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Inelastic light scattering by trains of ultrashort acoustic solitons in sapphire
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We monitor the development of a picosecond strain wave packet into a train of ultrashort acoustic solitons
along thec axis of sapphire using Brillouin scattering. One-dimensional propagation yields an intricate oscil-
lation pattern of the scattered intensity against distance that is interpreted in terms of optical interference and
Bragg resonances of light reflected from the moving soliton train. By exploring this pattern over a range of
scattering angles, we derive quantitative information on the soliton parameters using only a simple analytical
framework. Further more, the analogy between the wave packet and a diffraction grating is explored that
provides a direct estimate of the amount of solitons in the train from the observed number of oscillation
periods.
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I. INTRODUCTION frequencied} resulting inhalf cycle strain solitons of less

As an extension of conventional ultrasonics into thethan 0.5 ps temporal width. The nonlinear development of
nanometer-size regime, the method of picosecondh® wavepacket turned out to be described adequately by the
ultrasonicd has found wide application as an imaging tool in Kortweg-de Vries(KdV) equation’*° yielding estimates for
scientific and industrial environmerd@s Most studies have the number and amplitudes of the solitons in the train. As the
focused on short-distance propagation in one-dimensionaelocity and width of a KdV soliton depend only on its am-
multilayers and in composite or nanostructured thin-films plitude and vice versa, it is possible to draw detailed conclu-
Ballistic propagation of coherent strain packets over muctsions once one of these quantities has been determined with
longer traveling paths, however, has recently opened up high-enough accuracy.
new field of fundamental and applied reseatchln a series In this paper we employ Brillouin scattering to determine
of experiments in large crystals and at low temperatures, ithe velocities of the strain solitons that have developed from
appeared that the structure of very short strain packets be transducer-generated wave packet. We extend our earlier
comes severely distorted by the intrinsic phonon dispersiomork!? to cover a range of scattering angles, providing de-
of the crystalline latticé:® Thus, it appeared that stable tailed information on the relation between the Brillouin fre-
propagation of ultrashort strain pulses over macroscopic disguency and the observed spatial resonances. In this way we
tances is impossible in the linear regime. However, ther@btain quantitative estimates for the highest soliton velocities
exists anonlinear regime in which even shorter coherent in the trainindependentf numerical simulations. Further, an
strain pulses are formed that can travel practically withoutlternative method of analysis of the spatial beating patterns
distortion. is presented based on the analogy withNaslit diffraction

The nonlinearity becomes apparent at intermediate straigrating. This relates the high-frequency content to the spatial
amplitudegtypically above 10%, where the pressure depen- resonances at lower frequency through a scaling relation and
dence of the sound velocity leads self-steepeningf the  allows for an estimation of theumberof solitons.
acoustic wave packet. In complete absence of dissipative or
dispersive terms, the velocity difference between peak and
the front of the packet would result in the formation of a Il. THEORY
shock-wavé? However, the combined action of shock for- A. KdV initial value problem
mation with phonon dispersion sets up a system in which
stable,solitary waves are formeé'4 Development of a pi-
cosecond strain pulse into a soliton of compression and
dispersive tail was first demonstrated using nanojoule opticaef
pulses as an excitation sourtén this paper, we extend the ad
regime of strain soliton formation significantly by applica- St~ C6S;,~ — ~-(SS) — 2C0f3S,2,7~ 0, (1)

. . . . pdz

tion of high-power(mJ) optical pulses from a 1 kHz ampli-

fied laser system, reaching much higher strain amplitudeg/herep denotes the mass densityr C35+ 3C33 is the non-
while covering a largetmn?) area of excitation. Using this linearity parameter consisting of second- and third-order
setup, we recently demonstrated the breakup in a single cryslasticity constants, and denotes the third-order correction
tal of sapphire of a picosecond strain pulse inttrain of  to the LA phonon dispersion relation. In this equation, the
ultrashort strain soliton¥, predicting strain amplitudes of up two terms on the left describe linear propagation, the qua-
to 0.4%. dratic term is responsible for shock formation, and the

At these high strains, the nonlinear steepening process feurth-order derivative leads to a dispersion of the propaga-
balanced by lattice dispersion only at terahertz phonortion velocity for the different acoustic frequencies.

