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For a class of highly frustrated antiferromagnetic quantum spin lattices the ground state exhibits a huge
degeneracy in high magnetic fields due to the existence of localized magnon states. For some of these spin
lattices (in particular, the 1D dimer-plaquette, sawtooth and kagomélike chains as well as the 2D kagomé
lattice) we calculate rigorously the ground-state entropy at the saturation field. We find that the ground-state
entropy per site remains finite at saturation. This residual ground-state entropy produces a maximum in the
field dependence of the isothermal entropy at low temperatures. By numerical calculation of the field depen-
dence of the low-temperature entropy for the sawtooth chain we find that the enhancement of isothermal
entropy is robust against small deviations in exchange constants. Moreover, the effect is most pronounced in
the extreme quantum case of spin1

2.
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I. INTRODUCTION

Antiferromagnetically interacting quantum spin systems
on geometrically frustrated lattices have attracted much at-
tention during the last years.1–3 Whereas in general frustra-
tion makes the eigenstates of the quantum spin system very
complicated, it has been found recently that in the vicinity of
the saturation field for a wide class of frustrated spin lattices
just owing to frustration the ground states become quite
simple. These exact ground states consist of independent lo-
calized magnons in a ferromagnetic environment.3–5 They
lead to a macroscopic jump in the zero-temperature magne-
tization curve just below saturation3–5 and may provide in-
stabilities towards lattice deformations.6

In the present paper we examine the low-temperature en-
tropy of several highly frustrated antiferromagnetic spin
lattices7 which may host independent localized magnons in
the vicinity of the saturation field. The ground state of such a
system at saturation exhibits a huge degeneracy which grows
exponentially with system size. For some of the considered
spin systems the ground-state degeneracy at saturation and
therefore entropy can be calculated exactly by mapping the
localized magnon problem onto a related lattice gas model of
hard-core objects. The latter models have been studied in
many papers over the last few decades(see Refs. 8–11, and
references therein). We complete these analytical findings for
the ground-state entropy by exact diagonalization data for
the sawtooth chain ofN=8, 12, 16 sites to extend our con-
clusions to fields below the saturation and to nonzero tem-
peratures. We also examine the effects of exchange aniso-
tropy, different spin valuess and deviations from the
condition on bond strengths under which the independent
localized magnons are exact eigenstates for the sawtooth
chain. Finally, we discuss briefly the possibility of experi-
mental verification of our findings.

We mention recent papers of Moessner and Sondhi,12

Zhitomirsky,13 and Udagawaet al.14 having some relation to
our investigations. These authors calculate the ground-state
degeneracy of the 2D kagomé lattice carryingclassicalspins

for certain spin configurations(up-up-down structure12,13and
structures obeying a “modified ice rule”14) by mapping the
spin problem onto a dimer-covering problem on the honey-
comb lattice. Udagawaet al. use their result to explain the
residual entropy of the kagomé ice state which occurs in the
spin ice compound Dy2Ti2O2 under a magnetic field.15–17

Note, however, that our study refers to the frustratedquan-
tum spin lattices.

II. THE GROUND-STATE ENTROPY AT SATURATION

To be specific, we consider several geometrically frus-
trated lattices, namely, the dimer-plaquette chain18 (Fig. 1),
the sawtooth chain19,20 (Fig. 2), two kagomélike chains21,22

(Figs. 3 and 4), the kagomé lattice(Fig. 5), and the checker-
board(also called 2D or planar pyrochlore) lattice (Fig. 6).

The ground-state and low-temperature properties for the
Heisenberg antiferromagnet on these lattices are subjects of
intensive discussions. We considerN quantum spins of
lengths described by the Hamiltonian

H = o
snmd

Jnmssn
xsm

x + sn
ysm

y + Dsn
zsm

z d − ho
n

sn
z s1d

where the first sum runs over the bonds(edges) which con-
nect the sites(vertices) occupied by spins for the mentioned
lattices,Jnm.0 is the antiferromagnetic exchange constant
between neighboring sites,D is the anisotropy parameter,h

FIG. 1. (Color online) The dimer-plaquette chain which hosts
three localized magnons at fat bonds(top) and the auxiliary lattice
used for the calculation of the ground-state degeneracy at saturation
(bottom). The localized magnons are eigenstates for large enough
vertical bondsJ3ùJ3

csJ1,J2d (Ref. 18).
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is the external magnetic field, and the second sum runs over
all sites. We know from Refs. 4 and 5, that for certain values
of Jnm the considered lattices host localized magnons(see
also the corresponding Figs. 1–6). Due to these localized
magnons the ground state of(1) for the mentioned lattices at
the saturation fieldh1 is highly degenerate, since the energies
of n independent localized magnon states withn
=1, . . . ,nmax, nmax,N are exactly the same. We emphasize,
that most of the localized magnon eigenstates are orthogonal,
since the scalar product of the ferro spin-up part by the
localized-magnon part is zero(for an explicit expression of
the localized magnon wave function, see Refs. 3–5). Because
a certain local fragment of the lattice can be occupied by a
magnon or not, the degeneracy of the ground state at satura-
tion, W, grows exponentially withN giving rise to a finite
zero-temperature entropy per site at saturation

