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We have used Monte Carlo simulations and mean-field analysis to observe the magnetic behavior of Ising
thin films with cubic lattice structures as a function of temperature and thickness, especially in the critical
region. Magnetization and magnetic susceptibility, including layer variation, are investigated. We find that the
magnetic behavior changes from two-dimensional to three-dimensional character with increasing film thick-
ness. Both the crossover of the critical temperature from a two-dimensional to a bulk value and the shift
exponent are observed. Nevertheless, with support from a scaling function, the simulations show that the
effective critical exponents for films with large enough layer extents only vary a little from their two-
dimensional values. This, in particular, provides an indication of two-dimensional universality in the thin films.
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I. INTRODUCTION possibilities in using Ising thin films to describe real experi-
ments, etc.

The dimensional crossover of magnetic properties from Consequently, in this study, we aim to give a more com-
two-dimensiona(2D) to three-dimensiondBD) character in  plete picture of the magnetic phase transition in thin films in
magnetic multilayers has currently attracted much interest aall cubic structures especially at the critical point. We first
a result of both technological and fundamental importdrfce. investigate how the magnetic properties, including their layer
Of particular interest is the critical behavior of magnetic thinresolution, depend on temperature and thickness by means of
films for which the dimensionalityl is not well established. Monte Carlo simulations and mean-field theory. Second, we
It is interesting to consider how magnetic properties such asalculateT, following it to the bulk limit. Then, using an
the magnetizationm, magnetic susceptibility, and critical empirical fit, we extract the shift exponents and their conver-
temperaturelc depend on the thickness of the film. gence to the 3D value. Next, witempirica) finite-size scal-

Critical temperaturesTc in multilayered systems are ing forms, we extract the effective critical exponents as a
known to change from 2D to 3D values with increasing num-function of thickness. After that, we construct various kinds
bers of layers. Magnetic films, however, should belong to af data collapsing to confirm the results and to observe how
2D universality class owing to the correlation lengttéd  the exponents depend on the forms of the scaling functions.
being constrained by the film thickness and allowed to exFinally, we discuss our results and compare the characteristic
pand only in the in-plane direction. This is not apparent fromeffective critical exponents with those found in experiments.
well-known experimental studies of thin films of nicRel
which provide evidence of a dimensional crossover of the Il. METHODOLOGY
critical exponentB from 2D to 3D. Here, we try to clarify
this discrepancy by carrying extensive Monte Carlo simula- In this study, we consider the Ising hamiltonian
tions of simple cubic(sc), body-centered-cubi¢bce), and H=-JZ;, S§§, where the spir§ takes on the values +1 and
face-centered-cubigcc) coordinated thin films. the sum includes only first nearest-neighlgdrNN) pairs.

Both theoretic&t* and experimentét’ investigations Helical (periodi¢ and free boundary conditions are used for
show that the Ising model is very useful for the study ofthe in-plane and out-of-plane directions, respectively. We
critical behavior in thin ferromagnetic films. Various tech- use units ofJ/kg and J for temperatures and energies,
niques have been us&d’ Magnetic profiles,T., the shift  respectively, with the magnetization per spin defined as
exponent?2 and the effective exponent dependence onm=(1/N)=S whereN is total number of spins.
thickness and temperature away frag(Ref. 13 have been The simulations are carried out for sc, fcc, and bcc films
studied together with the dimension change using scalingf size N=L XL x| whereL X L represents the number of
functions of thick films around the bulkc (Ref. 14, and  sites(sping in each layer of the film antis the number of
how the effective critical exponents in thin films depend onlayers. We varyL from 64 to 128(in steps of § with |
thickness at the film critical poirift—1” There are nonetheless ranging from a monolayeibilayer for bee filmg to 20 lay-
some important issues which remain unresolved; for exers. The spin configurations of the films are updated using
ample, the confirmation of universality in different structuresthe Wolff algorithmi® to minimize statistical errors arising
with the same thickness, the confirmation of the effectivefrom correlation timé?2° The random number generator
exponents via scaling functions, the empirical form for the(drand49 is chosen carefull§:=22 During a simulation, the
observation of the convergence of the shift exponent to thenagnetization per spirm, and the energf are measured
bulk limit from both Monte Carlo and mean-field studies, thewhen the number of flipped spins exceed or is equaNto
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Each simulation is found to reach its equilibrium beforerelation lengthé is needed to describe the critical properties
30 MCS(Monte Carlo step per siteTo ensure equilibration, of thin films. Hence the empirical scaling forms forand y

we wait at least 3000 MC$about 100 times the equilibra- at some fixed’s can be written &§1”

tion time) from its initial state(disordered stajebefore tak-

ing any measurements. The expectation value of the square (M(T,1)) = LA (LM D),
of the statistical error of an observable, ey, takes the
form® X(TH =L ), (3)

