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The localization length for isotopically disordered harmonic one-dimensional chains is calculated for arbi-
trary impurity concentration and scattering cross section. The localization length depends on the scattering
cross section of a single scatterer, which is calculated for a discrete chain having a wavelength-dependent pulse
propagation speed. For binary isotopically disordered systems composed of many scatterers, the localization
length decreases with increasing impurity concentration, reaching a minimum before diverging toward infinity
as the impurity concentration approaches a value of 1. The concentration dependence of the localization length
over the entire impurity concentration range is approximated accurately by the sum of the behavior at each
limiting concentration. Simultaneous measurements of Lyapunov exponent statistics indicate practical limits
for the minimum system length and the number of scatterers to achieve representative ensemble averages.
Results are discussed in the context of future investigations of the time-dependent behavior of disordered
anharmonic chains.
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I. INTRODUCTION

The length scale over which Anderson localization1 oc-
curs in harmonic disordered chains can be expressed as a
function of the ensemble-averaged system resistivity.2,3 Us-
ing scaling arguments,3 the ensemble-averaged resistivity of
harmonic systems having binary isotopic disorder(single-
valued impurities) can be expressed as a function of the scat-
tering cross section of a single impurity and the impurity
concentration. Binary isotopically disordered harmonic
chains also have the property that in the limit that the impu-
rity concentration approaches unity, the system is once again
“pure,” and the Anderson localization length diverges toward
infinity. As a result, the Anderson localization length passes
through a minimum at intermediate concentrations.4 These
properties of a binary isotopically disordered harmonic chain
(BIDHC) make these systems both tractable and interesting.

In this work, an approximation is developed for the local-
ization length of a BIDHC with arbitrary impurity cross sec-
tion and concentration. In addition, the result incorporates
the discrete nature of a classical chain. Similar studies have
been performed previously, but with important differences.
Bourbonnais and Maynard5 studied energy transport in one-
dimensional systems having isotopic disorder, but the impu-
rity masses were not single-valued. The results of Azbel and
Soven6 on quantum systems having binary isotopic disorder
were based on a continuum solution for impurity locations
constrained to exist on lattice sites. Although the Azbel and
Soven result applied to short wavelengths that may exist be-
tween the impurities, the results do not incorporate the addi-
tional features of a discrete mechanical system.

This study serves as an introduction to future work on
energy transport in binary isotopically disordered anhar-
monic chains. These anharmonic chains serve as a useful
model for, among other things, line width broadening.7–9 To

perform that work, numerical integration will be used to
study the time-dependent nature of these systems. To be
practical, the initial conditions will require sufficiently short
wavelengths and high impurity concentrations to keep inte-
gration times manageable. In addition, the results of the
study will incorporate the discrete nature of the mechanic
chains so that these effects can be accounted for in the
results.

In this study, the energy localization in a BIDHC is stud-
ied for arbitrary displacement wavelength, impurity concen-
tration and scattering cross section. Disorder is effected by
changing randomly selected masses by a fixed amount. A
continuum Kronig-Penney(KP) model10 is used to develop a
general expression for scattering cross section, and the con-
tinuum impurity impedance is corrected for wavelength de-
pendent pulse propagation speed in discrete systems. The
resulting expression is verified by direct numerical integra-
tion. The localization length of systems with strong scatterers
is calculated using both the continuum KP model and the
MacKinnon and Kramer11 (MK ) method. The distribution of
Lyapunov exponents is studied using the continuum KP
model, and the minimum requirements are found for system
length and number of scatterers to achieve proper scaling
statistics. The localization length concentration dependence
is studied using the MK method, and an analytical expres-
sion is found for its behavior. For arbitrary impurity concen-
tration and impurity cross section, the localization length in a
BIDHC can be approximated by invoking a simple ansatz
based on an analogy to electrical systems. The result is ac-
curate for systems having displacement wavelengths at least
four lattice spacings long.

II. MODEL SYSTEM

The physical model used here is the harmonic version of
the Fermi-Pasta-Ulam(FPU)12 chain that is composed of dis-
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crete springs and masses. The massesmi are on a lattice with
spacinga and interact via nearest neighbor springs with force
constantK. Disorder is effected by changing the background
massm+ by a fixed amountm+ with probabilityc. To simplify
the results, all lengths are scaled by the lattice spacinga.