We start our discussion with the one-dimensional nonlin-
ar wave equation for the acoustic strajnthe Boussinesq

gar w

quation16
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Considering the experimental configuration, in which we Initial state Developed state
generate a strain pulse on one side of the crystal and follow Yin
its propagation in a specific direction, it is convenient to Ve <:'-n(<§,0) (e I:> W

transform to a moving frame coordinate system, defined by
the parameter$' =t, y=z—cgt. After one integration of the
resulting expression ovey, neglecting a slow component
sy, We arrive at the well-known Korteweg-de VrigdV)
equatiod®

a _ FIG. 1. Visualization of the KdV scattering problem, showing
St RSSV.F BSyyy=0. (2 the time varying potential (¢, 7) and the incident, reflected and
0 transmitted wavefunction¥;,,, ¥gr and V. Potentials #(&,0) are
In the experimental configuration in the sapphire crystalthe normalized Gaussian derivativne) and hyperbolic secants
a<0 andB>0, resulting in soliton development fa<<0, (thick dash functions, and the resulting soliton train for a value of
i.e., for compressional strain pulses. o~13. Horizontal lines(dash denote eigenvalueg,=\,/d? for
We are interested in the development of an arbitrary initiathe Gaussian derivative.
wave forms(y,0)=sy¢p(y/lg), wheres,<0 andly are the

typical amplitude and width of the compressional part of thist— «, for a discrete spectrum of eigenmodes< 0. Figure 1
initial strain packet an@h denotes th¢normalized shape of  shows the typical asymptotic development of the eigenvalue
the wave packet. Therefore we choose to formulate the initighroblem, where each bound statg of the initial potential
value problem in terms of the dimensionless coordinates -(¢,0) corresponds to a single-soliton solution at large time
=slsy, £=ylly, and 7=t' B/13, leading td2 7, of the forni216

7+ 607+ Mg =0 2\,
S ntm) == Fsech\MA (¢~ ) -4, (6)

7(§,0) = ¢(§). () o L
] ) ) where &, denotes the variation in the position where each
Conveniently, all the material constants and physical pajngividual soliton splits off. In fact, all the stationary states

rameters end up in a single parametegiven by developing from an initial compressional wave packet are
as, |12 solitons, completely defined by a single parameter, the eigen-
o= Io< 12pc 5) (4)  value\,. It can be observed from E¢) that the amplitude
0

of the n th soliton is7,=-2\,/ ¢, or a,=—2\,Sy/ ¢ in nor-
The magnitude of the similarity parametercharacterizes Mal strain units. The velocity of these solitons in the moving
the relation between nonlinearity and dispersion in &. frame system is #,0* in normalized coordinates, a,
and determines the number of solitons developing from th& @@,/ 6pCy in real coordinates. Finally, the width is given by
initial condition. According to Eq(4), o is proportional to  (2/7,0%)', or 1,=1o(250/@,0°)*? in real coordinates.

the area under the square root of the compressional strain An analytical solution of the eigenvalue equati@ may
wave form. In order to compare the similarity parameters foe obtained in several special cases of the initial wave form
different initial value conditions, one must speclfyands,  ¢(§). In particular, the spectrum of eigenvalues for a poten-
in order to normalize the residual area[ef(£)]"2 to some tial of the form ¢(¢)=secR¢ can be found in many-quantum
predefined value, which we choose to bethe area under mechanics textbooks. The resulting expression for the soli-
the square root of the seetvave form! In the following,c  ton amplitudes in the train evolving from this initial wave
describes this pulse “area” in units of form is given by

i

For an arbitrary initial disturbanceé(¢), solutions to Eq. S
(3) can be found using the inverse-scattering transform as the For the combination of our experimental conditions and

