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Wave localization in binary isotopically disordered one-dimensional harmonic chains
with impurities having arbitrary cross section and concentration
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The localization length for isotopically disordered harmonic one-dimensional chains is calculated for arbi-
trary impurity concentration and scattering cross section. The localization length depends on the scattering
cross section of a single scatterer, which is calculated for a discrete chain having a wavelength-dependent pulse
propagation speed. For binary isotopically disordered systems composed of many scatterers, the localization
length decreases with increasing impurity concentration, reaching a minimum before diverging toward infinity
as the impurity concentration approaches a value of 1. The concentration dependence of the localization length
over the entire impurity concentration range is approximated accurately by the sum of the behavior at each
limiting concentration. Simultaneous measurements of Lyapunov exponent statistics indicate practical limits
for the minimum system length and the number of scatterers to achieve representative ensemble averages.
Results are discussed in the context of future investigations of the time-dependent behavior of disordered
anharmonic chains.
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I. INTRODUCTION perform that work, numerical integration will be used to
study the time-dependent nature of these systems. To be
The length scale over which Anderson localizatime-  practical, the initial conditions will require sufficiently short
curs in harmonic disordered chains can be expressed aswavelengths and high impurity concentrations to keep inte-
function of the ensemble-averaged system resistivityds-  gration times manageable. In addition, the results of the
ing scaling argumentsthe ensemble-averaged resistivity of study will incorporate the discrete nature of the mechanic
harmonic systems having binary isotopic disordsingle- chains so that these effects can be accounted for in the
valued impurities can be expressed as a function of the scatresults.
tering cross section of a single impurity and the impurity In this study, the energy localization in a BIDHC is stud-
concentration. Binary isotopically disordered harmonicied for arbitrary displacement wavelength, impurity concen-
chains also have the property that in the limit that the impudration and scattering cross section. Disorder is effected by
rity concentration approaches unity, the system is once agaiéhanging randomly selected masses by a fixed amount. A
“pure,” and the Anderson localization length diverges towardcontinuum Kronig-PennegKP) model’is used to develop a
infinity. As a result, the Anderson localization length passegeneral expression for scattering cross section, and the con-
through a minimum at intermediate concentratibrihese tinuum impurity impedance is corrected for wavelength de-
properties of a binary isotopically disordered harmonic chairpendent pulse propagation speed in discrete systems. The
(BIDHC) make these systems both tractable and interestingesulting expression is verified by direct numerical integra-
In this work, an approximation is developed for the local-tion. The localization length of systems with strong scatterers
ization length of a BIDHC with arbitrary impurity cross sec- is calculated using both the continuum KP model and the
tion and concentration. In addition, the result incorporatedMacKinnon and Kramét (MK) method. The distribution of
the discrete nature of a classical chain. Similar studies havieyapunov exponents is studied using the continuum KP
been performed previously, but with important differences.model, and the minimum requirements are found for system
Bourbonnais and Maynatatudied energy transport in one- length and number of scatterers to achieve proper scaling
dimensional systems having isotopic disorder, but the impustatistics. The localization length concentration dependence
rity masses were not single-valued. The results of Azbel anés studied using the MK method, and an analytical expres-
Soverf on quantum systems having binary isotopic disordersion is found for its behavior. For arbitrary impurity concen-
were based on a continuum solution for impurity locationstration and impurity cross section, the localization length in a
constrained to exist on lattice sites. Although the Azbel andBIDHC can be approximated by invoking a simple ansatz
Soven result applied to short wavelengths that may exist beédased on an analogy to electrical systems. The result is ac-
tween the impurities, the results do not incorporate the addicurate for systems having displacement wavelengths at least
tional features of a discrete mechanical system. four lattice spacings long.
This study serves as an introduction to future work on
energy transport in binary isotopically disordered anhar- Il. MODEL SYSTEM
monic chains. These anharmonic chains serve as a useful The physical model used here is the harmonic version of
model for, among other things, line width broadeningTo  the Fermi-Pasta-UlarfFPU)'2 chain that is composed of dis-
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crete springs and masses. The masgexme on a lattice with  system composed of a number of scatterers. From this nu-
spacinga and interact via nearest neighbor springs with forcemerical solution, one can determine the system resistivity,
constant. Disorder is effected by changing the backgroundwhich can be used to calculate the localization length.
massm, by a fixed amounin, with probabilityc. To simplify
the results, all lengths are scaled by the lattice spaaing
For a system composed &f masses, each characterized

by a displacemeng; about the equilibrium location and a  The scattering cross sectiorfor a single impurity can be