1 - wherey’, B’, andv’ are the effective critical exponents as-
(6m)?) = =((mP) - <m>2)(1 + 2—), (1)  sociated withy, m, andé, respectively. Fof=1 or the mono-
n o layer system, the effective exponents are the critical expo-
nents for the 2D system. The functiogsand m are scaling
where, at large enoughm, 7=X{L; ((mem)—(m)?)/((m?*  functions for a givert andt=T/Tc(1)-1 is the reduced tem-
-(m)?) is the integrated correlation tinté,édt is the time  perature. These scaling functions for a rangeLo$hould
interval between two successive configurations—i.e., aboutollapse onto a single curve with the correct critical tempera-
1 MCS—and n is the number of configurations being ture and effective critical exponents. The effective exponent
sampled. Since((mym)—(m)?)/((m?)—(m)?) decays with 1/»’ can be extracted from the derivative of the cumulant
time, by resampling the spin configurations with the timewith respect toL at Tc owing to its variation with system
interval between two successive data being much greatayize ad ' 24 Note that if Eq.(3) correctly encapsulates the
than 7 or at least 2,*’ it can be assumed that the correlation nature of magnetic critical behavior in films, we can extract
between two successive configurations sampled in this newhe effective exponentg’ /v’ and y'/v' from the slopes of
interval is minimized or can be discarded. Our results show the log-log plots ofm or x againstL at T.. To continue with
to increase with both sizZeXx L and thickness of the film. In  confidence, we believe it is necessary to demonstrate the
our biggest system 128128X% 20, 7<<4 MCS. validity of the finite-size scaling, E@3), in modeling results
Once 7 has been calculated for each system, at leastrom our calculations. This can be done by establishing the
n'=5x10° configurations sampled in the interval- Zre  following:
used to calculate the expectation of the magnetization per (i) According to Eq.(3), at T, a log-log plot ofy or m
spin, (Mm)=(1/n")=" |my|, as well as the magnetic suscepti- againstL should be linear. . .
bility x=BN(m)—(|m|)2) where B=J/kgT. Similarly, the (i) Based on the hyperscaling relation v+2/v=d>*
layer dependence of these magnetic propertigsand yi, it is possible to 1E(;g_)ﬂSlder the effective dlmer_15|onallty
wherek is a layer index, are calculated to observe the surfac8er='/v' +28"/v'.>*Forl/L <1, we expect 2D-like be-
effects upon the magnetic properties. The critical temperal/aVior; i-e.,dey should stay close to 2.

ture T is located via the fourth-order cumuladt (Ref. 24: (i) With suitable effective exponents in the critical re-
gion, a scaling function for anly but a particulat—i.e., Eq.

(3), should collapse onto a single curve. This will confirm the

A
UL=1—1<m >2, (2)  reliability of the effective exponents extracted from our
3(m) simulations
where, atT=T., U, should be independent df; i.e., for I1l. RESULTS AND DISCUSSION

differing sizesL andL’, (UL/UL,)TzTczl. Owing to finite-
size effectsTc(b=L/L’) is plotted againstin b)™%, and the
results in the infinite limit are obtained éh b)™*— 024 To From magnetizatioom and susceptibilityy profiles for
maximize the efficiency of thisT¢ calculation, for each various film thicknessesand system sizdsthe crossover of
thickness, we perform a single long simulation at a temperabehavior from 2D like for the monolayébilayer in bcg to
ture Ty and use the histogram meti#8d®to extrapolatdd, 3D like for films with 20 or more layers is found. The tran-
to a temperature nearby in order to find the cumulant crosssition point moves from 2D to 3D values with increasing
ing point on a fine scale. The temperatiligis chosen to be film thickness in a good agreement with previous stu¢fiés.
that at the peak of the susceptibility curve for the128  Furthermore, the layer resolution shows theind y magni-
system, and approximately 1-x410° spin configurations are tudes to increase from the lowest values for the surface layer
used to create the histograms. To exclude the data obtaindbde largest values in the interior of the films.
from temperatures too far from the simulated temperafyre Such layer variation is expected because the exchange
the range of extrapolatioff — T/ is restricted by the criterion ferromagnetic energy associated with each spin is greater in
|U(T)-U(To)| < 0e,2” whereU=(E), the average of the en- the bulk than at the surfaces owing to the increase in num-
ergy, andog is a standard deviation @& at T,. bers of nearest neighbors. This effect shows up in the simu-
We consider an empirical finite size scaling form for film lations. The probability for a site getting updated is
geometry®17to find howm and y scale with the siz& and  D(i,j,k)=(1/M)SM s'(i,j,k), wheres'(i,j, k) is the number
thicknesd of the systems and use this to extract the effectiveof times the site at locatiofi, j,k) is in a Wolff update, and
critical exponents from our results. The basic finite-size scalM is the total number of clusters formindlipping) in a
ing ansat-33rests on an assumption that only a single cor-simulation. We find that, at any finite temperature in the fer-

