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In the present paper, we study the quantum phase transition in the mixed-spin Heisenberg model with the
single-ion anisotropy on a bipartite lattice. We prove rigorously that, when the single-ion anisotropy Bnergy
is positive, the model has a unique ground state with the totalspmponens,=0. On the other hand, when
the single-ion anisotropy energy is negative and favors the longitudinal spin direction, the global ground state
of the system becomes doubly degenerate. Therefibed) is the bifurcation point for the global ground state
of the system. Furthermore, we show also that, in the latter case, the global ground state of the mixed-spin
Heisenberg chain has the ferrimagnetic long-range order. Our conclusions confirm and generalize the previous
results derived by numerical calculations on small size samples.
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[. INTRODUCTION on small size samples and exploiting conformal invariance of
the one-dimensionaKXZ Hamiltonian in continuum limit,
Low-dimensional antiferromagnetic quantum spin sys-Alcaraz and Malvezzi studied the phase diagram of the
tems remain at the forefront of research on condensed mattguasi-one-dimensional ferrimagnet®XZ chain in detaif*
physics for many years. For these systems, the Hamiltonianhey found that, in theXY regime, the ground state of the
involved are relatively simple and the low dimensionality System is nondegenerate and critical. But, in the Ising re-
often allows very accurate numerical treatments. In particugime, it has two degenerate ground states and each of them
lar, the quasi-one-dimensional quantum ferrimagnets, whichas an extensive spin numbegy. Therefore, the isotropic
have been successfully synthesized in experimeftat-  Heisenberg point is, in fact, a bifurcation point for the
tracted many physicists’ interés° These materials are mo- ground state of the ferrimagnetitXz cha1|7n. These conclu-
lecular magnets containing two different transitional-metalSions were further confirmed by Oreo al™* By the density-
magnetic ions, which are alternatively distributed on theMalrix renormalization group calculation, they concluded
chain. The experimental results imply that the magnetiihat. each ground state of the model in the Ising regime is
properties of these materials can be described by the quaIE{:;rgﬁgggt&a%ﬂggie;ﬁg'Liesgs\?eﬂz\’le?g ggzli'énﬁgﬁr&?;}d
LueTwlggfetﬂgelgczﬁlzl:jnggiergvg? 3{#22;?%2?“?;"23%2gggsre—establ|sh these results for the ferrimagn&iZ model on

=1/2 andS,,=1, any higher dimensional bipartite lattié.

; : — I Another type of anisotropy, which is widely studied in
Based on this understanding, the theoretical investigationgerature, can be described by the so-called single-ion energy

on these systems show clearly that their ground states ha\@zi(sz)z for the quantum spin systems wig= 13! Theo-

both thelgerromagnenc and the antiferromagnetic long-ranggatically, the properties of the anisotropic Heisenberg antifer-
orders?™% In other words, they are ferrimagnets. Conse-romagnet with the single-ion term have been investigated by
quently, the elementary excitations have two branches: Whilgjther the spin-wave theories or numerical calculations on
the ferromagnetic excitations, which reduce magnetization ofmal| size sample¥37 For instance, by exact diagonaliza-
the system, are gapless, the antiferromagnetic excitations afign calculation, it was found that the ground state phase
gapped. This structure of the excitation spectrum leads tdiagram of the anisotropic Heisenberg chain with uniform
T2 and T™! behaviors of the specific heat and the magneticspin S=1 has three regions: As the intensity of the single-ion
susceptibility at low temperature, respectivety:* anisotropy energy changes frorr-to o0, the system under-
Naturally, in the real materials, anisotropy caused by thegoes first a transition from the Neel phase into the Haldane
crystalline field plays also an important role in determiningphase and then, another transition into the ldbgphase’’
the properties of magnetic systefislo take the anisotropic On the other hand, for the mixed-spin ferrimagnetic chain
effects into consideration, the simplest approach is to let thavith (S,S5.,)=(1/2,1), Sakai and Okamoto considered re-
super-exchange couplings in the transverse and longitudingently the effect of the single-ion term on the phase diagram
spin directions be different. It gives the antiferromagneticand the magnetization plateaus of the mofidy using the
XXZ-model. As is well known, the phase diagram of this same numerical technique, they showed that, unlike the an-
model consists of two regions: When the transverse interadsotropic Heisenberg chain with uniform spins, the Haldane
tion between spins is stronger, the system is inXhere-  phase is absent in the mixed-spin chain and the Neel phase is
gime. On the other hand, if the longitudinal spin interactionnow long-range ordered.
is dominant, the system behaves like an Ising antiferromag- In this article, we would like to study the properties of the
net. In particular, by using exact numerical diagonalizationanisotropic mixed-spin model with the single-ion energy
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term by an independent and mathematically rigorous apnetically ordered. In this paper, we shall prove that the
proach. We shall prove thd=0 is indeed the bifurcation single-ion anisotropy destroys the high spin-degeneracy.
point for the ground state of this model, by applying aHowever, the ferrimagnetic long-range order is, at least, pre-
method due to Affleck and Liéb and some results estab- served in the regime db <O0.

