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We monitor the development of a picosecond strain wave packet into a train of ultrashort acoustic solitons
along thec axis of sapphire using Brillouin scattering. One-dimensional propagation yields an intricate oscil-
lation pattern of the scattered intensity against distance that is interpreted in terms of optical interference and
Bragg resonances of light reflected from the moving soliton train. By exploring this pattern over a range of
scattering angles, we derive quantitative information on the soliton parameters using only a simple analytical
framework. Further more, the analogy between the wave packet and a diffraction grating is explored that
provides a direct estimate of the amount of solitons in the train from the observed number of oscillation
periods.
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I. INTRODUCTION

As an extension of conventional ultrasonics into the
nanometer-size regime, the method of picosecond
ultrasonics1 has found wide application as an imaging tool in
scientific and industrial environments.2–4 Most studies have
focused on short-distance propagation in one-dimensional
multilayers and in composite or nanostructured thin-films.
Ballistic propagation of coherent strain packets over much
longer traveling paths, however, has recently opened up a
new field of fundamental and applied research.5–11 In a series
of experiments in large crystals and at low temperatures, it
appeared that the structure of very short strain packets be-
comes severely distorted by the intrinsic phonon dispersion
of the crystalline lattice.7,8 Thus, it appeared that stable
propagation of ultrashort strain pulses over macroscopic dis-
tances is impossible in the linear regime. However, there
exists anonlinear regime in which even shorter coherent
strain pulses are formed that can travel practically without
distortion.

The nonlinearity becomes apparent at intermediate strain
amplitudes(typically above 10−4), where the pressure depen-
dence of the sound velocity leads toself-steepeningof the
acoustic wave packet. In complete absence of dissipative or
dispersive terms, the velocity difference between peak and
the front of the packet would result in the formation of a
shock-wave.12 However, the combined action of shock for-
mation with phonon dispersion sets up a system in which
stable,solitary waves are formed.13,14 Development of a pi-
cosecond strain pulse into a soliton of compression and a
dispersive tail was first demonstrated using nanojoule optical
pulses as an excitation source.9 In this paper, we extend the
regime of strain soliton formation significantly by applica-
tion of high-power(mJ) optical pulses from a 1 kHz ampli-
fied laser system, reaching much higher strain amplitudes
while covering a largersmm2d area of excitation. Using this
setup, we recently demonstrated the breakup in a single crys-
tal of sapphire of a picosecond strain pulse into atrain of
ultrashort strain solitons,10 predicting strain amplitudes of up
to 0.4%.

At these high strains, the nonlinear steepening process is
balanced by lattice dispersion only at terahertz phonon

frequencies,11 resulting in half cycle strain solitons of less
than 0.5 ps temporal width. The nonlinear development of
the wavepacket turned out to be described adequately by the
Kortweg-de Vries(KdV) equation,9,10 yielding estimates for
the number and amplitudes of the solitons in the train. As the
velocity and width of a KdV soliton depend only on its am-
plitude and vice versa, it is possible to draw detailed conclu-
sions once one of these quantities has been determined with
high-enough accuracy.15

In this paper we employ Brillouin scattering to determine
the velocities of the strain solitons that have developed from
a transducer-generated wave packet. We extend our earlier
work10 to cover a range of scattering angles, providing de-
tailed information on the relation between the Brillouin fre-
quency and the observed spatial resonances. In this way we
obtain quantitative estimates for the highest soliton velocities
in the trainindependentof numerical simulations. Further, an
alternative method of analysis of the spatial beating patterns
is presented based on the analogy with anN-slit diffraction
grating. This relates the high-frequency content to the spatial
resonances at lower frequency through a scaling relation and
allows for an estimation of thenumberof solitons.