A. Magnetization and magnetic susceptibility
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MC Critical Temperatures TABLE I. Fitting parameters for Ising thin films using E).
12 © —— y T MC and MF stand for Monte Carlo and mean field, respectively.
160 +—>cn Notice that 1 43P here are in good agreement with previous studies
10 | boe ¥ : Bulk T_C_(fic)_; and exact results.
T
3 sl X/X l Structure Te() A(0)=1/13P
' Bulk T (oeg)| sc 4.539+6< 1073 1.578+3x 1073
° J R A MC bce 6.389+3< 103 1.620+1x 1072
[ Bulk To (o) | fcc 9.860+2x 1072 1.621+8x10°3
M 1 sc 6.0020+% 107  2.002+4x 1073
» / Exact2D T . MF bce 8.0320+4 1073 2.002+2x<10°3
0 5 10 15 20 fcc 12.0500+6<10°°  2.000+2x 1073
number of layers |
FIG. 1. The critical temperaturédg as a function of thickneds NG
extracted from Monte Carlo simulations. 1 = L|:1 + <|_0> ] (5)
Tc(l)  Te(o) =1/ ]

romagnetic phaseD at the surface layers always has thewherel,, I’, and\’ are all adjustable parameters. Similarly,
lowest magnitude, showing that spins which belong to the\’ should tend to 1#°° as|— . Using Eq.(5) we fit the
majority direction are preferentially located in the inner lay- T(1)’s arising from our Monte Carlo calculations. If it turns
ers rather than near the surface. Hence, at the surface layegyt that ourT.(l)’s are accurate and that the fit is a useful
there will be somgminority direction) spins behaving as a gne we should findre(=¢) in agreement with thé-gulk we
buffer which results in smallen magnitude. Similarly, fo),  haye calculated separately. Results of the fit are shown in
the “buffer” in the surface layers helps to reduce the magrgpie | and there is less than a 1% difference betvieén)
netic fluctuations leading to a smallgrthan those in the bulk -
inner layers. and TC_ for all three,t_ypes of films. However, even for
o . 1=20, it turns out thal’ is not close to the expected larbe
The same qualitative trends are also uncovered by using @, e 14,20, To elucidate further the evolution from 2D- to

mean-field approximatio#f. Again the evolution of the mag- 3D-like behavior we rearrange the power law of E4). and

netic properties from 2D to 3D like is found and the smallesty ¢~

m and y values lie on the surface and highest for the inner-
Te() = Te(l) )/ ( | )
Aeri(l) =—lo (— log| — /|, (6
=0 T —Tetin ) /PN

most layers.
and tabulatex.«(1;) with I; for our Monte Carlo simulations

We calculate the critical temperatures of the films from(l, € {4,6,8,10,15,2p [and also for comparison the mean-
our Monte Carlo simulations using the cumulant metffod. field calculationg!; ranging from 4 to 20 layejd The heg's
We find a change from 2D to bulk values ks increased. should converge to the asymptotic shift exponents*2/
Figure 1 shows evidence of such a dimensional crossover faghen | tends to infinity. A linear least-squares fit between
the Ising thin films. Both our 2D and bulk results agree very (I;) and 11; enables us to obtaih.4(>c) which is also
well with the exact Ising 2D results and previous Ising 3Dgiven in Table I. The mean-field values afg() for all
studies?®%” As the number of layers is increased, the critical stryctures all have values of 2 since the mean fieig well
temperature moves towards the 3D value owing to the inknown to be 1/2. For the Monte Carlo simulation results, it
crease of the average exchange interaction ?nergy. On similgy gratifying to find \e(22) to be close to 1#*° which we
grounds, forl=4, we find T&(1) <TEN) <TEX(I). Mean-  optain from separate bulk Monte Carlo simulations. This
field estimates are consistently higher than those from thesgives good support to the contention of universality and the
Monte Carlo results and agree well with a previousasymptotic behavior contained in Eqg) and(5).
calculation®®

We also investigate the shift exponektsGenerally\ can
be written in terms of a power law

B. Critical temperatures and shift exponents

C. Critical exponents

The effective critical exponents can be extracted from Eg.

