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Rounding of a first-order magnetic phase transition in Ga-doped L3 ¢ Cap3MNnO 3

S. RoRler U. K. RoRler! K. Nenkov} D. Eckert! S. M. Yusuf? K. Dorr,t and K.-H. Miillet
1Leibniz-Institut fiir Festkérper- und Werkstoffforschung IFW Dresden, Postfach 270116, D-01171 Dresden, Germany
2Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400 085, India
(Received 8 April 2004; published 24 September 2004

The effect of disorder on the critical properties of the ferromagnetic phase transition in colossal magnetore-
sistive manganite LgsLCay 3gVINO3 has been studied by substituting Ga for Mn. It is found that, upon 10% Ga
substitution, the peak in the specific heat at the Curie pbinthanges drastically and appears as a small
anomaly. Static magnetization data analyzed in the asymptotic critical region using modified Arrott plots and
the Kouvel-Fisher method give values for the critical expon@+6.3876), y=1.3622), and5=4.603). The
results show that the first-order transition inglggCa 3gMINO3 becomes continuous by Ga substitution. The
critical properties of the rounded transition inglggCa 3dVIng G&y 103 suggest that the magnetic subsystem in
this mixed-valent perovskite is close to that of a conventional isotropic ferromagnet belonging to the Heisen-
berg universality class with short-range interactions. It is concluded that the first-order magnetic transition in
pure Lg /& 3MNO3 is induced by fluctuations from a competing mode, which couples to the magnetic

subsystem.
DOI: 10.1103/PhysRevB.70.104417 PACS nuni®er75.47.Lx, 64.60.Fr, 75.40.Cx, 75.50.Lk
INTRODUCTION continuous phase transitidAA continuous phase transition

has also been observed in 581, ;MnO;.1* Some of the

Colossal magnetoresisti{€ MR) manganites of the type insulating manganites such asglggMgg 3MnO; (Ref. 15
R1A,MnO;, where R is a trivalent rare-earth ion and Ais aand Lg g7:51p 1,dMN0O;5 (Ref. 16 also show a continuous
divalent alkaline earth ion, has been a subject of intensivem-fm transition with critical properties resembling those
research in recent times due to their intricate magnetic angredicted for Heisenberg ferromagnets with short-range in-
electrical propertied. For these compounds various elec- teractions. This can be expected although the double ex-
tronic, magnetic, and structural orders compete leading tehange is driven by the motion of conduction electrons
very rich phase diagrams. Recently, the importance of multMn-g;), the effective magnetic interaction near the transi-
ticritical points for their unconventional “colossal” behavior tion is renormalized to isotropic short-range interactions that
has been emphasizéd' couple the core-like Mnyg-spins. Thus, the first-order and

For a certain range of compositiori8.2<x<0.4), the  the continuous pm-fm transitions observed in different man-
R AMNO; may show interdependent paramagnetic-ganites indicate that the nature of the pm-fm transition seems
ferromagnetic(pm-fm) and insulator-metal transitions. An to depend on the A-site doping.
explanation of this phenomenon has been given by a double- The existence of a first-order pm-fm transition in
exchange modél,where electron hopping between Mg-  LajCa 3MnO; is an intriguing problem in itself. It is
levels align the M,y spins due to a strong intra-atomic known that thermally driven first-order transitions may be
Hund's coupling. For a quantitative explanation of CMR, roundedby quenched disordéf-2% This means that a first-
additional mechanisms such as magnetoelastic couplings dweder transition in a pure system becomes continuous upon
to Jahn-TellerJT) effects have been invokédSeveral ex-  doping. Either a conventional critical behavior or novel types
perimental and theoretical works have demonstrated a clossf continuous ordering transitions are observed in the disor-
connection between JT distortions and localization of chargelered system. Thus, the existence of a first-order pm-fm tran-
carriers or in other words, formation of polarons, in the in-sition in the La_,CaMnO; system indicates that the inevi-
sulating phasé8 As a result, some of the theories associatetable mixed occupation of the A site of the perovskite lattice
CMR with a first-order pm-fm transition triggered by a dis- with La and Ca does not affect the magnetic ordering transi-
continuous transition between polaronic and extended itinettion sufficiently to cause a continuous pm-fm transition. In-
ant states of charge carriets. terestingly, for a system with a continuous order parameter