lished in our previous papét.More precisely, we show that, With the above preparations, we can how summarize our
whenD >0, the ground state of the model is nondegeneratenain results in the following theorems.

and hasS,=0. On the other hand, wheb <0, the ground Theorem 1 Let A be an arbitrary finite bipartite lattice on
state becomes doubly degenerate and each state is antifermohich Hamiltonian (1) is defined. Assume that quantity
magnetically ordered. To be more general, in this paper, wd,S,+NgS; is an integer. Then, the global ground state of
do not impose any restrictions on dimension of the bipartittHamiltonian (1) is nondegenerate and has the total spin-
lattice and values of the unequal quantum spins, which areomponentS,=0 whenD > 0. On the other hand, fdd <0,
alternatively distributed on the lattice. In addition, our resultsits global ground state becomes doubly degenerate and has
cover both the anisotropic mixed-spin ferrimagnets and théS,= +|NsSy—NgSg.

so-calledAB,-type ferrimagnets, which have uniform spins  In Theorem 1, we impose the conditioNsSy+NgSs
distributed on a bipartite lattice with unequal numbers of=integer on the system to avoid the trivial spin degeneracy

sublattice sites per unit celf-44 caused by a half-integer spin numi&rWhen this condition
To begin with, let us first recall several definitions andis satisfied,S, of any eigenstate of the system will be an
notation. integer. In particular, the global ground state of Hamiltonian

Take a finite lattice\ and letN, be the number of lattice (1) in the region ofD >0 hasS,=0 rather thar§,=+1/2, as
sites. The Hamiltonian of the anisotropic antiferromagneticstated in Theorem 1. A detailed discussion on this issue for
Heisenberg model with the single-ion anisotropy is of thethe XXZ model can be found in Sec. Il of Ref. 33.

following form: Theorem 2 Let ¥ and¥?’ be the global ground states
o R of the anisotropic ferrimagnetic Heisenberg Hamiltonkn
H=2> %S S+DX (S)% (1)  with D<O0. If their spin numberS,= +|NaSy—NgSg| are of
i) icA orderO(N,) in the thermodynamic limit, then botﬁgl) and

. . . . - v'? have the longitudinal ferromagnetic and antiferromag-
0
where(j) denotes a pair of lattice sites afifrepresents the netic long-range orders, i.e., they are ferrimagnetically or-

localized spin operator at lattice siteThe parameted; >0  4oreq.

is the antiferromagnetic coupling between the localized spins |, 4 previous papé® we proved similar results for the
at sitesi andj and < <D << denotes the strength of the ¢oimagneticxXz Hamiltonian. More precisely, we found
single-ion anisotropy in the system. We further assume thay, 5+ its global ground state is nondegenerate inXlere-

in terms of Hamiltonian(1), lattice A is bipartite. In other gime and is doubly degenerate in the Ising regime. Further-
words, it can be divided into two separate sublattéesdB  ,5e \when the condition of Theorem 2 is satisfied. XbZ
such that,J; only couples the spins at lattice sites, which y,qe is ferrimagnetically ordered in the Ising regime. With
belong to different sublattices. Ip thg foIIowmg, we shall useinase facts in mind, we are able to understand qualitatively
Na and.NB for the number of sites in sublatticésandB, {16 apove theorems by the following argument: WEBER 0,
respectively. , , . each spin on the latticA is forced down into the&XY plane