B. Soliton trains = %‘2(1 -2n+ 41+ 4592 (7)
2

bound states of an associated scattering probtéti’ the material parameters of sappHire takes on values in the
o2 _ range 5-14, and we may well approximate Eg. for the
Wit N+ a"n(€,m)V =0. (5)  leading solitons in the train to first order by
Under the initial conditionz(&,0)=¢(&), this equation can a,~ 25,(1 - /o). )

be solved, resulting in a complete set of scattering param-

etersWy/ W, (reflection, W1/ ¥, (transmissiopand\.2®1t  This shows that, for larger, the first soliton in the train
can be shown by substitution of E¢p) into the KdV equa- approaches an amplitudg =~ 2s,, independent of the length
tion (3), that the eigenvalues areindependenbf time. This  of the initial disturbancé, and of the material parametedis
special property allows the reconstruction of the scatteringaind 3. The total number of bound states in this potentief)
potential 7(&, 7) at each timefor a given initial set of scat- can be determined from the condition that the term within
tering parameters. We limit our discussion here to the mosthe brackets of Eq(7) is larger than zero, leading to an
relevant result for this paper, namely the stationary states faapproximate number of solitons df= ¢ for large o.
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a) (b) 11 chromium film is evaporated onto one of the<30 mn?
z=0pum surfaces that is oriented perpendicular to the crystallographic
¢ axis. The sample is contained in an optical flow cryostat
and kept at a temperature of 5 K during most of the experi-
ments.

Strain pulses of high amplitude and picosecond time du-
ration are generated thermoelastically by means of ultrafast
excitation of the chromium film using femtosecond optical
pulses from an amplified Ti:sapphire laser, operating at 800
nm. For application as a transducer material, metallic films
are very suitable because of their short optical absorption

=]

EonL)

20 um

l(\ 40 um
[W

X x1.5 100 pm

Spectral strain density (norm.)

200 um length and the fast response of the lattice via the electron-
X x2 : phonon coupling. Strain wave packets are ultimately limited
L L L L L in width by this skin depth, which corresponds to an acoustic
40 -20 00 02 04 06 08 10 frequency spectrum up to several hundreds of gigaRéftz.
t - 2/c, (ps) Spectrum (THz) However, the electronic transport and heat diffusion during

_ _ ~ the first moments after excitatiét®* allow generation of
FIG. 2. (a) Simulated development of the leading, Compresslvehigh_frequency components on|y in case of nanometer-thick
part of a bipolar strain pulse during the first 2Qfn in a sapphire  qetallic films.

[000] crystal, showing the initial ;tages of self-steepening of the Propagation of the strain wave packets through the crystal
wavepacket and breakup into a soliton traly).Development of the g o itoredin situ using Brillouin scattering of light from a
acoustic spectrum of the total bipolar wave packet. single-mode argon-ion laser, operating at 514.5nm.
Wavevector conservation in the scattering process ensures
In our experiments we will be dealing with bipolar strain selectivity for individual spectral components of the acoustic
pulses, that we choose to describe by the derivative of @ave packet in the scattering process. Frequency compo-

Gaussian, written in dimensionless form nents in the range 5—30 GHz are accessible using a scatter-
e ing configuration through the side windows of the optical
s(y,0) = ﬁsoy exp(- y2/|§)’ (99  cryostat. The inelastically scattergd beam is frequency fil-

lg tered by a quintuple-pass Fabry-Pérot interferometer and de-

tected using a photon counting setup. Spurious background
intensity is further suppressed by means of electronic time
discrimination of the arriving counts. In an earlier paffr,
we investigated trains of ultrashort strain solitons using the
same experimental setup. We emphasize once more that the
Brillouin scattering method is well suited for the studies of
strain soliton development: the propagation distance is con-
tinuously variable, the scattering wave vector matches well
with the spatial walkoff of the solitons in the wave packet,
and the photon counting apparatus allows for background-
free detection with excellent sensitivity.

with an amplitude normalized tg, and a Gaussian waik.