For a system composed ofN masses, each characterized
by a displacementxi about the equilibrium location and a
momentumpi, the Hamiltonian is separable:

H =
1

2o
i

N
pi

2

mi
+ Ksxi+1 − xid2. s1d

The real space equation of motion is

mi

K
ẍi = xi+1 − 2xi + xi−1. s2d

The Fourier transform leads to the corresponding equation of
motion for the energy eigenstate amplitudesuisvd:

ui+1 = F2 −
v2mi

K
Gui − ui−1. s3d

This is the corresponding Anderson tight-binding model for
the chain.

A. Discrete analysis

The time-dependent properties of the system were deter-
mined by numerical time integration of Eq.(2) using a
fourth-order symplectic integrator algorithm(SIA4) for sepa-
rable Hamiltonians. The coefficients were taken from Candy
and Rozmus,13 and the time step was 1/200 of the natural
period.

The localization length was calculated from Eq.(3) using
the method of MacKinnon and Kramer(MK ).11 This method
exploits the statistical properties of theui so that periodic
rescaling can be used to improve overall statistics.

B. Continuum analysis

A Kronig-Penney model10 is used to develop an expres-
sion for the scattering cross section of an impurity and to
study the statistics of the scaling parameter.3 The continuum
system analogous to the discrete chain is a homogeneous
elastic rod having mass densitym and Youngs modulusE. In
the absence of impurities, a longitudinal displacement ampli-
tude csx,tuvd with angular velocityv will propagate down
the rod with longitudinal velocitycl =ÎE/m.

A harmonic oscillator impurity located atx8 will give rise
to a reactive force due to the impurity impedanceZ for a
wave with angular velocityv:

Fm
]2

] t2
− E

]2

] x2 = − Zsvddsx − x8d
]

] t
Gcsx,tuvd. s4d

We assume the solution has a time dependence given by an
exponential of angular velocityv fc=fsxuvd e−ivtg to obtain

F ]2

] x2 + k2 =
− iv

E
Zsvd dsx − x8dGfsxuvd, s5d

wherek=v /cl. Equation(5) can be solved analytically for a
single scatterer or can be solved numerically for a particular

system composed of a number of scatterers. From this nu-
merical solution, one can determine the system resistivity,
which can be used to calculate the localization length.

III. CROSS SECTION

The scattering cross sections for a single impurity can be
calculated from the continuum system of Eq.(5). The
Green’s function for the 1D Helmholtz equation14 can be
used to solve for the admittancefsxd:

fsxd = eikx − S Zsvd
Zsvd + Î4mE

D eikux−xiu eikxi . s6d

The scattering cross section in 1D is equivalent to the reflec-
tion probability

s =
uZsvdu2

uZsvdu2 + 4mE
. s7d

To apply this equation to the discrete chain, it must be con-
verted from a continuum description to the corresponding
discrete description.

For an FPU system having masses spaced a distancea
apart, the continuum coefficients can be expressed as a func-
tion of the discrete properties in the limita→0 (Ref. 15)

m =
m0

a
, E = Ka. s8d

The scattering cross section can now be expressed as a func-
tion of the discrete system components

s =
uZsvdu2

uZsvdu2 + 4Km0
. s9d

The impedanceZsvd of a mass impurity along a one-
dimensional chain is proportional to the massm+ that is
added to the background massm0 (Ref. 16)

Zsvd = − i vm+/cs. s10d

This equation has been modified from the continuum relation
to account for the properties of a discrete one-dimensional
chain. A displacement wavelength has a corresponding wave
numberk=2p /l. For the discrete chain, the angular velocity
v and relative pulse propagation speedcs can be expressed
as a function of the displacement wave numberk:17

v = 2 sinsk/2d, cs = cossk/2d. s11d

Finally, substituting Eq.(10) into Eq.(9) gives the scattering
cross section of a mass impurity in a one-dimensional chain

s =
sm+ v/csd2

sm+ v/csd2 + 4Km0
. s12d

.
A numerical experiment was performed to test the appli-

cability of Eq. (12) to FPU systems, and a schematic of the
experiment is shown in Fig. 1. The system had fixed ends
and lengthL. One impurity was located atL /3, and another
impurity was located at 2L /3. An initial displacement was
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made with wavelengthl and total length 16l, and the hy-
perbolic tangent function was used to taper the oscillation
amplitude fromA to zero. Initially, the pulse was located at
one end of the system. It had length 8l, amplitude 2A, and
zero initial velocity. The time-dependent behavior was deter-
mined by numerical integration using the SIA4 algorithm.