II. THEORY

A. KdV initial value problem

We start our discussion with the one-dimensional nonlin-
ear wave equation for the acoustic strains, the Boussinesq
equation12,16

stt − c0
2szz−

a

r

]

] z
ssszd − 2c0bszzzz= 0, s1d

wherer denotes the mass density,a=C333+3C33 is the non-
linearity parameter consisting of second- and third-order
elasticity constants, andb denotes the third-order correction
to the LA phonon dispersion relation. In this equation, the
two terms on the left describe linear propagation, the qua-
dratic term is responsible for shock formation, and the
fourth-order derivative leads to a dispersion of the propaga-
tion velocity for the different acoustic frequencies.
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Considering the experimental configuration, in which we
generate a strain pulse on one side of the crystal and follow
its propagation in a specific direction, it is convenient to
transform to a moving frame coordinate system, defined by
the parameterst8= t, y=z−c0t. After one integration of the
resulting expression overy, neglecting a slow component
st8t8, we arrive at the well-known Korteweg-de VriessKdVd
equation13

st8 +
a

2rc0
ssy + bsyyy= 0. s2d

In the experimental configuration in the sapphire crystal,
a,0 andb.0, resulting in soliton development fors,0,
i.e., for compressional strain pulses.

We are interested in the development of an arbitrary initial
wave form ssy,0d=s0fsy/ l0d, where s0,0 and l0 are the
typical amplitude and width of the compressional part of this
initial strain packet andf denotes the(normalized) shape of
the wave packet. Therefore we choose to formulate the initial
value problem in terms of the dimensionless coordinatesh
=s/s0, j=y/ l0, andt= t8b / l0

3, leading to12

ht + 6s2hhj + hjjj = 0

hsj,0d = fsjd. s3d

Conveniently, all the material constants and physical pa-
rameters end up in a single parameters given by

s = l0S as0

12rc0b
D1/2

. s4d

The magnitude of the similarity parameters characterizes
the relation between nonlinearity and dispersion in Eq.(3)
and determines the number of solitons developing from the
initial condition. According to Eq.(4), s is proportional to
the area under the square root of the compressional strain
wave form. In order to compare the similarity parameters for
different initial value conditions, one must specifyl0 ands0
in order to normalize the residual area offfsjdg1/2 to some
predefined value, which we choose to bep, the area under
the square root of the sech2-wave form.16 In the following,s
describes this pulse “area” in units ofp.

B. Soliton trains

For an arbitrary initial disturbancefsjd, solutions to Eq.
(3) can be found using the inverse-scattering transform as the
bound states of an associated scattering problem12,16,17

Cjj + sl + s2hsj,tddC = 0. s5d

Under the initial conditionhsj ,0d=fsjd, this equation can
be solved, resulting in a complete set of scattering param-
etersCR/Cin (reflection), CT/Cin (transmission) andl.18 It
can be shown by substitution of Eq.(5) into the KdV equa-
tion (3), that the eigenvaluesl areindependentof time. This
special property allows the reconstruction of the scattering
potentialhsj ,td at each timefor a given initial set of scat-
tering parameters. We limit our discussion here to the most
relevant result for this paper, namely the stationary states for

t→`, for a discrete spectrum of eigenmodesln,0. Figure 1
shows the typical asymptotic development of the eigenvalue
problem, where each bound stateln of the initial potential
−hsj ,0d corresponds to a single-soliton solution at large time
t, of the form12,16

hsj,td = −
2ln

s2 sech2sulnu1/2fsj − j0d − 4lntgd, s6d

where j0 denotes the variation in the position where each
individual soliton splits off. In fact, all the stationary states
developing from an initial compressional wave packet are
solitons, completely defined by a single parameter, the eigen-
valueln. It can be observed from Eq.(6) that the amplitude
of the n th soliton ishn=−2ln/s2, or an=−2lns0/s2 in nor-
mal strain units. The velocity of these solitons in the moving
frame system is 2hns2 in normalized coordinates, orvn
=aan/6rc0 in real coordinates. Finally, the width is given by
s2/hns2d1/2, or ln= l0s2s0/ans2d1/2 in real coordinates.

