tion sB−Bcd /T. Thus, when plotted as a function ofB−Bc,
the curves coincide only at the pointB=Bc. At this point, the
Bethe approximation gives a value for the magnetization of
m=0.4gmBJ; see Eq.(4.2).

In addition, we expect a crossing point at low fields, due
the interplay of string and monomer defects. Indeed, where
the plateau is well-formed, the string density isns
,exps−32gmBJB/9kbTd and the monomer density isnm

,exps−8Em/7kBTd, whereE=gmBJsBc−Bd /3 is the energy
of creating one monomer. The crossing point occurs when
ns=nb. With logarithmic accuracy, we can write

32gmBJB

9kbT
=

8gmBJsB − Bcd
21kBT

. s5.1d

Thus the crossing point lies atB!=3Bc/31.

VI. RELATION TO EXPERIMENT AND OTHER
THEORIES

Our model gives a description of the high field transition
that is qualitatively consistent with experiment for a range of
temperatures.4 In particular, a peak in the entropy has been
observed close to the high-field termination of the plateau
(Fig. 9 in Ref. 4). As this feature was taken to be an experi-
mental artefact, it was not analyzed in detail in that work.
However, it appears that its height is rather smaller than the
one we find here, although the number of data points is not
enough to determine the center of the peak or its height.

However, recent experiments22 on the spin ice compound
Dy2Ti2O7 have indicated that at low temperatures, the high
field transition becomes first order. In Ref. 22, the onset of

FIG. 7. (Color online) The magnetization(top) and the entropy
(bottom) around the transition between the plateaux. The simple
Bethe approximation is compared to the Monte Carlo results. The
exact result for the entropy at zero monomer density and Pauling’s
estimate for the entropy at zero magnetic field are shown for refer-
ence. The series expansion contains the results from Ref. 14 on the
monomer-dimer model.
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first order behavior was found to occur for temperatures
lower than a critical temperature ofTc,0.36 K
s,0.327Jeff,Dy/kBd. Figure 7 shows that our predicted curves
remain continuous even at temperatures below this observed
Tc.

A likely reason for the discrepancy is the long range na-
ture of the dipolar interaction, which we approximated as a
nearest neighbor Ising model. The simplest way to account
for these interactions is to model the ignored interaction
terms as giving rise to a magnetic field proportional to the
magnetization. By assuming the magnetizationM, as a func-
tion of the effective fieldB+aM, has the same functional
form as given in Fig. 7, we may self-consistently determine
M for a givenB. Using a as a free parameter, we find that
this simple model predicts the onset of first order behavior, at
the experimentally observed critical fieldBc, only for tem-
peratures in the milli-Kelvin range. To obtain a higher nu-
mericalTc requires a largera, which causes a lower numeri-
cal Bc. To get the numericalTc to match experiment requires
an a so large that our numericalBc is “negative” (in the
sense of artificially extending theM =1/3 line of Fig. 7 for
the purpose of a spline fit). It seems that a more careful
treatment of the dipolar interaction is required in order to
explain the recent experimental results. Also, we have not
considered the impact of the slowdown of the dynamics
which is observed at a low temperature.23

As for the crossing points mentioned above, the high-field
one does indeed appear to be present in the experimental
data3,22 in the appropriate temperature range. The experimen-
tal value of the magnetization at the crossing point is about
m=0.38gmBJ, reasonably close to the theoretical valuem
=0.4gmBJ. By contrast, a crossing point at small fields is
harder to make out, and an approximate estimate of its loca-
tion givesB* =0.35Bc, in disagreement with the theoretical
B* =3Bc/31.

VII. ENTROPY SPIKE AND MAGNETOCALORICS

Figure 7 shows a stark contrast between the behavior of
magnetization and entropy as the field strength is increased.
Whereas the magnetization increases monotonically going
from one plateau to the other, the entropy displays a strong
(but smooth) nonmonotonicity.

One question which naturally arises is whether such an
entropy peak exists more generally between two magnetiza-
tion plateaus—what is the crucial ingredient for the existence
of the spike? The sectors with different magnetizations are
degenerate because not only do the monomer defects not cost
any energy at the degeneracy point, but they also do not
interact. Such a situation has in fact been observed already in
a much more familiar frustrated model, namely the triangular
Ising antiferromagnet in a longitudinal field. Here, there is a
(nondegenerate) low field plateau with magnetization of 1/3,
in addition to the usual saturated high field plateau. These
two are separated by a degeneracy point where “up-up-up”
and “up-up-down” triangles are degenerate.24 The statistical
mechanics of that point is described by the hard-hexagon
model,25 the entropy of which is extensive. A similar
phenomenon—a magnetization plateau bounded by two en-

tropy spikes—also appears in the case of an effectively 1d
helimagnet.26

In classical Ising models, such a degeneracy seems not so
surprising as the allowed energies are naturally discrete.
However, a similar situation can arise even in bona-fide
Heisenberg models. This follows from the result by Richter
et al.,27 who demonstrated that near saturation, on a range of
frustrated lattices(including the kagome), localized spin-1/2
excitations exist. As one sweeps the magnetic field from
saturation downwards, one would therefore also expect an
entropy spike in those models. A numerical study testing this
assertion is in progress.28