) (3) as well asdU, /dB, againstL at T. This is actually the

first test of the validity of the empirical formula, E¢3).

Results from our simulations, at., indeed show very good
HereT() is the bulk critical temperature andhas a value linear relationships  between lpgy, log, x, and
between 1.0 and 2.0 depending on the spin model used ar@g, dU, /dBv with log, L for all our thin-film thicknesses
the type of calculation. For thick films, is expected to be and structures, e.g., in Fig. 2. We note here tf/dg
1/13432 A petter fit for films of a range of thicknesséss =LY, The exponentg’/v', y'/v', and 14’ can be ex-
given by Ref. 39 and has the form tracted from the slopes of the linear least-squares fits. For the

_ TC(I) o |_}\.

L)
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extraction of exponents in 10-layered fcc films a) magnetization scaling function
10 . . : : 1.1 : TS
iy = +
s °f 5 e, t2% x|
=3 S O . § 09T * L;GO o E
3 87 N 2 o8} L-80 =
N e X o
8 4y 1 £ o7t .
=2 logpm  + o a
S ol log, x  x | 2 0.6
g log, dU B x § o5
E ot 8
& g 04 |
o c
2T 2 03¢
“ , , , , E o2}
6 62 64 66 68 7 0.4 . . .
log, (L} -1 -0.5 0 0.5 1
scaling parameter x
FIG. 2. An example of the extraction of effective critical expo-
nentsg’, ¥'/v', and 14’ from the slope of a least-square (itee b} susceptibility scaling function
text) for ten-layered fcc films. The apparent linear relation supports 01 =g Fr
Eq. (3 009 | L=20 x @ ]
g. (). c v L=40 * # X
S .
FonIi® oF wf ]
. . . =4 = G
second test, we perform the calculation of the effective di- .:'-» 0.07 {12100 of 1
mensiondes=7'/v'+28'/v'. We have found that, in each £ 006 e ;
cased. has a value of 2 within error bars as shown in Fig. 2 0.05
3 as expected. This confirms the 2D universality in thin films £ 004
anq ensures _the possibil?ty _of using E@) to describe the % 0.03
critical behavior of the thin films. For the last test, we con- 2 0.02
sider the scaling functions in E@3). We calculate these @ 0.01 I
scaling functions for the ten-layered sc films with ’ 0 " s ) ,
=10, 20, 40, 60, 80, 100, 150, and 200 using the expo- - 05 0 05 1
nents extracted froh=64 to 128. The results are shown in scaling parameter x

Fig. 4. For large enough (L=60-200, excellent data col- _ _ o
lapses occur. This ensures that our effective critical expo- FIG. 4. The scaling functions for the magnetizati@nand sus-
nents are reliableHowever in the same figure for small L ceptibility (b) in ten-layered sc systems with from 100 to 200
(around L=10 and 20), data collapsing is not foundrhis is calculated by using those effective exponents extracted for ten-
what we must expect since tB® universality is compro- layered sc films withL ranging from 64 to 128. A good collapse of
mised when L approaches | the data is found for all systems witte=60 includingL=150,200

Since our results pass all of the three tests above, it igvhich are bigger than those used in the effective exponent extrac-
reasonable to propose E@) to be very useful for extracting 10" Note, however, that fot —1=10, the collapse becomes very
effective critical exponents for film systemsTat. Moreover poor bt_ecaus_e the 3D. behaviawhich is O!'ﬁerent from th'n'.f”r_n
we find that the exponentg'/v' and g'/v', for 1=1 u to’ properties—i.e., 2D like becomes more important at the liniit

P 4 ’ P >|. Here, the reduced temperatureT/[Tc(I=10)]- 1.

effective critical exponents of Ising films =20 films, are quite close to their 2D values as shown in