In_ literature, two categories of ferr_lmagnets are Wldelyby the single-ion energy. Consequently, the system should
studied. In the first category, sublatticésand B of the  papave more or less like théXZ model in theXY regime.
model have the same number of sites, Ny=Ng. But, the  Theretore, one expects that its global ground state is nonde-
localized spins on these sublattices have different vaBijes generate as the one of th&r model does. On the other hand

1 _ . . . . ’

andSg, saySy=3 andS;=1. Obviously, the one-dimensional o p <0, the longitudinal spin direction is favored by the
antiferromagnetic mixed-spin chain, which we discussedingle-ion term and hence, the system should be akin to the
ab_ove, belongs to this category. In the second case, all thex7 model in the Ising regime. Consequenily=0 should
spins of the system have the same vefuen both the sub- e the pifurcation point of its global ground state. In the
lattices. However, these sublattices have different numbers %Ilowing, we shall justify this argument by proving rigor-
sites,na andng, in each unit cell, such as theB, chains  4ysly Theorems 1 and 2.
studied in Refs. 39-44. In the following, we shall treat both 14 make our proofs more clear and readable, we organize
categories of ferrimagnets on the same footing. _ the rest part of this paper as follows. In Sec. II, we prove

Obviously, whenD=0, Eq. (1) is reduced to the Hamil- Thegrem 1 in detail. In Sec. Ill, Theorem 2 is established.
tonian of the isotropic ferrimagnetic Heisenberg model,rinajly, in Sec. IV, we make some general remarks and then,
whose properties have been thoroughly studied. In particulag,mmarize our results.
the total spinS’ is a conserved quantity in this system. As
shown by Lieb and Matti$ the global ground state of the
model on a bipartite lattice has the total spB¥|NaSy
-NgS;| and hence, is highly degenerate. Furthermore, in To prove Theorem 1, we shall employ a method intro-
Refs. 6—10 and 39-44, it has been shown that these grourtiiced by Affleck and Lieb and use some of our previous
states support both the ferromagnetic and the antiferromagesults. By following Affleck and Liel§? we are able to show
netic long-range orders. Therefore, the system is ferrimagthat, in both regions ob>0 andD <0, the global ground

Il. THE PROOF OF THEOREM 1
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state of Hamiltonian(1) is, at most, twofold degenerate. A =UA )p
However, in order to determine the exact degeneracy of the aux™ =2t a2
ground state in each regime and show the existence of the = (U,U5)™H,(U,0,)
ferrimagnetic long-range order, we need to introduce an aux- o o
iliary XXZ Hamiltonian, whose phase transition we have =-> (J;SxSx + 3i Sy Sy)
studied in Ref. 33. (i
Proof of Theorem 1Let us first consider the case of N
D> 0. We introduce the following auxiliary Hamiltonian: + % JiSS: - ZA (S+-S)?
ij Ie
+ + + 2
aux %JI](SXSX Syay) EJIJSZSZ DI% Sz) :__<E [(JIJ +JIJ)(S+§ +S §+)
I
) ’ ..
, , +(J =68+ 5501+ 2 5SS,
on the same lattice and requw&i} <J;. It represents the (i)
antiferromagneticXXZ Hamiltonian with the single-ion an- |D|
isotropy. Obviously, whed; =J;, Hau is reduced to Hamil- E (F+S -S.5.-S.S.), (6)
tonian (1). 4 ich

For Hamiltonian(2), the total spinz components, is a
good quantum number. Therefore, its Hilbert space can b
split into numerous subspacfg(S,=M)}. In each subspace, T )
the Hamiltonian has a ground stae,(M). Following the ~Hamiltonian H,,, are negative for y=<J; and D>0, except
proof of Lieb-Mattis theorem® one can easily show that the on-site spin-flipping term§.S_ and S_S, in the last
Wo(M) is nondegenerate in any admissible subsp#&@dé).  line of Eq. (6). They have positive coefficierid/4. Fortu-
However, the global ground state of Hamiltonié®) in the ~ nately, in constructing the matrix of Hamiltonid6), these
whole Hilbert space/=U,,® V(M) could be highly degen- terms only contribute to its diagonal elements since they
erate. Here, we want to show that, in fact, the degeneracy dgave each spin configuration unchanged. Therefore, it does
the global ground state of Hamiltonig@) cannot be larger ot cause any problem in proving Theorem 1. On the other
than 2. hand, the subspaces wi)=odd and even integers are sepa-