The measured scattering cross section was determined
from the energy located in the three regions separated by the
impurities. The pulse energy located in each of three regions,
denoted byE1, E2, and E3, was calculated at four separate
times: t=0, L /6cs, L /2cs, and 5L /6cs. At these times, the
pulses are located near the center of a region. Although re-
dundant with respect to the initial total energy, determining
the energy att=L /6cs provided a consistency check. In each
case, the difference betweenE1st=0d and E1st=L /6csd was
less than one part in 104.

The scattering cross section in FPU systems is the reflec-
tion coefficient. In this experiment, the reflection coefficient
R is calculated from the ratio of energies in the first two
intervals after one scattering event

R=
E1sL/2csd

E1s0d
. s13d

.
Although the transmission coefficientT could have been

determined fromE2sL /2csd, a second scatterer was used as a
more rigorous test of the experiment design and numerical
integrator. The transmission coefficientT for a single scat-
terer was calculated using the energy after two scattering
events

T =ÎE3s5L/6csd
E1s0d

. s14d

In all cases, the magnitude of 1−R−T was less than 10−3.
A comparison of the estimated cross sections in Eq. (12)

to the measured reflection coefficientR in Eq. (13) is shown
in Fig. 2 for different displacement wavelengthsl. The re-
sults demonstrate that Eq.(12) is an accurate estimate for the
scattering cross sections for displacement wavelengths as
short as 4. Moreover, the symmetry about zero for scattering
cross section for negative values ofm+ is shown in the inset
of Fig. 2.

IV. LOCALIZATION LENGTH

The resistivityrN of a system composed ofN scatterers is
the ratio of the system reflection coefficientRN to the system
transmission coefficientTN:2,3

rN =
RN

TN
. s15d

The localization length of the system is defined in an aver-
aged sense. To achieve proper scaling, however, one defines
its inverse, the Lyapunov exponentg:

g =
lns1 + rNd

L
. s16d

More specifically, there is a distribution of values from an
ensemble of systems. If the systems composing the ensemble
are sufficiently large, the distribution ofg values will be
normal. The localization lengthj for a system having length
L and N scatterers is defined from the ensemble averaged
Lyapunov exponent

j−1 = kgl =
klns1 + rNdl

L
. s17d

Unless otherwise noted, the symbolg shall imply the en-
semble averaged quantity.

A. strong scatterers

To perform numerical experiments on anharmonic sys-
tems of manageable length, the scatters will need to be rela-
tively strong. Therefore, weak scattering results will not be
applicable. Moreover, a means is needed to predict the aver-
aged localization behavior of a system using only single scat-
terer information. Because the impurities are identical, the

FIG. 1. Schematic of cross section numerical experiment; each
line represents the state of the system at the time of measurement.
The timet, shown along left side, is expressed as a function of the
system lengthL and pulse propagation speedcs. The large dots
denote the location of two impurities.

FIG. 2. Cross sections as a function ofm+v /cs for different
wavelengthsl. The solid curve is the analytical result in Eq.(12).
The inset shows additional data near zero.
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scaling law3 can be exploited to express system behavior as a
function of the resistivity of a single scattererr:

klns1 + rNdl = N lns1 + rd. s18d

Substituting from Eq.(17) above yields an unbiased estimate
for the ensemble averaged localization length(dilute limite)
as a function of impurity concentrationc:

j0
−1 = cklns1 + rdl. s19d

In the limit of weak scatteringsc,r→0d, one recovers the
expected resultj0

−1=cs=L−1, whereL is the classical mean
free path.

To demonstrate both the effect of strong scatterersss
→1d and the accuracy of Eq.(18), the ensemble average
klns1+rNdl was calculated from 10 000 systems, each having
lengthL andN impurities. The displacement wavelength was
32, and the scattering cross section of each impurity wass.
The results from the calculation are shown in Fig. 3 as a
function of the impurity cross sections. In the figure, the
error bars represent the mean standard deviation, and many
of the symbols lie upon one another. As can be seen, all the
systems have the lns1+rd dependence that deviates from the
mean free path approximationsj0

−1=csd for cross sections
greater than approximately 0.2 for all combinations of sys-
tem size and number of scatterers.

