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We have used Monte Carlo simulations and mean-field analysis to observe the magnetic behavior of Ising
thin films with cubic lattice structures as a function of temperature and thickness, especially in the critical
region. Magnetization and magnetic susceptibility, including layer variation, are investigated. We find that the
magnetic behavior changes from two-dimensional to three-dimensional character with increasing film thick-
ness. Both the crossover of the critical temperature from a two-dimensional to a bulk value and the shift
exponent are observed. Nevertheless, with support from a scaling function, the simulations show that the
effective critical exponents for films with large enough layer extents only vary a little from their two-
dimensional values. This, in particular, provides an indication of two-dimensional universality in the thin films.
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I. INTRODUCTION

The dimensional crossover of magnetic properties from
two-dimensional(2D) to three-dimensional(3D) character in
magnetic multilayers has currently attracted much interest as
a result of both technological and fundamental importance.1,2

Of particular interest is the critical behavior of magnetic thin
films for which the dimensionalityd is not well established.
It is interesting to consider how magnetic properties such as
the magnetizationm, magnetic susceptibilityx, and critical
temperatureTC depend on the thickness of the film.

Critical temperaturesTC in multilayered systems are
known to change from 2D to 3D values with increasing num-
bers of layers. Magnetic films, however, should belong to a
2D universality class owing to the correlation lengthssjd
being constrained by the film thickness and allowed to ex-
pand only in the in-plane direction. This is not apparent from
well-known experimental studies of thin films of nickel6

which provide evidence of a dimensional crossover of the
critical exponentb from 2D to 3D. Here, we try to clarify
this discrepancy by carrying extensive Monte Carlo simula-
tions of simple cubic(sc), body-centered-cubic(bcc), and
face-centered-cubic(fcc) coordinated thin films.

Both theoretical3,4 and experimental5–7 investigations
show that the Ising model is very useful for the study of
critical behavior in thin ferromagnetic films. Various tech-
niques have been used.8–17 Magnetic profiles,TC, the shift
exponent,8–12 and the effective exponent dependence on
thickness and temperature away fromTC (Ref. 13) have been
studied together with the dimension change using scaling
functions of thick films around the bulkTC (Ref. 14), and
how the effective critical exponents in thin films depend on
thickness at the film critical point.15–17There are nonetheless
some important issues which remain unresolved; for ex-
ample, the confirmation of universality in different structures
with the same thickness, the confirmation of the effective
exponents via scaling functions, the empirical form for the
observation of the convergence of the shift exponent to the
bulk limit from both Monte Carlo and mean-field studies, the

possibilities in using Ising thin films to describe real experi-
ments, etc.

Consequently, in this study, we aim to give a more com-
plete picture of the magnetic phase transition in thin films in
all cubic structures especially at the critical point. We first
investigate how the magnetic properties, including their layer
resolution, depend on temperature and thickness by means of
Monte Carlo simulations and mean-field theory. Second, we
calculateTC, following it to the bulk limit. Then, using an
empirical fit, we extract the shift exponents and their conver-
gence to the 3D value. Next, with(empirical) finite-size scal-
ing forms, we extract the effective critical exponents as a
function of thicknessl. After that, we construct various kinds
of data collapsing to confirm the results and to observe how
the exponents depend on the forms of the scaling functions.
Finally, we discuss our results and compare the characteristic
effective critical exponents with those found in experiments.

II. METHODOLOGY

In this study, we consider the Ising hamiltonian
H=−Joki j l SiSj, where the spinSi takes on the values ±1 and
the sum includes only first nearest-neighbor(1 NN) pairs.
Helical (periodic) and free boundary conditions are used for
the in-plane and out-of-plane directions, respectively. We
use units of J/kB and J for temperatures and energies,
respectively, with the magnetization per spin defined as
m=s1/NdoSi whereN is total number of spins.