Cooling by adiabatic (de)magnetization

At low temperatures, near the degeneracy point, the par-
tition function depends on the magnetic field and tempera-
ture effectively only through the combinationsB−Bcd /T.
One may thus argue that the spike may be used to effect
cooling by adiabatic demagnetization29 in exactly the same
way one may use paramagnets—analogous constraints limit
the application in either case.

There are two features which may be worth pointing out
at this point. Both follow from the fact that—unlike in the
case of a paramagnet—BcÞ0. First, maximal cooling occurs
at a finite field, namely aroundBc. This phenomenon may
therefore be useful to effect cooling for a magnet in a field,
with the restriction thatBc, for a given spin ice compound, is
not tunable. Second, ifB approachesBc from below, one can
in fact obtain “cooling by adiabatic magnetization,” as en-
tropy and magnetization grow together in this regime.

VIII. CONCLUSIONS

In this paper, we have analyzed in detail the magnetiza-
tion curve of nearest-neighbor spin ice in a[111] magnetic
field. The basic ingredient which makes this system particu-
larly interesting is that a uniform field can be used to couple
to the Ising pseudospins as a staggered field.30,31 This
amounts to the possibility of applying fields which would
have appeared to be rather unnatural in the formulation of a
simple Ising model(without the detour via spin ice) on the
pyrochlore lattice.

As a result, one observes an attractively rich behavior.
Perhaps the most salient is the dimensional reduction from
pyrochlore to kagome under the application of an external
field. The restoration of three-dimensionality upon weaken-
ing the field goes along with the one-dimensional string de-
fects. We hope that the extension developed here of Koster-
litz’s RG treatment to such extended defects might be of
more general use.

A particularly attractive feature of the monomer-dimer
model we have obtained here lies in the fact that the relative
monomer and dimer fugacities in the low-temperaturesT
!Jeffd regime are given by simple Boltzmann weights of
Zeeman energies. They are thus straightforwardly tunable by
changing the strength of the applied field. In particular, an-
isotropic fugacities can be obtained by tilting the field, and
they therefore do not require an actual manipulation(such as
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an application of anisotropic stress) of the two-dimensional
layer.

As discussed previously in Ref. 11 the price for our ability
to analyze the model in such detail has been the omission of
the long-range nature of the dipolar interaction. A truncation
of the interaction at only the nearest-neighbor distance would
seem a rather drastic step; an expectation of quantitative
agreement between experiment and the nearest-neighbor
model will in general likely be misplaced. However, as we
argue in a different context, it turns out that, in an interme-
diate temperature regime, this is not entirely unreasonable.13

This observation might lie at the basis of the fact that the
measured dipolar ice entropy agrees so well with Pauling’s
estimate. Our “prediction” of the entropy peak between the
intermediate and saturated plateaus bears witness to the
promise of our approach to unearth at least some qualitative
features of interest.
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APPENDIX A: THE CLUSTER ALGORITHM

We use a loop algorithm to simulate spin ice at low fields.
The algorithm probes only the spin ice ground state manifold
and therefore can work only at low temperatures and low
magnetic fields. All attempted loop flips are accepted in our
algorithm.

The algorithm works as follows. To construct a loop, we
first pick at random a tetrahedron of fixed orientation(and
mark it as a first tetrahedron in a loop), then we pick with
probability 1/2 a spin direction(in or out of a tetrahedron)
and pick a first spin in a loop using the following rules. If
both spins with the chosen direction are on the kagome sub-
lattice then we pick the spin with a probability 1/2, which is
independent of the spin orientation. If one spin is on the
triangular sublattice and another is on the kagome sublattice
then we pick the spin with probability that depends on the
spin orientation. Namely, if the spin on the triangular sublat-
tice is out of the tetrahedron(along the magnetic field), we
pick the spin on the kagome or triangular sublattices with
respective probabilities

p1 =
1

1 + g
, sA1d

and

p2 =
g

1 + g
, sA2d

whereg will be fixed by the detailed balance condition, see
below, andp1+p2=1. If the spin on the triangular sublattice

points into the tetrahedron, we pick the spin on the kagome
or triangular sublattices with probabilitiesp2 andp1, respec-
tively. Then we flip the chosen spin thus introducing two
defects in the tetrahedra that share the spin.