Ill. CROSS SECTION

momentump;, the Hamiltonian is separable: calculated from the continuum system of E¢h). The
1 N 02 Green’s function for the 1D Helmholtz equatiérncan be
H= 52 HI + K(Xiq = X)2. (1)  used to solve for the admittanefx):
1 |
The real space equation of motion is B(x) =€"*~ (—Z(w)’_) el glos, (6)
Z(w) + V4uE
m')'q = Xipp — 2% + Xi_q.- (2)  The scattering cross section in 1D is equivalent to the reflec-
K tion probability
The Fourier transform leads to the corresponding equation of |Z(w)|?
motion for the energy eigenstate amplitudg(@): = 7
gy eig ‘ plitudgEo) T 2w+ 4uE (7)
wm
Upsg = [2 Tk '}ui ~ U1 (3)  To apply this equation to the discrete chain, it must be con-

verted from a continuum description to the corresponding
This is the corresponding Anderson tight-binding model fordiscrete description.

the chain. For an FPU system having masses spaced a distance
) ) apart, the continuum coefficients can be expressed as a func-
A. Discrete analysis tion of the discrete properties in the limit—0 (Ref. 15
The time-dependent properties of the system were deter-
mined by numerical time integration of E@2) using a ,U«:”—]O, E=Ka. (8)
a

fourth-order symplectic integrator algorith(81A4) for sepa-

rable Ham|lt03n|ans. The_coefﬂments were taken from Candyrp,o scattering cross section can now be expressed as a func-
and Rozmug? and the time step was 1/200 of the naturaltion of the discrete system components

period.

The localization length was calculated from E8) using 1Z(w)[?
the method of MacKinnon and KraméviK).'* This method 7= m (9)
exploits the statistical properties of the so that periodic
rescaling can be used to improve overall statistics. The impedanceZ(w) of a mass impurity along a one-
_ ) dimensional chain is proportional to the mass that is
B. Continuum analysis added to the background masg (Ref. 16

A Kronig-Penney modé? is used to develop an expres- o
sion for the scattering cross section of an impurity and to Z(w) = =1 om,/cs. (10
study the statistics of the scaling paramét€he continuum  This equation has been modified from the continuum relation
system analogous to the discrete chain is a homogeneots account for the properties of a discrete one-dimensional
elastic rod having mass densjtyand Youngs modulug. In  chain. A displacement wavelength has a corresponding wave
the absence of impurities, a longitudinal displacement amplinumberk=27/\. For the discrete chain, the angular velocity
tude ¥(x,t|w) with angular velocityw will propagate down & and relative pulse propagation specan be expressed

the rod with longitudinal velocity,=VE/ u. as a function of the displacement wave numkiéf
A harmonic oscillator impurity located at will give rise L B

to a reactive force due to the impurity impedari&dor a w=2sink/2), cs=codk/2). (11)
wave with angular velocityn: Finally, substituting Eq(10) into Eq.(9) gives the scattering

P P 9 cross section of a mass impurity in a one-dimensional chain

u-5~E-5=-Z(w)dx-X)— |¥xtlw). (4
ot JX Jt (m, w/CS)Z 12
o= .

We assume the solution has a time dependence given by an (M, w/cy?+4Kmy

exponential of angular velocity [ = ¢(x|w) €] to obtain

P , i , A numerical experiment was performed to test the appli-
T ?Z(w) S(x=x') | p(X|w), (5)  cability of Eq.(12) to FPU systems, and a schematic of the
experiment is shown in Fig. 1. The system had fixed ends
wherex=w/c,. Equation(5) can be solved analytically for a and lengthL. One impurity was located &t/3, and another
single scatterer or can be solved numerically for a particulaimpurity was located at [2/3. An initial displacement was
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FIG. 1. Schematic of cross section numerical experiment; each = 04020 02 04
line represents the state of the system at the time of measurement. .o L | I | L | I | L
. . . . 2 4 6 8 10
The timet, shown along left side, is expressed as a function of the m /e
+ s

system lengthL and pulse propagation speed The large dots

denote the location of two impurities. . . .
P FIG. 2. Cross sectiow as a function ofm,w/c, for different