An analytical solution of the eigenvalue equation(5) may
be obtained in several special cases of the initial wave form
fsjd. In particular, the spectrum of eigenvalues for a poten-
tial of the formfsjd=sech2j can be found in many-quantum
mechanics textbooks.19 The resulting expression for the soli-
ton amplitudes in the train evolving from this initial wave
form is given by

an

s0
=

1

2s2s1 − 2n + Î1 + 4s2d2. s7d

For the combination of our experimental conditions and
the material parameters of sapphire,9 s takes on values in the
range 5–14, and we may well approximate Eq.(7) for the
leading solitons in the train to first order by

an < 2s0s1 − 2n/sd. s8d

This shows that, for larges, the first soliton in the train
approaches an amplitudea1<2s0, independent of the length
of the initial disturbancel0 and of the material parametersa
andb. The total number of bound states in this potentialfsjd
can be determined from the condition that the term within
the brackets of Eq.(7) is larger than zero, leading to an
approximate number of solitons ofN<s for larges.

FIG. 1. Visualization of the KdV scattering problem, showing
the time varying potential −hsj ,td and the incident, reflected and
transmitted wavefunctionsCin, CR andCT. Potentials −hsj ,0d are
the normalized Gaussian derivative(line) and hyperbolic secants
(thick dash) functions, and the resulting soliton train for a value of
s<13. Horizontal lines(dash) denote eigenvaluesEn=ln/s2 for
the Gaussian derivative.
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In our experiments we will be dealing with bipolar strain
pulses, that we choose to describe by the derivative of a
Gaussian, written in dimensionless form

ssy,0d =
Î2e

lg
s0y exps− y2/lg

2d, s9d

with an amplitude normalized tos0 and a Gaussian waistlg.
In order to convert this to the dimensionless formfsjd and
the correct value ofs, the spatial dimension in Eq.(9) is
normalized to the length scalej=y/ l0 with l0
=e1/4Gs3/4dlg/p<0.5 lg, whereG denotes the Euler gamma
function. Combined with a normalization tos0, this gives the
correct form offsjd ands for calculation of the number of
solitons in Eq.(7).

In fact, the formula of Eq.(7) turns out to be a good
approximation for soliton trains developing from our experi-
mental pulse shapes at large values ofs. This similarity may
be attributed to the strong nonlinearity, which reshapes the
wave packets into the form of a shock wave before it breaks
up into a series of soliton pulses. This initial developement is
illustrated in Fig. 2(a) by a numerical simulation of the
propagation of a compressive strain pulse formulated in the
physical parameters of our experiment,20 yielding a value of
s<13. Figure 2(b) shows the associated evolution of the
wave packet spectrum, where formation of a shock wave
generates the terahertz acoustic frequency components that
have been demonstrated experimentally.11 The typical oscil-
lations in the spectrum of the soliton train will be explained
in Sec. VI B.

III. SAMPLE AND SETUP

In the following experiments we make use of a high-
purity (less than 1 ppm impurity ions) single-crystal piece of
sapphire of dimensions 5310310 mm3. A 100 nm thin

chromium film is evaporated onto one of the 5310 mm2

surfaces that is oriented perpendicular to the crystallographic
c axis. The sample is contained in an optical flow cryostat
and kept at a temperature of 5 K during most of the experi-
ments.

Strain pulses of high amplitude and picosecond time du-
ration are generated thermoelastically by means of ultrafast
excitation of the chromium film using femtosecond optical
pulses from an amplified Ti:sapphire laser, operating at 800
nm. For application as a transducer material, metallic films
are very suitable because of their short optical absorption
length and the fast response of the lattice via the electron-
phonon coupling. Strain wave packets are ultimately limited
in width by this skin depth, which corresponds to an acoustic
frequency spectrum up to several hundreds of gigahertz.1,21

However, the electronic transport and heat diffusion during
the first moments after excitation22–24 allow generation of
high-frequency components only in case of nanometer-thick
metallic films.