In order to convert this to the dimensionless foeit¢) and
the correct value otr, the spatial dimension in Eq9) is
normalized to the length scaleé=y/lg with I,
=e'I'(3/4)l 4/ m~0.5 14, wherel" denotes the Euler gamma
function. Combined with a normalization &g, this gives the
correct form of¢(£€) and o for calculation of the number of
solitons in Eq.(7).

In fact, the formula of Eq(7) turns out to be a good
approximation for soliton trains developing from our experi-
mental pulse shapes at large valuesroT his similarity may
be attributed to the strong nonlinearity, which reshapes the
wave packets into the form of a shock wave before it breaks IV. PUMP-PROBE CHARACTERIZATION
up into a series of soliton pulses. This initial developement is ) o i
illustrated in Fig. 2a) by a numerical simulation of the Before presenting the results of_tr_\_e Br|II0L_J|n experiments,
propagation of a compressive strain pulse formulated in th¥/€ determine the shape of the initial strain pulses in the
physical parameters of our experiméhyielding a value of chromium film using pgmp-probe reflectometry. It is well
o~13. Figure 2b) shows the associated evolution of the k_nown thgt.noneqwhbnum electron transp_ort and therrr_1a|
wave packet spectrum, where formation of a shock Wavéjlffusmn_hmn Fhe spectral content of the strain wave forr_n in
generates the terahertz acoustic frequency components tHachromium film to less than 100 GH2?® Earlier experi-

have been demonstrated experimentdllyhe typical oscil- Ments, however, have been performed at much lower laser
lations in the spectrum of the soliton train will be explained Ntensities and deviations may arise at high-power excitation.
in Sec. VI B. To investigate the shape of the strain pulses launched into the

crystal, we constructed a high-sensitivity, ultrafast pump-

probe setup based on the 1 kHz amplified laser system, that
IIl. SAMPLE AND SETUP is capable of detecting changes in reflectivity as small as 2
X 10°° over a 1 s acquisition time. Figure 3 shows the rela-
In the following experiments we make use of a high-tive reflectivity changes as a function of pump-probe delay
purity (less than 1 ppm impurity ionsingle-crystal piece of time for the chromium film evaporated on the sapphire crys-
sapphire of dimensions 610X 10 mn?¥. A 100 nm thin  tal under study, as well as for a similar film deposited onto a
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FIG. 3. Pump-probe reflectivity data of a 100-nm chromium LID §
film on lead molybdat&line) and sapphirgdash single crystals. 2 L 40 f’
Smooth lines denote fits to the data) Spectrum of the first acous- E 1F . =
tic echo as obtained from fits to the data. ‘“_3 L So 4
(2]
lead molybdate sample. As the acoustic echoes from the = 0 ! ! I ! l .
chromium-sapphire interface are weak by the good acoustic 0 25 50 75 25 0 25 50
impedance matching, we use the lead molybdate sample to Frequency (GHz) Time (ps)

determine the shape of the strain pulses generated in the

chromium film. The optical response of the chromium film  FIG. 4. (a) Dependence of Brillouin scattering intensity on the
can be explained quantitatively using the standard theory foelectric-field polarization angle of argon-ion laser, minimum at
the elastooptic respondeWe obtain a strain profile with E | ¢, maximum atElic. (b) Power spectrum of strain waveform

spectral components comparable to those measured earligduged against thermal phonon backgrounéxperimental data,
using low-amplitude excitatioff. The absolute magnitude of (jine) simulation. Calibrated strain wave form obtained freh),

the reflectivity changes is almost two-orders-of-magnitude-onsistent with reflectometry data of Fig. 3.
larger than what is observed in conventional picosecond ul-

trasonics experiments, proving the presence of large strain, . .
amplitudes. Good agreement between simulated and expeﬁlc 40 cts/s, measured in sapphire at 22 GHz and room

