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In the present paper, we study the quantum phase transition in the mixed-spin Heisenberg model with the
single-ion anisotropy on a bipartite lattice. We prove rigorously that, when the single-ion anisotropy energyD
is positive, the model has a unique ground state with the total spin-z componentSz=0. On the other hand, when
the single-ion anisotropy energy is negative and favors the longitudinal spin direction, the global ground state
of the system becomes doubly degenerate. Therefore,D=0 is the bifurcation point for the global ground state
of the system. Furthermore, we show also that, in the latter case, the global ground state of the mixed-spin
Heisenberg chain has the ferrimagnetic long-range order. Our conclusions confirm and generalize the previous
results derived by numerical calculations on small size samples.

DOI: 10.1103/PhysRevB.70.104412 PACS number(s): 75.10.Jm, 75.30.Gw, 75.50.Gg

I. INTRODUCTION

Low-dimensional antiferromagnetic quantum spin sys-
tems remain at the forefront of research on condensed matter
physics for many years. For these systems, the Hamiltonians
involved are relatively simple and the low dimensionality
often allows very accurate numerical treatments. In particu-
lar, the quasi-one-dimensional quantum ferrimagnets, which
have been successfully synthesized in experiments,1–3 at-
tracted many physicists’ interest.4–30These materials are mo-
lecular magnets containing two different transitional-metal
magnetic ions, which are alternatively distributed on the
chain. The experimental results imply that the magnetic
properties of these materials can be described by the quan-
tum Heisenberg spin model with antiferromagnetic couplings
between the localized spins of different values, such asSi
=1/2 andSi+1=1.

Based on this understanding, the theoretical investigations
on these systems show clearly that their ground states have
both the ferromagnetic and the antiferromagnetic long-range
orders.6–10 In other words, they are ferrimagnets. Conse-
quently, the elementary excitations have two branches: While
the ferromagnetic excitations, which reduce magnetization of
the system, are gapless, the antiferromagnetic excitations are
gapped. This structure of the excitation spectrum leads to
T1/2 andT−1 behaviors of the specific heat and the magnetic
susceptibility at low temperature, respectively.11–14

Naturally, in the real materials, anisotropy caused by the
crystalline field plays also an important role in determining
the properties of magnetic systems.31 To take the anisotropic
effects into consideration, the simplest approach is to let the
super-exchange couplings in the transverse and longitudinal
spin directions be different. It gives the antiferromagnetic
XXZ-model. As is well known, the phase diagram of this
model consists of two regions: When the transverse interac-
tion between spins is stronger, the system is in theXY re-
gime. On the other hand, if the longitudinal spin interaction
is dominant, the system behaves like an Ising antiferromag-
net. In particular, by using exact numerical diagonalization

on small size samples and exploiting conformal invariance of
the one-dimensionalXXZ Hamiltonian in continuum limit,
Alcaraz and Malvezzi studied the phase diagram of the
quasi-one-dimensional ferrimagneticXXZ chain in detail.4

They found that, in theXY regime, the ground state of the
system is nondegenerate and critical. But, in the Ising re-
gime, it has two degenerate ground states and each of them
has an extensive spin numberSz. Therefore, the isotropic
Heisenberg point is, in fact, a bifurcation point for the
ground state of the ferrimagneticXXZ chain. These conclu-
sions were further confirmed by Onoet al.17 By the density-
matrix renormalization group calculation, they concluded
that each ground state of the model in the Ising regime is
ferrimagnetically ordered. Recently, by applying a method
introduced by Affleck and Lieb,32 we were able to rigorously
re-establish these results for the ferrimagneticXXZmodel on
any higher dimensional bipartite lattice.33