For this purpose, we apply a unitary transformation rately Connec:[ed by these interactions. Consequently, the Hil-

bert space oH,, is decomposed into two disconnected sec-
N~ tors Vogg and Veyen Each of them is a joint set of the
Uy =ex g‘\ SX)’ S subspace$V(M)} with M being an odd or even integer.
Next, for a natural basis of(M), we choose vectors

here§+:éx+iéiy andAS,_:ASJL. We would like to emphasize
at all the coefficients of the spin-flipping interactions in

which rotates each spin in the lattice by an angl@ about

spinx axis, to the Hamiltonian. Under this transformation, $oM) =S5 S - R, St S -+ S (7
the spin operatof§, and S, are mapped into Sy and S, whereS} and%BZ are thez-component of the spins at sites
respectively. Consequently, the transformed Ham|lt0n|an - A and] < B, respectively. Sinceb, (M) is a vector in sub-
now reads spaceV(M), we impose the following condition:
Fiaux: UTHaUXUl $z+ +$Az+§z+ +$BZ:M (8)
—% Jqu§x+JuSy§y) +2 3iS.S,+ DEA (Sy2. on it and let indexa run over all the admissible spin con-
ij ie

figurations. Obviously, each set of vectdrs{¢,(2n)} and
(4) U {¢.(2n+1)} spans the corresponding subspaie., and

) ) Vodar FESpPEctively.
To go further, we need to change sign of the coupling con- "g, definiteness, let us take the subspakg., for ex-

stants in the first summation d;laux. It can be achievgd by ample. In terms of the basis/ {¢,(2n)}, the transformed

applying another unitary transformatiaf=exp(in oS,  HamiltonianH,,, can be written into a matri&l,, It has the
which rotates each spin in sublattiéeby an anglemr about  following characteristics:

spinz ax!s and keeps .the spins in sublattiBeunchanged. (i) The off-diagonal elements of the matrix are non-

Under this transformation, we have positive quantities. More precisely, they are either zero or
o A o A o negative quantities @;—-J;)/4, —(J;+J;)/4, and D/4
UISU,=€i)S,, UiS\Ur=ei)Sy, UISU,=S,, multiplied by some posmve factors of form

5) JS(S+ 1)-5(5,+1).
(il) Haux is irreducible in the sense that, for any pair of
wheree(i)=-1 fori e Aande(i)=1 fori € B. Consequently, basis vectors),(2n,) and ¢4(2n,), there is a positive integer
we obtain the following twice transformed Hamiltonian: L such that
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(¢a(2n) Mol dp(2n,)) # 0. (9) Next, we consider the case Bf<0. As done above, we
o ~ study first the global ground state of the auxiliary Hamil-
It is due to the fact that latticé is connected by the spin- tonian in Eq.(2). However, in this case, we assume that the

flipping interactions§+§_ and each subspaa#2n) is con-  coupling constantgi} in the Iongitudinal spin direction are

nected toV(2n+2) by either operatorsé+§++é_§_ or larger thgn or equal tg;. C?orﬂrespond.mgly, we apply g dif-