B. Statistics

The results shown in Fig. 3 demonstrate that, in the mean,
systems having a finite density of scatterers have the ex-
pected behavior. Recent results suggest that systems having
relatively few scatterers do not exhibit Gaussian behavior
and, therefore, not obey scaling laws. For systems having
sufficient length and number of scatterers, the population of
Lyapunov exponents is normally distributed,3 with variance
sy

2 (Refs. 3 and 18)

sy
2 =

2

L2klns1 + rNdl. s20d

Returning to the data of Fig. 3, the population of Lyapunov
exponentsg was compared to the expectations of Eq.(20).
To assess the “normality” of the data, the intervals, both
above and below the mean, having coverage factors19 corre-
sponding to one and two standard deviations were deter-
mined from the population. In addition, the population stan-
dard deviationD is also shown so that it could be compared
to both its estimated value in Eq.(20) and to the correspond-
ing coverage interval.

The results of the Lyapunov exponent statistics calcula-
tion, from an ensemble with a population of 10 000, are
shown in Fig. 4 for systems having lengthL=16 384, N
=128 impurities, and displacement wavelengthl=32. (Re-
sults for other systems were similar, and are omitted for
brevity.) The data are shown as a function of the single im-
purity cross sections. The filled symbols are the average
value, and the solid line is the estimated average value. The
error bars represent the intervals that have the same coverage
factor as one and two standard deviations in a normal distri-
bution. The two pairs of dashed lines are the estimated stan-
dard deviations from Eq.(20). The dotted line is the popula-
tion standard deviationD.

For small scattering cross sections, the distribution ofg is
asymmetric, with zero as a lower bound for the coverage
intervals. Interestingly, only the outer intervals are asymmet-
ric about the mean. The inner intervals are nearly symmetric
about the mean, and they have a value nearly equal to the
population standard deviation.

As the scattering cross section increases, the results begin
to exhibit Gaussian behavior. Above a 0.2 scattering cross
section, the measured intervals, the predicted intervalssg,
and the population standard deviationD all agree. Therefore,
agreement between the population standard deviationD and
the estimated standard deviationsg is as much a measure of

FIG. 3. Localization lengthj0, scaled by impurity concentration
c, as a function of impurity scattering cross sections for systems
having lengthL andN impurities. The solid line is lns1+rd and the
dashed line represents the mean free path estimate. The error bars
represent the mean standard deviation.(Many of the symbols lie
upon one another and the error bars are typically smaller than the
symbols.)

FIG. 4. Lyapunov exponentg statistics as a function of scatter-
ing cross sections for a system withL=16 384,N=128, andl
=32. Error bars represent coverage factors corresponding to one and
two standard deviations of a normal distribution. The predicted in-
tervals ±1sg and ±2sg [Eq. (20)] are shown, along with observed
population standard deviationD.
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“normality” as is a careful analysis of the population cover-
age intervals.

Exploiting this relationship, the population standard de-
viation D for all the data from the Lyapunov exponent statis-
tics experiment are shown in Fig. 5 as a function of the
system length. For normally distributed populations, the es-
timated coefficient of variation can be determined from Eq.
(17) and Eq.(20), and has the following convenient form:

sg

kgl
=Î 2

L/j0
. s21d

.
This equation is shown as a solid line in Fig. 5. One can

conclude from the figure that in order for the observed
Lyapunov exponents to be normally distributed, the system
length must be at least 10 times the localization length, and
the number of scatterers must be greater than approximately
32.

V. CONCENTRATED IMPURITIES

For dilute impurity concentrations, the localization length
decreases with increasing impurity concentration. As the im-
purity concentrationc approaches unity, however, the FPU
system will become a pure system composed entirely of
massesmo+m+. At c=1, the system is once again devoid of
impurity and the localization length goes to infinity. At inter-
mediate impurity concentrations, the localization length
passes through a minimum. Therefore, the behavior of a sys-
tem at arbitrary impurity concentration cannot be fully char-
acterized by the relation in Eq.(19).