Propagation of the strain wave packets through the crystal
is monitoredin situ using Brillouin scattering of light from a
single-mode argon-ion laser, operating at 514.5 nm.
Wavevector conservation in the scattering process ensures
selectivity for individual spectral components of the acoustic
wave packet in the scattering process. Frequency compo-
nents in the range 5–30 GHz are accessible using a scatter-
ing configuration through the side windows of the optical
cryostat. The inelastically scattered beam is frequency fil-
tered by a quintuple-pass Fabry-Pérot interferometer and de-
tected using a photon counting setup. Spurious background
intensity is further suppressed by means of electronic time
discrimination of the arriving counts. In an earlier paper,10

we investigated trains of ultrashort strain solitons using the
same experimental setup. We emphasize once more that the
Brillouin scattering method is well suited for the studies of
strain soliton development: the propagation distance is con-
tinuously variable, the scattering wave vector matches well
with the spatial walkoff of the solitons in the wave packet,
and the photon counting apparatus allows for background-
free detection with excellent sensitivity.

IV. PUMP-PROBE CHARACTERIZATION

Before presenting the results of the Brillouin experiments,
we determine the shape of the initial strain pulses in the
chromium film using pump-probe reflectometry. It is well
known that nonequilibrium electron transport and thermal
diffusion limit the spectral content of the strain wave form in
a chromium film to less than 100 GHz.22,25 Earlier experi-
ments, however, have been performed at much lower laser
intensities and deviations may arise at high-power excitation.
To investigate the shape of the strain pulses launched into the
crystal, we constructed a high-sensitivity, ultrafast pump-
probe setup based on the 1 kHz amplified laser system, that
is capable of detecting changes in reflectivity as small as 2
310−5 over a 1 s acquisition time. Figure 3 shows the rela-
tive reflectivity changes as a function of pump-probe delay
time for the chromium film evaporated on the sapphire crys-
tal under study, as well as for a similar film deposited onto a

FIG. 2. (a) Simulated development of the leading, compressive
part of a bipolar strain pulse during the first 200mm in a sapphire
[0001] crystal, showing the initial stages of self-steepening of the
wavepacket and breakup into a soliton train.(b) Development of the
acoustic spectrum of the total bipolar wave packet.
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lead molybdate sample. As the acoustic echoes from the
chromium-sapphire interface are weak by the good acoustic
impedance matching, we use the lead molybdate sample to
determine the shape of the strain pulses generated in the
chromium film. The optical response of the chromium film
can be explained quantitatively using the standard theory for
the elastooptic response.1 We obtain a strain profile with
spectral components comparable to those measured earlier
using low-amplitude excitation.25 The absolute magnitude of
the reflectivity changes is almost two-orders-of-magnitude
larger than what is observed in conventional picosecond ul-
trasonics experiments, proving the presence of large strain
amplitudes. Good agreement between simulated and experi-
mental pulse echoes is obtained for an initial strain amplitude
of 4310−3 and width lg<43 nm in the chromium film and
acoustic reflection coefficients ofr <−0.6 andr ,0.2 for the
lead-molybdate and sapphire substrates, respectively. After
taking into account the difference in sound velocities be-
tween transducer and substrate, the strain amplitude of the
pulse inside the sapphire is estimated as 2.2310−3.

V. BRILLOUIN EXPERIMENTS

A. Polarization dependence

For the relatively small scattering angles in the Brillouin
experiment, the scattering efficiency turns out to depend
strongly on the polarization angle of the light. Figure 4(a)
shows a variation over three orders of magnitude of the scat-
tered intensity for a rotation of the polarization anglef over
90°. In this experiment, the scattering angle was set to 2u
<60°, corresponding to an acoustic frequency ofnB
=22 GHz. The observed dependence corresponds favorably
with the behavior expected from the decomposition of the
polarization vector into its two linearly independent compo-

nentsEW 'c and EW ic [line in Fig. 4(a)]. Using the literature
values ofp33=0.23 andp13ø0.005,26 a contrast of at least
23103 is expected between both polarizations. Figure 4(a)
shows a factor of 4 less contrast, which may be accounted for
by some admixture of the componentp31<0.03 in the elasto-
optic interaction, due to the nonzero angle of incidence of the
probe laser. In the following, we maintain a polarization par-
allel to thec axis to obtain an optimal scattered intensity.