‘32++‘32__ ferent unitary trgn_sform_z:\tmms:exm77/22iEASy), wh|_ch
To such a matrix, the well-known Perron-Frobenius theo/0tates each spin in latticé by an anglen/2 about spiny

rem in matrix theory applie®’ This theorem tells us that the axis, and thenl, again toH,,. Under these transforma-

ground-state wave functioW2™ (ever) of Hay in the sub-  IONS. We obtain

SpaceVeye, satisfies Marshall’s sign ruf€. Namely, in the ,

expansion aux=— (U3U2)THau>{U3UZ)
- =- 2 (58 %58 + 2 %55~ 0| 2 (50°
Ve even = X 2, Coadha(2N), (10) i <SSy W 2 .
n [e%
— 1 ’ o o c
all the coefficientsC,, can be chosen real and positive. —‘ZZ [(Jj +3)(S+§-+S-54)
Therefore, the ground state is nondegenerate. ) @
Similarly, we can show that the ground staterf,, in + (3= 3)(S:5: +S-5I1+ 2 %S.5;
V,qqiS also nondegenerate. Therefore, its global ground state (i)
can be, at most,~doubly degenerate. On the other hand, since D| o
the transformedH,, is unitarily equivalent to the auxiliary - TEA (S + S +S.S-+S.S.). (11
le

Hamiltonian in Eq.(2) whenD>0 and 0< J; < J;, we im-
mediately conclude that the global ground state of the latteNow, by repeating the above proof, it can be easily shown
Hamiltonian must have the same degeneracy, which is nghat the global ground states Hf,, as well as the auxiliary
larger than 2. _ Hamiltonian in the parameter region Bf< 0 andJ/; = J; are
This conclusion implies that, in the parameter region ofgiso, at most, doubly degenerate. It implies that a level-
D>0 and O<Jj=<Jj, a level crossing between the ground crossing between the global ground state and the excited
state and the excited states of the auxiliary Hamiltonian istates of the auxiliary Hamiltonian cannot take place in the
forbidden. In fact, if this statement is not true and such &egion.
level crossing does occur at some point in the region, then Tg determine the exact degeneracy of the global ground
the global ground state of the auxiliary Hamiltonian must be gtate and its total spincomponent, we apply again the con-
at least, threefold degenerate there. This.i's due tolthe'fa%uity argument. Take a specific valuedjf which is strictly
that, although the ground state of the auxiliary Hamiltonianjgrger thand;, and let|D| tend to zero. TherH,,,is reduced
in each subspacé(M) is nondegenerate, its ground states intg the XXz Hamiltonian in the Ising regime. Since level-
subspacesV(-M) and V(M) are obviously degenerate. crossing between the global ground state and the excited
Therefore, the occurrence of such a level crossing requirestates of the auxiliary Hamiltonian is absent in this limit,
that the ground states éf,,, in four subspace¥(+Mj) and  hoth the global ground states bf,,, and theXXZ Hamil-
V(M) (or three subspaces M;=0) are degenerate at the tonian in the Ising regime should have the sa®e\gain, in
crossing point. However, this possibility has been excludedRef. 33, we showed that the global ground state of the latter
Obviously, the absence of level-crossing between the gloHamiltonian is doubly degenerate and has spin numBgrs
bal ground state and the excited states of the Hamiltoniam +|N,Sy\—NgS;|. Therefore, by the continuity argument, we
indicates thatS, of the global ground state should be an conclude that, whenJ; =J;, the global ground state of
integer-valued continuous function of parame®randJ; in  Hamiltonian(1) is doubly degenerate and has the total spin-
the region. Therefore, it must be a constant. As a result, we componentS,= +|NxSy—NgSs|, when|D| # 0.
can determine the total spim-component of the global Our proof of Theorem 1 is accomplished. QED
ground state of Hamiltonia(l) as follows: First, we choose Theorem 1 tells us thaD=0 represents the bifurcation
a value ofJj;, which is strictly less thad, and letD tend to  point for the global ground state of the ferrimagnetic Heisen-
zero. In this limit, Hamiltonian(2) is reduced to the antifer- berg Hamiltonian(1). However, as we know, the global
romagneticXXZ Hamiltonian in theXY regime. For this ground state of the same Hamiltonianlxt0 has total spin
Hamiltonian, in Ref. 33, we proved that its global ground S=|N,Sy,—NgSs| and hence, is highly degenerédteThere-
state is nondegenerate and I&s0. (Because the proof is fore, this theorem gives us the following picture on the evo-
rather lengthy, we shall not repeat it h@réherefore, by the lution of the global ground state of Hamiltonigf) as the
continuity argument, the global ground state of HamiltonianparameterD varies: WhenD is less than zero, the global
(2) in the specified parameter region must be also nondegemround state has two degenerate members. One of them takes
erate and has the same total spicemponent. Then, we set on the lowess, and the other has the highest one, which are
Ji} =J;, which represents the boundary of the parameter reallowed by the total spits=|N,Sy—NgSg|. Then, asD tends
gion. By the same continuity argument, we reach the concluto zero, these two states are eventually merged with other
sion of Theorem 1 for the case Bf>0. members of the global ground state at the isotropic point. As