For the archetypical CMR material §gCaMnO;  symmetry, as the magnetization in a Heisenberg-like magnet,
clear evidence of a first-order pm-fm transition has beerthere is a rigorous proof that, if the system undergoes a ther-
found, such as strong volume anomaly at the Curie pointally driven first-order transition as a pure system, any
(To).B thermal hysteresi¥ and negative slopes observed in amount of quenched disorder leads to a rounded continuous
magnetic isotherm plotisl/ M versusM?.!! The existence of transition in spatial dimensiorg< 4.1%-24
a first-order pm-fm transition in the L3 CaMnO; system is In general, the coupling of the magnetic subsystem to
also corroborated by a tricritical point at the Curie tempera-other degrees of freedom may cause a fluctuation-induced
ture T¢ for x=0.412 On the other hand, recently it has beenfirst-order transition. Such a scenario has been analyzed in
shown that another low temperature material, metallidcerms of phenomenological Landau theory by using
Ndp Pk aMNO; with T-=156 K and a sizeable CMR, has a renormalization-group calculations for an isotropic magnetic
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system coupled to an Ising-like order parameter, which de- 100 - ' '
scribes, e.g., a charge ordeFhis analysis, together with the i

absence of first-order transitions in disordered isotropic mag-
nets, suggests that the first-order pm-fm transition in
Lay 6.Ca 3dMNO5 is most probably close to a multicritical
point where an additional fluctuating order parameter trans-
forms the pm-fm transition into a first-order transition. Such
a multicritical point with two competing orders could be-
come a triple point where three lines of first-order transitions
meet and three different phases may coexist. Additional
quenched disorder would round such a fluctuation-driven
first-order transition in these systems. Continuous transitions

M (emu/g)

will result, thereby, with certain critical properties. For some 0 100 200 300 400
theoretical models, where a fluctuation-driven first-order
transition occurs, it has been shown that the critical proper- T(K)

ties of the transition rounded by quenched disorder will be FG. 1 T d d ¢ L ;
the same as those of the corresponding pure system, i.e., a' o 1. Temperature dependence of magnetization for
system without quenched disorder and decoupled from thlsﬂ‘ao-67C"’b-33’v|nl‘XGa‘O3 (x=0 and 0.19 measured in a dc field of
fluctuating competing order parametéHowever, this need kOe.
not be the case generally. In particular, the transitions near
multicritical points in the presence of quenched disorder arenethod. ~ Stoichiometric amounts of J@s, CaCQ,
not well understood! Therefore, it is interesting to study MnC,0,4-2H,0, and GaO; were ground well, and the ho-
how strongly quenched disorder affects the pm-fm transitiormogeneous mixture was heated at 900 °C for 24 h, cooled to
in Lag g/C& 3gMNOs. room temperature, reground, and heated at 1250 °C for 24 h.
Here, we report how a direct substitution of nonmagneticThe black powder thus obtained was pelletized and sintered
ions in the magnetic sublattice affects the critical propertiesit 1500 °C for 12 h. The phase purity was investigated by
as compared to pure bgLa 3MnOs. Such effects of a x-ray diffraction. Both the compounds crystallize in ortho-
Mn-site substitution have not been studied so far. Studies Ofhombic structure with the space gro@p:)nm Resistance
substituting a bigger ion like Ba or Sr for Ca in the A site, measurements done by standard four-probe method showed

H — 11,25 . . . L.
i.e., Loy 6AALCa x)o3MNO; (Where A=Ba or S5 have  jngylator-metal transitions with resistivity peak temperatures
shown that a small amount éfion substitution results in a ¢ apout 253 and 100 K fox=0 andx=0.10 compositions,

crossover from a first-order transition to & continuous transizegpeciively. The specific heat measurements were carried
tion. The critical exponents obtained for the pm-fm transition

. X ti del 6000 physical t t t
N Lag o (Bay Car 100 MnO, were found® in between out in a mode physical property measurement system