mental pulse echoes is obtained for an initial strain amplitudéemp.erature' In the same conf|gura't|or_1 we qbserve a scatter-
of 4% ;0-3 and_widthlg§43 nm in the chromium film and N9 Yield of about 50 kcts/s for exmtaﬂog with an 80 MH_z,
acoustic reflection coefficients of=-0.6 andr <0.2 for the ~ femtosecond laser at a fluence of 0.5 mJ7 per pulse, lead
lead-molybdate and sapphire substrates, respectively. Aftépd {0 an occupation number, of about one-thousand times
taking into account the difference in sound velocities bethe thermally excited population. .
tween transducer and substrate, the strain amplitude of the For a harmonic oscillator, the average energy is equally
pulse inside the sapphire is estimated as<219 3. distributed over the potential and kinetic parts=T
=2fiwln,+3). Combined with the expression for the poten-
tial energyU:%Mw2<uw2>, and the number of oscillators

A. Polarization dependence given by the Debye density of statB$w)Aw, we obtain the

For the relatively small scattering angles in the Brillouin €xpression for the average wave amplituge given by
experiment, the scattering efficiency turns out to depend

V. BRILLOUIN EXPERIMENTS

strongly on the polarization angle of the light. Figur@4 1 1/2

shows a variation over three orders of magnitude of the scat- (nw + 5>ﬁ

tered intensity for a rotation of the polarization angl@ver u,=\D(wAo———| . (10)
90°. In this experiment, the scattering angle was setéo 2 @

~60°, corresponding to an acoustic frequency of
=22 GHz. The observed dependence corresponds favorablye are dealing with a very directional beam of phonons,
with the behavior expected from the decomposition of thetherefore, the complete, three-dimensional density of states
polari{ation vector into its two linearly independent compo-largely overestimates the number of participating oscillators.
nentsE L ¢ and Ellc [line in Fig. 4a)]. Using the literature As we gauge the occupation numbey using the thermal
values ofps3=0.23 andp;3=<0.0052% a contrast of at least Phonon modes selected by the acceptation angle of our inter-
2x 10° is expected between both polarizations. Figuga 4 ferometer systensh~50 mrad, we should count again only
shows a factor of 4 less contrast, which may be accounted fdhis cone of wave vectors in the estimateuwpf Integration
by some admixture of the componegn~0.03 in the elasto- oVer this part of phase space yields a more realistic density
optic interaction, due to the nonzero angle of incidence of th@f statesD(w)Aw=Vw?GiAw/4mcy,
probe laser. In the following, we maintain a polarization par- From Eq.(10) we can obtain the associated strain spec-
allel to thec axis to obtain an optimal scattered intensity. trum s,=4u,/dx by multiplication with w/c,. For our ex-
ample at 22 GHz, this results in a displacementugf3
B. Strain calibration X 1074 m, or an acoustic strain compones)j=3.5x 1077,
We can gauge the Brillouin spectrum induced by the co-over a finesse-limited bandwidth of 0.8 GHz. Calibration of
herent strain packet against the thermal phonon backgrourttie typical wave packet spectrum to this value yields a co-
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26 GHz tion distance at the selected frequencies, for a pump fluence
T of 6.5 mJ/cm. At all selected frequencies, the scattered in-
tensity shows a strong decrease in the first hundred microme-

z zzonz] ters of propagation, followed by an oscillatory behavior. The
E PPy initial decrease can be attributed to the spectral redistribution
2T ] of energy, up to terahertz acoustic frequencies, by the non-
é o linear steepening of the wave packste Fig. 2b)] and will

[o]

o

not be further discussed at this point. The intricate beating
pattern at distances beyond the self-steepening regime can be
unraveled by performing a spatial Fourier transform of the
experimental traces after the initial decay, where the solitons
are supposed to be well developed. The results of this pro-
cedure on the experimental traces are shown in Rig. |n

all spectra we observe a distinct amount of spatial frequen-
cies that produce the beating pattern. Unfortunately, the lim-
ited propagation distance limits the spectral resolution to

Intensity (arb. units)