Another type of anisotropy, which is widely studied in
literature, can be described by the so-called single-ion energy
DoisSi

zd2 for the quantum spin systems withSù1.31 Theo-
retically, the properties of the anisotropic Heisenberg antifer-
romagnet with the single-ion term have been investigated by
either the spin-wave theories or numerical calculations on
small size samples.34–37 For instance, by exact diagonaliza-
tion calculation, it was found that the ground state phase
diagram of the anisotropic Heisenberg chain with uniform
spinS=1 has three regions: As the intensity of the single-ion
anisotropy energy changes from −` to `, the system under-
goes first a transition from the Neel phase into the Haldane
phase and then, another transition into the large-D phase.37

On the other hand, for the mixed-spin ferrimagnetic chain
with sSi ,Si+1d=s1/2,1d, Sakai and Okamoto considered re-
cently the effect of the single-ion term on the phase diagram
and the magnetization plateaus of the model.38 By using the
same numerical technique, they showed that, unlike the an-
isotropic Heisenberg chain with uniform spins, the Haldane
phase is absent in the mixed-spin chain and the Neel phase is
now long-range ordered.

In this article, we would like to study the properties of the
anisotropic mixed-spin model with the single-ion energy
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term by an independent and mathematically rigorous ap-
proach. We shall prove thatD=0 is indeed the bifurcation
point for the ground state of this model, by applying a
method due to Affleck and Lieb32 and some results estab-
lished in our previous paper.33 More precisely, we show that,
whenD.0, the ground state of the model is nondegenerate
and hasSz=0. On the other hand, whenD,0, the ground
state becomes doubly degenerate and each state is antiferro-
magnetically ordered. To be more general, in this paper, we
do not impose any restrictions on dimension of the bipartite
lattice and values of the unequal quantum spins, which are
alternatively distributed on the lattice. In addition, our results
cover both the anisotropic mixed-spin ferrimagnets and the
so-calledAB2-type ferrimagnets, which have uniform spins
distributed on a bipartite lattice with unequal numbers of
sublattice sites per unit cell.39–44

To begin with, let us first recall several definitions and
notation.

Take a finite latticeL and letNL be the number of lattice
sites. The Hamiltonian of the anisotropic antiferromagnetic
Heisenberg model with the single-ion anisotropy is of the
following form:

H = o
kij l

Jij Ŝi · Ŝj + Do
iPL

sŜizd2, s1d

wherekij l denotes a pair of lattice sites andŜi represents the
localized spin operator at lattice sitei. The parameterJij .0
is the antiferromagnetic coupling between the localized spins
at sitesi and j and −̀ ,D,` denotes the strength of the
single-ion anisotropy in the system. We further assume that,
in terms of Hamiltonian(1), lattice L is bipartite. In other
words, it can be divided into two separate sublatticesA andB
such that,Jij only couples the spins at lattice sites, which
belong to different sublattices. In the following, we shall use
NA and NB for the number of sites in sublatticesA and B,
respectively.

In literature, two categories of ferrimagnets are widely
studied. In the first category, sublatticesA and B of the
model have the same number of sites, i.e.,NA=NB. But, the
localized spins on these sublattices have different valuesSA

andSB, saySA= 1
2 andSB=1. Obviously, the one-dimensional

antiferromagnetic mixed-spin chain, which we discussed
above, belongs to this category. In the second case, all the
spins of the system have the same valueS on both the sub-
lattices. However, these sublattices have different numbers of
sites,nA and nB, in each unit cell, such as theAB2 chains
studied in Refs. 39–44. In the following, we shall treat both
categories of ferrimagnets on the same footing.

Obviously, whenD=0, Eq. (1) is reduced to the Hamil-
tonian of the isotropic ferrimagnetic Heisenberg model,
whose properties have been thoroughly studied. In particular,

the total spinŜ2 is a conserved quantity in this system. As
shown by Lieb and Mattis,45 the global ground state of the
model on a bipartite lattice has the total spinS= uNASA
−NBSBu and hence, is highly degenerate. Furthermore, in
Refs. 6–10 and 39–44, it has been shown that these ground
states support both the ferromagnetic and the antiferromag-
netic long-range orders. Therefore, the system is ferrimag-

netically ordered. In this paper, we shall prove that the
single-ion anisotropy destroys the high spin-degeneracy.
However, the ferrimagnetic long-range order is, at least, pre-
served in the regime ofD,0.