22 ——— Fig. 3. In particular, for thin filmgl <8), the exponent val-

ffective dimention = YA'+2B /v’ X .
2 -M‘ ues seem to be almost identical to the 2D results. On the

1.8 n—ﬂ"H—*—‘—;—,; other hand, for thicker film¢l = 10), a weak dependence of
16 1 the exponents ohis found in agreement with, Refs. 16 and
14} 1 17. This is somewhat reasonable siticés no longer much
121 1 larger thanl and corrections to scaling may be needed. In

L T AP P T addition, we find that the thicker the film, the greater the

effective critical exponents

08| 2d values 1 difference from 2D. Inevitably, for studies of thick films

06 [ bgg — which still produce 2D-like results, very lardes are re-

04 foc —— 1 uired which are not computationally feasible. Nevertheless,
q p y

02t BN * from thin films with thicknesses of around eight layers and

thinner, the effective exponents are very close to the 2D val-

ues. Thus, we feel safe in concluding that thin films belong

to the 2D class. In addition, our results show that, at a good
FIG. 3. Results of effective critical exponents for all sc, bce, andlevel of agreement, the effective critical exponents from all

fce films. The exponents are close to 2D values. Especially, for thirstructures represent the same universality class.

films (1=<8), they are consistent with 2D results. Trht=7"/v' Next, to elucidate further our conclusions about the criti-

+2p3'/v' =2 also confirms 2D universality. cal exponents, we consider the relevant scaling funciifons

0 " I " I n L n L n
0 2 46 81012141618 20
number of layers |
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TABLE II. The effective critical exponents from the collapse of =~ TABLE lll. The effective critical exponents extracted from the
the scaling functions for sc films with thickness varying from collapse of the scaling functions for sc films with the ratid
monolayer to eight layers. At a particular thicknekss fixed and  varying from 1.00 to 0.05. At a particular ratiéL, |/L is fixedand
L=10XI are used to find the collaps&he prime indicates the the effective critical exponents from both varyihgand| are pre-
effective critical exponents for their corresponding parameters. Theented. ErrorgRef. 40 are in a unit of the last digit. Notice that the
best collapsingsmallestP,) is used to extract an optimum set of results are close to 3D values.
the effective exponents. ErrotRef. 40 are in a unit of the last

digit. Ratio | /L Varying L Varying |
X m X m
No. layers X m v Y1y 1y By 1y Y v 1l B
1/ v v 1 Blv'

1.00 154 194 169 0502 154 194 1.64 0.521
1 1.00 1.76 1.02 0124 ¢50 153 1.93 164 0509 1.60 1.94 1.63 0.522
2 1.02 1.76 1.02 0130 ;43 149 192 1.63 0508 159 1.92 1.63 0.509
4 1.02 1.76 1.00 0.138 0.25 151 195 161 0509 1.60 1.93 1.61 0.515
6 1.04 L. 1.00 0.148 0.20 1.75 200 161 0509 159 192 1.61 0.515
8 1.08 179 1.00 0.159 0.10 164 200 160 0.484 157 192 1.60 0.491

0.05 1.78 198 158 0.463 157 1.91 158 0.465

magnetization and susceptibilityand extract the effective
critical exponents from data collapses. Figure 4 provides a

useful visual preview, but we now measure the quality of a 1
data collapse method according to Ref. 40 who defined Py = N

SEIILEm eI, (D

over p i#Pigyer

a) magnetization scaling function

11
1}

wheremy; is theith value of the magnetization for théh set
of L (i.e., L=L; for setj) andt is the reduced temperature.
ep(x) is the interpolating function based on the values of set

f =4

o

g 09} ) X 2

5 ol p and Ny, is the number of pairs. Any extrapolation is

2 avoided. From this, we are allowed to extract the exponents

£ 071 : i ;

g 06 from where all scaling functions have the best collafise,

e at a right choice of3’ andv’, P, will be smalles} for both

B 05t magnetization and susceptibility. For the susceptibility, we

g 047 changem; to x; andLf " to ;7"

g 031 Clearly Eq.(7) is very useful for extracting the best ex-
02}

ponents corresponding to the scaling data and the form of the
scaling functions. For further analysis, we consider several
forms of scaling functions, which allows us to track the criti-
cal information from different aspects, as follows:

b) susceptibility scaling function (i) lis fixed andL>1 (e.g., we usé.=10X1) are used to