The simulations are carried out for sc, fcc, and bcc films
of size N=L3L3 l where L3L represents the number of
sites(spins) in each layer of the film andl is the number of
layers. We varyL from 64 to 128(in steps of 8) with l
ranging from a monolayer(bilayer for bcc films) to 20 lay-
ers. The spin configurations of the films are updated using
the Wolff algorithm18 to minimize statistical errors arising
from correlation time.19,20 The random number generator
(drand48) is chosen carefully.21–23 During a simulation, the
magnetization per spin,m, and the energyE are measured
when the number of flipped spins exceed or is equal toN.
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Each simulation is found to reach its equilibrium before
30 MCS(Monte Carlo step per site). To ensure equilibration,
we wait at least 3000 MCS(about 100 times the equilibra-
tion time) from its initial state(disordered state) before tak-
ing any measurements. The expectation value of the square
of the statistical error of an observable, e.g.,m, takes the
form19

ksdmd2l =
1

n
skm2l − kml2dS1 + 2

t

dt
D , s1d

where, at large enoughn, t=oi=1
n skm0mil−kml2d / skml2

−kml2d is the integrated correlation time,19 dt is the time
interval between two successive configurations—i.e., about
1 MCS—and n is the number of configurations being
sampled. Sinceskm0ml−kml2d / skm2l−kml2d decays with
time, by resampling the spin configurations with the time
interval between two successive data being much greater
thant or at least 2t,27 it can be assumed that the correlation
between two successive configurations sampled in this new
interval is minimized or can be discarded. Our results showt
to increase with both sizeL3L and thicknessl of the film. In
our biggest system 1283128320, t,4 MCS.

Once t has been calculated for each system, at least
n8=53105 configurations sampled in the interval 2t are
used to calculate the expectation of the magnetization per

spin, kml=s1/n8doi
n8 umiu, as well as the magnetic suscepti-

bility x=bNskm2l−kumul2d where b=J/kBT. Similarly, the
layer dependence of these magnetic properties,mk and xk,
wherek is a layer index, are calculated to observe the surface
effects upon the magnetic properties. The critical tempera-
tureTC is located via the fourth-order cumulantUL (Ref. 24):

UL = 1 −
1

3

km4l
km2l2 , s2d

where, atT=TC, UL should be independent ofL; i.e., for
differing sizesL and L8, sUL /UL8dT=TC

=1. Owing to finite-
size effects,TCsb=L /L8d is plotted againstsln bd−1, and the
results in the infinite limit are obtained atsln bd−1→0.24 To
maximize the efficiency of thisTC calculation, for each
thickness, we perform a single long simulation at a tempera-
ture T0 and use the histogram method25,26 to extrapolateUL
to a temperature nearby in order to find the cumulant cross-
ing point on a fine scale. The temperatureT0 is chosen to be
that at the peak of the susceptibility curve for theL=128
system, and approximately 1–43106 spin configurations are
used to create the histograms. To exclude the data obtained
from temperatures too far from the simulated temperatureT0,
the range of extrapolationuT−T0u is restricted by the criterion
uUsTd−UsT0duøsE,27 whereU=kEl, the average of the en-
ergy, andsE is a standard deviation ofE at T0.

We consider an empirical finite size scaling form for film
geometry16,17 to find howm andx scale with the sizeL and
thicknessl of the systems and use this to extract the effective
critical exponents from our results. The basic finite-size scal-
ing ansatz28–33rests on an assumption that only a single cor-

relation lengthj is needed to describe the critical properties
of thin films. Hence the empirical scaling forms form andx
at some fixedl ’s can be written as16,17

kmsT,ldl = L−b8/n8m̃sL1/n8t,ld,

xsT,ld = Lg8/n8x̃sL1/n8t,ld, s3d

whereg8, b8, andn8 are the effective critical exponents as-
sociated withx, m, andj, respectively. Forl =1 or the mono-
layer system, the effective exponents are the critical expo-
nents for the 2D system. The functionsx̃ andm̃ are scaling
functions for a givenl andt=T/TCsld−1 is the reduced tem-
perature. These scaling functions for a range ofL should
collapse onto a single curve with the correct critical tempera-
ture and effective critical exponents. The effective exponent
1/n8 can be extracted from the derivative of the cumulant
with respect toL at TC owing to its variation with system
size asL1/n8.24 Note that if Eq.(3) correctly encapsulates the
nature of magnetic critical behavior in films, we can extract
the effective exponentsb8 /n8 andg8 /n8 from the slopes of
the log-log plots ofm or x againstL at TC. To continue with
confidence, we believe it is necessary to demonstrate the
validity of the finite-size scaling, Eq.(3), in modeling results
from our calculations. This can be done by establishing the
following:

(i) According to Eq.(3), at TC, a log-log plot ofx or m
againstL should be linear.

(ii ) Based on the hyperscaling relationg /n+2b /n=d,34

it is possible to consider the effective dimensionality
deff=g8 /n8+2b8 /n8.16,35 For l /L!1, we expect 2D-like be-
havior; i.e.,deff should stay close to 2.16

(iii ) With suitable effective exponents in the critical re-
gion, a scaling function for anyL but a particularl—i.e., Eq.
(3), should collapse onto a single curve. This will confirm the
reliability of the effective exponents extracted from our
simulations

III. RESULTS AND DISCUSSION

A. Magnetization and magnetic susceptibility

From magnetizationm and susceptibilityx profiles for
various film thicknessesl and system sizesL the crossover of
behavior from 2D like for the monolayer(bilayer in bcc) to
3D like for films with 20 or more layers is found. The tran-
sition point moves from 2D to 3D values with increasing
film thickness in a good agreement with previous studies.12,13

Furthermore, the layer resolution shows them andx magni-
tudes to increase from the lowest values for the surface layer
the largest values in the interior of the films.

Such layer variation is expected because the exchange
ferromagnetic energy associated with each spin is greater in
the bulk than at the surfaces owing to the increase in num-
bers of nearest neighbors. This effect shows up in the simu-
lations. The probability for a site getting updated is
Dsi , j ,kd=s1/Mdon=1

M s8si , j ,kd, wheres8si , j ,kd is the number
of times the site at locationsi , j ,kd is in a Wolff update, and
M is the total number of clusters forming(flipping) in a
simulation. We find that, at any finite temperature in the fer-
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romagnetic phase,D at the surface layers always has the
lowest magnitude, showing that spins which belong to the
majority direction are preferentially located in the inner lay-
ers rather than near the surface. Hence, at the surface layers,
there will be some(minority direction) spins behaving as a
buffer which results in smallerm magnitude. Similarly, forx,
the “buffer” in the surface layers helps to reduce the mag-
netic fluctuations leading to a smallerx than those in the
inner layers.

The same qualitative trends are also uncovered by using a
mean-field approximation.36 Again the evolution of the mag-
netic properties from 2D to 3D like is found and the smallest
m andx values lie on the surface and highest for the inner-
most layers.

B. Critical temperatures and shift exponents

We calculate the critical temperatures of the films from
our Monte Carlo simulations using the cumulant method.24

We find a change from 2D to bulk values asl is increased.
Figure 1 shows evidence of such a dimensional crossover for
the Ising thin films. Both our 2D and bulk results agree very
well with the exact Ising 2D results and previous Ising 3D
studies.26,37As the number of layers is increased, the critical
temperature moves towards the 3D value owing to the in-
crease of the average exchange interaction energy. On similar
grounds, for l ù4, we find TC

scsld,TC
bccsld,TC

fccsld. Mean-
field estimates are consistently higher than those from these
Monte Carlo results and agree well with a previous
calculation.38

We also investigate the shift exponentsl. Generallyl can
be written in terms of a power law

1 −
TCsld
TCs`d

~ l−l. s4d

HereTCs`d is the bulk critical temperature andl has a value
between 1.0 and 2.0 depending on the spin model used and
the type of calculation. For thick films,l is expected to be
1/n3d.32 A better fit for films of a range of thicknessesl is
given by Ref. 39 and has the form