B. Strain calibration

We can gauge the Brillouin spectrum induced by the co-
herent strain packet against the thermal phonon background

of ,40 cts/s, measured in sapphire at 22 GHz and room
temperature. In the same configuration we observe a scatter-
ing yield of about 50 kcts/s for excitation with an 80 MHz,
femtosecond laser at a fluence of 0.5 mJ/cm2 per pulse, lead-
ing to an occupation numbernv of about one-thousand times
the thermally excited population.

For a harmonic oscillator, the average energy is equally
distributed over the potential and kinetic parts,U=T
= 1

2"vsnv+ 1
2

d. Combined with the expression for the poten-
tial energy U= 1

2Mv2kuv
2l, and the number of oscillators

given by the Debye density of statesDsvdDv, we obtain the
expression for the average wave amplitudeuv, given by

uv = 1DsvdDv

Snv +
1

2
D"

Mv
2

1/2

. s10d

We are dealing with a very directional beam of phonons,
therefore, the complete, three-dimensional density of states
largely overestimates the number of participating oscillators.
As we gauge the occupation numbernv using the thermal
phonon modes selected by the acceptation angle of our inter-
ferometer systemu0<50 mrad, we should count again only
this cone of wave vectors in the estimate ofuv. Integration
over this part of phase space yields a more realistic density
of statesDsvdDv=Vv2u0

2Dv /4pc0
3.

From Eq.(10) we can obtain the associated strain spec-
trum sv=]uv /]x by multiplication with v /c0. For our ex-
ample at 22 GHz, this results in a displacement ofuv=3
310−14 m, or an acoustic strain componentsv=3.5310−7,
over a finesse-limited bandwidth of 0.8 GHz. Calibration of
the typical wave packet spectrum to this value yields a co-

FIG. 3. Pump-probe reflectivity data of a 100-nm chromium
film on lead molybdate(line) and sapphire(dash) single crystals.
Smooth lines denote fits to the data.(a) Spectrum of the first acous-
tic echo as obtained from fits to the data.

FIG. 4. (a) Dependence of Brillouin scattering intensity on the
electric-field polarization angle of argon-ion laser, minimum at

EW 'c, maximum atEW ic. (b) Power spectrum of strain waveform
gauged against thermal phonon background,+ experimental data,
(line) simulation. Calibrated strain wave form obtained from(b),
consistent with reflectometry data of Fig. 3.
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herent strain amplitude of 1310−4 for the “mode-locked”
wave packets.

In the case of excitation by amplified laser pulses, we
measured a maximum intensity of,0.5 kcts/s at E
=8 mJ/cm2 pump fluence. Accounting for the reduction in
repetition rate, this yields auv=0.7310−12 m, corresponding
to a coherent strain amplitude of 2.5310−3. The calibrated
scale for the power densityusvu2 for the high-amplitude
pulses is shown in Fig. 4(b) and that for the corresponding
strain is shown in Fig. 4(c).

C. Frequency dependence

In our earlier work, we demonstrated the development of
soliton trains via a direct comparison of the Brillouin scat-
tering data with numerical simulations. An attempt was made
to analyze the intricate oscillation pattern in terms of spatial
resonances of the solitons, but no quantitative results were
obtained using this method. Here, we attempt to get informa-
tion on the soliton train using the analytical framework only,
i.e., without resorting to numerical simulations. For this pur-
pose, we have analyzed the propagation in sapphire at five
selected frequency components in the range 10–26 GHz,
with mutual distances of 4 GHz.