: ) . ) PPMS, tum Desigrd to 2 K. Extensi ti-
those predicted for a three-dimension@D) Heisenberg ( Quantum Desigiown to xiensive magnet

model and for mean-field theory. However, such substitu-Zatlon measurementd (T, H) were performed ox=0 and

tions affect the lattice and modify the effective Mn-O-Mn x=0.10 §amples in external static magnetic ﬂelHisup to

bond angle, thereby changing the strength of the magneti 8 kO.e. n the.temperature range encompassing the respec-

interactions. We introduce a substitutional ion Ga directly intlV€ critical regiong230-260 K fox=0 and 110130 K for

the Mn sublattice. G4 has an ionic radius similar to that of X=0-10 near the pm-fm phase transition using a supercon-

Mn3*. Thus, this substitution avoids a static distortion of theducting quantum interference device magnetometer. The data

lattice 26 In addition, since G¥ has a filled shell configura- Were collected in temperature steps of 0.5 K.

tion, it does not participate in the exchange interaction.

Therefore, the observed change _o_f the _pm-f_m tr_an_sition is RESULTS AND DISCUSSION

related only to the random impurities, viz. site-dilution, in

the magnetic subsystem and suppression of dynamic JT dis- The temperature dependence of magnetization measured

tortion since G&' is not a JT ion. In earlier experiments on in a field of 0.3 T of Lg ¢/Ca 3dVIn;_,Ga0; (x=0 and 0.10

Lay,Cao,Mn;_,Ga O3, randomly canted ferromagnetism for is shown in Fig. 1. The sharp transition fo=0 indicates a

x=0.1 and features of a cluster-glass with a remaining ferrofirst-order transition. The Curie temperature, defined as a

magnetically ordered component far0.25 were found®  point wheredM/dT has a minimum, was found to be 240

Here, we show that the pm-fm transition becomes continuouand 120 K forx=0 andx=0.10, respectively. In Fig. 2, spe-

in Lag g/Cay3Mng Gay 103, upon 10% Ga substitution for cific heat is plotted as a function of temperature. A sharp

Mn in Lag 6/Ca 3gMnOs. Three critical exponents associated peak observed al=236 K in the specific heatC;) mea-

with the static magnetization behavior at the transition aresurements ok=0 sample is also consistent with the first-

evaluated independently. The values of critical exponents arerder transition. Fox=0.10, on the other hand, no visible

close to those expected for 3D Heisenberg model with shortpeak or cusp was observed in the specific heat curve. How-

range interactions. ever, a small anomaly in specific heat around the Curie point

can be seen whe@,/T versusT is plotted as shown in the

EXPERIMENTAL PROCEDURE inset of Fig. 2. This behavior is similar to that observed in

Polycrystalline LggCaysdMn;GaO; (x=0 and x  NdygPhyMnOs;, which showed a continuous transitiéh.

=0.10 samples were prepared by a conventional ceramidhe ferromagnetic transition also is broadeigeid. 1), sug-
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FIG. 2. Specific heat as a function of temperature of FIG. 3. IsothermsVi2 vs H/M of x=0.10 sample at different
Lag 6108 3Mn1 G803 (x=0 and 0.10. The arrow shows the Cu- o neratures close to the Curie temperatiiie=116 K).
rie point of x=0.10. In the |nseth/T vs T is shown forx=0.10
sample around the Curie temperature. On the other hand, no such anomalies were found in
Lag 6 Cay3Mng Gay 103. Hence, we proceeded with the
gesting a smearing of the transition due to Ga impurities irscaling analysis.
the Mn sublattice. Since the specific heat behavior did not In order to extract the spontaneous magnetization and sus-
indicate a first-order transition for=0.10 sample, we tried ceptibility for x=0.10 from theM-H isotherms, we con-
to analyze the static magnetization data assuming a continstructed the Arrott ploM? versusH/M in Fig. 3 after cor-
ous phase transition for this compound. recting the external magnetic field for the demagnetization
A continuous phase transition near the critical temperatureffect. Such curves should give a series of straight lines for
Tc, according to the scaling hypothesis, shows a power lawdifferent temperatures and the line @ET. should pass
dependence of spontaneous magnetizatbgiT), and in-  through the origin, according to the mean-field theory. In the
verse initial susceptibility, (T) on the reduced temperature present case, the curves were found to be nonlinear, suggest-
e=(T-To)/Tc with a set of interdependent critical expo- ing that the mean-field theory is not valid. Therefore, we
nentsg, v, 4, etc.28 as given below: analyzed the data using a modified Arrott pidtin which