With the above preparations, we can now summarize our
main results in the following theorems.

Theorem 1: Let L be an arbitrary finite bipartite lattice on
which Hamiltonian (1) is defined. Assume that quantity
NASA+NBSB is an integer. Then, the global ground state of
Hamiltonian (1) is nondegenerate and has the total spin-z
componentSz=0 whenD.0. On the other hand, forD,0,
its global ground state becomes doubly degenerate and has
Sz= ± uNASA−NBSBu.

In Theorem 1, we impose the conditionNASA+NBSB
=integer on the system to avoid the trivial spin degeneracy
caused by a half-integer spin numberSz. When this condition
is satisfied,Sz of any eigenstate of the system will be an
integer. In particular, the global ground state of Hamiltonian
(1) in the region ofD.0 hasSz=0 rather thanSz= ±1/2, as
stated in Theorem 1. A detailed discussion on this issue for
the XXZ model can be found in Sec. II of Ref. 33.

Theorem 2: Let C0
s1d andC0

s2d be the global ground states
of the anisotropic ferrimagnetic Heisenberg HamiltonianH
with D,0. If their spin numberSz= ± uNASA−NBSBu are of
orderOsNLd in the thermodynamic limit, then bothC0

s1d and
C0

s2d have the longitudinal ferromagnetic and antiferromag-
netic long-range orders, i.e., they are ferrimagnetically or-
dered.

In a previous paper,33 we proved similar results for the
ferrimagneticXXZ Hamiltonian. More precisely, we found
that its global ground state is nondegenerate in theXY re-
gime and is doubly degenerate in the Ising regime. Further-
more, when the condition of Theorem 2 is satisfied, theXXZ
model is ferrimagnetically ordered in the Ising regime. With
these facts in mind, we are able to understand qualitatively
the above theorems by the following argument: WhenD.0,
each spin on the latticeL is forced down into theXY plane
by the single-ion energy. Consequently, the system should
behave more or less like theXXZ model in theXY regime.
Therefore, one expects that its global ground state is nonde-
generate as the one of theXY model does. On the other hand,
for D,0, the longitudinal spin direction is favored by the
single-ion term and hence, the system should be akin to the
XXZ model in the Ising regime. Consequently,D=0 should
be the bifurcation point of its global ground state. In the
following, we shall justify this argument by proving rigor-
ously Theorems 1 and 2.

To make our proofs more clear and readable, we organize
the rest part of this paper as follows. In Sec. II, we prove
Theorem 1 in detail. In Sec. III, Theorem 2 is established.
Finally, in Sec. IV, we make some general remarks and then,
summarize our results.

II. THE PROOF OF THEOREM 1

To prove Theorem 1, we shall employ a method intro-
duced by Affleck and Lieb and use some of our previous
results. By following Affleck and Lieb,32 we are able to show
that, in both regions ofD.0 andD,0, the global ground
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state of Hamiltonian(1) is, at most, twofold degenerate.
However, in order to determine the exact degeneracy of the
ground state in each regime and show the existence of the
ferrimagnetic long-range order, we need to introduce an aux-
iliary XXZ Hamiltonian, whose phase transition we have
studied in Ref. 33.

Proof of Theorem 1: Let us first consider the case of
D.0. We introduce the following auxiliary Hamiltonian:

Haux= o
kij l

Jij sŜixŜjx + ŜiyŜj yd + o
kij l

Jij8ŜizŜjz + Do
iPL

sŜizd2

s2d

on the same lattice and require 0øJij8 øJij . It represents the
antiferromagneticXXZ Hamiltonian with the single-ion an-
isotropy. Obviously, whenJij8 =Jij , Haux is reduced to Hamil-
tonian (1).