) wavelengths\. The solid curve is the analytical result in E§2).
made with wavelengtix and total length 16, and the hy-  The inset shows additional data near zero.

perbolic tangent function was used to taper the oscillation
amplitude fromA to zero. Initially, the pulse was located at IV. LOCALIZATION LENGTH
one end of the system. It had lengtk,&mplitude 2, and

zero initial Ve|0City. The time-dependent behavior was deter- The resistivitypN of a System Composed Of scatterers is

mined by numerical integration using the SIA4 algorithm.  the ratio of the system reflection coefficieRy to the system
The measured scattering cross section was determingghnsmission coefficieri:23

from the energy located in the three regions separated by the

impurities. The pulse energy located in each of three regions,

denoted byE;, E,, andE;, was calculated at four separate = & (15)
times: t=0, L/6¢c,, L/2c,, and 9./6c,. At these times, the
pulses are located near the center of a region. Although re-

dundant with respect to the initial total energy, determiningrhg |ocalization length of the system is defined in an aver-

the energy at=L/6c; provided a consistency check. In each 5464 sense. To achieve proper scaling, however, one defines

case, the difference betwe&)(t=0) andE,(t=L/6¢cy) was g inverse, the Lyapunov exponeft

less than one part in $0
The scattering cross section in FPU systems is the reflec-

tion coefficient. In this experiment, the reflection coefficient - In(1 +py) (16)

R is calculated from the ratio of energies in the first two Y L '

intervals after one scattering event

E,(L/2cy) More specifically, there is a distribution of values from an
= W (13 ensemble of systems. If the systems composing the ensemble
L are sufficiently large, the distribution of values will be
normal. The localization length for a system having length
Although the transmission coefficiefitcould have been L and N scatterers is defined from the ensemble averaged
determined fronE,(L/2cy), a second scatterer was used as d-yapunov exponent
more rigorous test of the experiment design and numerical

integrator. The transmission coefficiefitfor a single scat- (Nn(1 +py))
terer was calculated using the energy after two scattering El=(y= — N7 (17
events L
T=+ /M_ (14) Unless otherwise noted, the symbplshall imply the en-
E1(0) semble averaged quantity.

In all cases, the magnitude of R—T was less than 18.

A comparison of the estimated cross sectioim Eq. (12) A. strong scatterers
to the measured reflection coefficidRin Eq. (13) is shown
in Fig. 2 for different displacement wavelengths The re- To perform numerical experiments on anharmonic sys-

sults demonstrate that E@.2) is an accurate estimate for the tems of manageable length, the scatters will need to be rela-
scattering cross sectiom for displacement wavelengths as tively strong. Therefore, weak scattering results will not be
short as 4. Moreover, the symmetry about zero for scatteringpplicable. Moreover, a means is needed to predict the aver-
cross section for negative valuesrof is shown in the inset aged localization behavior of a system using only single scat-
of Fig. 2. terer information. Because the impurities are identical, the
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FIG. 3. Localization lengtlg,, scaled by impurity concentration
¢, as a function of impurity scattering cross sectiorfor systems FIG. 4. Lyapunov exponeny statistics as a function of scatter-
having lengthL andN impurities. The solid line is IfL+p) and the  ing cross sectiorr for a system withL=16 384,N=128, andx
dashed line represents the mean free path estimate. The error bar82. Error bars represent coverage factors corresponding to one and
represent the mean standard deviatiMany of the symbols lie two standard deviations of a normal distribution. The predicted in-
upon one another and the error bars are typically smaller than theervals %, and 2, [Eq. (20)] are shown, along with observed

symbols) population standard deviatiah.
scaling law can be exploited to express system behavior as a 2
function of the resistivity of a single scattergr 5= 2N+ o). (20

(IN(1 +pn)) =N In(1 +p). (18)
o ) ) ] Returning to the data of Fig. 3, the population of Lyapunov
Substituting from Eq(17) above ylleld_s an unbiased estimate exponentsy was compared to the expectations of E20).
for the ensemble averaged localization lengthute limite)  To assess the “normality” of the data, the intervals, both

as a function of impurity concentratian above and below the mean, having coverage fattamre-
sponding to one and two standard deviations were deter-
551: c(In(1 +p)). (19 mined from the population. In addition, the population stan-

dard deviatiomA is also shown so that it could be compared
to both its estimated value in E€20) and to the correspond-
ing coverage interval.