As usual, individual frequency components of the wave
packet were selected by adjusting the scattering angle within
the aperture limited by the size of the windows in the cry-
ostat. At each frequency value, the development of the scat-
tered intensity was monitored when moving the detection
volume to difference positionsz in the crystal. Figure 5(a)
shows the dependence of the Brillouin intensity on propaga-

tion distance at the selected frequencies, for a pump fluence
of 6.5 mJ/cm2. At all selected frequencies, the scattered in-
tensity shows a strong decrease in the first hundred microme-
ters of propagation, followed by an oscillatory behavior. The
initial decrease can be attributed to the spectral redistribution
of energy, up to terahertz acoustic frequencies, by the non-
linear steepening of the wave packet[see Fig. 2(b)] and will
not be further discussed at this point. The intricate beating
pattern at distances beyond the self-steepening regime can be
unraveled by performing a spatial Fourier transform of the
experimental traces after the initial decay, where the solitons
are supposed to be well developed. The results of this pro-
cedure on the experimental traces are shown in Fig. 5(a). In
all spectra we observe a distinct amount of spatial frequen-
cies that produce the beating pattern. Unfortunately, the lim-
ited propagation distance limits the spectral resolution to
Dnx<0.17 mm−1, causing the resonances to overlap into
broad bands. The scanning length at 26 GHz is further lim-
ited to 1 mm by the size of the cryostat windows. Still, sev-
eral oscillations ofnx<4 mm−1 can be observed.

The degeneracy of many of the resonances in Fig. 5(a)
makes it an impossible task to assign them individually to
beating modes of the soliton train. It is however possible to
determine from the spectra a high-frequency cutoff, corre-
sponding to the interference of light scattered by the fastest
soliton with the light scattered by the slowest solitons and
the linearly propagating tail. The estimated highest spatial
frequencies for all selected scattering angles and at several
pump intensities are shown in Fig. 6. We observe a linear
dependence of the maximum frequencynx on the Brillouin
frequencynB, with a slope increasing with pump fluence.
These findings are consistent with our earlier interpretation
in terms of Bragg-resonances, as we will show in the next
section.

VI. INTERPRETATION

A. Spatial resonances

In the quantitative analysis of the spatial frequencies in-
volved in the intricate oscillation patterns, we consider again
a very simple model of optical interference of moving scat-
tering objects.10 Let us consider two dielectric objects that
propagate with velocitiesv1, v2 in the moving frame system.
After a propagated distancez in the crystal, the objects will
have moved apart over a walk-off periodt, given by t
=sv1−v2dz/c0

2. In the Brillouin scattering experiment, one is
sensitive for a resonant time delaytres, given by the inverse
of the Brillouin frequencytres=1/nB. Therefore while their
walk-off t moves in and out of resonance with the probe
periodtres, the objects will produce an oscillation in the scat-
tered intensity with a spatial frequencynx given by

nx =
sv1 − v2dnB

c0
2 . s11d

This relation can now be used to obtain accurate values of
the maximum velocity difference in the soliton train at dif-
ferent pump intensities. By fitting the experimental points of
Fig. 6 using Eq.(11), [dashed lines in Fig. 6] we obtain

FIG. 5. Brillouin scattering intensity as a function of propaga-
tion distance at 5 different scattering angles, at a pump fluence of
6.5 mJ/cm2. Inset: spatial Fourier transforms of datask=1/ld, ar-
rows indicate highest wavevector in the scans.
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values for the velocity differenceDvsol=v1−c0 of the fastest
soliton with the linear wave packet that translate directly into
a maximum strain via the relations given below Eq.(6).
Given the literature value ofa=−1.83 TPa,27 we find a rela-
tive soliton velocity ofDvsol/c0=0.61uanu along the c axis of
sapphire, wherean denotes the soliton amplitude. Further,
from Eq.(8) we conclude that the first soliton in the train has
an amplitude that is two times the initial strain amplitudes0.
Thus, the amplitude of the initial strain wave form can be
obtained directly from the highest beating frequencynx in the
oscillation pattern. The values forus0u obtained from the lin-
ear fits are shown versus pump fluence in Fig. 6(a). Good
agreement is found between these values and those obtained
from detailed numerical reproduction10 of the scattered in-
tensity at a single Brillouin frequency.