For Hamiltonian(2), the total spin-z componentŜz is a
good quantum number. Therefore, its Hilbert space can be
split into numerous subspaceshVsSz=Mdj. In each subspace,
the Hamiltonian has a ground stateC0sMd. Following the
proof of Lieb-Mattis theorem,45 one can easily show that
C0sMd is nondegenerate in any admissible subspaceVsMd.
However, the global ground state of Hamiltonian(2) in the
whole Hilbert spaceV=øM % VsMd could be highly degen-
erate. Here, we want to show that, in fact, the degeneracy of
the global ground state of Hamiltonian(2) cannot be larger
than 2.

For this purpose, we apply a unitary transformation

Û1 = expSi
p

2 o
iPL

ŜixD , s3d

which rotates each spin in the lattice by an anglep /2 about
spin-x axis, to the Hamiltonian. Under this transformation,

the spin operatorŜiz and Ŝiy are mapped into −Ŝiy and Ŝiz,
respectively. Consequently, the transformed Hamiltonian
now reads

H̃aux= Û1
†HauxÛ1

= o
kij l

sJij ŜixŜjx + Jij8ŜiyŜj yd + o
kij l

Jij ŜizŜjz + Do
iPL

sŜiyd2.

s4d

To go further, we need to change sign of the coupling con-

stants in the first summation ofH̃aux. It can be achieved by

applying another unitary transformationÛ2=expsipoiPAŜizd,
which rotates each spin in sublatticeA by an anglep about
spin-z axis and keeps the spins in sublatticeB unchanged.
Under this transformation, we have

Û2
†ŜixÛ2 = esidŜix, Û2

†ŜiyÛ2 = esidŜiy, Û2
†ŜizÛ2 = Ŝiz,

s5d

whereesid=−1 for i PA andesid=1 for i PB. Consequently,
we obtain the following twice transformed Hamiltonian:

H5 aux= Û2
†H̃auxÛ2

= sÛ1Û2d†HauxsÛ1Û2d

= − o
kij l

sJij ŜixŜjx + Jij8ŜiyŜj yd

+ o
kij l

Jij ŜizŜjz −
D

4 o
iPL

sŜi+ − Ŝi−d2

= −
1

4o
kij l

fsJij + Jij8dsŜi+Ŝj− + Ŝi−Ŝj+d

+ sJij − Jij8dsŜi+Ŝj+ + Ŝi−Ŝj−dg + o
kij l

Jij ŜizŜjz

−
uDu
4 o

iPL

sŜi+
2 + Ŝi−

2 − Ŝi+Ŝi− − Ŝi−Ŝi+d, s6d

whereŜi+=Ŝix+ iŜiy andŜi−=Ŝi+
† . We would like to emphasize

that all the coefficients of the spin-flipping interactions in

Hamiltonian H5 aux are negative for Jij8 øJij and D.0, except

the on-site spin-flipping termsŜi+Ŝi− and Ŝi−Ŝi+ in the last
line of Eq. (6). They have positive coefficientD /4. Fortu-
nately, in constructing the matrix of Hamiltonian(6), these
terms only contribute to its diagonal elements since they
leave each spin configuration unchanged. Therefore, it does
not cause any problem in proving Theorem 1. On the other
hand, the subspaces withSz=odd and even integers are sepa-
rately connected by these interactions. Consequently, the Hil-

bert space ofH5 aux is decomposed into two disconnected sec-
tors Vodd and Veven. Each of them is a joint set of the
subspaceshVsMdj with M being an odd or even integer.

Next, for a natural basis ofVsMd, we choose vectors

fasMd = uS1z
A ,S2z

A , . . . ,SNAz
A ,S1z

B ,S2z
B , . . . ,SNBz

B l, s7d

whereSiz
A andSjz

B are thez-component of the spins at sitesi
PA and j PB, respectively. SincefasMd is a vector in sub-
spaceVsMd, we impose the following condition:

S1z
A + ¯ + SNAz

A + S1z
B + ¯ + SNBz

B = M s8d

on it and let indexa run over all the admissible spin con-
figurations. Obviously, each set of vectorsønhfas2ndj and
ønhfas2n+1dj spans the corresponding subspaceVeven and
Vodd, respectively.