S
k

= lim
N→`

1

N
log W. s2d

The counting problem associated with the ground-state de-
generacy can be solved after mapping the lattice which hosts
independent localized magnons onto some auxiliary lattice
which is occupied by hard-core objects(monomers, or
monomers and dimers, or hexagons, or squares).

We start with the dimer-plaquette chain shown in Fig. 1.
The auxiliary lattice(Fig. 1, bottom) is a linear chain of
N= 1

4N sites which may be either occupied(if a localized
magnon is trapped by the corresponding fragment of the ini-
tial lattice) or empty(in the opposite case). Obviously,

W = 2N = exps 1
4 log 2Nd < exps0.173287Nd. s3d

Repeating these arguments for the diamond chain23 we arrive
at the similar result,W=2N, however, withN= 1

3N.

Next we consider the sawtooth chain shown in Fig. 2. The
auxiliary chain (Fig. 2, bottom) consists ofN= 1

2N sites
which may be filled either by rigid monomers or by rigid
dimers occupying two neighboring sites. The limiting behav-
ior of W for a large latticeN→` may be found in Ref. 8

W = expSlog
1 +Î5

2
ND < exps0.240606Nd. s4d

The same result(4) holds for the two-leg ladder of Refs. 24
and 25[see Fig. 1(a) of Ref. 25]. Similarly, for the kagomé-
like chains shown in Figs. 3 and 4 we get

W = expS1

3
log

1 +Î5

2
ND < exps0.160404Nd s5d

and

W = expS1

5
log

1 +Î5

2
ND < exps0.096242Nd, s6d

correspondingly.
Let us pass to the 2D case. Considering the kagomé lattice

(Fig. 5) we identify (i) the centers of hexagons(which may
trap magnons) as the sites of the auxiliary triangular lattice
and (ii ) the hexagons carrying localized magnons together
with the six attached triangles as the shaded hexagons on the
triangle lattice. Now it is evident that the filling of the
kagomé lattice by localized magnons corresponds to the oc-
cupation of the auxiliary triangular lattice by hard hexagons.
The hard-hexagon model(i.e., the triangular lattice gas with
nearest-neighbor exclusion) has been exactly solved.10 In
particular, for the number of ways of putting hard hexagons
on the triangular lattice ofN→` sites the accurate estimate
is10 exps0.333242721976. . .Nd. Therefore, taking into ac-
count the relation between the number of sitesN of kagomé
lattice and the number of sitesN of the auxiliary triangular
lattice,N=3N, we get

W < exps0.111081Nd. s7d

It should be noted here that the hard-hexagon model also
arises while calculatingW for the star lattice ,3,26however, in
that caseN=6N.

Finally we consider the checkerboard lattice shown in
Fig. 6. The construction of an auxiliary lattice for the calcu-
lation of the ground-state degeneracy at saturation is illus-
trated in the lower part of Fig. 6. Each center of the square

FIG. 2. (Color online) The sawtooth chain which hosts three
localized magnons at fatV parts(top) and the auxiliary lattice used
for the calculation of the ground-state degeneracy at saturation(bot-
tom). The localized magnons are eigenstates forJ2=Î2s1+DdJ1

(Refs. 4 and 5).

FIG. 3. (Color online) The kagomélike chain of Ref. 21 which
hosts three localized magnons(marked by bold diamonds) and the
auxiliary lattice used for the calculation of the ground-state degen-
eracy at saturation. The localized magnons are eigenstates for ex-
change bonds of uniform strength(Ref. 4).