104412-4



PHASE TRANSITION AND FERRIMAGNETIC LONG-.. PHYSICAL REVIEW B 70, 104412(2004)

D further increases and becomes positive, the degeneracy of

the global ground state is destroyed by the quantum fluctua-

tions. One of the 3+1 members is singled out for the global + |b|2<\llé(ever)|AS+S+|\II6(ever)>_

ground state of the system and it H§s 0. This is a typical (15)

example of the so-called “order from disorder” phenomenon

considered in the study of quantum phase transition. In Eqg. (15), the mixing matrix elements betweeh,(odd)
Next, we turn to the proof of Theorem 2. and Wj(even are absent. That is due to the fact that the

operatorsS.§, connect only the spin configurations in the
same sectolyqq Of Veyen respectively. Now, we recall that
the expansion coefficient$C,,} of the wave functions
Since the global ground state of Hamiltoniéh) in the ~ W((odd (¥,(even) in terms of the basis vectors
region of D<0 has the total spi@-componentS,=+|NySy U, {¢,(2n+1)} (Umi¢p(2n)}) satisfy Marshall's sign rule,
-NgSs|, one expects that the system has the ferrimagnetite., they are real and positive. Moreover, it is easy to show
long-range order, i5, is a quantity of ordeiO(N,) in the that, for any pair of spin configurations,, (n;) and ¢, (ny),

thermodynamic limit. Theorem 2 tells us that, indeed thisth ; - L
= ' ! e matrix eleme n n,)) is either zero or a
speculation is correct. b, ( 1)|S+§+|¢“2(A 2)is.

To prove this theorem, we apply a technique developedOSitive quantity because the action3f or §, on any basis
previously by us in Refs. 9 and 40 for establishing the exisVector_produces only zero or positive factors of form
tence of the magnetic long-range order in the isotropicyS(St1)—S/S,+1). Therefore, we have
Heisenberg ferrimagnets. In the current case, since the spin | A A ,
rotation symmetry is broken by the anisotropic single-ion ¢¥o(0dd or eveiS.S.[¥o(odd or even
terms, we need to deal with some technical subtleties with

(V4SS Wo) = |aX(Wh(0dd)|S.S. | Wo(odd)

Ill. PROOF OF THEOREM 2

care.
Proof of Theorem 2For definiteness, let us taklef)l), one
of the degenerate global ground states of Hamiltoriignn

= 2 2 CnlalCn1a2<¢al(nl)|é+s+|¢a2(n2)> =0.

(ng,a) (Ng,e0)

(16)

the region ofD <0 for example. As shown above, under the Similarly, we can show that the rest terms on the right-hand

!

transformationU;U,, the Hamiltonian is mapped ontd,,,

this state is a linear combination 8f)(odd) andWg(even),
which are the nondegenerate global ground statds/gfin
the subspaced’yyq and Veven respectively. Explicitly, we
have

Wi=a¥y(odd + bW i(even, (12
wherea andb are complex constants.

Let us now consider the spin correlation functioné‘gﬁn
Vg We would like to show that

(V3lS,§4ve =0 (13
holds for any pair of lattice siteisandj. To prove inequality
(13), we substitute identity5,=(1/2)(S,+S-) into its left-
hand side and rewrite the correlator as

(WSS Vo) = 1wy, S. W) + 2 WyS S [wy
+ HWYS.§ W) + 2 WIS S vy,
(14)

Therefore, if each term on the right-hand side of Ed) is
non-negative, then inequalifiL3) is certainly true.