For definiteness, let us take the subspaceVeven for ex-
ample. In terms of the basisønhfas2ndj, the transformed

HamiltonianH5 aux can be written into a matrixH5 aux. It has the
following characteristics:

(i) The off-diagonal elements of the matrix are non-
positive quantities. More precisely, they are either zero or
negative quantities −sJij −Jij8d /4, −sJij +Jij8d /4, and −D /4
multiplied by some positive factors of form
ÎSsS+1d−SzsSz+1d.

(ii ) H5 aux is irreducible in the sense that, for any pair of
basis vectorsfas2n1d andfbs2n2d, there is a positive integer
L such that
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kfas2n1duHaux
L ufbs2n2dl Þ 0. s9d

It is due to the fact that latticeL is connected by the spin-

flipping interactionsŜi+Ŝj− and each subspaceVs2nd is con-

nected to Vs2n±2d by either operatorsŜi+Ŝj++Ŝi−Ŝj− or

Ŝi+
2 +Ŝi−

2 .
To such a matrix, the well-known Perron-Fröbenius theo-

rem in matrix theory applies.46 This theorem tells us that the

ground-state wave functionC5 0
aux sevend of H5 aux in the sub-

spaceVeven satisfies Marshall’s sign rule.47 Namely, in the
expansion

C5 0
auxsevend = o

n
o
a

Cnafas2nd, s10d

all the coefficientsCna can be chosen real and positive.
Therefore, the ground state is nondegenerate.

Similarly, we can show that the ground state ofH5 aux in
Vodd is also nondegenerate. Therefore, its global ground state
can be, at most, doubly degenerate. On the other hand, since

the transformedH5 aux is unitarily equivalent to the auxiliary
Hamiltonian in Eq.(2) whenD.0 and 0øJij8 øJij , we im-
mediately conclude that the global ground state of the latter
Hamiltonian must have the same degeneracy, which is not
larger than 2.

This conclusion implies that, in the parameter region of
D.0 and 0øJij8 øJij , a level crossing between the ground
state and the excited states of the auxiliary Hamiltonian is
forbidden. In fact, if this statement is not true and such a
level crossing does occur at some point in the region, then
the global ground state of the auxiliary Hamiltonian must be,
at least, threefold degenerate there. This is due to the fact
that, although the ground state of the auxiliary Hamiltonian
in each subspaceVsMd is nondegenerate, its ground states in
subspacesVs−Md and VsMd are obviously degenerate.
Therefore, the occurrence of such a level crossing requires
that the ground states ofHaux in four subspacesVs±M1d and
Vs±M2d (or three subspaces ifM1=0) are degenerate at the
crossing point. However, this possibility has been excluded.

Obviously, the absence of level-crossing between the glo-
bal ground state and the excited states of the Hamiltonian
indicates thatSz of the global ground state should be an
integer-valued continuous function of parametersD andJij8 in
the region. Therefore, it must be a constant. As a result, we
can determine the total spin-z component of the global
ground state of Hamiltonian(1) as follows: First, we choose
a value ofJij8 , which is strictly less thanJij , and letD tend to
zero. In this limit, Hamiltonian(2) is reduced to the antifer-
romagneticXXZ Hamiltonian in theXY regime. For this
Hamiltonian, in Ref. 33, we proved that its global ground
state is nondegenerate and hasSz=0. (Because the proof is
rather lengthy, we shall not repeat it here.) Therefore, by the
continuity argument, the global ground state of Hamiltonian
(2) in the specified parameter region must be also nondegen-
erate and has the same total spin-z component. Then, we set
Jij8 =Jij , which represents the boundary of the parameter re-
gion. By the same continuity argument, we reach the conclu-
sion of Theorem 1 for the case ofD.0.