FIG. 4. (Color online) The kagomélike chain of Refs. 21 and 22
which hosts two localized magnons(marked by bold hexagons) and
the auxiliary lattice used for the calculation of the ground-state
degeneracy at saturation. The localized magnons are eigenstates for
J2=s1+2Dd / s1+DdJ1 (Ref. 4).
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which may host a localized magnon is represented by a site
of the auxiliary square lattice. Moreover, the square hosting a
magnon together with the eight attached triangles of the
checkerboard lattice is represented by the shaded hard square
(consisting of four elementary cells) of the auxiliary square
lattice. A one-to-one correspondence between independent
localized magnon configurations and shaded hard-square
configuration obviously exists. As a result, we have to con-
sider the square lattice gas withN= 1

2N sites with nearest-
neighbor and next-nearest-neighbor exclusion. We are not
aware of an estimate of the entropy for such a model.[For
the hard-square model(i.e., square lattice gas with only
nearest-neighbor exclusion) the number of ways of putting
hard squares on the square lattice ofN→` sites equals11

exps1.503048082475̄ Nd.] A simple estimate for the lower
bound forW is 2N/8<exps0.086643Nd.

To summarize this part, a class of frustrated quantum spin
lattices has a huge degeneracy of the ground state at satura-
tion that leads to a nonzero residual ground-state entropy. For
some of such models the zero-temperature entropy at satura-
tion h=h1 can be estimated exactly. These values provide the
“reference points” in the low-temperature dependence of the
entropyS vs field h for the corresponding lattices. It is re-
markably that the calculation ofW is a pure combinatorial
problem and therefore the values of the ground-state entropy
at saturation are not sensitive to the value of anisotropyD or
the value of spins.

III. THE LOW-TEMPERATURE ENTROPY
IN THE VICINITY OF SATURATION

In what follows we discuss the dependence of the entropy
S on the magnetic fieldh for h,h1 at arbitrary temperatures
using full exact diagonalization of finite spin systems. We
expect that the qualitative behavior is similar for all lattices
considered. Here we focus on the sawtooth chain, because
the ground-state degeneracy at saturation,W, is largest and
the finite-size effects should be smallest. We have considered
sawtooth chains of N=8, 12, 16, sites with J1=1,
J2=Î2s1+Dd, anisotropy parametersD=1 and D=0, spin
lengthss= 1

2, 1, 3
2 at several temperatureskT=0.001, 0.05,

0.2, 0.5, 1. Some of our numerical results are shown in Figs.
7 and 8.

Let us discuss the obtained results. First we note that for
several magnetic fields below saturationh,h1 one has a
twofold or even a threefold degeneracy of the energy levels
leading in a finite system to a finite zero-temperature entropy.
Correspondingly one finds in Fig. 7(upper panel) a peaked
structure and moreover a plateau just below saturation. How-
ever, it is clearly seen in Fig. 7(upper panel) that the height
of the peaks and of the plateau decreases with system sizeN
and one hasS=0 at T=0 asN→` for h,h1 and h.h1,
only the peak ath=h1 does not vanish. At finite temperatures
this peak survives as a well-pronounced maximum and it
only disappears if the temperature grows up to the order of
the exchange constant, Fig. 7(lower panel). The value of

FIG. 5. (Color online) The kagomé lattice which hosts three
localized magnons(bold hexagons) and the auxiliary triangular lat-
tice with hard hexagons used for the calculation of the ground-state
degeneracy at saturation. The localized magnons are eigenstates for
exchange bonds of uniform strength(Ref. 4).

FIG. 6. (Color online) The checkerboard lattice which hosts
three localized magnons(bold squares) and the auxiliary square
lattice with hard squares used for the estimation of the ground-state
degeneracy at saturation. The localized magnons are eigenstates for
exchange bonds of uniform strength(Ref. 5).
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entropy at saturation, which agrees with the analytical pre-
diction (4), is almost temperature independent up to about
kT<0.2, see Fig. 7. Moreover, the value of entropy at satu-
ration is also almost size-independent as it follows from data
for different N. Thus, the effect of the independent localized
magnons which yield the residual ground-state entropy sur-
vives at finite temperatureskT&0.2 producing a noticeable
enhancement in the isothermal entropy curve at the satura-
tion field.

By calculating results forD=0 andD=1 and fors=1, 3
2

ands= 1
2 we have checked that the maximum in the entropy

at saturation for low temperatures is robust against exchange
interaction anisotropy and appears also for larger spin values
s. However, our numerical results suggest that the enhance-
ment of the entropy at saturation for finite temperatures be-
comes less pronounced with increasings. A simple reason
for that could be the circumstance that the degeneracy at
saturation does not depend on spin values, but the total
number of states increases withs according tosN.