0‘1 1 1 1 1 1 1 1
2 15 -1 05 0 05 1 15 2
scaling parameter x

0.06 find the scaling functions
g oo (T = Tel),LD) = LB et 1),
c
2 004} o ,
7 X(T = Te(), LD =177 X y; (8
3 003}
£ e.g., see results in Table Il and Fig. 5.
% 0.02 (i) 1/L is fixed andL =4 are used to consider the scaling
3 functions in the form
z 001rf
I - ! I
0 e m(T—>TC(I),L,—) =LA m(tL”V ,—),
2-15-1 050 05 1 15 2 L L
scaling parameter x
FIG. 5. The collapsing of magnetization and magnetic suscepti- X(T_> TC(I),L,I—) = Ly'/y")-é(tl_l/v”l_); (9)
bility scaling functionusing Eq (7) for fixed =6 sc films with L L

varying L={60,80,100,150,200 The best collapsing gives &/

=1.04, y'/v'=1.77 for susceptibilty and ¥/=1.00, g'/»'  €.0., See results in Table Il and Fig. 6.

=0.148 for magnetization. Here, the reduced temperature  (iii) I/L is fixed and usd={1,2,4,6,8 to consider the
=T/[Tc(1=6)]-1. scaling functions in the form
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a) magnetization scaling function a) magnetization scaling function

5.5 — 1. . .
L=60 + 6 1layer +
g 9 L=80 x c 14} 2layers
L 45 L=100 * K=} 4 layers  *
B B
2 =160 o 2 10} 6layers O
32 47 L=200 = 3 - Slayers =
g 35 g 1}
L ©
g 3 & o8|
c 25 c
2 S
T 2 § 06
2 15 ® 04}
& 1t 2
E os E 02}
ol o 0 , . .
-50-40-30-20-10 0 10 20 30 40 50 - 05 0 0.5 1
scaling parameter x scaling parameter x
b) susceptibility scaling function b) susceptibility scaling function
0.025 —————— 3 .
L=60 + 1layer +
s L=80 x c 2layers X
g o002} L=100 * - S 25 4layers  x
e L=150 o B 6layers O
2 L=200 = 5 o | Blayers =
2 o015} g
3 § 1.5
%’ 0.01 | z
-4 2 1
[ ] Q
g 0.005 | 3
@ 2 05T
0 1 1 1 1 0 . .
60 40 20 0 20 40 60 80 A 05 0 05 1

lin rameter x i
scaling parametel scaling parameter x

FIG. 6. The collapsing of magnetizatiga) and magnetic sus-
ceptibility (b) scaling functiorat the ratio I/L=0.1 for sc filmswith
varying L={60,80,100,150,200 Here, the reduced temperature
t=T/[Tc(1=0.1L)]-1.

FIG. 7. The collapsing of magnetizatiga) and magnetic sus-
ceptibility (b) scaling functiorat the ratio I/L=0.1 for sc filmswith
varying 1={1,2,4,6,8. Here, the reduced temperaturé

=[T/Tc(H]-1.
T To(l),] 1 — 181 R g i make the scaling. However, due to limitations in computa-
c B L)’ tional resources, only 5000 equilibrium configurations in

each simulation were collected to make the average. In the
calculation of Py, at least 4 different scaling functions are
(THTcU) | ) 17y (ﬂl/” ) (100 required in order to consider the collapse. One may also
notice that we have seét=10X1 in the first scaling form
e.g., see results in Table Il and Fig. 7. since we requird_>1 and, because of computer limitations,
(iv) From the magnetization and magnetic susceptibilitywe can extract the exponents up to ohy8 from m(T,L
scaling functions—i.e.m(l) andy(I)—we try to make all =10l,1) andx(T,L=10,1).
scaling functions from={1,2,4,6,8 collapse onto a same Table 1l demonstrates that for fixédthe effective critical
curve; that is, we write exponents are close to those we extract from the empirical
- — finite size scaling analysis. For fixddL but variedl or L
m(l,x— xc) =17m(x’), X(,x—xc) =1"x(x'), (11)  (the second and the third scaling forrthe correlation length
& can now expand in the 3D-like manner. As can be seen in
whereff and are the scaling functions of the usual scaling Table 1lI, the extracted exponents are close to the 3D values
functions(l,x) and¥(l,x). Herex=(T/Tc()-1) X LY is  as expected. For the collapsing of the scaling functions in
the scaling parameter. Using a trial and error method, wérig. 8(the last scaling form the exponentg j, andk are not
found x’ =(x+x;) X 1¥. Herex,, i, j, andk are all adjustable close to 2D values. This may indicate that corrections to
parameters used to find the best collapse. Results are shownaling are needed. Nevertheless, the quality of our data does
in Fig. 8. not allow us to perform trial fits with these extra parameters.
For this scaling function study, we performed extensiveHowever, we can see that it is possible to perform simulation
extra simulations for Ising sc films with ranging from 4 to  for a number of finite systems only and then be able to de-
200 andl from monolayer up to 20 layers. Up to 201 data scribe critical behavior of other systems via some suitable
from different temperatures in each system were collected tecaling functions.
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a) collapsing of magnetization scaling function Heisenberg magnet becomes Ising like only for very thin
.g 16 T flayer + films. However, a strange behavior of a sharp dimensional
g 14} Sy crossover off at around five to eight layers is foufid,
2 1l Blayers o whereas infinitely large films should belong to the 2D class
g . Blayers @ for any thicknesses.
5 On the other hand, our results show a slight increase of
g o8 B'1v' towards its bulk value fronh=10 onwards becaude
g 06} is still finite. Hence with increasingthe 3D character of the
g 0sl films becomes prominent an@ is dragged away from the
5 2D limit. This can be interpreted as an evidence of a cross-
g 02r over due to the shape effect. As a result, our finite-size simu-
g 0_6 “'1 2 (') 2 "‘ 5 lations suggest the crossover from 2D to 3D Ising, but the