Next, we consider the case ofD,0. As done above, we
study first the global ground state of the auxiliary Hamil-
tonian in Eq.(2). However, in this case, we assume that the
coupling constantsJij8 in the longitudinal spin direction are
larger than or equal toJij . Correspondingly, we apply a dif-

ferent unitary transformationÛ3=expsip /2oiPLŜiyd, which
rotates each spin in latticeL by an anglep /2 about spin-y

axis, and then,Û2 again toHaux. Under these transforma-
tions, we obtain

Haux8 = sÛ3Û2d†HauxsÛ3Û2d

= − o
kij l

sJij8ŜixŜjx + Jij ŜiyŜj yd + o
kij l

Jij ŜizŜjz − uDuo
iPL

sŜixd2

= −
1

4o
kij l

fsJij8 + Jij dsŜi+Ŝj− + Ŝi−Ŝj+d

+ sJij8 − Jij dsŜi+Ŝj+ + Ŝi−Ŝj−dg + o
kij l

Jij ŜizŜjz

−
uDu
4 o

iPL

sŜi+
2 + Ŝi+

2 + Ŝi+Ŝi− + Ŝi−Ŝi+d. s11d

Now, by repeating the above proof, it can be easily shown
that the global ground states ofHaux8 as well as the auxiliary
Hamiltonian in the parameter region ofD,0 andJij8 ùJij are
also, at most, doubly degenerate. It implies that a level-
crossing between the global ground state and the excited
states of the auxiliary Hamiltonian cannot take place in the
region.

To determine the exact degeneracy of the global ground
state and its total spin-z component, we apply again the con-
tinuity argument. Take a specific value ofJij8 , which is strictly
larger thanJij , and letuDu tend to zero. Then,Haux is reduced
to the XXZ Hamiltonian in the Ising regime. Since level-
crossing between the global ground state and the excited
states of the auxiliary Hamiltonian is absent in this limit,
both the global ground states ofHaux and theXXZ Hamil-
tonian in the Ising regime should have the sameSz. Again, in
Ref. 33, we showed that the global ground state of the latter
Hamiltonian is doubly degenerate and has spin numbersSz
= ± uNASA−NBSBu. Therefore, by the continuity argument, we
conclude that, whenJij8 =Jij , the global ground state of
Hamiltonian(1) is doubly degenerate and has the total spin-
z componentSz= ± uNASA−NBSBu, when uDuÞ0.

Our proof of Theorem 1 is accomplished. QED
Theorem 1 tells us thatD=0 represents the bifurcation

point for the global ground state of the ferrimagnetic Heisen-
berg Hamiltonian(1). However, as we know, the global
ground state of the same Hamiltonian atD=0 has total spin
S= uNASA−NBSBu and hence, is highly degenerate.45 There-
fore, this theorem gives us the following picture on the evo-
lution of the global ground state of Hamiltonian(1) as the
parameterD varies: WhenD is less than zero, the global
ground state has two degenerate members. One of them takes
on the lowestSz and the other has the highest one, which are
allowed by the total spinS= uNASA−NBSBu. Then, asD tends
to zero, these two states are eventually merged with other
members of the global ground state at the isotropic point. As
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D further increases and becomes positive, the degeneracy of
the global ground state is destroyed by the quantum fluctua-
tions. One of the 2S+1 members is singled out for the global
ground state of the system and it hasSz=0. This is a typical
example of the so-called “order from disorder” phenomenon
considered in the study of quantum phase transition.

Next, we turn to the proof of Theorem 2.

III. PROOF OF THEOREM 2

Since the global ground state of Hamiltonian(1) in the
region of D,0 has the total spin-z componentSz= ± uNASA
−NBSBu, one expects that the system has the ferrimagnetic
long-range order, ifSz is a quantity of orderOsNLd in the
thermodynamic limit. Theorem 2 tells us that, indeed, this
speculation is correct.