In the framework of the KdV model, velocity, amplitude,
and width of a soliton are intimately connected[cf. Eq. (3)],
which allows us to draw conclusions on the width and am-
plitude once the velocity is determined using Brillouin scat-
tering. For the highest strain amplitude in our experiment,
the amplitude of the leading soliton in the train reachesua1u
<3.4310−3, leading to a soliton width as small ast1
< l0/c0s=0.22 ps.

B. Analogy with grating

On a related line of thought, the observed patterns in the
Brillouin intensity may be considered as the orders of a dif-
fraction grating. For this purpose, we investigated the struc-
ture of the lower-frequency part of the spectrum of the soli-
ton trains, similar to those shown in Fig. 2(b).

We will consider exclusively the contribution of the soli-
tons in the wave packet, as it has been shown earlier that the
tail does not contribute significantly to the Brillouin scatter-
ing intensity.28 Figure 7(a) shows two soliton trains as ob-
tained from the expressions Eq.(7) [solid line, 1] and Eq.(8)
[dashed line, 2] for a value ofs=11. Note that the former of

the two is exact, while the latter is an approximation for very
large s that results in an equidistant spacing between the
solitons. The effect of the difference in spacing for the lower
part of the spectrum can be observed in Fig. 7(b). For the
equidistant soliton train,[dashed line, 2] the spectrum is pe-
riodical over a range,100 GHz, while for the exact form
[solid line, 1] no periodicity can be observed.

Pursuing the line of thought of our Bragg-scattering inter-
pretation, we can analyze the spectra of Fig. 7(b) in terms of
resonances between the solitons in the train. It turns out that
the low-frequency spectra of Fig. 7(b) are not significantly
modified when the soliton wave forms are replaced by Dirac-
d functions with appropriately scaled amplitudes, therefore,
we consider a train given by

fsz,td = o
j=1

N

aj dst + g jzd, s12d

with N the number of solitons,aj the soliton amplitudes, and
g j =v j /c0

2 the soliton walk-off in the moving frame system.
For the equidistant train of Eq.(8), g j = jDg and aj = jDa,
with Da=2s0/s the amplitude difference andDg
=as0/3src0

3 the walk-off between subsequent solitons[cf.
Eq. (6)]. In this case, it is useful to consider the trainf of Eq.
(12) as a product of a comb functiong with a triangular
envelopeh:

fsz,td = gsz,td ·hsz,td

gsz,td = o
j=1

N

dst + jDgzd, hsz,td =
Da

Dgz
t. s13d

After Fourier transformation, this product will be trans-

formed into the convolutionf̃ = g̃^ h̃, with g̃ andh̃ the trans-
forms of the comb and triangular functions, respectively
given by

FIG. 6. Highest spatial frequencynx as a function of Brillouin
frequencynB for 4 typical pump fluencesE=2.6 sbd, 3.2 sLd,
4.9 snd and 6.5ssd mJ/cm2. Lines are fits to data, following Eq.
(11). Inset: initial strain amplitudeus0u obtained from the slope of
fitted data at different pump fluencesE. Line denotes linear
dependence.

FIG. 7. (a) Analytical soliton trains after 0.5 mm, using 1 real
form, Eq. (7) (solid) and 2 equidistant approximation, Eq.(8)
(dash). (b) Power spectrum of the trains 1.(solid) and 2.(dash) of
(a), arrows indicate positions of local minima in the spectrum of 1.
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g̃sz,vd = s2pd−1/2sin Nbv

sin bv
e−ibvsN+1d,

h̃sz,vd = − iz
]