1

TCsld
=

1

TCs`d
F1 +S l0

l − l8
Dl8G , s5d

wherel0, l8, andl8 are all adjustable parameters. Similarly,
l8 should tend to 1/n3D as l →`. Using Eq.(5) we fit the
TCsld’s arising from our Monte Carlo calculations. If it turns
out that ourTCsld’s are accurate and that the fit is a useful
one, we should findTCs`d in agreement with theTC

bulk we
have calculated separately. Results of the fit are shown in
Table I, and there is less than a 1% difference betweenTCs`d
and TC

bulk for all three types of films. However, even for
l =20, it turns out thatl8 is not close to the expected largel
value, 1/n3D. To elucidate further the evolution from 2D- to
3D-like behavior we rearrange the power law of Eq.(4) and
define

leffsl id = − logS TCs`d − TCsl id
TCs`d − TCsl i−1d

DY logS l i
l i−1

D , s6d

and tabulateleffsl id with l i for our Monte Carlo simulations
sl i P h4,6,8,10,15,20jd [and also for comparison the mean-
field calculations(l i ranging from 4 to 20 layers)]. Theleff’s
should converge to the asymptotic shift exponents 1/n3D

when l tends to infinity. A linear least-squares fit between
leffsl id and 1/l i enables us to obtainleffs`d which is also
given in Table I. The mean-field values ofleffs`d for all
structures all have values of 2 since the mean fieldn is well
known to be 1/2. For the Monte Carlo simulation results, it
is gratifying to findleffs`d to be close to 1/n3D which we
obtain from separate bulk Monte Carlo simulations. This
gives good support to the contention of universality and the
asymptotic behavior contained in Eqs.(4) and (5).

C. Critical exponents

The effective critical exponents can be extracted from Eq.
(3) as well asdUL /db, againstL at TC. This is actually the
first test of the validity of the empirical formula, Eq.(3).
Results from our simulations, atTC, indeed show very good
linear relationships between log2 m, log2 x, and
log2 dUL /dbv with log2 L for all our thin-film thicknesses
and structures, e.g., in Fig. 2. We note here thatdUL /db

~L1/n8. The exponentsb8 /n8, g8 /n8, and 1/n8 can be ex-
tracted from the slopes of the linear least-squares fits. For the

FIG. 1. The critical temperaturesTC as a function of thicknessl
extracted from Monte Carlo simulations.

TABLE I. Fitting parameters for Ising thin films using Eq.(5).
MC and MF stand for Monte Carlo and mean field, respectively.
Notice that 1/n3D here are in good agreement with previous studies
and exact results.

Structure TCs`d ls`d=1/n3D

sc 4.539±6310−3 1.578±3310−3

MC bcc 6.389±3310−3 1.620±1310−2

fcc 9.860±2310−2 1.621±8310−3

sc 6.0020±2310−4 2.002±4310−3

MF bcc 8.0320±4310−3 2.002±2310−3

fcc 12.0500±6310−3 2.000±2310−3
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second test, we perform the calculation of the effective di-
mensiondeff=g8 /n8+2b8 /n8. We have found that, in each
case,deff has a value of 2 within error bars as shown in Fig.
3 as expected. This confirms the 2D universality in thin films
and ensures the possibility of using Eq.(3) to describe the
critical behavior of the thin films. For the last test, we con-
sider the scaling functions in Eq.(3). We calculate these
scaling functions for the ten-layered sc films withL
=10, 20, 40, 60, 80, 100, 150, and 200 using the expo-
nents extracted fromL=64 to 128. The results are shown in
Fig. 4. For large enoughL sL=60–200d, excellent data col-
lapses occur. This ensures that our effective critical expo-
nents are reliable.However, in the same figure for small L
(around L=10 and 20), data collapsing is not found. This is
what we must expect since the2D universality is compro-
mised when L approaches l.