M/ef" is plotted versugH/M)¥”'| as shown in Fig. 4. Dif-

Ms(T) =Mo(-2), & <0, (1) ferent values of3’ and y’ were taken as trial values for the
1 construction of the modified Arrott plot. If the system is
Xo (1) = (ho/Mo)e”, &> 0. (2) " close to a tricritical point, as in the case ofyle&a MnOs;,
At Te, exponents relatesM andH by then mean-field exponents for tricritical poinfs=0.25 and
vy=1'? are expected. In the extreme disorder limit, the expo-
M =DHY, e=0. (3)  nents should reach the Fisher-renormalized tricritical expo-

— —2) 31,32 i i -
Here,Mg,hg/ Mg, andD are the critical amplitudes. Further, nents(8=0.5 andy=2). By checking these different pos

the scaling hypothesis predicts thet(H,<) is a universal

function of T andH: 100+ 110K
— B B+ ES
M(H,e) = ePfL(H/eP™), (4) S 80,
wheref, for T>T: andf_ for T<T, are regular functions. g
Equation(4) implies thatM/&? as a function oH/e#*” falls < 60.
on two universal curves, one for temperatures abyand "9
the other for temperatures belol. g 40
In the case of thx=0 sample, the field dependence of =
magnetization measured in the vicinity of the Curie point
showed anomalies in the slopes similar to a metamagnetic 201
transition. Such change in slope, according to the criterion .
given by Banerjeé? is used to distinguish a first-order 0 o 120 180
transition from continuous ones by purely magnetic 0
methods. This method is assumed by Matall! to dis- (HM)'™ (Oe glemu)™’

tinguish the nature of pm-fm phase transition in

Lag 64 SKCa )9 3MnO;. They found a negative slope of  FIG. 4. Modified Arrott plot isotherm$A¥/8" vs (H/M)¥" for
isotherm plots ofH/M versusM? for Lag Cay 3gMNOz char-  x=0.10 sample, with trial values’=0.365 andy’ =1.336,T~ T¢
acterizing a first-order transition. We found similar results.=116 K is the value obtained in this study.
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FIG. 5. Temperature variation of the spontaneous magnetization 100 104 108 112 116 120 124 128 132

Mgand the inverse initial susceptibilif;", along with fits obtained T(K)

for power laws forx=0.10 sample.
P P FIG. 6. KF plot for the spontaneous magnetizatMg and the

sibilities, we find that the best description with nearly linearinverse initial susceptibility;," for x=0.10 sample.
behavior for fields & H <48 kOe is obtained in the modi-

fied Arrott plots for8'=0.365 andy’ =1.336. From a linear value of § according to this equation is 4.59 and that from

extrapolation from fields above 1 kOe to the intercepts Withth.e KF method is 4'52.' The value.@find.ependently ob-
tained from magnetization isother¢Rig. 7) is in agreement

the aerM e and(H{M)l/V , values O.f ;po_rltaneous magne- ith the scaling hypothesis within the experimental errors.
tizationMg(T,0) and inverse susceptibility, (T, 0), respec- A more stringent test for scaling is to pld/s? versus
tively, can be extracted. The isothermal line that passef;.s+» and to see whether the data obey the scaling equation
through the origin |s_tlhe critical isotherm @=Tc. These  of giate[Eq. (4)]. If Eq. (4) holds, all of the data should fall
values,M4(T,0) and x,"(T,0), are then plotted as functions o, one of the two curves. By taking the values@fnd y

of temperature. The power law fits according to Hd$.and  gptained from KF method arit.=116 K, the scaled data are
(2) to M(T, 0) and x, (T, 0), respectively, give the values of piotted in Fig. 8 on a log scale. It can be clearly seen that all
B [Eq.(1)] andy [Eq.(2)]. These new values @@ andy are  the data fall on two curves, one fdr>Tc, and the other one
then used to construct new modified Arrott plots. The iterais for T< Tc. Thus, our result suggests that doping in the
tion was continued until stable values ﬁf Y andTC were magnetic Sub|attice Of I'Eﬁﬁa).Bé\/anB induces a Change
obtained. In Fig. 5Mg(T,0) and x'(T,0) versus tempera- from a first-order to a continuous phase transition.