To prove this theorem, we apply a technique developed
previously by us in Refs. 9 and 40 for establishing the exis-
tence of the magnetic long-range order in the isotropic
Heisenberg ferrimagnets. In the current case, since the spin
rotation symmetry is broken by the anisotropic single-ion
terms, we need to deal with some technical subtleties with
care.

Proof of Theorem 2: For definiteness, let us takeC0
s1d, one

of the degenerate global ground states of Hamiltonian(1) in
the region ofD,0 for example. As shown above, under the

transformationÛ3Û2, the Hamiltonian is mapped ontoHaux8
with Jij8 =Jij . In the meantime,C0

s1d is also mapped to a
ground stateC08 of the transformed Hamiltonian. In general,
this state is a linear combination ofC08soddd andC08sevend,
which are the nondegenerate global ground states ofHaux8 in
the subspacesVodd and Veven, respectively. Explicitly, we
have

C08 = aC08soddd + bC08sevend, s12d

wherea andb are complex constants.

Let us now consider the spin correlation function ofŜx in
C08. We would like to show that

kC08uŜixŜjxuC08l ù 0 s13d

holds for any pair of lattice sitesi and j . To prove inequality

(13), we substitute identityŜix=s1/2dsŜi++Ŝi−d into its left-
hand side and rewrite the correlator as

kC08uŜixŜjxuC08l = 1
4kC08uŜi+Ŝj+uC08l + 1

4kC08uŜi−Ŝj−uC08l

+ 1
4kC08uŜi+Ŝj−uC08l + 1

4kC08uŜi−Ŝj+uC08l.

s14d

Therefore, if each term on the right-hand side of Eq.(14) is
non-negative, then inequality(13) is certainly true.

Take the first term on the right-hand side of Eq.(14) for
example. We have

kC08uŜi+Ŝj+uC08l = uau2kC08soddduŜi+Ŝj+uC08sodddl

+ ubu2kC08sevenduŜi+Ŝj+uC08sevendl.

s15d

In Eq. (15), the mixing matrix elements betweenC08soddd
and C08sevend are absent. That is due to the fact that the

operatorsŜi+Ŝj+ connect only the spin configurations in the
same sectorVodd or Veven, respectively. Now, we recall that
the expansion coefficientshCnaj of the wave functions
C08soddd sC08sevendd in terms of the basis vectors
ønhfas2n+1dj sømhfbs2ndjd satisfy Marshall’s sign rule,
i.e., they are real and positive. Moreover, it is easy to show
that, for any pair of spin configurationsfa1

sn1d andfa2
sn2d,

the matrix elementkfa1
sn1duŜi+Ŝj+ufa2

sn2dl is either zero or a

positive quantity because the action ofŜi+ or Ŝj+ on any basis
vector produces only zero or positive factors of form
ÎSsS+1d−SzsSz+1d. Therefore, we have

kC08sodd or evenduŜi+Ŝj+uC08sodd or evendl

= o
sn1,a1d

o
sn2,a2d

Cn1a1
Cn1a2

kfa1
sn1duŜi+Ŝj+ufa2

sn2dl ù 0.

s16d

Similarly, we can show that the rest terms on the right-hand
side of Eq.(14) are also non-negative. That yields inequality
(13).

Inequality (13) implies actually that the longitudinal spin
correlation in the global ground stateC0

s1d is antiferromag-
netic. To see that, we apply the inverse of the unitary trans-

formation Û3Û2 to Eq. (13). Under this transformation, the
ground stateC08 of Haux8 is mapped back ontoC0

s1d and the
spin operators are changed by

fsÛ3Û2d−1g†ŜixfsÛ3Û2d−1g = esidŜiz. s17d

Therefore, inequality(13) is equivalent to

esidesj dkC0
s1duŜizŜjzuC0

s1dl ù 0. s18d

It tells us that the longitudinal spin correlator is positive for
sites i and j belonging to the same sublattice and negative
otherwise. Consequently, we have

esidesj dkC0
s1duŜizŜjzuC0

s1dl = ukC0
s1duŜizŜjzuC0

s1dlu

ù kC0
s1duŜizŜjzuC0

s1dl. s19d

Now, we sum up both sides of Eq.(19) over i and j . It
yields

kC0
s1duSo

iPL

esidŜizDSo
jPL

esj dŜjzDuC0
s1dl

ù kC0
s1duSo

iPL

ŜizDSo
jPL

ŜjzDuC0
s1dl = uNASA − NBSBu2.