Since our results pass all of the three tests above, it is
reasonable to propose Eq.(3) to be very useful for extracting
effective critical exponents for film systems atTC. Moreover,
we find that the exponentsg8 /n8 and b8 /n8, for l =1 up to

l =20 films, are quite close to their 2D values as shown in
Fig. 3. In particular, for thin filmssl ø8d, the exponent val-
ues seem to be almost identical to the 2D results. On the
other hand, for thicker filmssl ù10d, a weak dependence of
the exponents onl is found in agreement with, Refs. 16 and
17. This is somewhat reasonable sinceL is no longer much
larger thanl and corrections to scaling may be needed. In
addition, we find that the thicker the film, the greater the
difference from 2D. Inevitably, for studies of thick films
which still produce 2D-like results, very largeL’s are re-
quired which are not computationally feasible. Nevertheless,
from thin films with thicknesses of around eight layers and
thinner, the effective exponents are very close to the 2D val-
ues. Thus, we feel safe in concluding that thin films belong
to the 2D class. In addition, our results show that, at a good
level of agreement, the effective critical exponents from all
structures represent the same universality class.

Next, to elucidate further our conclusions about the criti-
cal exponents, we consider the relevant scaling functions(for

FIG. 2. An example of the extraction of effective critical expo-
nentsb8, g8 /n8, and 1/n8 from the slope of a least-square fit(see
text) for ten-layered fcc films. The apparent linear relation supports
Eq. (3).

FIG. 3. Results of effective critical exponents for all sc, bcc, and
fcc films. The exponents are close to 2D values. Especially, for thin
films sl ø8d, they are consistent with 2D results. Thatdeff=g8 /n8
+2b8 /n8.2 also confirms 2D universality.

FIG. 4. The scaling functions for the magnetization(a) and sus-
ceptibility (b) in ten-layered sc systems withL from 100 to 200
calculated by using those effective exponents extracted for ten-
layered sc films withL ranging from 64 to 128. A good collapse of
the data is found for all systems withLù60 includingL=150,200
which are bigger than those used in the effective exponent extrac-
tion. Note, however, that forL→ l =10, the collapse becomes very
poor because the 3D behavior(which is different from thin-film
properties—i.e., 2D like) becomes more important at the limitL
@ l. Here, the reduced temperaturet=T/ fTCsl =10dg−1.
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magnetization and susceptibility) and extract the effective
critical exponents from data collapses. Figure 4 provides a
useful visual preview, but we now measure the quality of a
data collapse method according to Ref. 40 who defined Pb = F 1

Nover
o

p
o
iÞp

o
iover

uLj
b8/n8mi,j − «psLj

1/n8tijduG , s7d

wheremij is theith value of the magnetization for thej th set
of L (i.e., L=Lj for set j) and t is the reduced temperature.
«psxd is the interpolating function based on the values of set
p and Nover is the number of pairs. Any extrapolation is
avoided. From this, we are allowed to extract the exponents
from where all scaling functions have the best collapse(i.e.,
at a right choice ofb8 andn8, Pb will be smallest) for both
magnetization and susceptibility. For the susceptibility, we

changemij to xi j andLj
b8/n8 to Lj

−g8/n8.
Clearly Eq.(7) is very useful for extracting the best ex-

ponents corresponding to the scaling data and the form of the
scaling functions. For further analysis, we consider several
forms of scaling functions, which allows us to track the criti-
cal information from different aspects, as follows:

(i) l is fixed andL@ l (e.g., we useLù103 l) are used to
find the scaling functions

m„T → TCsld,L,l… = L−b8/n8m̃stL1/n8,ld,

x„T → TCsld,L,l… = Lg8/n8x̃stL1/n8,ld; s8d

e.g., see results in Table II and Fig. 5.
(ii ) l /L is fixed andLù4 are used to consider the scaling

functions in the form

mST → TCsld,L,
l

L
D = L−b8/n8m̃StL1/n8,

l

L
D ,

xST → TCsld,L,
l

L
D = Lg8/n8x̃StL1/n8,

l

L
D; s9d

e.g., see results in Table III and Fig. 6.
(iii ) l /L is fixed and usel =h1,2,4,6,8j to consider the

scaling functions in the form

TABLE II. The effective critical exponents from the collapse of
the scaling functions for sc films with thickness varying from
monolayer to eight layers. At a particular thickness,l is fixed and
Lù103 l are used to find the collapse. The prime indicates the
effective critical exponents for their corresponding parameters. The
best collapsing(smallestPb) is used to extract an optimum set of
the effective exponents. Errors(Ref. 40) are in a unit of the last
digit.