ture are plotted. The continuous curves show the power law |n the case of materials that show a continuous phase
fits according to Eqs(1) and(2) to Mg(T,0) and xo™(T,0), transition in the pure limit, the effect of quenched disorder is
respectively. This gives the values BF0.3842) with Tc  ruled by the Harris criterio”® which can be justified by
=116.192)K [Eg. ()] and y=1.3688) with Tc  renormalization group calculatiods3® The theory predicts
=116.112) K [Eqg. (2)]. The exponents obtained in this way that quenched random impurities do not alter the static criti-
are close to those expected for a short-range Heisenberfl exponents at a continuous transition, if the specific heat
model[3=0.3683), y=1.396@9)].3

In order to obtain more precise values of critical expo-
nents, the Kouvel-FishgiKF) method3* has been used. In
this method, plots of Mg(dMg/dT)™ versus T and 60 T=116K~T,
X0 (dxg*/dT)™t versusT (Fig. 6) should yield straight lines 5= 4.60(3)
with slopes 1 and 1/y, respectively. When extrapolated to
the ordinate equal to zero, these straight lines should give
intercepts on theil axes equal to the Curie temperature. The
straight lines obtained from a least-squares fit to the data
give the values 0of3=0.387%6), T,=116.0%6) K and y
=1.3622), To=115.886) K, respectively.

To obtain the value of 6, the critical isotherm
Mg(116 K,H) versusH on a log-log scale has been plotted
in Fig. 7. According to Eq(3), this should be a straight line
with slope 1/6. From the linear fit we obtained=4.603), 1000 10000
which compares well with the valué=4.7833) expected H (Oe)
for a Heisenberg-like ferromagnét.

The scaling equation also predicsis=1+(y/3).2%> From FIG. 7. M vs H on a log-log scale at 116 K, i.eT,~ T, for x
the values of and y obtained from Fig. 5, the calculated =0.10 sample. The straight line is the linear fit following E8).

70

504

M (emu/g)

40]

304

104417-4



ROUNDING OF A FIRST-ORDER MAGNETIC PHASE. PHYSICAL REVIEW B 70, 104417(2004)

300 CONCLUSIONS
250 T . o : .
LE The effect of disorder on the critical properties of opti-
5 200F 3,25&9 mally doped _Lg,gcai,gl\/_lno3 has been st_udled by_specn‘l(_:
E ‘ v@)ff he_at and static magnetic megsurements in the 9ntycal region.
S eof T<T, &ﬁiﬁ It is shown that the sul:_)stltuuo_n. of nonmagnetic impurities
T b @w@;ﬁ 105K softens the ferromagnetic transition and suppresses the phase
= Mﬁ@‘ﬁﬁg o tsK coexistence. This disorder effect provides an important input
= MR 7 135K in understanding ferromagnetism, metallicity, and the role of
1001 S T, s ltesK couplings to the lattice in the intensely studied, yet not well
I o 1205K understood, manganite y5Ca,sMnO;. The effect of the Ga
doping causes the expected rounding of the first-order tran-
: . : sition and reveals the usual critical behavior at a ferromag-
10° 10° 10’ netic ordering. The estimated critical exponents indicate that
Hle| ™ (Oe) the magnetic subsystem of the disordered compound likely

_ _ belongs to the universality class of conventional 3D
FIG. 8. Normalized isotherms ot=0.10 sample below and aisenperg-like ferromagnets with short-range interactions.
above Curie temperatui@c=116 K) on a log-log scale using s would mean that, from a phenomenological point of
andy. [e| =[T-Tc|/Td. view, the magnetic subsystem of 44Ca;,sMnO; is essen-
tially that of a conventional isotropic ferromagnet. However,
exponenta of the pure system is negativer<<O as in  there must be a strong coupling to other modes which causes
Heisenberg-like ferromagnefswhile in the opposite case, a the fluctuation-driven first-order magnetic transition in the
crossover from a pure to a random fixed point with newpure compound.
critical exponents occurs. These predictions have been con-
firmed experimentallj?3%4°This mechanism is closely re-
lated to the critical properties, which arise at a rounded first- ACKNOWLEDGMENTS
order transitiort> The critical properties found here for
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