14 GHz Ar,~0.17 mm?, causing the resonances to overlap into
1900, 00500g00q05000am00n S0 2000 broad bands. The scanning length at 26 GHz is further lim-
ited to 1 mm by the size of the cryostat windows. Still, sev-
Xﬁk 10 GHz oo P eral oscillations ofy,~4 mni! can be observed.
N s dadi it A The degeneracy of many of the resonances in Fig) 5
0 1 2 3 4 5 6 makes it an impossible task to assign them individually to
Propagation distance (mm) beating modes of the soliton train. It is however possible to

o o ) ) determine from the spectra a high-frequency cutoff, corre-

_ FIG. 5. Brillouin scattering intensity as a function of propaga- ¢,nding to the interference of light scattered by the fastest
tion distance at 5 different scattering angles, at a pump fluence ol jison \yith the light scattered by the slowest solitons and
Sosv;nfn /(;([iténliieg;ﬁsgta\t/\gvg\?g;irr tirna?s:)g?;n:f date=1/2), ar- the Iinea_rly propagating tail. The estimated highest spatial
' frequencies for all selected scattering angles and at several

pump intensities are shown in Fig. 6. We observe a linear

wave packets. o N frequency vg, with a slope increasing with pump fluence.

In the case of excitation by amplified laser pulses, WeThese findings are consistent with our earlier interpretation

measured a maximum intensity of-0.5 kcts/s atE iy terms of Bragg-resonances, as we will show in the next
=8 mJ/cn? pump fluence. Accounting for the reduction in section.
repetition rate, this yields @,=0.7x 1012 m, corresponding
to a coherent strain amplitude of %3073, The calibrated
scale for the power densitys,|> for the high-amplitude VI. INTERPRETATION
puls.es' is shown in Flg.(b) and that for the corresponding A. Spatial resonances
strain is shown in Fig. @).
In the quantitative analysis of the spatial frequencies in-

C. Frequency dependence volved in the intricate oscillation patterns, we consider again

i K q d the devel fvery simple model of optical interference of moving scat-
In our earlier work, we demonstrated the development Otging ghjectd? Let us consider two dielectric objects that
soliton trains via a direct comparison of the Brillouin scat-

. . . . : ropagate with velocities;, v, in the moving frame system.
tering data with numerical simulations. An attempt was mad% pag L2 g y

| he intri it ) ¢ ~After a propagated distanaein the crystal, the objects will
to analyze the intricate oscillation pattern in terms of spatiay, ;e moved apart over a walk-off periog given by 7
resonances of the solitons, but no quantitative results were

btained using thi thod. H t tt Cinf (vl—vz)z/cg. In the Brillouin scattering experiment, one is
obtainea using this method. Here, we attempt to get INformag s qjtiye for a resonant time delay, given by the inverse

tion on the soliton train using the analytical framework only, of the Brillouin frequencyr.o=1/vs. Therefore while their

i.e., without resorting to numerical S|mu_lat|(_)ns. For 'FhIS pur- alk-off = moves in and out of resonance with the probe
pose, we have analyzed the propagation in sapphire at flvg

: eriod 7,e5 the objects will produce an oscillation in the scat-

selected frequency components in the range 10-26 GH LS . :
with mutual distances of 4 GHz. ered intensity with a spatial frequeney given by

As usual, individual frequency components of the wave (v1— Vo) Vg
packet were selected by adjusting the scattering angle within Vx= T
the aperture limited by the size of the windows in the cry- 0
ostat. At each frequency value, the development of the scafFhis relation can now be used to obtain accurate values of
tered intensity was monitored when moving the detectiorthe maximum velocity difference in the soliton train at dif-
volume to difference positionz in the crystal. Figure @)  ferent pump intensities. By fitting the experimental points of
shows the dependence of the Brillouin intensity on propagaFig. 6 using Eq.(11), [dashed lines in Fig. Jéwe obtain

11
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FIG. 6. Highest spatial frequenay, as a function of Brillouin requency (GHz)

frequency vg for 4 typical pump fluence€£=2.6(«), 3.2(0), FIG. 7. (a) Analytical soliton trains after 0.5 mm, using 1 real
4.9(A) and. §.'§(O) mg/cn?. Lines are fItS. to data, following EQ. form  Eq. (7) (solid) and 2 equidistant approximation, E¢8)
(11). Inset: initial strain amplitudesy| obtained from the slope of (dash. (b) Power spectrum of the trains @solid) and 2.(dash of