The results of the Lyapunov exponent statistics calcula-
To demonstrate both the effect of strong scatterers tion, from an ensemble with a population of 10 000, are

—1) and the accuracy of Eq18), the ensemble average ghown in Fig. 4 for systems having length= 16 384, N
(In(1+py)) was calculated from 10 000 systems, each having 1 g impurities, and displacement wavelength32. (Re-
lengthL andN impurities. The displacement wavelength wasgyts for other systems were similar, and are omitted for
32, and the scattering cross section of each impurity was previty) The data are shown as a function of the single im-
The results from the calculation are shown in Fig. 3 as gyrity cross sections. The filled symbols are the average
function of the impurity cross sectioa. In the figure, the  yajue, and the solid line is the estimated average value. The
error bars represent the mean standard deviation, and magyror bars represent the intervals that have the same coverage
of the symbols lie upon one another. As can be seen, all thgyctor as one and two standard deviations in a normal distri-
systems have the (h+p) dependence that deviates from the pytion, The two pairs of dashed lines are the estimated stan-
mean free path approximatiofd,'=co) for cross sections dard deviations from Eq20). The dotted line is the popula-
greater than approximately 0.2 for all combinations of sys+tion standard deviation.
tem size and number of scatterers. For small scattering cross sections, the distributiory &f
asymmetric, with zero as a lower bound for the coverage
intervals. Interestingly, only the outer intervals are asymmet-
ric about the mean. The inner intervals are nearly symmetric
The results shown in Fig. 3 demonstrate that, in the meargbout the mean, and they have a value nearly equal to the
systems having a finite density of scatterers have the expopulation standard deviation.
pected behavior. Recent results suggest that systems having As the scattering cross section increases, the results begin
relatively few scatterers do not exhibit Gaussian behavioto exhibit Gaussian behavior. Above a 0.2 scattering cross
and, therefore, not obey scaling laws. For systems havingection, the measured intervals, the predicted intersgls
sufficient length and number of scatterers, the population oédnd the population standard deviatiarall agree. Therefore,
Lyapunov exponents is normally distributéavith variance  agreement between the population standard deviatiamd
i (Refs. 3 and 18 the estimated standard deviatispis as much a measure of

In the limit of weak scatteringc, p— 0), one recovers the
expected resulé;'=co=A"1, whereA is the classical mean
free path.

B. Statistics
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FIG. 5. Lyapunov exponent coefficient of variatidY y as a
function of the ratio of system lengthto the localization lengtl, FIG. 6. Localization lengtlt as a function of impurity concen-
for systems having different numbers of scattertsThe solid  tration ¢ in a discrete system having scatterers with cross section
curve is Eq.(21). 0.2. Solid lines represent E(R7), the dashed line is the locus of

minima, and the dotted line denotes equal contribution fgmy,

“normality” as is a careful analysis of the population cover-andé-1- The inset shows the same data as a functioffLer).

age intervals.

Exploiting this relationship, the population standard de-the solution using the MK method, and given that the sys-
viation A for all the data from the Lyapunov exponent statis-tems are harmonic, the frequenayis the same for both
tics experiment are shown in Fig. 5 as a function of thesystems, but the wavelength and the corresponding pulse
system length. For normally distributed populations, the esspeed are different:
timated coefficient of variation can be determined from Eq.

I — [
(17) and Eq.(20), and has the following convenient form: k' =kymy+m,, (24
Sy _ ]2 (21) c.=cogk'/2), (25)
(n Vug' ,
- /c.
pr = el (26
This equation is shown as a solid line in Fig. 5. One can 4K (mg +m,)

conclude from the figure that in order for the observed
Lyapunov exponents to be normally distributed, the system

. o The behavior of the system for all values of impurity con-
length must be at least 10 times the localization length, an% y purty

entration is conjectured from the electrical analogy: as

X/apunov exponent is to resistivity, localization length is to
conductivity. If one assumes that at some intermediate con-

V. CONCENTRATED IMPURITIES centration the behavior is simultaneously expressing itself as
two systems with localization length&_,, and &, these