No. layers x m

1/n8 g8 /n8 1/n8 b /n8

1 1.00 1.76 1.02 0.124

2 1.02 1.76 1.02 0.130

4 1.02 1.76 1.00 0.138

6 1.04 1.77 1.00 0.148

8 1.08 1.79 1.00 0.159

TABLE III. The effective critical exponents extracted from the
collapse of the scaling functions for sc films with the ratiol /L
varying from 1.00 to 0.05. At a particular ratiol /L, l /L is fixedand
the effective critical exponents from both varyingL and l are pre-
sented. Errors(Ref. 40) are in a unit of the last digit. Notice that the
results are close to 3D values.

Ratio l /L Varying L Varying l

x m x m

1/n8 g8 /n8 1/n8 b8 /n8 1/n8 g8 /n8 1/n8 b8 /n8

1.00 1.54 1.94 1.69 0.502 1.54 1.94 1.64 0.521

0.50 1.53 1.93 1.64 0.509 1.60 1.94 1.63 0.522

0.33̇ 1.49 1.92 1.63 0.508 1.59 1.92 1.63 0.509

0.25 1.51 1.95 1.61 0.509 1.60 1.93 1.61 0.515

0.20 1.75 2.00 1.61 0.509 1.59 1.92 1.61 0.515

0.10 1.64 2.00 1.60 0.484 1.57 1.92 1.60 0.491

0.05 1.78 1.98 1.58 0.463 1.57 1.91 1.58 0.465

FIG. 5. The collapsing of magnetization and magnetic suscepti-
bility scaling function using Eq. (7) for fixed l=6 sc films with
varying L=h60,80,100,150,200j. The best collapsing gives 1/n8
=1.04, g8 /n8=1.77 for susceptibility and 1/n8=1.00, b8 /n8
=0.148 for magnetization. Here, the reduced temperaturet
=T/ fTCsl =6dg−1.
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mST → TCsld,l,
l

L
D = l−b8/n8m̃Stl1/n8,

l

L
D ,

xST → TCsld,l,
l

L
D = lg8/n8x̃Stl1/n8,

l

L
D , s10d

e.g., see results in Table III and Fig. 7.
(iv) From the magnetization and magnetic susceptibility

scaling functions—i.e.,m̃sld and x̃sld—we try to make all
scaling functions froml =h1,2,4,6,8j collapse onto a same
curve; that is, we write

m̃sl,x → xCd = l−jm̃̃sx8d, x̃sl,x → xCd = l ix̃̃sx8d, s11d

wherem̃̃ and x̃̃ are the scaling functions of the usual scaling
functionsm̃sl ,xd and x̃sl ,xd. Herex=(T/TCsld−1)3L1/n8 is
the scaling parameter. Using a trial and error method, we
found x8=sx+xcd3 lk. Herexc, i, j , andk are all adjustable
parameters used to find the best collapse. Results are shown
in Fig. 8.

For this scaling function study, we performed extensive
extra simulations for Ising sc films withL ranging from 4 to
200 andl from monolayer up to 20 layers. Up to 201 data
from different temperatures in each system were collected to

make the scaling. However, due to limitations in computa-
tional resources, only 5000 equilibrium configurations in
each simulation were collected to make the average. In the
calculation ofPb, at least 4 different scaling functions are
required in order to consider the collapse. One may also
notice that we have setLù103 l in the first scaling form
since we requireL@ l and, because of computer limitations,
we can extract the exponents up to onlyl =8 from m̃sT,L
ù10l , ld and x̃sT,Lù10l , ld.