dimensional crossover g8 in Ref. 6 may be a transition
from 2D Ising to 3D Heisenberg. So a direct comparison
b) collapsing of susceptibility scaling functiol may not be allowed. That said, the sharp increase at five to
0.050 — eight layers in Ref[6] that is not found from our results is

scaling parameter x’

which claimed “the author of Ref. 6 neglected the depen-

0.010 | ;
0.005 | .
0.000 A critical point on the reduced temperature in their evaluation

dence of the(effective) critical exponents away from the

c T T T

L 11 : . . . . .

B 0045 | 2|a%?sr X quite an interesting issue. Although Ising and Heisenberg
5 0040 | s o films may be quantitatively different, they should qualita-
= 0035 B8layers = tively share the same characteristics since, in the critical re-
g 0.030 | gion, the divergence of the correlation lengtin both mod-

T 0025} els should be 2D like. So it is strange th@ain Ref. 6 should

g 0.020 | change its value so abruptly with very few layers. To find
ERGTER ; more answers, we consider Ref. {Schilbe et al., 1996

2

8

€ 4 2 0 2 4 6 of the experimental data.” In other words, the range of tem-
scaling parameter x peratures 1 <t<10! used for the power law fit in Ref. 6

FIG. 8. The collapsing afmagnetization scaling functigia) and may not t?e'ong to the asymptotic behav_(orltlcal region),
magnetic susceptibility scaling functigh) scaling function(based f”md the fit m.ay lead to somewhat dubious resu!ts. So, to
onL=200) for sc filmswith varying I={1,2,4,6,8. With Eq. (L), investigate this closely, we follow Ref. 13 who defined
for susceptibility, it is found thak.=0.11,k=0.46,i=-0.13, and
P,=0.002. For magnetizatio,=-0.07,k=0.54,j=0.21, andP, _dlogm (12)
=0.03. Here, the reduced temperattrg T/ Tc(1)]-1. eff dlogt '

Finally, we compare our results for the effective exponentand study how this quantity varies withn thin films.
B’ with those available from experiment on Ni fillAAs In the critical region of thin films—i.e.] <¢<L—the
shown in Fig. 9, the experimental results are close to ours—finite-size effect upon 2D-like phenomena becomes impor-
i.e., 2D like only for films thinner than four layers. If the Ni tant for é—L. At a fixed |, the temperature range of this
experiment can be described using the Heisenberg modeip-jike phenomena depends on the valuevgfand goch’
this behavior is not surprising because the anisotropigill realize its finite limit at a temperature around
log t=—(1/v")log L. To investigate this topic carefully, we
calculate and ploB.s against loggt for 100X 100X | films
in Fig. 10. The rough pattern of thé.s curves is in agree-
038 F o1 lsing P ment with the investigations in Ref. 13. Since 100 is used
in our calculation, the8. are reliablgwith minimum finite-
size effect only down to log, t=-2. However, this range of
log; t does cover most of the range <30g,ot<-1 used in
the power law fit in Ref. 6, and shows a quite interesting
feature. It appears that this range of temperatures is not in the
critical region becausg. for each film is not constant, but
peaks at a certain temperature. Outside the critical region
(paramagnetic sigethe correlation length grows as we in-
crease the temperature towarfis As long asé is smaller
than the film thickness, the film tries to behave as the 3D
bulk system ang.; grows somewhat towards the bulk value