For dilute impurity concentrations, the localization lengthtwo systems should contribute independently to the overall

decreases with increasing impurity concentration. As the impehavior. By analogy to conductors, the total localization
purity concentratiorc approaches unity, however, the FPU |ength ¢ would be additive:

system will become a pure system composed entirely of
massesn,+m,. At c=1, the system is once again devoid of §=& 0t &1 (27)

impurity and the localization length goes to infinity. At inter- 1pig equation represents a more complete estimate for the

mediate impurity concentrations, the localization lengthocalization length that is valid for both strong and concen-
passes through a minimum. Therefore, the behavior of a Sy$¢ated scatterers.

tem at arbitrary impurity concentration cannot be fully char-
acterized by the relation in E@19). A. Positive m,

For dilute systems, the localization lengih ., is as be-
fore:

the number of scatterers must be greater than approximate
32.

The accuracy of this approximation is shown in Fig. 6 for
systems having impurity scattering cross secticr0.20 and
&L =& =c(In(1 +p)). (22)  displacement wavelengths ranging from 8 to 128. The local-
ization length¢ for these systems was calculated using the
At hlgh Concentraﬁons, the localization Ieng«ﬂ;lﬁl has a MK solution. As can be seen, the approximation in ay)
concentration dependence that is proportiong(ltec): is reasonably accurate. The inset shows the same data, plot-
1 _a , ted as a function ofl —c), highlighting the separate behavior
éc=1= (1 =0)In(1+p"). 23 nearc— 1 for the different wavelengths.
The adjusted resistivity’ is for a system having background  Also shown in Fig. 6 are a dashed line and a dotted line.
massm,+m, and impurities with masm,. By the nature of The dashed line is the locus of localization length minima as
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FIG. 7. Localization lengtf as a function of impurity concen- FIG. 8. Localization lengtlt as a function of impurity concen-

trationc for m,=+0.8. The inset shows the same data as a functiorjrationc for two systems with different wave numblerOpen sym-
of (1-0). bols are calculations using the MK method and the solid lines are

Eq.(27). The figure can be compared directly to Fig. 1 of Azbel and

. . Soven(Ref. 6).
a function of displacement wavelength. Not only does the

minimum localization length increase with increasing wave- Fi 1 of Azbel and Sovehish Its 1 |
length, the concentration at which this happens decreases, 'gure Od z ]f’ an " ovens ?WS resuf S from ca C“b'
with increasing wavelength. The dotted line in Fig. 6 is the ations - -made - for ree vajues ol wavenumber
; _ : ; - k:0.02,1.5,3.13. The MK method is used here to duplicate
locus of points wheret,_o=¢&._,1. This locus of points is ical its for the t I luekoand th
meant to delineate the crossover point as the system passB§ numerical results for the two smaller valuesoand the

from one dominate phase to the other. The crossover poi FSUItS are shown as open symbols in Fig. 8. The solid lines

; Fig. 8 are the corresponding estimate of E2j7). Two
has a stronger concentration dependence than the locus 0f ™'Y ponaing L
minima g P things should be noted explicitly: The AS definition of local-

ization length corresponds to twice the localization length

defined here. The definition of localization length in Azbel

and Sovefuses the Landaugscaling parameter, while sub-
At a given oscillation wavelength and frequency, the im-sequent work’2! use the scaling of Andersoet al3 The

purity scattering cross section depends upon the magnitud@sults shown in Fig. 8 use the latter scaling definitions.

of the change in mags,. For small impurity concentrations,

the localization length for a system with impurity masg D. cA Effect

+m, will be equal to one with impurity massy,—m,. At

higher concentrations, however, the behavior of systems wil| A‘c.’ can be seen n Figs. 6 and 7, th? behawor of the total
differ. localization length diverges from the dilute limdt. In Fig.

c@’ the point at whick¢ begins to differ fromé, is a function

As an example, the localization concentration dependen .
was calculated for two systems with displacement Wavepf the d_lsplacement we}velength. To more clearly demon-
trate this effect, the ratié/ &, is shown in Fig. 9 as a func-

length \=32. The added impurity masses were +0.8 and® o
—0.98, and the localization Iength v%as determined by the MKIO" of the producth. The data shown are those appearing in

method. The results of the calculation are shown in Fig. 7 as

B. Negativem,

a function of the impurity concentratian The estimate from S
Eq.(27) is shown as a solid line. Within the inset are the data [
plotted as a function ofl -c). As expected, the behavior of ar 7
the two systems differ at higher concentrations. [
3_ .
C. Azbel and Soven comparison j\f i
To better judge performance, E&7) is compared to the 2r i
more rigorous result of Azbel and So¥e(AS). The AS
model contains quantum particles interacting with delta func- 1 - ]
tion potentials that have strengthand are located at random
integer values ok. For the AS systems, the value Wfis X ] )
equal to—1, and the scattering cross sectiopg of each ch

scatterer is a function of the particle wave numker , o
FIG. 9. The ratio of the measured localizatiéto the calculated