Concerning the experimental confirmation of the pre-
dicted behavior of the entropy in real compounds we are
faced with the situation that the conditions on bond strengths
under which the independent localized magnons become the
exact eigenstates3–5 are certainly not strictly fulfilled. For
example, for the isotropic Heisenberg sawtooth chain(1) we
have imposedJ2=2J1, see Fig. 7. Therefore, it is useful to
discuss the “stability” of our conclusions against deviation
from the perfect condition for bond strengths. For this pur-
pose we examine numerically the field dependence of

entropy at low temperatures for thes= 1
2 isotropic saw-

tooth chain of N=16 sites with J1=1 and J2=1.9 and
J2=2.1 (Fig. 8). Evidently, the degeneracy of the ground
state at saturation is lifted whenJ2Þ2 that immediately
yields zero entropy at saturation at very low temperatures
(long-dashed and short-dashed curves in the upper panel of
Fig. 8). However, the initially degenerate energy levels re-
main close to each other, ifJ2 only slightly deviates from the
perfect value 2. Therefore with increasing temperature those
levels become accessible for the spin system and they mani-
fest themselves in the entropy enhancement in the vicinity of
saturation at low but nonzero temperatures. This can be
nicely seen in the lower panel in Fig. 8(long-dashed and
short-dashed peaks in the vicinity of saturation). To demon-
strate that this enhancement is the effect of the localized
magnon states in the considered frustrated quantum spin lat-
tice we also report the field-dependent entropy of thes= 1

2
isotropic linear chain ofN=16 sites(dotted curves in Fig. 8)
which remains in this field region at least two times smaller.

Let us remark that the ground-state degeneracy problem
of antiferromagnetic Ising lattices in the critical magnetic
field (i.e., at the spin-flop transition point), which obviously
do not contain quantum fluctuations, has been discussed in
the literature.27 Thus, the exactly solvable case of the anti-
ferromagnetic Ising chain at critical magnetic field provides
another example of the low-temperature entropy enhance-
ment at saturation. From Ref. 27 we know that at zero tem-
peratureS=k logs1+Î5d /2 for s= 1

2. Repeating the trans-

FIG. 7. Field dependence of the isothermal entropy per site at
low temperatures(upper panel) and higher temperatures(lower
panel) for the sawtooth chains of different lengthss= 1

2 ,D=1,J1

=1,J2=2d.

FIG. 8. Field dependence of the isothermal entropy per site of
the sawtooth chain at very low temperature(upper panel) and at
higher(but still low) temperature(lower panel) asJ2 deviates from
Î2s1+DdJ1. The corresponding dependence for a linear chain(LC,
dotted curves) is also reported for comparison.
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fer matrix calculations fors=1 and s= 3
2 we find instead

S=k log 2 andS=k logs1+Î13d /2, respectively, that shows
that the zero-temperature entropy at critical field depends on
the spin values. On the contrary, for the frustrated quantum
spin lattices considered in the present paper the zero-
temperature entropy at saturation does not depend ons.

Finally, we should emphasize that there are other lattices
which support the independent localized magnon states e.g.,
the 2D square-kagomé lattice or the 3D pyrochlore lattice.4,5

In these cases a rigorous result for the ground-state degen-
eracy at saturation is not available, but for the existing
huge degeneracy at saturation a lower bound is given by3

Wù2nmax wherenmax,N is the maximum number of local-
ized magnons which depends on the lattice geometry. This
leads to the conclusion that the discussed low-temperature
peculiarity of the entropy in the vicinity of saturation should
also be present. Hence, the low-temperature maximum ofS
at saturation is a generic effect for strongly frustrated quan-
tum spin lattices which may host independent localized mag-
nons.

From the experimental point of view the discussed effect
of the independent localized magnons on the low-
temperature field dependence of the entropy in the vicinity of
saturation may be of great importance. Really, although the
most spectacular effect of the independent localized mag-
nons is a jump in the zero-temperature magnetization curve
just below the saturation,3–5 it is probably difficult to observe
the jump at finite temperatures. The above discussed maxi-
mum in the entropy vs field curve due to independent local-
ized magnons is certainly easier accessible for experimental
observation, since the isothermal entropy as a function of
field can be obtained from a specific-heat measurement(see,
e.g., Refs. 15 and 16). We also mention the significance of

the maximum in the entropy vs field curve to an enhanced
magnetocaloric effect.28,29

IV. SUMMARY

To summarize, we have rigorously calculated the finite
ground-state entropy at the saturation field for some strongly
frustrated quantum spin lattices hosting localized magnons.
To discuss the physical relevance of these results we have
examined the field dependence of entropy at low tempera-
tures for these frustrated systems. We have found that the
independent localized magnon states produce a maximum in
the isothermal entropy versus field curve in the vicinity of
the saturation field at low temperatures. This effect is robust
against small deviations from the condition on bond
strengths under which the localized magnons exist. The re-
ported behavior can manifest itself in the high-field specific
heat measurements permitting to detect experimentally the
independent localized magnons in frustrated quantum spin
lattices.
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