FIG. 9. Comparison of the effective critical exponefitex-  B°°=~0.3258%¢ However, at some temperatuéebecomes
tracted from experimental data for (4.1)/W(110) in Ref. 6 and comparable with the film thickness and is only allowed to
from Monte Carlo simulations of Ising thin films. expand in the in-plane direction, exhibiting 2D-like behavior.

effetive critial exponent
0.4

0.3 r

0.25

02r

0.15

0.1

005 Lo v
2 4 6 8 10 12 14 16 18 20
number of layers (1)
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effective critical exponent By agreement with previous studies. The empirical fit of our
0.30 — calculatedT’s for films of varyingl gives the fittedl - at the
025 | limit of infinitely thick films which agrees very well with
020 | that calculated directly from separate 3D calculations. An-
5 other empirical fit for the shift exponent also suggests con-
< 0151 vergence to the 3D limit with increasing numbers of mono-
0.10 | layers.
0.05 | We have examined the critical regime of these systems in
detail and extracted effective critical exponents via empirical
0.00 MIEEE — A . .
4 35 3 25 2 15 -1 05 0 formulas based on a finite-size scaling method for films. The
logqot validity of these formulas are successfully verified. The re-
monolayer  + 8layers m sults show a very weak varlqtlon _of the effecnvg qutlcal
2layers  x 10 layers © exponents with respect topthe film thickness. For thin films
g:ggg X » :g;gg . (1=<8) the exponents are essentially the same as 2D and from

this it can be implied that thin films fall into the 2D class.
FIG. 10. The effective critical exponent.; extracted from  For thicker films, howevefl = 10), a weakl dependence is
100x 100X | sc Ising films wherd is the number of layers. Fdr  noticeable becausé is thick enough for the correlation
=4, itis found that around logt=-1 to —1.5, theen curves reach  |ength to distinguish the geometry of the films from that of a
peaks and this indicates how a steplike functiongoéf the form  simple 2D lattice which is a consequence of a finite-shape
described in Ref. 6, i.e., Fig. 9, is possible. Here, the reduced temaffect,
peraturet=1-T/Tc(l). We performed further analysis of our results using scaling
functions of various forms and their data collapses. It is
Thus, 8. changes its trend and the resulting decrease resultsund that for fixedl but varyingL, the effective critical
in a peak. We can also notice that the thicker the film, theexponents are close to those extracted from the empirical
closer the peak can grow towards the bulk value. It is certaiffinite-size scaling analysis, but for fixddL, the exponents
if one tries to perform the power law fit for this temperature move to 3D values as expected. In addition, we consider the
range, a sudden change gf; will be observed. scaling functions for each thickne$sand draw a general
We may conclude that the range <30g,,t<-1 used for  scaling form for the collapsing of those scaling functions.
the power law fit in Ref. 6 is outside the critical region and  Finally, in comparison with the experimental results de-
thus the power law fit should not work well. This explains scribed in Ref. 6 our results for the thinner films bear up
why the behavior of3 in Ref. 6 does not really relate to our well. A direct comparison, however, is not possible. This is
results because our studies concentrate on the critical regiobecause the experimental data from nickel films on a tung-
sten substrate can be interpreted to show a transition from
2D Ising to 3D Heisenberg rather than from 2D lIsing to 3D
IV. CONCLUSION Ising which is the only possibility for the model and systems
We have studied the magnetic behavior of |Sing thin filmswe have studied here. There is also the issue that the eXperi-
in sc, bce, and fec structures using extensive Monte Carlénental data used to make a power law fit are taken from
simulations(and mean-field analygisWe have found the temperatures that are outside the critical regime.
d|mep3|onal_cro§sover_ of both and y from 2D to 3D like ACKNOWLEDGMENTS
with increasing film thickness. The layer componentsof
and y are found to have the lowest magnitudes at the surface We acknowledge the use of computer resources provided
while the innermost layers have the highest due to the freey the Center for Scientific Computing at the University of
boundary effect at the surfaces. The filfg's evolve from  Warwick. One of ugY.L.) would like to thank IPST(Thai-
2D to 3D values with increasing film thickness in good land) for partial financial support.
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