Table II demonstrates that for fixedl, the effective critical
exponents are close to those we extract from the empirical
finite size scaling analysis. For fixedl /L but varied l or L
(the second and the third scaling form), the correlation length
j can now expand in the 3D-like manner. As can be seen in
Table III, the extracted exponents are close to the 3D values
as expected. For the collapsing of the scaling functions in
Fig. 8 (the last scaling form), the exponentsi, j , andk are not
close to 2D values. This may indicate that corrections to
scaling are needed. Nevertheless, the quality of our data does
not allow us to perform trial fits with these extra parameters.
However, we can see that it is possible to perform simulation
for a number of finite systems only and then be able to de-
scribe critical behavior of other systems via some suitable
scaling functions.

FIG. 6. The collapsing of magnetization(a) and magnetic sus-
ceptibility (b) scaling functionat the ratio l/L=0.1 for sc filmswith
varying L=h60,80,100,150,200j. Here, the reduced temperature
t=T/ fTCsl =0.1Ldg−1.

FIG. 7. The collapsing of magnetization(a) and magnetic sus-
ceptibility (b) scaling functionat the ratio l/L=0.1 for sc filmswith
varying l=h1,2,4,6,8j. Here, the reduced temperaturet
=fT/TCsldg−1.
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Finally, we compare our results for the effective exponent
b8 with those available from experiment on Ni films.6 As
shown in Fig. 9, the experimental results are close to ours—
i.e., 2D like only for films thinner than four layers. If the Ni
experiment can be described using the Heisenberg model,
this behavior is not surprising because the anisotropic

Heisenberg magnet becomes Ising like only for very thin
films. However, a strange behavior of a sharp dimensional
crossover ofb at around five to eight layers is found,6

whereas infinitely large films should belong to the 2D class
for any thicknesses.

On the other hand, our results show a slight increase of
b8 /n8 towards its bulk value froml =10 onwards becauseL
is still finite. Hence with increasingl the 3D character of the
films becomes prominent andb8 is dragged away from the
2D limit. This can be interpreted as an evidence of a cross-
over due to the shape effect. As a result, our finite-size simu-
lations suggest the crossover from 2D to 3D Ising, but the
dimensional crossover ofb in Ref. 6 may be a transition
from 2D Ising to 3D Heisenberg. So a direct comparison
may not be allowed. That said, the sharp increase at five to
eight layers in Ref.[6] that is not found from our results is
quite an interesting issue. Although Ising and Heisenberg
films may be quantitatively different, they should qualita-
tively share the same characteristics since, in the critical re-
gion, the divergence of the correlation lengthj in both mod-
els should be 2D like. So it is strange thatb in Ref. 6 should
change its value so abruptly with very few layers. To find
more answers, we consider Ref. 13(Schilbe et al., 1996)
which claimed “the author of Ref. 6 neglected the depen-
dence of the(effective) critical exponents away from the
critical point on the reduced temperature in their evaluation
of the experimental data.” In other words, the range of tem-
peratures 10−3, t,10−1 used for the power law fit in Ref. 6
may not belong to the asymptotic behavior(critical region),
and the fit may lead to somewhat dubious results. So, to
investigate this closely, we follow Ref. 13 who defined

beff =
] log m

] log t
, s12d

and study how this quantity varies witht in thin films.
In the critical region of thin films—i.e.,l !j,L—the

finite-size effect upon 2D-like phenomena becomes impor-
tant for j→L. At a fixed l, the temperature range of this
2D-like phenomena depends on the value ofn8, andj~ t−n8

will realize its finite limit at a temperature around
log t=−s1/n8dlog L. To investigate this topic carefully, we
calculate and plotbeff against log10 t for 10031003 l films
in Fig. 10. The rough pattern of thebeff curves is in agree-
ment with the investigations in Ref. 13. SinceL=100 is used
in our calculation, thebeff are reliable(with minimum finite-
size effect) only down to log10 t.−2. However, this range of
log10 t does cover most of the range −3, log10 t,−1 used in
the power law fit in Ref. 6, and shows a quite interesting
feature. It appears that this range of temperatures is not in the
critical region becausebeff for each film is not constant, but
peaks at a certain temperature. Outside the critical region
(paramagnetic side), the correlation length grows as we in-
crease the temperature towardsTC. As long asj is smaller
than the film thickness, the film tries to behave as the 3D
bulk system andbeff grows somewhat towards the bulk value
b3D<0.3258.26 However, at some temperaturej becomes
comparable with the film thickness and is only allowed to
expand in the in-plane direction, exhibiting 2D-like behavior.