After choosing the first spin, we move to the neighboring
tetrahedron with a defect. The next tetrahedron has two spins
with the opposite orientation. We flip one of these two spins
adding it to the loop using the same prescription as we used
to pick the first spin. Thus we move the defect to another
tetrahedron. Then we repeat this procedure iteratively mov-
ing one of the two defects through the lattice until we en-
counter the other defect in the first tetrahedron—the two de-
fects will annihilate and the loop will be closed. Since we
add spins to the loop with alternating signs—two spins with
opposite orientation from each tetrahedron we traverse, the
ice rule is not violated.

The algorithm is ergodic since any pair of different con-
figurations differ by spins on closed loops only. They can
always be connected by flipping these loops.

Let us sketch the proof of the detailed balance condition.
Suppose that we have flipped some loop. In order to prove
detailed balance, the first site in a loop that returns us to the
original configuration must be the first site in the original
loop and the reversed loop must be constructed in the reverse
direction. We can prove the detailed balance condition lo-
cally, i.e., for all short sequences of the loop; see Figs. 8 and
9. It is easy to check that most of these sequences are trivial,
i.e., they have equal energies before and after spin flip and
equal probabilities to go from one to another configuration.
An example of such a simple sequence is shown in Fig. 8.
The probability of going from configurationA to configura-
tion B is equal to the probability of going fromB to A (equal
to 1/2). In order to prove the detailed balance condition, we
only need to consider the energies of single spins that are the
second spins in the sequences(the energies of the first spins
in the sequences are taken into account in the previous step).
These spins have the same energies. Thus the detailed bal-
ance condition is satisfied trivially. An example of a non-
trivial sequence is shown in Fig. 9. The energies of configu-

FIG. 8. ConfigurationsA andB. Tetrahedra are shown on top of
each other. Small arrows indicate a short sequence of a loop. Up
and down spins are denoted by black and grey dots.

FIG. 9. ConfigurationsA andB8. Tetrahedra are shown on top of
each other. Small arrows indicate a short sequence of a loop. Up
and down spins are denoted by black and grey dots.
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rationsA and B8 are different there. We have to prove the
detailed balance condition,

PsA → Bd/PsA ← B8d = PsB8d/PsAd. sA3d

The right hand side in(A3) is just a ratio of Boltzmann
weights and is equal to exps8h/3d, where h=gmBJB/kBT,
since the energy of configurationA (the energy of the second
and third spins in the sequence) is 4hkBT/3, and the energy
of configurationB8 (the energy of the second and third spins
in the sequence) is −4hkBT/3. According to our algorithm,
the probability of going from configurationA to configura-
tion B8 is PsA→B8d=p1/2 and the reverse probability of
going fromB8 to A is PsA←B8d=p2/2. We have from(A3),

g =
p2

p1
= exps− 8h/3d. sA4d

Therefore if we choosep1 andp2 as

p1 =
1

1 + e−8h/3 , sA5d

and

p2 =
e−8h/3

1 + e−8h/3 , sA6d

then the detailed balance condition is fulfilled.

APPENDIX B: RG CALCULATION

We introduce the abbreviation

dVt = p
k,iPIk

Sd2xk,i
s1d

t2

d2xk,i
s2d

t2 dSxk,i
s1d − xk,i

s2d

t
DD , sB1d

in terms of which the canonical partition function for a given
dipolar distribution hNk,lj may be written asZshNk,lj ,td
=eVt

dVt exps−Hd. Our RG calculation has two steps. The
first step is integrating over short length scales, i.e., those
states where at least one pair of charges is separated by a
distance betweent andt+dt. The second step is to rescale
variables to restore the short distance cutoff. When we carry
out the first step, the result is a zeroth order term and a
correction of orderdt:

ZshNk,lj,td =E
Vt+dt

dVt exps− Hd + o
k,l,m,i,j

Iklmij, sB2d

where Iklmij is the contribution of the configuration that has
the negative end of theith m-dipole of layerk paired with the
positive end of thej th sl −md-dipole of layerk+m. The sum
over k is over all planes; the sum overl is over all dipole
lengths up to the number of planes; and the sum overm is
from 1 to l −1. The form of this term is given by