Litted (cjiata at different pump fluencel. Line denotes linear (5 arrows indicate positions of local minima in the spectrum of 1.
ependence.

o the two is exact, while the latter is an approximation for very
values for the velocity differencévs,=v,—Co of the fastest |rge & that results in an equidistant spacing between the
soliton with the linear wave packet that translate directly intogjitons. The effect of the difference in spacing for the lower
a maximum strain via the relations given below E8). 4t of the spectrum can be observed in Figh)7For the

Given the literature value af=-1.83 TP& we find a rela- equidistant soliton trainjdashed line, Rthe spectrum is pe-
tive soliton velocity ofAvs,/co=0.61a,| along the ¢ axis of  (iqdical over a range~100 GHz, while for the exact form
sapphire, where,, denotes the soliton amplitude. Further, [solid line, 1 no periodicity can be observed.

from Eq.(8) we conclude that the first soliton in the train has Pursuing the line of thought of our Bragg-scattering inter-

an amplitude thgt is two time_s_t.he initigl strain amplitusge pretation, we can analyze the spectra of Figp) Th terms of
Thus, the amplitude of the initial strain wave form can beregonances between the solitons in the train. It turns out that
obtained directly from the highest beating frequengin the e |o\-frequency spectra of Fig(t are not significantly
oscillation pattern. The values f(g| obtained from the lin-  nified when the soliton wave forms are replaced by Dirac-

ear fits are shown versus pump fluence in Fi@).6Good s functions with appropriately scaled amplitudes, therefore,
agreement is found between these values and those obtaingd -onsider a train given by

from detailed numerical reproductithof the scattered in-

tensity at a single Brillouin frequency. N
In the framework of the KdV model, velocity, amplitude, f(z,t) = 2 a; dt+v2), (12
and width of a soliton are intimately connectgd. Eq. (3)], ji=1

which allows us to draw conclusions on the width and am- ) ) )

plitude once the velocity is determined using Brillouin scat-With N the number of solitonsg; the soliton amplitudes, and
tering. For the highest strain amplitude in our experiment,¥;=v;/Co the soliton walk-off in the moving frame system.
the amplitude of the leading soliton in the train reacfsgs ~ FOr the equidistant train of Eq8), y=jAy and aj=|Aa,

~3.4x1073, leading to a soliton width as small ag  With Aa=2%/c the amplitude difference andAy
~1o/Coor=0.22 ps. =asy/30pcy the walk-off between subsequent solitofus.

Eq.(6)]. In this case, it is useful to consider the trédiof Eq.
(12) as a product of a comb functiog with a triangular
B. Analogy with grating envelopeh:
On a related line of thought, the observed patterns in the
Brillouin intensity may be considered as the orders of a dif- f(zt) =9(zt) -h(z1)
fraction grating. For this purpose, we investigated the struc-
ture of the lower-frequency part of the spectrum of the soli- N Aa
ton trains, similar to those shown in Figi. g(zt) =2, St+jAyz), h(zt)=—t. (13
We will consider exclusively the contribution of the soli- j=1 Ayz
tons in the wave packet, as it has been shown earlier that the ) ) ] ]
tail does not contribute significantly to the Brillouin scatter- After Fourier transformation, this product will be trans-
ing intensity?® Figure {a) shows two soliton trains as ob- formed into the convolutioi=g® h, with g andh the trans-
tained from the expressions E@) [solid line, J and Eq(8)  forms of the comb and triangular functions, respectively
[dashed line, Pfor a value ofo=11. Note that the former of given by
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_ _1oSINNBw BN+ ) At a first glance, the spectrum of Fig(bj looks very
0(z,0) = (2m) We ; similar to the typical experimental traces for a single Fourier
component, as shown in Fig. 5. This is of course the conse-
qguence of the rescaling of the spectrum owgz) « w(0)/ B
~ _ 9 [cf. Eqg. (14)] as the train propagates over distanzed his
h(z,w) = |§aw5(w), (14) allows us to monitor the higher diffraction orders as they