For dilute systems, the localization lengthjc→0 is as be-
fore:

jc→o
−1 = j+

−1 = c klns1 + rdl. s22d

At high concentrations, the localization lengthjc→1 has a
concentration dependence that is proportional tos1−cd:

jc→1
−1 = s1 − cdklns1 + r8dl. s23d

The adjusted resistivityr8 is for a system having background
massmo+m+ and impurities with massmo. By the nature of

the solution using the MK method, and given that the sys-
tems are harmonic, the frequencyv is the same for both
systems, but the wavelength and the corresponding pulse
speed are different:

k8 = kÎmo + m+, s24d

cs8 = cossk8/2d, s25d

r8 =
s− m+v/cs8d

2

4Ksm0 + m+d
. s26d

.
The behavior of the system for all values of impurity con-

centration is conjectured from the electrical analogy: as
Lyapunov exponent is to resistivity, localization length is to
conductivity. If one assumes that at some intermediate con-
centration the behavior is simultaneously expressing itself as
two systems with localization lengthsjc→0 and jc→1, these
two systems should contribute independently to the overall
behavior. By analogy to conductors, the total localization
lengthj would be additive:

j = jc→0 + jc→1. s27d

This equation represents a more complete estimate for the
localization length that is valid for both strong and concen-
trated scatterers.

A. Positive m+

The accuracy of this approximation is shown in Fig. 6 for
systems having impurity scattering cross sections=0.20 and
displacement wavelengths ranging from 8 to 128. The local-
ization lengthj for these systems was calculated using the
MK solution. As can be seen, the approximation in Eq.(27)
is reasonably accurate. The inset shows the same data, plot-
ted as a function ofs1−cd, highlighting the separate behavior
nearc→1 for the different wavelengths.

Also shown in Fig. 6 are a dashed line and a dotted line.
The dashed line is the locus of localization length minima as

FIG. 5. Lyapunov exponent coefficient of variationD /g as a
function of the ratio of system lengthL to the localization lengthj0

for systems having different numbers of scatterersN. The solid
curve is Eq.(21).

FIG. 6. Localization lengthj as a function of impurity concen-
tration c in a discrete system having scatterers with cross section
0.2. Solid lines represent Eq.(27), the dashed line is the locus of
minima, and the dotted line denotes equal contribution fromjc→0

andjc→1. The inset shows the same data as a function ofs1-cd.
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a function of displacement wavelength. Not only does the
minimum localization length increase with increasing wave-
length, the concentration at which this happens decreases
with increasing wavelength. The dotted line in Fig. 6 is the
locus of points wherejc→0=jc→1. This locus of points is
meant to delineate the crossover point as the system passes
from one dominate phase to the other. The crossover point
has a stronger concentration dependence than the locus of
minima.

B. Negativem+

At a given oscillation wavelength and frequency, the im-
purity scattering cross section depends upon the magnitude
of the change in massm+. For small impurity concentrations,
the localization length for a system with impurity massmo
+m+ will be equal to one with impurity massmo−m+. At
higher concentrations, however, the behavior of systems will
differ.

As an example, the localization concentration dependence
was calculated for two systems with displacement wave-
length l=32. The added impurity masses were +0.8 and
−0.8, and the localization length was determined by the MK
method. The results of the calculation are shown in Fig. 7 as
a function of the impurity concentrationc. The estimate from
Eq. (27) is shown as a solid line. Within the inset are the data
plotted as a function ofs1−cd. As expected, the behavior of
the two systems differ at higher concentrations.

C. Azbel and Soven comparison

To better judge performance, Eq.(27) is compared to the
more rigorous result of Azbel and Soven6 (AS). The AS
model contains quantum particles interacting with delta func-
tion potentials that have strengthV and are located at random
integer values ofx. For the AS systems, the value ofV is
equal to21, and the scattering cross sectionsAS of each
scatterer is a function of the particle wave numberk:

sAS =
1

1 + 16sin2sk/2d
. s28d

This is sufficient to duplicate the AS numerical calculation.

Figure 1 of Azbel and Soven6 shows results from calcu-
lations made for three values of wavenumber
k:0.02,1.5,3.13. The MK method is used here to duplicate
the numerical results for the two smaller values ofk, and the
results are shown as open symbols in Fig. 8. The solid lines
in Fig. 8 are the corresponding estimate of Eq.(27). Two
things should be noted explicitly: The AS definition of local-
ization length corresponds to twice the localization length
defined here. The definition of localization length in Azbel
and Soven6 uses the Landauer2 scaling parameter, while sub-
sequent work20,21 use the scaling of Andersonet al.3 The
results shown in Fig. 8 use the latter scaling definitions.