Take the first term on the right-hand side of E&4) for
example. We have

In the meantime,\lfél) is also mapped to a
ground statel |, of the transformed Hamiltonian. In general,

side of Eq.(14) are also non-negative. That yields inequality
(13).

Inequality (13) implies actually that the longitudinal spin
correlation in the global ground statbél) is antiferromag-
netic. To see that, we apply the inverse of the unitary trans-
formation UzU, to Eq. (13). Under this transformation, the
ground state¥ of H , is mapped back ontdfgl) and the
spin operators are changed by

(G502 ™S, [(UgU,) 1] = €S (17
Therefore, inequality13) is equivalent to
e(i)e( (V'S5 ¥6") = 0. (18)

It tells us that the longitudinal spin correlator is positive for
sitesi andj belonging to the same sublattice and negative
otherwise. Consequently, we have
(i) el (V1SS V") = (PSS v
= (VS 54vg").
Now, we sum up both sides of E(¢L9) overi andj. It
yields
<Wél>l(2 e(i)“sz)(z e(j)é,z)IWBl))
ieA jeA

= <*Ifé”l(2 “sz)(E Sz)l%l’> = INaSx ~ NeSel?.

ieA jeA

(19

(20)

Therefore, if[NASy\—NgSg| is a quantity of ordelO(N,) as
N, — o, the right-hand side of the above inequality is pro-
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portional toNi. It indicates thawgl) has both the longitudi- authors calculated the phase diagram of the antiferromag-
nal ferromagnetic and the antiferromagnetic long-range ornetic XXZ chain with uniform spinS=1) by exact diago-
ders. nalization. They found that the phase transition point be-
By following the above proof, we can easily show thattween the XY phase and the Haldane phase, which is
¥? has also long-range order under the conditions of Theoreplaced by the Ising phase in the ferrimagnetic Heisenberg

rem 2. That ends our proof of the theorem. QEDmModels, is shifted fromJ;=J; for D=0 to a larger value
Ji'j(D) for D>0. However, since the method of Affleck and
IV. SOME REMARKS AND CONCLUSIONS Lieb does not apply in this case, we cannot prove these re-
. sults on a rigorous basis. Apparently, some new techniques
Some remarks are in order. have to be developed to tackle it. We shall pursue this project

Remark 1 In the proof of Theorem 2, we establish first jn the future.

inequality (13) for the transverse spin correlation in the |5 symmary, in this paper, we study the quantum phase
ground statel, of the transformed HamiltoniaH;, Then,  transition in the mixed-spin Heisenberg model with the
we map it into an inequality satisfied by the longitudinal spinsingle-ion anisotropy on a bipartite lattice. We prove rigor-
correlation in the global ground state of the Ol’iginal Hamil- Ous'y that, when the Sing|e_ion ener@ is positive, the
tonian withD <0. Natura”y, one will eXpeCt that the same model has a unique ground state W@FO On the other
strategy should be also applicable to establish the existenggnd, when the single-ion energy is negative and favors the
of the magnetic long-range order in the model for the case ofpngitudinal spin direction, the global ground state becomes
D>0. Unfortunately, such a direct approach actually fails.doubly degenerate and has the total spicemponents,

The problem is caused by the negative sign in the spin op= +|N,S,~NgSs|. Therefore,D=0 is actually a bifurcation
erator identity §,=(S,—-S-)/2i. Consequently, it is even point for its global ground state. Furthermore, we also show
very difficult to show whether inequalit§13) holds for the that the global ground state of the model has both the ferro-
spin correlator(ASyAﬁy) of the transformed Hamiltoniaﬁaux, magnetic and the antiferromagnetic long-range orders when

let alone the existence of the magnetic ordering in the anisd® <0 if INASA~NeSg| is @ quantity of ordeO(N,) in the
tropic Heisenberg model with> 0. It remains an interest- thermodynamic limit. In other words, the system is a ferri-

ing open problem to prove the existence of ferrimagneticmagnet- Our conclusions (;onfirm _and geperali;e the previoqs

long-range order in this case. results on the one-dimensional mixed-spin chains by numeri-
Remark 2In Sec. I, we actually showed that Theorem 1 €@l calculations.

still holds true even if both the anisotropies, which are re-
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