shift down toward the probe frequency selected by the Bril-
with the abbreviationsB=Ayz/2 and {=(2m)?Aa/Ayz.  louin scattering geometry.
The above expression fdj is the well-known transform
function for a grating withN slits, indicating that the fre- Vil. CONCLUSIONS
guency spectrum of the equidistant soliton train can be inter- We have determined the evolution of the acoustic spec-
preted in terms of the diffraction orders of a grating. Fortrum of a picosecond strain wave packet over millimeters of
completeness, we give the exact solution of the above corpropagation at five selected Brillouin frequencies and found
volution equation. Partial integration yields intricate beating patterns typical for soliton train formation.
Dependence of the maximum wave vector on the selected
Brillouin frequency agrees well with our interpretation in

Tzw) =-il %@(w -

=0 terms of Bragg resonances of the light scattered from parts of
the wave packet propagating with slightly different veloci-

- §,3§(w)<N + 1 +inS0ENBw) 005(18‘”)) ties. Quantitative analysis of this dependence on the selected
sin(NBw)  sin(Bw) Brillouin frequency, for several pump fluences, provides us

(15) with accurate estimates of the strain amplitude of the first
soliton in the train. These values agree well with our earlier
The power spectrum corresponding to this expression igstimates based on numerical simulations. We believe that
shown as the dashed line in Fighy. The overall periodicity  this interpretation of the oscillations in the Brillouin intensity
is determined by the zeros of the denominatorgpfwith ~ can be used as a direct method for estimation of the strain
spacing Awy/27=1/28~102.5 GHz. Further it turns out amplitudes in an ultrashort soliton train, without the need for
that there are exactlN—1) subminima between the main carrying out detailed computer simulations.
orders, with a period\w;=Awy/N, although their visibility Furthermore, via the analysis of a train of equidistant soli-
is reduced by the additional terms in E45). tons we have described the low-frequency part of the soliton-
We are now able to understand the shape and periodicitifain spectrum in terms of diffraction orders of a grating. The
of the spectrum of the equidistant train by considering it as dine structure between the main grating orders in the spec-
diffraction grating. It is even possible to determine the num-trum consists of a number of oscillations that is equal to the
ber of solitons from the fine structure in the spectrum, bynumber of solitons in the train minus one. This method of
counting the oscillations between the main grating orders. Ianalysis of the Brillouin traces can be applied reasonably
we compare the periodic spectrum with that of the realistiovell to the realistic soliton trains in our study, despite the fact
train, shown as the solid line in Fig(ly), it is clear that the that the strict periodicity is absent by the intrinsic deviations
variations in spacing in the real soliton train are sufficient toin the distance between the solitons. The scaling of the soli-
destroy the periodicity of the grating function. Still, however, ton structure with propagated distance ensures that diffrac-
the part of the spectrum below, say 100 GHz, seems to cotion orders will shift toward lower frequencies, where they
respond reasonably well to the pattern observed in the equéan be readily detected using Brillouin scattering. Thus, ex-
distant soliton train below the first grating order. The bumpamination of the Brillouin traces yields the spectral distribu-
around 135 GHz may even be attributed to constructive intion of the initial soliton train, and its fine structure allows us
terference of the slightly smaller spacings in the realisticto determine the number of solitons in the packet.
train of Fig. 1a). Thus, by counting the number of oscilla-
tions before this maximum, we may get an impression, or
lower limit, of the number of solitons in the train. For ex-  The authors wish to thank P. Jurrius and C.R. de Kok for
ample, in Fig. {b) we can count up to 7 minima before the their technical assistance. This work was supported by the
first-order maximum at 135 GHz, yielding an estimateNof Netherlands Foundation “Fundamenteel Onderzoek der Ma-
=8. This means that we underestimate the number of solitonerie (FOM)” and the “Nederlandse Organisatie voor Weten-
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