D. cl Effect

As can be seen in Figs. 6 and 7, the behavior of the total
localization length diverges from the dilute limitjo. In Fig.
6, the point at whichj begins to differ fromjo is a function
of the displacement wavelength. To more clearly demon-
strate this effect, the ratioj /jo is shown in Fig. 9 as a func-
tion of the productcl. The data shown are those appearing in

FIG. 7. Localization lengthj as a function of impurity concen-
trationc for m+= ±0.8. The inset shows the same data as a function
of s1−cd.

FIG. 8. Localization lengthj as a function of impurity concen-
trationc for two systems with different wave numberk. Open sym-
bols are calculations using the MK method and the solid lines are
Eq. (27). The figure can be compared directly to Fig. 1 of Azbel and
Soven(Ref. 6).

FIG. 9. The ratio of the measured localizationj to the calculated
localizationj0 as a function of product of impurity concentrationc
and wavelengthl. Filled symbols are calculated solutions for sys-
tems having impurity cross section 0.2. The dotted line is the lim-
iting curve forl→`.
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Fig. 6, with the addition of those forl=512. Also shown in
the figure is a dotted line denoting the long wavelength lim-
iting behavior forl→`. For values ofcl greater than 1, the
dilute limit approximation does not hold, and the observed
localization length is greater than the dilute limit estimation.
Therefore, even though the effect is less dramatic for increas-
ing l, there is a minimum effect, regardless of the wave-
length.

VI. ANHARMONIC CHAINS

In an anharmonic system, phonon-phonon interactions
will lead to the creation of displacements with varying wave-
length. In time, very long wavelength displacements will be
created. Because the impurity masses are fixed in time, the
scattering cross section for the displacement waves will de-
crease asl−2. In addition, because the impurities are fixed in
space, the productcl will increase over time. Based on the
results from the last section, one would expect that the ratio
j /j0 will diverge to infinity with increasing wavelength.

Using Eq.(27), the ratioj /jo was calculated as a function
of displacement wavelength for systems having constant im-
purity mass and concentration. The results are shown in Fig.
10 for different values form+. For all values of impurity
concentrationc, the ratioj /jo asymptotes to a constant at
long wavelength:

lim
l→`

j

jo
= 1 +

c

1 − c
smo + m+d. s29d

Therefore, for anharmonic systems, the localization length is
characterized, to within a constant, by the dilute limit expres-
sion for jo given in Eq.(19).

The same relationship applies to both positive and nega-
tive values form+. For negative values ofm+, in fact, in the
limit m+→−1, the behavior of the system is accurately char-
acterized byjo at long wavelengths.

VII. CONCLUSION

The localization length for harmonic chains having binary
disorder can be predicted accurately over a wide range of
wavelengths, impurity cross section, and impurity concentra-
tion. The primary parameter required for this prediction is
the cross section of a single scatterer, corrected for short
wavelength displacements via the relative pulse propagation
speed. The localization length over the entire impurity con-
centration range can then be estimated by approximating the
system as a sum of two independent systems, each account-
ing for the behavior of the system at the two limits of impu-
rity concentration.

The general result applies to systems in which the impu-
rity mass is either larger or smaller than the original mass.
Although the scattering cross section is symmetric about
zero, with respect to the mass added to the background
value, the localization length behavior differs for negative
and positive changes in mass having the same scattering
cross section. This difference in behavior with respect to lo-
calization length, along with previous results showing differ-
ences in the rate of phonon-phonon interactions, are dis-
cussed in the context of numerical experiments on
anharmonic systems.

The general results also suggest that the localization
length of long displacement wavelengths created by phonon-
phonon interactions can be approximated, to within a con-
stant, from dilute limit calculations results. For increasing
concentration and constant impurity concentration, the local-
ization length, with respect to the dilute limit prediction, will
eventually diverge toward infinity. This deviation occurs for
all wavelengths, and is a universal function of the impurity
concentration and the displacement wavelength, for a con-
stant cross section. By contrast, in a numerical experiment on
an anharmonic system composed of fixed scatterers, the scat-
tering cross section decreases with increasing wavelength.
For these systems, the long wavelength behavior is, to within
a constant, accurately predicted by dilute limit predictions.
This conjecture will be confirmed in a future paper.22
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