] v
dsvd, s14d

with the abbreviationsb=Dgz/2 and z=s2pd1/2Da/Dgz.
The above expression forg̃ is the well-known transform
function for a grating withN slits, indicating that the fre-
quency spectrum of the equidistant soliton train can be inter-
preted in terms of the diffraction orders of a grating. For
completeness, we give the exact solution of the above con-
volution equation. Partial integration yields

f̃sz,vd = − izU ]

] v8
g̃sv − v8dU

v8=0

= zbg̃svdSN + 1 + iN
cossNbvd
sinsNbvd

− i
cossbvd
sinsbvd D .

s15d

The power spectrum corresponding to this expression is
shown as the dashed line in Fig. 7(b). The overall periodicity
is determined by the zeros of the denominator ofg̃, with
spacing Dv0/2p=1/2b<102.5 GHz. Further it turns out
that there are exactlysN−1d subminima between the main
orders, with a periodDv1=Dv0/N, although their visibility
is reduced by the additional terms in Eq.(15).

We are now able to understand the shape and periodicity
of the spectrum of the equidistant train by considering it as a
diffraction grating. It is even possible to determine the num-
ber of solitons from the fine structure in the spectrum, by
counting the oscillations between the main grating orders. If
we compare the periodic spectrum with that of the realistic
train, shown as the solid line in Fig. 7(b), it is clear that the
variations in spacing in the real soliton train are sufficient to
destroy the periodicity of the grating function. Still, however,
the part of the spectrum below, say 100 GHz, seems to cor-
respond reasonably well to the pattern observed in the equi-
distant soliton train below the first grating order. The bump
around 135 GHz may even be attributed to constructive in-
terference of the slightly smaller spacings in the realistic
train of Fig. 7(a). Thus, by counting the number of oscilla-
tions before this maximum, we may get an impression, or
lower limit, of the number of solitons in the train. For ex-
ample, in Fig. 7(b) we can count up to 7 minima before the
first-order maximum at 135 GHz, yielding an estimate ofN
=8. This means that we underestimate the number of solitons
by only two or three.

At a first glance, the spectrum of Fig. 7(b) looks very
similar to the typical experimental traces for a single Fourier
component, as shown in Fig. 5. This is of course the conse-
quence of the rescaling of the spectrum overvszd~vs0d /b
[cf. Eq. (14)] as the train propagates over distancesz. This
allows us to monitor the higher diffraction orders as they
shift down toward the probe frequency selected by the Bril-
louin scattering geometry.

VII. CONCLUSIONS

We have determined the evolution of the acoustic spec-
trum of a picosecond strain wave packet over millimeters of
propagation at five selected Brillouin frequencies and found
intricate beating patterns typical for soliton train formation.
Dependence of the maximum wave vector on the selected
Brillouin frequency agrees well with our interpretation in
terms of Bragg resonances of the light scattered from parts of
the wave packet propagating with slightly different veloci-
ties. Quantitative analysis of this dependence on the selected
Brillouin frequency, for several pump fluences, provides us
with accurate estimates of the strain amplitude of the first
soliton in the train. These values agree well with our earlier
estimates based on numerical simulations. We believe that
this interpretation of the oscillations in the Brillouin intensity
can be used as a direct method for estimation of the strain
amplitudes in an ultrashort soliton train, without the need for
carrying out detailed computer simulations.

Furthermore, via the analysis of a train of equidistant soli-
tons we have described the low-frequency part of the soliton-
train spectrum in terms of diffraction orders of a grating. The
fine structure between the main grating orders in the spec-
trum consists of a number of oscillations that is equal to the
number of solitons in the train minus one. This method of
analysis of the Brillouin traces can be applied reasonably
well to the realistic soliton trains in our study, despite the fact
that the strict periodicity is absent by the intrinsic deviations
in the distance between the solitons. The scaling of the soli-
ton structure with propagated distance ensures that diffrac-
tion orders will shift toward lower frequencies, where they
can be readily detected using Brillouin scattering. Thus, ex-
amination of the Brillouin traces yields the spectral distribu-
tion of the initial soliton train, and its fine structure allows us
to determine the number of solitons in the packet.
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