s20d

Therefore, if uNASA−NBSBu is a quantity of orderOsNLd as
NL→`, the right-hand side of the above inequality is pro-
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portional toNL
2 . It indicates thatC0

s1d has both the longitudi-
nal ferromagnetic and the antiferromagnetic long-range or-
ders.

By following the above proof, we can easily show that
C0

s2d has also long-range order under the conditions of Theo-
rem 2. That ends our proof of the theorem. QED

IV. SOME REMARKS AND CONCLUSIONS

Some remarks are in order.
Remark 1: In the proof of Theorem 2, we establish first

inequality (13) for the transverse spin correlation in the
ground stateC08 of the transformed HamiltonianHaux8 . Then,
we map it into an inequality satisfied by the longitudinal spin
correlation in the global ground state of the original Hamil-
tonian with D,0. Naturally, one will expect that the same
strategy should be also applicable to establish the existence
of the magnetic long-range order in the model for the case of
D.0. Unfortunately, such a direct approach actually fails.
The problem is caused by the negative sign in the spin op-

erator identity Ŝiy=sŜi+−Ŝi−d /2i. Consequently, it is even
very difficult to show whether inequality(13) holds for the

spin correlatorkŜiyŜj yl of the transformed HamiltonianH5 aux,
let alone the existence of the magnetic ordering in the aniso-
tropic Heisenberg model withD.0. It remains an interest-
ing open problem to prove the existence of ferrimagnetic
long-range order in this case.

Remark 2: In Sec. II, we actually showed that Theorem 1
still holds true even if both the anisotropies, which are re-
spectively caused by the single-ion anisotropy and the un-
equal superexchange couplings in different spin directions,
coexist in the system, as long as they do not frustrate each
other. Naturally, one would like to ask what happens if these
anisotropies are not compatible in a given parameter region,
say the one ofD.0 and Jij8 .Jij . Based on the previous
results derived by numerical calculation on small size chains,
we expect the bifurcation point for the global ground state of
the system should be changed. For instance, in Ref. 37, the

authors calculated the phase diagram of the antiferromag-
netic XXZ chain with uniform spinssS=1d by exact diago-
nalization. They found that the phase transition point be-
tween the XY phase and the Haldane phase, which is
replaced by the Ising phase in the ferrimagnetic Heisenberg
models, is shifted fromJij8 =Jij for D=0 to a larger value
Jij8sDd for D.0. However, since the method of Affleck and
Lieb does not apply in this case, we cannot prove these re-
sults on a rigorous basis. Apparently, some new techniques
have to be developed to tackle it. We shall pursue this project
in the future.

In summary, in this paper, we study the quantum phase
transition in the mixed-spin Heisenberg model with the
single-ion anisotropy on a bipartite lattice. We prove rigor-
ously that, when the single-ion energyD is positive, the
model has a unique ground state withSz=0. On the other
hand, when the single-ion energy is negative and favors the
longitudinal spin direction, the global ground state becomes
doubly degenerate and has the total spin-z componentSz
= ± uNASA−NBSBu. Therefore,D=0 is actually a bifurcation
point for its global ground state. Furthermore, we also show
that the global ground state of the model has both the ferro-
magnetic and the antiferromagnetic long-range orders when
D,0, if uNASA−NBSBu is a quantity of orderOsNLd in the
thermodynamic limit. In other words, the system is a ferri-
magnet. Our conclusions confirm and generalize the previous
results on the one-dimensional mixed-spin chains by numeri-
cal calculations.
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