FIG. 8. The collapsing ofmagnetization scaling function(a) and
magnetic susceptibility scaling function(b) scaling function(based
on L=200) for sc filmswith varying l=h1,2,4,6,8j. With Eq. (11),
for susceptibility, it is found thatxc=0.11, k=0.46, i =−0.13, and
Pb=0.002. For magnetization,xc=−0.07,k=0.54, j =0.21, andPb

=0.03. Here, the reduced temperaturet=fT/TCsldg−1.

FIG. 9. Comparison of the effective critical exponentb ex-
tracted from experimental data for Nis111d /Ws110d in Ref. 6 and
from Monte Carlo simulations of Ising thin films.
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Thus,beff changes its trend and the resulting decrease results
in a peak. We can also notice that the thicker the film, the
closer the peak can grow towards the bulk value. It is certain
if one tries to perform the power law fit for this temperature
range, a sudden change ofbeff will be observed.

We may conclude that the range −3, log10 t,−1 used for
the power law fit in Ref. 6 is outside the critical region and
thus the power law fit should not work well. This explains
why the behavior ofb in Ref. 6 does not really relate to our
results because our studies concentrate on the critical region.

IV. CONCLUSION

We have studied the magnetic behavior of Ising thin films
in sc, bcc, and fcc structures using extensive Monte Carlo
simulations(and mean-field analysis). We have found the
dimensional crossover of bothm andx from 2D to 3D like
with increasing film thickness. The layer components ofm
andx are found to have the lowest magnitudes at the surface
while the innermost layers have the highest due to the free
boundary effect at the surfaces. The filmTC’s evolve from
2D to 3D values with increasing film thickness in good

agreement with previous studies. The empirical fit of our
calculatedTC’s for films of varyingl gives the fittedTC at the
limit of infinitely thick films which agrees very well with
that calculated directly from separate 3D calculations. An-
other empirical fit for the shift exponent also suggests con-
vergence to the 3D limit with increasing numbers of mono-
layers.

We have examined the critical regime of these systems in
detail and extracted effective critical exponents via empirical
formulas based on a finite-size scaling method for films. The
validity of these formulas are successfully verified. The re-
sults show a very weak variation of the effective critical
exponents with respect tol, the film thickness. For thin films
sl ø8d the exponents are essentially the same as 2D and from
this it can be implied that thin films fall into the 2D class.
For thicker films, howeversl ù10d, a weakl dependence is
noticeable becausel is thick enough for the correlation
length to distinguish the geometry of the films from that of a
simple 2D lattice which is a consequence of a finite-shape
effect.

We performed further analysis of our results using scaling
functions of various forms and their data collapses. It is
found that for fixedl but varying L, the effective critical
exponents are close to those extracted from the empirical
finite-size scaling analysis, but for fixedl /L, the exponents
move to 3D values as expected. In addition, we consider the
scaling functions for each thicknessl and draw a general
scaling form for the collapsing of those scaling functions.

Finally, in comparison with the experimental results de-
scribed in Ref. 6 our results for the thinner films bear up
well. A direct comparison, however, is not possible. This is
because the experimental data from nickel films on a tung-
sten substrate can be interpreted to show a transition from
2D Ising to 3D Heisenberg rather than from 2D Ising to 3D
Ising which is the only possibility for the model and systems
we have studied here. There is also the issue that the experi-
mental data used to make a power law fit are taken from
temperatures that are outside the critical regime.
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