Iklmij =E
Vt+dt8

dVt8e
−H8E

A

d2xi
s2d

t2
dSxi

s1d − xi
s2d

t
D

3 E
dsxi

s2d,td

d2xj
s1d

t2
dSxj

s1d − xj
s2d

t
De−Hsxi

s2d,xj
s1dd. sB3d

The region of integration of the positive chargexj
s1d is an

annulus of radiust and thicknessdt centered on the negative
chargexi

s2d. This region is denoted bydsxi
s2d ,td. The position

of this negative charge(and hence the pair) is integrated over
the entire areaA. Strictly speaking,xi

s2d would have to avoid
the hard cores of all of the other charges but this introduces
an error of ordersdtd2. Vt+dt8 is the space of configurations of
the rest of the charges in which the charges are separated
from each other by a distance of at leastt+dt. Hsxi

s2d ,xj
s1dd

refers to the piece of the Hamiltonian which involves charges
xi

s2d andxj
s1d and the rest of the Hamiltonian is denoted byH8.

The xj
s1d integration amounts to making the substitution

xW j
s1d=xW i

s2d+tW; d2xj
s1d=t dt du; and integrating over angles. If

we denote the latter two of integrals of Eq.(B3) by I, then

I =
dt

t
E

A

d2xi
s2d

t2 E
0

2p

du e−HsxWi
s2d,xWi

s2d+tWd

3 dSxi
s1d − xi

s2d

t
DdSxW i

s2d − xW j
s2d + tW

t
D . sB4d

We assume that our gas of defects is sufficiently dilute
that the following distances are much greater than the pair
separationt: (1) the distance of a particle in planek+m from
our pair, (2) the distance of a particle in planek from the
positive chargexi

s1d, and(3) the distance of a particle in plane
k+ l from the negative chargexj

s2d. In this dilute limit, we
may make the approximation

dSxW i
s1d − xW i

s2d

t
DdSxW i

s2d − xW j
s2d + tW

t
D <

t2

A
dSxW i

s1d − xW j
s2d

t
D .

sB5d

We also have thatHsxi
s2d ,xj

s1dd is small in this limit, which
allows us to expand the exponential and to leading order, the
integral may be done exactly.17 The result is

I =
dt

t
dSxi

s1d − xj
s2d

t
DS2p −

spkt2d2

A
o
aÞb

eaeb ln
rab

t
D

< 2p
dt

t
dSxi

s1d − xj
s2d

t
D . sB6d

In the penultimate line, the sum refers to a sum over all
charges, positive and negative, residing in the planek+m.
This sum term may be neglected in the largeA limit, which
is why, in contrast to the Kosterlitz calculation,20 the cou-
pling strength does not vary during our RG flow[see Eq.
(3.14)]. The delta function implies that them-dipole andsl
−md-dipole have been combined into a largerl-dipole. Re-
turning to our correction term:
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Iklmij < 2p
dt

t FEVt+dt
k,l,m

dVt
k,l,mexps− HdG , sB7d

where the spaceVt+dt
k,l,m is analogous toVt+dt, except that

there is one lessm-dipole in layerk; one lesssl −md-dipole in
layer k+m; and one morel-dipole in layerk. What we are
actually interested in is the grand partition function[Eq.
(3.12)]. Because our RG procedure is consistent with the
charge neutrality constraint, the varioushIklmijj may be com-
bined with different terms in the grand partition function.
When we substitute into Eq.(3.12) and arrange terms, we
find that

Z = o
hNk,lj

1

pk,l
sNk,ld!

FE
Vt+dt

dVt exps− HdG
3 Fp

k,l
S yl

2p
DN,l

+ o
k,l,m
Fp

k,l

8 S yl

2p
DN,lG2p

dt

t

ymyl−m

s2pd2 Nk,lS yl

2p
DNk,l−1G .

sB8d

The prime on the second product means thatyl
Nk,l−1 has been

taken outside the product. If the fugacities are small, then we
may write this in a more convenient way:

Z = o
hNk,lj

3p
k,l

Syl +
dt

t
o
m=1

l−1

ymyl−mDN,l

s2pdNk,lsNk,ld!
4

3 E
Vt+dt

dVt exps− Hd. sB9d

Finally, we rescale lengths,x→xs1+dt /td−1, and find(drop-
ping primes)

Z = o
hNk,lj

3p
k,l

S yl8

2p
DN,l

sNk,ld!
4E

Vt

dVt exps− Hd, sB10d

where

yl8 = Syl +
dt

t
o
m=1

l−1

ymyl−mDS1 + 2
dt

t
DS1 − k

dt

t
D .

sB11d

The flow equations(3.14) follow from this.
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