1 localization &y as a function of product of impurity concentration
Oas™= irt : (28) and wavelength\. Filled symbols are calculated solutions for sys-
1+ 16sirf(k/2) TS . . S :
tems having impurity cross section 0.2. The dotted line is the lim-
This is sufficient to duplicate the AS numerical calculation. iting curve for\ — .
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LR L) 1 S ) B The same relationship applies to both positive and nega-
tive values form,. For negative values ah,, in fact, in the
limit m, — -1, the behavior of the system is accurately char-
_ acterized byé, at long wavelengths.

VIlI. CONCLUSION

The localization length for harmonic chains having binary
disorder can be predicted accurately over a wide range of
wavelengths, impurity cross section, and impurity concentra-
0 il L "”1'(')0 - "'{E)loo ! tion. The primqry parameter required for this prediction is

2 the cross section of a single scatterer, corrected for short
wavelength displacements via the relative pulse propagation

FIG. 10. The ratio of the measured localizatiéro the dilute  speed. The localization length over the entire impurity con-
limit localization length&,, normalized by the impurity concentra- centration range can then be estimated by approximating the
tion ¢, as a function of displacement wavelength system as a sum of two independent systems, each account-
ing for the behavior of the system at the two limits of impu-

Fig. 6, with the addition of those for=512. Also shown in rity concentration.
the figure is a dotted line denoting the long wavelength lim- The general result applies to systems in which the impu-
iting behavior forx — . For values of\ greater than 1, the Trity mass is either larger or smaller than the original mass.
dilute limit approximation does not hold, and the observedAlthough the scattering cross section is symmetric about
localization length is greater than the dilute limit estimation.zero, with respect to the mass added to the background
Therefore, even though the effect is less dramatic for increag/alue, the localization length behavior differs for negative
ing \, there is a minimum effect, regardless of the wave-and positive changes in mass having the same scattering
length. cross section. This difference in behavior with respect to lo-
calization length, along with previous results showing differ-
VI. ANHARMONIC CHAINS ences in the rate of phonon-phonon interactions, are dis-
cussed in the context of numerical experiments on
Anharmonic systems.

In an anharmonic system, phonon-phonon interaction
will lead to the creation of displacements with varying wave- The general results also suggest that the localization

length. In time, very long wavelength displacements will be .

created. Because the impurity masses are fixed in time thIength of long displacement wavelengths created by phonon-
- > Impurtty me o ghonon interactions can be approximated, to within a con-

scattering cross section for the displacement waves will de=

crease as~2. In addition. because the impurities are fixed in stant, from dilute limit calculations results. For increasing
) o P concentration and constant impurity concentration, the local-
space, the produa\ will increase over time. Based on the

results from the last section, one would expect that the rati(l)Zatlon length, with respect to the dilute limit prediction, will

£/ £, will diverge to infinity with increasing wavelength. eventually diverge toward infinity. This deviation occurs for

. . . all wavelengths, and is a universal function of the impurity
U.smg Eq.(27), the ratioé/ ¢, was calculated_ as afuncnon concentration and the displacement wavelength, for a con-
of displacement wavelength for systems having constant im

urity mass and concentration. The results are shown in Ei Stant cross section. By contrast, in a numerical experiment on
purity ma : : "N F1%n anharmonic system composed of fixed scatterers, the scat-
10 for different values form,. For all values of impurity

: . tering cross section decreases with increasing wavelength.
concentrationc, the ratio ¢/ &, asymptotes to a constant at For th he | I h behavior i ithi
long wavelength: or these systems, the long wavelength behavior is, to within

' a constant, accurately predicted by dilute limit predictions.

i ¢ L c ( ) 29 This conjecture will be confirmed in a future pap#r.
im—=1+—(my+m,).
A—© §o 1-c mo m.
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